1
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
2
|
Hochmann J, Parietti F, Martínez J, Lopez AC, Carreño M, Quijano C, Boccardo E, Sichero L, Möller MN, Mirazo S, Arbiza J. Human papillomavirus type 18 E5 oncoprotein cooperates with E6 and E7 in promoting cell viability and invasion and in modulating the cellular redox state. Mem Inst Oswaldo Cruz 2020; 115:e190405. [PMID: 32187327 PMCID: PMC7066992 DOI: 10.1590/0074-02760190405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/22/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND High-risk human papillomaviruses (HR-HPVs) are the etiological agents of
cervical cancer. Among them, types 16 and 18 are the most prevalent
worldwide. The HPV genome encodes three oncoproteins (E5, E6, and E7) that
possess a high transformation potential in culture cells when transduced
simultaneously. In the present study, we analysed how these oncoproteins
cooperate to boost key cancer cell features such as uncontrolled cell
proliferation, invasion potential, and cellular redox state imbalance.
Oxidative stress is known to contribute to the carcinogenic process, as
reactive oxygen species (ROS) constitute a potentially harmful by-product of
many cellular reactions, and an efficient clearance mechanism is therefore
required. Cells infected with HR-HPVs can adapt to oxidative stress
conditions by upregulating the formation of endogenous antioxidants such as
catalase, glutathione (GSH), and peroxiredoxin (PRX). OBJECTIVES The primary aim of this work was to study how these oncoproteins cooperate
to promote the development of certain cancer cell features such as
uncontrolled cell proliferation, invasion potential, and oxidative stress
that are known to aid in the carcinogenic process. METHODS To perform this study, we generated three different HaCaT cell lines using
retroviral transduction that stably expressed combinations of HPV-18
oncogenes that included HaCaT E5-18, HaCaT E6/E7-18, and HaCaT
E5/E6/E7-18. FINDINGS Our results revealed a statistically significant increment in cell viability
as measured by MTT assay, cell proliferation, and invasion assays in the
cell line containing the three viral oncogenes. Additionally, we observed
that cells expressing HPV-18 E5/E6/E7 exhibited a decrease in catalase
activity and a significant augmentation of GSH and PRX1 levels relative to
those of E5, E6/E7, and HaCaT cells. MAIN CONCLUSIONS This study demonstrates for the first time that HPV-18 E5, E6, and E7
oncoproteins can cooperate to enhance malignant transformation.
Collapse
Affiliation(s)
- Jimena Hochmann
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay
| | - Felipe Parietti
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay
| | - Jennyfer Martínez
- Universidad de la República, Facultad de Medicina, Centro de Investigaciones Biomédicas, Departamento de Bioquímica, Montevideo, Uruguay
| | - Ana C Lopez
- Universidad de la República, Facultad de Ciencias, Instituto de Química Biológica, Laboratorio de Fisicoquímica Biológica, Montevideo, Uruguay
| | - Mara Carreño
- Universidad de la República, Facultad de Ciencias, Instituto de Química Biológica, Laboratorio de Fisicoquímica Biológica, Montevideo, Uruguay
| | - Celia Quijano
- Universidad de la República, Facultad de Medicina, Centro de Investigaciones Biomédicas, Departamento de Bioquímica, Montevideo, Uruguay
| | - Enrique Boccardo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brasil
| | - Laura Sichero
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brasil
| | - Matías N Möller
- Universidad de la República, Facultad de Ciencias, Instituto de Química Biológica, Laboratorio de Fisicoquímica Biológica, Montevideo, Uruguay
| | - Santiago Mirazo
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay
| | - Juan Arbiza
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay
| |
Collapse
|
3
|
Mondal AM, Ma AH, Li G, Krawczyk E, Yuan R, Lu J, Schlegel R, Stamatakis L, Kowalczyk KJ, Philips GK, Pan CX, Liu X. Fidelity of a PDX-CR model for bladder cancer. Biochem Biophys Res Commun 2019; 517:49-56. [PMID: 31303270 DOI: 10.1016/j.bbrc.2019.06.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 01/14/2023]
Abstract
Patient-derived xenografts (PDXs) are widely recognised as a more physiologically relevant preclinical model than standard cell lines, but are expensive and low throughput, have low engraftment rate and take a long time to develop. Our newly developed conditional reprogramming (CR) technology addresses many PDX drawbacks, but lacks many in vivo factors. Here we determined whether PDXs and CRCs of the same cancer origin maintain the biological fidelity and complement each for translational research and drug development. Four CRC lines were generated from bladder cancer PDXs. Short tandem repeat (STR) analyses revealed that CRCs and their corresponding parental PDXs shared the same STRs, suggesting common cancer origins. CRCs and their corresponding parental PDXs contained the same genetic alterations. Importantly, CRCs retained the same drug sensitivity with the corresponding downstream signalling activity as their corresponding parental PDXs. This suggests that CRCs and PDXs can complement each other, and that CRCs can be used for in vitro fast, high throughput and low cost screening while PDXs can be used for in vivo validation and study of the in vivo factors during translational research and drug development.
Collapse
Affiliation(s)
- Abdul M Mondal
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Washington DC, USA
| | - Ai-Hong Ma
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Washington DC, USA
| | - Guangzhao Li
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Washington DC, USA
| | - Ewa Krawczyk
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Washington DC, USA
| | - Ruan Yuan
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Washington DC, USA; Department of Urology, Renmin Hospital, Wuhan University, Washington DC, USA
| | - Jie Lu
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Washington DC, USA
| | - Richard Schlegel
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Washington DC, USA
| | - Lambros Stamatakis
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA; Department of Urology, MedStar Washington Hospital Center, Washington DC, USA
| | - Keith J Kowalczyk
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA; Department of Urology, MedStar Georgetown Hospital, Washington DC, USA
| | - George K Philips
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA; Department of Oncology, MedStar Georgetown Hospital, Washington DC, USA
| | - Chong-Xian Pan
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Washington DC, USA; VA Northern California Health Care System, Mather, CA, USA.
| | - Xuefeng Liu
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Washington DC, USA; Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA.
| |
Collapse
|
4
|
Shibata T, Lieblong BJ, Sasagawa T, Nakagawa M. The promise of combining cancer vaccine and checkpoint blockade for treating HPV-related cancer. Cancer Treat Rev 2019; 78:8-16. [PMID: 31302573 DOI: 10.1016/j.ctrv.2019.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Human papillomavirus (HPV)-associated intraepithelial neoplasia or cancers are ideal candidates for cancer immunotherapy since HPV oncoproteins, such as E6 and E7 proteins of high-risk HPVs, could be utilized as foreign antigens. In HPV-associated cancers as well as nonviral cancers, the cancer cells may evade host immunity through the expression of immune checkpoint molecules, downregulation of human leukocyte antigen, and activation of immune regulatory cells. Because of these immune suppressive mechanisms, HPV therapeutic vaccines have shown little efficacy against HPV-associated cancers, although they have shown efficacy in treating HPV-associated intraepithelial neoplasias. Recently, checkpoint blockade emerged as a promising new treatment for solid cancers; however, these therapies have shown only modest efficacy against HPV-associated cancers. Here we reviewed literature analyzing a combinatory therapy using an immune checkpoint inhibitor and an HPV therapeutic vaccine for treating HPV-associated cancers to compensate for shortfalls of each monotherapy. Complimentary modes of T cell activation would be deployed; as vaccines would directly stimulate the T cells, while checkpoint inhibitors would do so by releasing inhibition. Some promising studies using animal models and early human clinical trials raised a possibility that such combinations may be efficacious in regressing HPV-associated cancers. Epitope spreading (the phenomenon in which non-targeted antigens become new targets of immune response) may play a critical role mechanistically. Currently ongoing studies will shed light as to whether such combination therapy would indeed be a promising new treatment paradigm. Current and future studies must also determine the adverse effect profile of such a combination treatment.
Collapse
Affiliation(s)
- Takeo Shibata
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Benjamin J Lieblong
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Toshiyuki Sasagawa
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Mayumi Nakagawa
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
5
|
Mondal AM, Zhou H, Horikawa I, Suprynowicz FA, Li G, Dakic A, Rosenthal B, Ye L, Harris CC, Schlegel R, Liu X. Δ133p53α, a natural p53 isoform, contributes to conditional reprogramming and long-term proliferation of primary epithelial cells. Cell Death Dis 2018; 9:750. [PMID: 29970881 PMCID: PMC6030220 DOI: 10.1038/s41419-018-0767-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/25/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022]
Abstract
We previously developed the technique of conditional reprogramming (CR), which allows primary epithelial cells from fresh or cryopreserved specimens to be propagated long-term in vitro, while maintaining their genetic stability and differentiation potential. This method requires a combination of irradiated fibroblast feeder cells and a Rho-associated kinase (ROCK) inhibitor. In the present study, we demonstrate increased levels of full-length p53 and its natural isoform, Δ133p53α, in conditionally reprogrammed epithelial cells from primary prostate, foreskin, ectocervical, and mammary tissues. Increased Δ133p53α expression is critical for CR since cell proliferation is rapidly inhibited following siRNA knockdown of endogenous Δ133p53α. Importantly, overexpression of Δ133p53α consistently delays the onset of cellular senescence of primary cells when cultured under non-CR conditions in normal keratinocyte growth medium (KGM). More significantly, the combination of Δ133p53α overexpression and ROCK inhibitor, without feeder cells, enables primary epithelial cells to be propagated long-term in vitro. We also show that Δ133p53α overexpression induces hTERT expression and telomerase activity and that siRNA knockdown of hTERT causes rapid inhibition of cell proliferation, indicating a critical role of hTERT for mediating the effects of Δ133p53α. Altogether, these data demonstrate a functional and regulatory link between p53 pathways and hTERT expression during the conditional reprogramming of primary epithelial cells.
Collapse
Affiliation(s)
- Abdul M Mondal
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Georgrtown, WA, 20057, USA
| | - Hua Zhou
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Georgrtown, WA, 20057, USA.,Guizhou Medical University, Guiyang, Guizhou, China
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Frank A Suprynowicz
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Georgrtown, WA, 20057, USA
| | - Guangzhao Li
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Georgrtown, WA, 20057, USA
| | - Aleksandra Dakic
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Georgrtown, WA, 20057, USA
| | - Bernard Rosenthal
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Georgrtown, WA, 20057, USA
| | - Lin Ye
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Georgrtown, WA, 20057, USA.,Shenzhen Eye Hospital, Shenzhen, Guangdong, China
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard Schlegel
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Georgrtown, WA, 20057, USA.
| | - Xuefeng Liu
- Center for Cell Reprograming, Department of Pathology, Georgetown University Medical Center, Georgrtown, WA, 20057, USA. .,Second Xianya Hospital (Adjunct Position), Zhongnan University, Changsha, Huna, China. .,Affiliated Cancer Hospital & Institute (Adjunct Position), Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Golemis EA, Scheet P, Beck TN, Scolnick EM, Hunter DJ, Hawk E, Hopkins N. Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev 2018; 32:868-902. [PMID: 29945886 PMCID: PMC6075032 DOI: 10.1101/gad.314849.118] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Annually, there are 1.6 million new cases of cancer and nearly 600,000 cancer deaths in the United States alone. The public health burden associated with these numbers has motivated enormous research efforts into understanding the root causes of cancer. These efforts have led to the recognition that between 40% and 45% of cancers are associated with preventable risk factors and, importantly, have identified specific molecular mechanisms by which these exposures modify human physiology to induce or promote cancer. The increasingly refined knowledge of these mechanisms, which we summarize here, emphasizes the need for greater efforts toward primary cancer prevention through mitigation of modifiable risk factors. It also suggests exploitable avenues for improved secondary prevention (which includes the development of therapeutics designed for cancer interception and enhanced techniques for noninvasive screening and early detection) based on detailed knowledge of early neoplastic pathobiology. Such efforts would complement the current emphasis on the development of therapeutic approaches to treat established cancers and are likely to result in far greater gains in reducing morbidity and mortality.
Collapse
Affiliation(s)
- Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Paul Scheet
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tim N Beck
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Molecular and Cell Biology and Genetics Program, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | - Eward M Scolnick
- Eli and Edythe L. Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Medical Sciences Division, Oxford OX3 7LF, United Kingdom
| | - Ernest Hawk
- Division of Cancer Prevention and Population Sciences, University of Texas M.D. Anderson Cancer Center, Houston Texas 77030, USA
| | - Nancy Hopkins
- Koch Institute for Integrative Cancer Research, Biology Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Zhang Y, Dakic A, Chen R, Dai Y, Schlegel R, Liu X. Direct HPV E6/Myc interactions induce histone modifications, Pol II phosphorylation, and hTERT promoter activation. Oncotarget 2017; 8:96323-96339. [PMID: 29221209 PMCID: PMC5707103 DOI: 10.18632/oncotarget.22036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/15/2017] [Indexed: 11/25/2022] Open
Abstract
Human Papillomavirus Viruses (HPVs) are associated with the majority of human cervical and anal cancers and 10-30% of head and neck squamous carcinomas. E6 oncoprotein from high risk HPVs interacts with the p53 tumor suppressor protein to facilitate its degradation and increases telomerase activity for extending the life span of host cells. We published previously that the Myc cellular transcription factor associates with the high-risk HPV E6 protein in vivo and participates in the transactivation of the hTERT promoter. In the present study, we further analyzed the role of E6 and the Myc-Max-Mad network in regulating the hTERT promoter. We confirmed that E6 and Myc interact independently and that Max can also form a complex with E6. However, the E6/Max complex is observed only in the presence of Myc, suggesting that E6 associates with Myc/Max dimers. Consistent with the hypothesis that Myc is required for E6 induction of the hTERT promoter, Myc antagonists (Mad or Mnt) significantly blocked E6-mediated transactivation of the hTERT promoter. Analysis of Myc mutants demonstrated that both the transactivation domain and HLH domain of Myc protein were required for binding E6 and for the consequent transactivation of the hTERT promoter, by either Myc or E6. We also showed that E6 increased phosphorylation of Pol II on the hTERT promoter and induced epigenetic histone modifications of the hTERT promoter. More important, knockdown of Myc expression dramatically decreased engagement of acetyl-histones and Pol II at the hTERT promoter in E6-expressing cells. Thus, E6/Myc interaction triggers the transactivation of the hTERT promoter by modulating both histone modifications, Pol II phosphorylation and promoter engagement, suggesting a novel mechanism for telomerase activation and a new target for HPV- associated human cancer.
Collapse
Affiliation(s)
- Yiyu Zhang
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Aleksandra Dakic
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Renxiang Chen
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yuhai Dai
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Richard Schlegel
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Xuefeng Liu
- Department of Pathology, Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
8
|
Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 772:23-35. [PMID: 28528687 DOI: 10.1016/j.mrrev.2016.08.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/18/2016] [Accepted: 08/02/2016] [Indexed: 11/17/2022]
|
9
|
Abstract
The major transformation activity of the high-risk human papillomaviruses (HPV) is associated with the E7 oncoprotein. The interaction of HPV E7 with retinoblastoma family proteins is important for several E7 activities; however, this interaction does not fully account for the high-risk E7-specific cellular immortalization and transformation activities. We have determined that the cellular non-receptor protein tyrosine phosphatase PTPN14 interacts with HPV E7 from many genus alpha and beta HPV types. We find that high-risk genus alpha HPV E7, but not low-risk genus alpha or beta HPV E7, is necessary and sufficient to reduce the steady-state level of PTPN14 in cells. High-risk E7 proteins target PTPN14 for proteasome-mediated degradation, which requires the ubiquitin ligase UBR4, and PTPN14 is degraded by the proteasome in HPV-positive cervical cancer cell lines. Residues in the C terminus of E7 interact with the C-terminal phosphatase domain of PTPN14, and interference with the E7-PTPN14 interaction restores PTPN14 levels in cells. Finally, PTPN14 degradation correlates with the retinoblastoma-independent transforming activity of high-risk HPV E7. High-risk human papillomaviruses (HPV) are the cause of cervical cancer, some other anogenital cancers, and a growing fraction of oropharyngeal carcinomas. The high-risk HPV E6 and E7 oncoproteins enable these viruses to cause cancer, and the mechanistic basis of their carcinogenic activity has been the subject of intense study. The high-risk E7 oncoprotein is especially important in the immortalization and transformation of human cells, which makes it a central component of HPV-associated cancer development. E7 oncoproteins interact with retinoblastoma family proteins, but for several decades, it has been recognized that high-risk HPV E7 oncoproteins have additional cancer-associated activities. We have determined that high-risk E7 proteins target the proteolysis of the cellular protein tyrosine phosphatase PTPN14 and find that this activity is correlated with the retinoblastoma-independent transforming activity of E7.
Collapse
|
10
|
LaRocca CJ, Han J, Salzwedel AO, Davydova J, Herzberg MC, Gopalakrishnan R, Yamamoto M. Oncolytic adenoviruses targeted to Human Papilloma Virus-positive head and neck squamous cell carcinomas. Oral Oncol 2016; 56:25-31. [PMID: 27086483 DOI: 10.1016/j.oraloncology.2016.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/18/2016] [Accepted: 02/29/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVES In recent years, the incidence of Human Papilloma Virus (HPV)-positive head and neck squamous cell carcinomas (HNSCC) has markedly increased. Our aim was to design a novel therapeutic agent through the use of conditionally replicative adenoviruses (CRAds) that are targeted to the HPV E6 and E7 oncoproteins. METHODS Each adenovirus included small deletion(s) in the E1a region of the genome (Δ24 or CB016) intended to allow for selective replication in HPV-positive cells. In vitro assays were performed to analyze the transduction efficiency of the vectors and the cell viability following viral infection. Then, the UPCI SCC090 cell line (HPV-positive) was used to establish subcutaneous tumors in the flanks of nude mice. The tumors were then treated with either one dose of the virus or four doses (injected every fourth day). RESULTS The transduction analysis with luciferase-expressing viruses demonstrated that the 5/3 fiber modification maximized virus infectivity. In vitro, both viruses (5/3Δ24 and 5/3CB016) demonstrated profound oncolytic effects. The 5/3CB016 virus was more selective for HPV-positive HNSCC cells, whereas the 5/3Δ24 virus killed HNSCC cells regardless of HPV status. In vivo, single injections of both viruses demonstrated anti-tumor effects for only a few days following viral inoculation. However, after four viral injections, there was statistically significant reductions in tumor growth when compared to the control group (p<0.05). CONCLUSION CRAds targeted to HPV-positive HNSCCs demonstrated excellent in vitro and in vivo therapeutic effects, and they have the potential to be clinically translated as a novel treatment modality for this emerging disease.
Collapse
Affiliation(s)
| | - Joohee Han
- Department of Surgery, University of Minnesota, United States
| | | | - Julia Davydova
- Department of Surgery, University of Minnesota, United States; Masonic Cancer Center, University of Minnesota, United States
| | - Mark C Herzberg
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, United States
| | - Rajaram Gopalakrishnan
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, United States
| | - Masato Yamamoto
- Department of Surgery, University of Minnesota, United States; Masonic Cancer Center, University of Minnesota, United States; Institute of Molecular Virology, University of Minnesota, United States.
| |
Collapse
|
11
|
Greenfield WW, Stratton SL, Myrick RS, Vaughn R, Donnalley LM, Coleman HN, Mercado M, Moerman-Herzog AM, Spencer HJ, Andrews-Collins NR, Hitt WC, Low GM, Manning NA, McKelvey SS, Smith D, Smith MV, Phillips AM, Quick CM, Jeffus SK, Hutchins LF, Nakagawa M. A phase I dose-escalation clinical trial of a peptide-based human papillomavirus therapeutic vaccine with Candida skin test reagent as a novel vaccine adjuvant for treating women with biopsy-proven cervical intraepithelial neoplasia 2/3. Oncoimmunology 2015; 4:e1031439. [PMID: 26451301 DOI: 10.1080/2162402x.2015.1031439] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/02/2015] [Accepted: 03/15/2015] [Indexed: 01/09/2023] Open
Abstract
PURPOSE: Non-surgical treatments for cervical intraepithelial neoplasia 2/3 (CIN2/3) are needed as surgical treatments have been shown to double preterm delivery rate. The goal of this study was to demonstrate safety of a human papillomavirus (HPV) therapeutic vaccine called PepCan, which consists of four current good-manufacturing production-grade peptides covering the HPV type 16 E6 protein and Candida skin test reagent as a novel adjuvant. PATIENTS AND METHODS: The study was a single-arm, single-institution, dose-escalation phase I clinical trial, and the patients (n = 24) were women with biopsy-proven CIN2/3. Four injections were administered intradermally every 3 weeks in limbs. Loop electrical excision procedure (LEEP) was performed 12 weeks after the last injection for treatment and histological analysis. Six subjects each were enrolled (50, 100, 250, and 500 μg per peptide). RESULTS: The most common adverse events (AEs) were injection site reactions, and none of the patients experienced dose-limiting toxicities. The best histological response was seen at the 50 μg dose level with a regression rate of 83% (n = 6), and the overall rate was 52% (n = 23). Vaccine-induced immune responses to E6 were detected in 65% of recipients (significantly in 43%). Systemic T-helper type 1 (Th1) cells were significantly increased after four vaccinations (P = 0.02). CONCLUSION: This study demonstrated that PepCan is safe. A significantly increased systemic level of Th1 cells suggests that Candida, which induces interleukin-12 (IL-12) in vitro, may have a Th1 promoting effect. A phase II clinical trial to assess the full effect of this vaccine is warranted.
Collapse
Affiliation(s)
- William W Greenfield
- Departments of Obstetrics and Gynecology; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Shawna L Stratton
- College of Medicine; Translational Research Institute; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Rebecca S Myrick
- College of Medicine; Translational Research Institute; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Rita Vaughn
- College of Medicine; Translational Research Institute; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Lisa M Donnalley
- College of Medicine; Translational Research Institute; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Hannah N Coleman
- Pathology; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Maria Mercado
- Pathology; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | | | - Horace J Spencer
- Biostatistics; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Nancy R Andrews-Collins
- Departments of Obstetrics and Gynecology; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Wilbur C Hitt
- Departments of Obstetrics and Gynecology; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Gordon M Low
- Departments of Obstetrics and Gynecology; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Nirvana A Manning
- Departments of Obstetrics and Gynecology; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Samantha S McKelvey
- Departments of Obstetrics and Gynecology; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Dora Smith
- Departments of Obstetrics and Gynecology; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Michael V Smith
- Departments of Obstetrics and Gynecology; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Amy M Phillips
- Departments of Obstetrics and Gynecology; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - C Matthew Quick
- Pathology; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Susanne K Jeffus
- Pathology; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Laura F Hutchins
- Medicine (Hematology-Oncology Division); University of Arkansas for Medical Sciences ; Little Rock, AR USA
| | - Mayumi Nakagawa
- Pathology; University of Arkansas for Medical Sciences ; Little Rock, AR USA
| |
Collapse
|
12
|
Seiki T, Nagasaka K, Kranjec C, Kawana K, Maeda D, Nakamura H, Taguchi A, Matsumoto Y, Arimoto T, Wada-Hiraike O, Oda K, Nakagawa S, Yano T, Fukayama M, Banks L, Osuga Y, Fujii T. HPV-16 impairs the subcellular distribution and levels of expression of protein phosphatase 1γ in cervical malignancy. BMC Cancer 2015; 15:230. [PMID: 25886518 PMCID: PMC4399203 DOI: 10.1186/s12885-015-1141-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 02/27/2015] [Indexed: 12/16/2022] Open
Abstract
Background The high risk Human Papillomavirus (HPV) E6 oncoproteins play an essential role in the development of cervical malignancy. Important cellular targets of E6 include p53 and the PDZ domain containing substrates such as hScrib and Dlg. We recently showed that hScrib activity was mediated in part through recruitment of protein phosphatase 1γ (PP1γ). Methods Expression patterns of hScrib and PP1γ were assessed by immunohistochemistry of HPV-16 positive cervical intraepithelial neoplasm (CIN), classified as CIN1 (n = 4), CIN2 (n = 8), CIN3 (n = 8), cervical carcinoma tissues (n = 11), and HPV-negative cervical tissues (n = 8), as well as by subfractionation assay of the HPV-16 positive cervical cancer cell lines, CaSki and SiHa. To explore the effects of the HPV-16 oncoproteins, we have performed siRNA knockdown of E6/E7 expression, and monitored the effects on the expression patterns of hScrib and PP1γ. Results We show that PP1γ levels in HPV-16 positive tumour cells are reduced in an E6/E7 dependent manner. Residual PP1γ in these cells is found mostly in the cytoplasm as opposed to the nucleus where it is predominantly found in normal cells. We have found a striking concordance with redistribution in the pattern of expression (9/11; 81.8%) and loss of PP1γ expression in HPV-16 positive cervical tumours (2/11; 18.2%). Furthermore, this loss of PP1γ expression and redistribution in the pattern of expression occurs progressively as the lesions develop (8/8; 100%). Conclusion Together, these results suggest that PP1γ may be a novel target of the HPV-16 oncoproteins and indicate that it might be a potential novel biomarker for HPV-16 induced malignancy.
Collapse
Affiliation(s)
- Takayuki Seiki
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Christian Kranjec
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano-99, I-34012, Trieste, Italy.
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Daichi Maeda
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Hiroe Nakamura
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Yoko Matsumoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Takahide Arimoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Shunsuke Nakagawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Teikyo University, Tokyo, 173-8605, Japan.
| | - Tetsu Yano
- Department of Obstetrics and Gynecology, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano-99, I-34012, Trieste, Italy.
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
13
|
Shterzer N, Heyman D, Shapiro B, Yaniv A, Jackman A, Serour F, Chaouat M, Gonen P, Tommasino M, Sherman L. Human papillomavirus types detected in skin warts and cancer differ in their transforming properties but commonly counteract UVB induced protective responses in human keratinocytes. Virology 2014; 468-470:647-659. [PMID: 25443667 DOI: 10.1016/j.virol.2014.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/14/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
In the present study, E6E7 and E6 proteins of human papillomaviruses (HPVs) associated with skin warts and cancer were compared for their transforming and carcinogenic abilities in primary human keratinocytes (PHKs). We show that E6E7 of cancer associated beta HPV types, notably 49 and 24, were able to extend the life span and enhance the clonogenic efficiency of PHKs when maintained in serum free/low calcium medium. Activities of the beta HPV E6E7 were lower than those of HPV16 E6E7. In contrast, E6 proteins from HPV types detected in skin warts or cancer, notably 10, 49 and 38, attenuated UVB induced protective responses in PHKs including cell death, proliferation arrest and accumulation of the proapoptotic proteins, p53, bax or bak. Together, this investigation revealed functional differences and commonalities between HPVs associated with skin warts and cancer, and allowed the identification of specific properties of beta HPVs supporting their involvement in skin carcinogenesis.
Collapse
Affiliation(s)
- Naama Shterzer
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dariya Heyman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Beny Shapiro
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Abraham Yaniv
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anna Jackman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Francis Serour
- Department of Pediatric Surgery, The E. Wolfson Medical Center, Holon, Israel
| | - Malka Chaouat
- Laboratory of Experimental Surgery, Hadassah University Hospital, Ein Karem, Jerusalem, Israel
| | - Pinhas Gonen
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Levana Sherman
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
14
|
Palechor-Ceron N, Suprynowicz FA, Upadhyay G, Dakic A, Minas T, Simic V, Johnson M, Albanese C, Schlegel R, Liu X. Radiation induces diffusible feeder cell factor(s) that cooperate with ROCK inhibitor to conditionally reprogram and immortalize epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1862-1870. [PMID: 24096078 DOI: 10.1016/j.ajpath.2013.08.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/31/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
Both feeder cells and Rho kinase inhibition are required for the conditional reprogramming and immortalization of human epithelial cells. In the present study, we demonstrated that the Rho kinase inhibitor Y-27632, significantly suppresses keratinocyte differentiation and extends life span in serum-containing medium but does not lead to immortalization in the absence of feeder cells. Using Transwell culture plates, we further demonstrated that physical contact between the feeder cells and keratinocytes is not required for inducing immortalization and, more importantly, that irradiation of the feeder cells is required for this induction. Consistent with these experiments, conditioned medium was shown to induce and maintain conditionally immortalized cells, which was accompanied by increased telomerase expression. The activity of conditioned medium directly correlated with radiation-induced apoptosis of the feeder cells. Thus, the induction of conditionally reprogrammed cells is mediated by a combination of Y-27632 and a diffusible factor (or factors) released by apoptotic feeder cells.
Collapse
Affiliation(s)
- Nancy Palechor-Ceron
- Department of Pathology, Georgetown University Medical Center, Washington, District of Columbia; Center for Cellular Reprogramming, Georgetown University Medical Center, Washington, District of Columbia
| | - Frank A Suprynowicz
- Department of Pathology, Georgetown University Medical Center, Washington, District of Columbia; Center for Cellular Reprogramming, Georgetown University Medical Center, Washington, District of Columbia
| | - Geeta Upadhyay
- Department of Pathology, Georgetown University Medical Center, Washington, District of Columbia; Center for Cellular Reprogramming, Georgetown University Medical Center, Washington, District of Columbia
| | - Aleksandra Dakic
- Department of Pathology, Georgetown University Medical Center, Washington, District of Columbia; Center for Cellular Reprogramming, Georgetown University Medical Center, Washington, District of Columbia
| | - Tsion Minas
- Department of Pathology, Georgetown University Medical Center, Washington, District of Columbia; Center for Cellular Reprogramming, Georgetown University Medical Center, Washington, District of Columbia
| | - Vera Simic
- Department of Pathology, Georgetown University Medical Center, Washington, District of Columbia; Center for Cellular Reprogramming, Georgetown University Medical Center, Washington, District of Columbia
| | - Michael Johnson
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Christopher Albanese
- Department of Pathology, Georgetown University Medical Center, Washington, District of Columbia; Center for Cellular Reprogramming, Georgetown University Medical Center, Washington, District of Columbia; Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Richard Schlegel
- Department of Pathology, Georgetown University Medical Center, Washington, District of Columbia; Center for Cellular Reprogramming, Georgetown University Medical Center, Washington, District of Columbia.
| | - Xuefeng Liu
- Department of Pathology, Georgetown University Medical Center, Washington, District of Columbia; Center for Cellular Reprogramming, Georgetown University Medical Center, Washington, District of Columbia.
| |
Collapse
|
15
|
Henken FE, Oosterhuis K, Öhlschläger P, Bosch L, Hooijberg E, Haanen JBAG, Steenbergen RDM. Preclinical safety evaluation of DNA vaccines encoding modified HPV16 E6 and E7. Vaccine 2012; 30:4259-66. [PMID: 22554465 DOI: 10.1016/j.vaccine.2012.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/31/2012] [Accepted: 04/05/2012] [Indexed: 11/26/2022]
Abstract
Persistent infection with high-risk human papillomaviruses (hrHPV) can result in the formation of anogenital cancers. As hrHPV proteins E6 and E7 are required for cancer initiation and maintenance, they are ideal targets for immunotherapeutic interventions. Previously, we have described the development of DNA vaccines for the induction of HPV16 E6 and E7 specific T cell immunity. These vaccines consist of 'gene-shuffled' (SH) versions of HPV16 E6 and E7 that were fused to Tetanus Toxin Fragment C domain 1 (TTFC) and were named TTFC-E6SH and TTFC-E7SH. Gene-shuffling was performed to avoid the risk of inducing malignant transformation at the vaccination site. Here, we describe the preclinical safety evaluation of these candidate vaccines by analysis of their transforming capacity in vitro using established murine fibroblasts (NIH 3T3 cells) and primary human foreskin keratinocytes (HFKs). We demonstrate that neither ectopic expression of TTFC-E6SH and TTFC-E7SH alone or in combination enabled NIH 3T3 cells to form colonies in soft agar. In contrast, expression of HPV16 E6WT and E7WT alone or in combination resulted in effective transformation. Similarly, retroviral transduction of HFKs from three independent donors with both TTFC-E6SH and TTFC-E7SH alone or in combination did not show any signs of immortalization. In contrast, the combined expression of E6WT and E7WT induced immortalization in HFKs from all donors. Based on these results we consider it justified to proceed to clinical evaluation of DNA vaccines encoding TTFC-E6SH and TTFC-E7SH in patients with HPV16 associated (pre)malignancies.
Collapse
Affiliation(s)
- F E Henken
- Department of Pathology, Unit of Molecular Pathology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
Klingelhutz AJ, Roman A. Cellular transformation by human papillomaviruses: lessons learned by comparing high- and low-risk viruses. Virology 2012; 424:77-98. [PMID: 22284986 DOI: 10.1016/j.virol.2011.12.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/17/2011] [Accepted: 12/27/2011] [Indexed: 12/19/2022]
Abstract
The oncogenic potential of papillomaviruses (PVs) has been appreciated since the 1930s yet the mechanisms of virally-mediated cellular transformation are still being revealed. Reasons for this include: a) the oncoproteins are multifunctional, b) there is an ever-growing list of cellular interacting proteins, c) more than one cellular protein may bind to a given region of the oncoprotein, and d) there is only limited information on the proteins encoded by the corresponding non-oncogenic PVs. The perspective of this review will be to contrast the activities of the viral E6 and E7 proteins encoded by the oncogenic human PVs (termed high-risk HPVs) to those encoded by their non-oncogenic counterparts (termed low-risk HPVs) in an attempt to sort out viral life cycle-related functions from oncogenic functions. The review will emphasize lessons learned from the cell culture studies of the HPVs causing mucosal/genital tract cancers.
Collapse
|
17
|
Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B, Timofeeva OA, Nealon C, Dakic A, Simic V, Haddad BR, Rhim JS, Dritschilo A, Riegel A, McBride A, Schlegel R. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:599-607. [PMID: 22189618 DOI: 10.1016/j.ajpath.2011.10.036] [Citation(s) in RCA: 587] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/06/2011] [Accepted: 10/11/2011] [Indexed: 12/20/2022]
Abstract
We demonstrate that a Rho kinase inhibitor (Y-27632), in combination with fibroblast feeder cells, induces normal and tumor epithelial cells from many tissues to proliferate indefinitely in vitro, without transduction of exogenous viral or cellular genes. Primary prostate and mammary cells, for example, are reprogrammed toward a basaloid, stem-like phenotype and form well-organized prostaspheres and mammospheres in Matrigel. However, in contrast to the selection of rare stem-like cells, the described growth conditions can generate 2 × 10(6) cells in 5 to 6 days from needle biopsies, and can generate cultures from cryopreserved tissue and from fewer than four viable cells. Continued cell proliferation is dependent on both feeder cells and Y-27632, and the conditionally reprogrammed cells (CRCs) retain a normal karyotype and remain nontumorigenic. This technique also efficiently establishes cell cultures from human and rodent tumors. For example, CRCs established from human prostate adenocarcinoma displayed instability of chromosome 13, proliferated abnormally in Matrigel, and formed tumors in mice with severe combined immunodeficiency. The ability to rapidly generate many tumor cells from small biopsy specimens and frozen tissue provides significant opportunities for cell-based diagnostics and therapeutics (including chemosensitivity testing) and greatly expands the value of biobanking. In addition, the CRC method allows for the genetic manipulation of epithelial cells ex vivo and their subsequent evaluation in vivo in the same host.
Collapse
Affiliation(s)
- Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Magaldi TG, Almstead LL, Bellone S, Prevatt EG, Santin AD, DiMaio D. Primary human cervical carcinoma cells require human papillomavirus E6 and E7 expression for ongoing proliferation. Virology 2011; 422:114-24. [PMID: 22056390 DOI: 10.1016/j.virol.2011.10.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/27/2011] [Accepted: 10/10/2011] [Indexed: 11/25/2022]
Abstract
Repression of human papillomavirus (HPV) E6 and E7 oncogenes in established cervical carcinoma cell lines causes senescence due to reactivation of cellular tumor suppressor pathways. Here, we determined whether ongoing expression of HPV16 or HPV18 oncogenes is required for the proliferation of primary human cervical carcinoma cells in serum-free conditions at low passage number after isolation from patients. We used an SV40 viral vector expressing the bovine papillomavirus E2 protein to repress E6 and E7 in these cells. To enable efficient SV40 infection and E2 gene delivery, we first incubated the primary cervical cancer cells with the ganglioside GM1, a cell-surface receptor for SV40 that is limiting in these cells. Repression of HPV in primary cervical carcinoma cells caused them to undergo senescence, but the E2 protein had little effect on HPV-negative primary cells. These data suggest that E6 and E7 dependence is an inherent property of human cervical cancer cells.
Collapse
Affiliation(s)
- Thomas G Magaldi
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520-8005, USA
| | | | | | | | | | | |
Collapse
|
19
|
The human papillomavirus type 16 E5 oncoprotein translocates calpactin I to the perinuclear region. J Virol 2011; 85:10968-75. [PMID: 21849434 DOI: 10.1128/jvi.00706-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human papillomavirus type 16 (HPV-16) E5 oncoprotein is embedded in membranes of the endoplasmic reticulum and nuclear envelope with its C terminus exposed to the cytoplasm. Among other activities, E5 cooperates with the HPV E6 oncoprotein to induce koilocytosis in human cervical cells and keratinocytes in vitro. The effect of E5 on infected cells may rely on its interactions with various cellular proteins. In this study we identify calpactin I, a heterotetrameric, Ca(2+)- and phospholipid-binding protein complex that regulates membrane fusion, as a new cellular target for E5. Both the annexin A2 and p11 subunits of calpactin I coimmunoprecipitate with E5 in COS cells and in human epithelial cell lines, and an intact E5 C terminus is required for binding. Moreover, E5-expressing cells exhibit a perinuclear redistribution of annexin A2 and p11 and show increased fusion of perinuclear membrane vesicles. The C terminus of E5 is required for both the perinuclear redistribution of calpactin I and increased formation of perinuclear vacuoles. These results support the hypothesis that the E5-induced relocalization of calpactin I to the perinuclear region promotes perinuclear membrane fusion, which may underlie the development of koilocytotic vacuoles.
Collapse
|
20
|
Bellanger S, Tan CL, Xue YZ, Teissier S, Thierry F. Tumor suppressor or oncogene? A critical role of the human papillomavirus (HPV) E2 protein in cervical cancer progression. Am J Cancer Res 2011; 1:373-389. [PMID: 21968515 PMCID: PMC3180061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 01/23/2011] [Indexed: 05/31/2023] Open
Abstract
The papillomavirus (PV) E2 proteins have been shown to exert many functions in the viral cycle including pivotal roles in transcriptional regulation and in viral DNA replication. Besides these historical roles, which rely on their aptitude to bind to specific DNA sequences, E2 has also been shown to modulate the host cells through direct protein interactions mainly through its amino terminal transactivation domain. We will describe here some of these new functions of E2 and their potential implication in the HPV-induced carcinogenesis. More particularly we will focus on E2-mediated modulation of the host cell cycle and consequences to cell transformation. In all, the HPV E2 proteins exhibit complex functions independent of transcription that can modulate the host cells in concert with the viral vegetative cycle and which could be involved in early carcinogenesis.
Collapse
Affiliation(s)
- Sophie Bellanger
- Institute of Medical Biology 8A Biochemical Grove, #06-06 Immunos, 138648, Singapore
| | | | | | | | | |
Collapse
|
21
|
Chow KY, Brotin É, Ben Khalifa Y, Carthagena L, Teissier S, Danckaert A, Galzi JL, Arenzana-Seisdedos F, Thierry F, Bachelerie F. A Pivotal Role for CXCL12 Signaling in HPV-Mediated Transformation of Keratinocytes: Clues to Understanding HPV-Pathogenesis in WHIM Syndrome. Cell Host Microbe 2010; 8:523-33. [DOI: 10.1016/j.chom.2010.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/26/2010] [Accepted: 11/22/2010] [Indexed: 12/31/2022]
|
22
|
Selma WB, Ziadi S, Gacem RB, Amara K, Ksiaa F, Hachana M, Trimeche M. Investigation of human papillomavirus in bladder cancer in a series of Tunisian patients. Pathol Res Pract 2010; 206:740-3. [DOI: 10.1016/j.prp.2010.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 05/06/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
|
23
|
Wang J, Zhou D, Prabhu A, Schlegel R, Yuan H. The canine papillomavirus and gamma HPV E7 proteins use an alternative domain to bind and destabilize the retinoblastoma protein. PLoS Pathog 2010; 6:e1001089. [PMID: 20824099 PMCID: PMC2932728 DOI: 10.1371/journal.ppat.1001089] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 08/05/2010] [Indexed: 11/18/2022] Open
Abstract
The high-risk HPV E6 and E7 proteins cooperate to immortalize primary human cervical cells and the E7 protein can independently transform fibroblasts in vitro, primarily due to its ability to associate with and degrade the retinoblastoma tumor suppressor protein, pRb. The binding of E7 to pRb is mediated by a conserved Leu-X-Cys-X-Glu (LXCXE) motif in the conserved region 2 (CR2) of E7 and this domain is both necessary and sufficient for E7/pRb association. In the current study, we report that the E7 protein of the malignancy-associated canine papillomavirus type 2 encodes an E7 protein that has serine substituted for cysteine in the LXCXE motif. In HPV, this substitution in E7 abrogates pRb binding and degradation. However, despite variation at this critical site, the canine papillomavirus E7 protein still bound and degraded pRb. Even complete deletion of the LXSXE domain of canine E7 failed to interfere with binding to pRb in vitro and in vivo. Rather, the dominant binding site for pRb mapped to the C-terminal domain of canine E7. Finally, while the CR1 and CR2 domains of HPV E7 are sufficient for degradation of pRb, the C-terminal region of canine E7 was also required for pRb degradation. Screening of HPV genome sequences revealed that the LXSXE motif of the canine E7 protein was also present in the gamma HPVs and we demonstrate that the gamma HPV-4 E7 protein also binds pRb in a similar way. It appears, therefore, that the type 2 canine PV and gamma-type HPVs not only share similar properties with respect to tissue specificity and association with immunosuppression, but also the mechanism by which their E7 proteins interact with pRb. Human papillomaviruses (HPVs) are estimated to cause the most common sexually transmitted infection in the world, and these infections are recognized as the major cause of cervical cancer. One of the papillomavirus oncoproteins, E7, plays a major role in both the viral life cycle and progression to cancer. In cells E7 associates and inactivates pRb, a tumor suppressor protein. For the vast majority of papillomaviruses, E7 binds to pRb using a small amino acid sequence, LXCXE. However, we have now identified a papillomavirus E7 protein that lacks the LXCXE domain yet still binds and degrades pRb. This E7 protein, derived from a carcinogenic canine virus, uses its C-terminal domain to bind pRb. In addition, we discovered that a family of papillomaviruses, the gamma type HPVs, also lacks the LXCXE domain and binds pRb using a similar mechanism.
Collapse
Affiliation(s)
- Jingang Wang
- Department of Pathology, Georgetown University Medical School, Washington, D.C., United States of America
| | - Dan Zhou
- Department of Pathology, Georgetown University Medical School, Washington, D.C., United States of America
| | - Anjali Prabhu
- Department of Pathology, Georgetown University Medical School, Washington, D.C., United States of America
| | - Richard Schlegel
- Department of Pathology, Georgetown University Medical School, Washington, D.C., United States of America
- * E-mail:
| | - Hang Yuan
- Department of Pathology, Georgetown University Medical School, Washington, D.C., United States of America
| |
Collapse
|
24
|
The human papillomavirus type 16 E5 oncoprotein inhibits epidermal growth factor trafficking independently of endosome acidification. J Virol 2010; 84:10619-29. [PMID: 20686024 DOI: 10.1128/jvi.00831-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human papillomavirus type 16 E5 oncoprotein (16E5) enhances acute, ligand-dependent activation of the epidermal growth factor receptor (EGFR) and concomitantly alkalinizes endosomes, presumably by binding to the 16-kDa "c" subunit of the V-ATPase proton pump (16K) and inhibiting V-ATPase function. However, the relationship between 16K binding, endosome alkalinization, and altered EGFR signaling remains unclear. Using an antibody that we generated against 16K, we found that 16E5 associated with only a small fraction of endogenous 16K in keratinocytes, suggesting that it was unlikely that E5 could significantly affect V-ATPase function by direct inhibition. Nevertheless, E5 inhibited the acidification of endosomes, as determined by a new assay using a biologically active, pH-sensitive fluorescent EGF conjugate. Since we also found that 16E5 did not alter cell surface EGF binding, the number of EGFRs on the cell surface, or the endocytosis of prebound EGF, we postulated that it might be blocking the fusion of early endosomes with acidified vesicles. Our studies with pH-sensitive and -insensitive fluorescent EGF conjugates and fluorescent dextran confirmed that E5 prevented endosome maturation (acidification and enlargement) by inhibiting endosome fusion. The E5-dependent defect in vesicle fusion was not due to detectable disruption of actin, tubulin, vimentin, or cytokeratin filaments, suggesting that membrane fusion was being directly affected rather than vesicle transport. Perhaps most importantly, while bafilomycin A(1) (like E5) binds to 16K and inhibits endosome acidification, it did not mimic the ability of E5 to inhibit endosome enlargement or the trafficking of EGF. Thus, 16E5 alters EGF endocytic trafficking via a pH-independent inhibition of vesicle fusion.
Collapse
|
25
|
Interaction of viral oncoproteins with cellular target molecules: infection with high-risk vs low-risk human papillomaviruses. APMIS 2010; 118:471-93. [PMID: 20553529 DOI: 10.1111/j.1600-0463.2010.02618.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Persistent infection by a subgroup of so-called high-risk human papillomaviruses (HPVs) that have a tropism for mucosal epithelia has been defined as the cause of more than 98% of cervical carcinomas as well as a high proportion of other cancers of the anogenital region. Infection of squamous epithelial tissues in the head and neck region by these same high-risk HPVs is also associated with a subset of cancers. Despite the general conservation of genetic structure amongst all HPV types, infection by the low-risk types, whether in genital or head and neck sites, carries a negligible risk of malignant progression, and infections have a markedly different pathology. In this review, we will examine and discuss the interactions that the principal viral oncoproteins of the high-risk mucosotrophic HPVs and their counterparts from the low-risk group make with cellular target proteins, with a view to explaining the differences in their respective pathology.
Collapse
|
26
|
A favorable clinical trend is associated with CD8 T-cell immune responses to the human papillomavirus type 16 e6 antigens in women being studied for abnormal pap smear results. J Low Genit Tract Dis 2010; 14:124-9. [PMID: 20354421 DOI: 10.1097/lgt.0b013e3181c6f01e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The goal of this study was to examine the role of CD8 T-cell responses to human papillomavirus type 16 (HPV-16) in a favorable clinical trend in women being studied for abnormal Pap smear results. MATERIALS AND METHODS Human papillomavirus-deoxyribonucleic acid testing and enzyme-linked immunospot assay using the HPV-16 E6 and E7 antigens were performed. The subjects with subsequent normal histologic diagnoses were considered to be "regressors" (n = 28), whereas those with histologic diagnoses of cervical intraepithelial neoplasia 1, 2, or 3 were considered to have short-term persistence of cervical abnormality and were designated to be "persistors" (n = 37). RESULTS There was a higher percentage of CD8 T-cell responses to the E6 antigen in the regressors (15/28 or 53.6%) when compared with the persistors (10/37 or 27.0%; p = .04), but there was no recorded response difference for the E7 antigen. Results were the same when the analyses for E6 included only subjects who were high-risk HPV-positive (p = .01). CONCLUSIONS The CD8 T-cell immune responses to the HPV-16 E6 antigens but not to E7 antigens are associated with a favorable clinical trend regardless of HPV types currently detected.
Collapse
|
27
|
Merkley MA, Hildebrandt E, Podolsky RH, Arnouk H, Ferris DG, Dynan WS, Stöppler H. Large-scale analysis of protein expression changes in human keratinocytes immortalized by human papilloma virus type 16 E6 and E7 oncogenes. Proteome Sci 2009; 7:29. [PMID: 19698150 PMCID: PMC2744660 DOI: 10.1186/1477-5956-7-29] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 08/23/2009] [Indexed: 01/08/2023] Open
Abstract
Background Infection with high-risk type human papilloma viruses (HPVs) is associated with cervical carcinomas and with a subset of head and neck squamous cell carcinomas. Viral E6 and E7 oncogenes cooperate to achieve cell immortalization by a mechanism that is not yet fully understood. Here, human keratinocytes were immortalized by long-term expression of HPV type 16 E6 or E7 oncoproteins, or both. Proteomic profiling was used to compare expression levels for 741 discrete protein features. Results Six replicate measurements were performed for each group using two-dimensional difference gel electrophoresis (2D-DIGE). The median within-group coefficient of variation was 19–21%. Significance of between-group differences was tested based on Significance Analysis of Microarray and fold change. Expression of 170 (23%) of the protein features changed significantly in immortalized cells compared to primary keratinocytes. Most of these changes were qualitatively similar in cells immortalized by E6, E7, or E6/7 expression, indicating convergence on a common phenotype, but fifteen proteins (~2%) were outliers in this regulatory pattern. Ten demonstrated opposite regulation in E6- and E7-expressing cells, including the cell cycle regulator p16INK4a; the carbohydrate binding protein Galectin-7; two differentially migrating forms of the intermediate filament protein Cytokeratin-7; HSPA1A (Hsp70-1); and five unidentified proteins. Five others had a pattern of expression that suggested cooperativity between the co-expressed oncoproteins. Two of these were identified as forms of the small heat shock protein HSPB1 (Hsp27). Conclusion This large-scale analysis provides a framework for understanding the cooperation between E6 and E7 oncoproteins in HPV-driven carcinogenesis.
Collapse
Affiliation(s)
- Mark A Merkley
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - Ellen Hildebrandt
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA.,Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | - Robert H Podolsky
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, GA, USA
| | - Hilal Arnouk
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA.,Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Daron G Ferris
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta, GA, USA.,Department of Family Medicine, Medical College of Georgia, Augusta, GA, USA
| | - William S Dynan
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | - Hubert Stöppler
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA.,Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
28
|
McLaughlin-Drubin ME, Münger K. The human papillomavirus E7 oncoprotein. Virology 2008; 384:335-44. [PMID: 19007963 DOI: 10.1016/j.virol.2008.10.006] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Accepted: 10/03/2008] [Indexed: 01/01/2023]
Abstract
The human papillomavirus (HPV) E7 oncoprotein shares functional similarities with such proteins as adenovirus E1A and SV40 large tumor antigen. As one of only two viral proteins always expressed in HPV-associated cancers, E7 plays a central role in both the viral life cycle and carcinogenic transformation. In the HPV viral life cycle, E7 disrupts the intimate association between cellular differentiation and proliferation in normal epithelium, allowing for viral replication in cells that would no longer be in the dividing population. This function is directly reflected in the transforming activities of E7, including tumor initiation and induction of genomic instability.
Collapse
|
29
|
Cell-restricted immortalization by human papillomavirus correlates with telomerase activation and engagement of the hTERT promoter by Myc. J Virol 2008; 82:11568-76. [PMID: 18818322 DOI: 10.1128/jvi.01318-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The high-risk human papillomaviruses (HPVs) are the causative agents of nearly all cervical cancers and are etiologically linked to additional human cancers, including those of anal, oral, and laryngeal origin. The main transforming genes of the high-risk HPVs are E6 and E7. E6, in addition to its role in p53 degradation, induces hTERT mRNA transcription in genital keratinocytes via interactions with Myc protein, thereby increasing cellular telomerase activity. While the HPV type 16 E6 and E7 genes efficiently immortalize human keratinocytes, they appear to only prolong the life span of human fibroblasts. To examine the molecular basis for this cell-type dependency, we examined the correlation between the ability of E6 to transactivate endogenous and exogenous hTERT promoters and to immortalize genital keratinocytes and fibroblasts. Confirming earlier studies, the E6 and E7 genes were incapable of immortalizing human fibroblasts but did delay senescence. Despite the lack of immortalization, E6 was functional in the fibroblasts, mediating p53 degradation and strongly transactivating an exogenous hTERT promoter. However, E6 failed to transactivate the endogenous hTERT promoter. Coordinately with this failure, we observed that Myc protein was not associated with the endogenous hTERT promoter, most likely due to the extremely low level of Myc expression in these cells and/or to differences in chromatin structure, in contrast with hTERT promoters that we found to be activated by E6 (i.e., the endogenous hTERT promoter in primary keratinoctyes and the exogenous hTERT core promoter in fibroblasts), where Myc is associated with the promoter in either a quiescent or an E6-induced state. These findings are consistent with those of our previous studies on mutagenesis and the knockdown of small interfering RNA, which demonstrated a requirement for Myc in the induction of the hTERT promoter by E6 and suggested that occupancy of the promoter by Myc determines the responsiveness of E6 and the downstream induction of telomerase and cell immortalization.
Collapse
|
30
|
Krawczyk E, Suprynowicz FA, Liu X, Dai Y, Hartmann DP, Hanover J, Schlegel R. Koilocytosis: a cooperative interaction between the human papillomavirus E5 and E6 oncoproteins. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:682-8. [PMID: 18688031 DOI: 10.2353/ajpath.2008.080280] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A long-recognized, pathognomonic feature of human papillomavirus (HPV) infection is the appearance of halo or koilocytotic cells in the differentiated layers of the squamous epithelium. These koilocytes are squamous epithelial cells that contain an acentric, hyperchromatic nucleus that is displaced by a large perinuclear vacuole. However, the genesis of the cytoplasmic vacuole has remained unclear, particularly because both HPV DNA replication and virion assembly occur exclusively in the nucleus. In clinical biopsies, koilocytosis is observed in both low- and high-risk HPV infections; therefore, in this study, we demonstrated that the E5 and E6 proteins from both low- and high-risk HPVs cooperate to induce koilocyte formation in human cervical cells in vitro, using both stable and transient assays. Both E5 and E6 also induce koilocytosis in human foreskin keratinocytes but not in primate COS cells. Deletion of the 20 C-terminal amino acids of E5 completely abrogates koilocytosis, whereas a 10-amino acid-deletion mutant retains approximately 50% of its activity. Because the E6 protein from both the low- and high-risk HPVs is capable of potentiating koilocytosis with E5, it is apparent that the targeting of both p53 and PDZ proteins by E6 is not involved. Our data suggest new, cooperative functions for both the E5 and E6 proteins, hinting at additional targets and roles for these oncoproteins in the viral life cycle.
Collapse
Affiliation(s)
- Ewa Krawczyk
- Department of Pathology, Georgetown University Medical School, 3900 Reservoir Rd. NW, Washington, DC 20057, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Narisawa-Saito M, Yoshimatsu Y, Ohno SI, Yugawa T, Egawa N, Fujita M, Hirohashi S, Kiyono T. An In vitro Multistep Carcinogenesis Model for Human Cervical Cancer. Cancer Res 2008; 68:5699-705. [DOI: 10.1158/0008-5472.can-07-6862] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Termini L, Boccardo E, Esteves GH, Hirata R, Martins WK, Colo AEL, Neves EJ, Villa LL, Reis LFL. Characterization of global transcription profile of normal and HPV-immortalized keratinocytes and their response to TNF treatment. BMC Med Genomics 2008; 1:29. [PMID: 18588690 PMCID: PMC2459201 DOI: 10.1186/1755-8794-1-29] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 06/27/2008] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Persistent infection by high risk HPV types (e.g. HPV-16, -18, -31, and -45) is the main risk factor for development of cervical intraepithelial neoplasia and cervical cancer. Tumor necrosis factor (TNF) is a key mediator of epithelial cell inflammatory response and exerts a potent cytostatic effect on normal or HPV16, but not on HPV18 immortalized keratinocytes. Moreover, several cervical carcinoma-derived cell lines are resistant to TNF anti-proliferative effect suggesting that the acquisition of TNF-resistance may constitute an important step in HPV-mediated carcinogenesis. In the present study, we compared the gene expression profiles of normal and HPV16 or 18 immortalized human keratinocytes before and after treatment with TNF for 3 or 60 hours. METHODS In this study, we determined the transcriptional changes 3 and 60 hours after TNF treatment of normal, HPV16 and HPV18 immortalized keratinocytes by microarray analysis. The expression pattern of two genes observed by microarray was confirmed by Northern Blot. NF-kappaB activation was also determined by electrophoretic mobility shift assay (EMSA) using specific oligonucleotides and nuclear protein extracts. RESULTS We observed the differential expression of a common set of genes in two TNF-sensitive cell lines that differs from those modulated in TNF-resistant ones. This information was used to define genes whose differential expression could be associated with the differential response to TNF, such as: KLK7 (kallikrein 7), SOD2 (superoxide dismutase 2), 100P (S100 calcium binding protein P), PI3 (protease inhibitor 3, skin-derived), CSTA (cystatin A), RARRES1 (retinoic acid receptor responder 1), and LXN (latexin). The differential expression of the KLK7 and SOD2 transcripts was confirmed by Northern blot. Moreover, we observed that SOD2 expression correlates with the differential NF-kappaB activation exhibited by TNF-sensitive and TNF-resistant cells. CONCLUSION This is the first in depth analysis of the differential effect of TNF on normal and HPV16 or HPV18 immortalized keratinocytes. Our findings may be useful for the identification of genes involved in TNF resistance acquisition and candidate genes which deregulated expression may be associated with cervical disease establishment and/or progression.
Collapse
Affiliation(s)
- Lara Termini
- Ludwig Institute for Cancer Research, São Paulo, Brazil
- Hospital do Câncer A. C. Camargo, São Paulo, Brazil
| | | | - Gustavo H Esteves
- Instituto de Matemática e Estatística da Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Hirata
- Instituto de Matemática e Estatística da Universidade de São Paulo, São Paulo, Brazil
| | - Waleska K Martins
- Ludwig Institute for Cancer Research, São Paulo, Brazil
- Hospital do Câncer A. C. Camargo, São Paulo, Brazil
| | - Anna Estela L Colo
- Ludwig Institute for Cancer Research, São Paulo, Brazil
- Hospital do Câncer A. C. Camargo, São Paulo, Brazil
| | - E Jordão Neves
- Instituto de Matemática e Estatística da Universidade de São Paulo, São Paulo, Brazil
| | | | - Luiz FL Reis
- Ludwig Institute for Cancer Research, São Paulo, Brazil
- Hospital do Câncer A. C. Camargo, São Paulo, Brazil
| |
Collapse
|
33
|
HPV E7 contributes to the telomerase activity of immortalized and tumorigenic cells and augments E6-induced hTERT promoter function. Virology 2008; 375:611-23. [PMID: 18367227 DOI: 10.1016/j.virol.2008.02.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2008] [Revised: 02/01/2008] [Accepted: 02/14/2008] [Indexed: 01/31/2023]
Abstract
The E6 and E7 proteins of high-risk HPVs are both required for the immortalization of primary human keratinocytes and the maintenance of the malignant phenotype of HPV-positive cancer cell lines. Our previous studies have shown that E6 protein binds Myc protein and that both E6 and Myc associate with and cooperatively activate the hTERT promoter, thereby increasing cellular telomerase activity. In this study, we evaluated the role of E7 in the maintenance and activation of telomerase in immortalized and tumorigenic cells. siRNA knockdown of either E6 or E7 (or both) in HPV-immortalized cells or an HPV-positive cancer cell line reduced hTERT transcription and telomerase activity. Since telomerase was inhibited by E7 siRNA in cells that independently expressed the E6 and E7 genes, our results reveal an independent role for E7 in the maintenance of telomerase activity. However, E7 alone was insufficient to increase endogenous hTERT mRNA or telomerase activity, although it significantly augmented E6-induced hTERT transcription and telomerase activity. To further explore this apparent E7-induced promoter augmentation, we analyzed an exogenous hTERT core promoter in transduced keratinocytes. E7 alone induced the wt hTERT promoter and augmented E6-induced hTERT promoter activity. Mutation of the E2F site in the hTERT promoter abrogated the ability of E7 to induce the hTERT promoter or to enhance the ability of E6 to induce the promoter. Correspondingly, keratinocytes expressing E6 and a mutant E7 (defective for binding pRb pocket proteins) showed lower telomerase activity than cells expressing wt E6 and wt E7. Thus, HPV E7 plays a role in the maintenance of telomerase activity in stable cell lines and augments acute, E6-induced hTERT promoter activity.
Collapse
|
34
|
McLaughlin-Drubin ME, Munger K. Viruses associated with human cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:127-50. [PMID: 18201576 PMCID: PMC2267909 DOI: 10.1016/j.bbadis.2007.12.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/13/2007] [Accepted: 12/18/2007] [Indexed: 02/07/2023]
Abstract
It is estimated that viral infections contribute to 15-20% of all human cancers. As obligatory intracellular parasites, viruses encode proteins that reprogram host cellular signaling pathways that control proliferation, differentiation, cell death, genomic integrity, and recognition by the immune system. These cellular processes are governed by complex and redundant regulatory networks and are surveyed by sentinel mechanisms that ensure that aberrant cells are removed from the proliferative pool. Given that the genome size of a virus is highly restricted to ensure packaging within an infectious structure, viruses must target cellular regulatory nodes with limited redundancy and need to inactivate surveillance mechanisms that would normally recognize and extinguish such abnormal cells. In many cases, key proteins in these same regulatory networks are subject to mutation in non-virally associated diseases and cancers. Oncogenic viruses have thus served as important experimental models to identify and molecularly investigate such cellular networks. These include the discovery of oncogenes and tumor suppressors, identification of regulatory networks that are critical for maintenance of genomic integrity, and processes that govern immune surveillance.
Collapse
Affiliation(s)
- Margaret E McLaughlin-Drubin
- The Channing Laboratory, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, 8th Floor, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
35
|
Goon P, Sonnex C, Jani P, Stanley M, Sudhoff H. Recurrent respiratory papillomatosis: an overview of current thinking and treatment. Eur Arch Otorhinolaryngol 2007; 265:147-51. [PMID: 18046565 PMCID: PMC2217621 DOI: 10.1007/s00405-007-0546-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Accepted: 11/16/2007] [Indexed: 02/07/2023]
Abstract
Human papillomaviruses (HPV) infection in benign laryngeal papillomas is well established. The vast majority of recurrent respiratory papillomatosis lesions are due to HPV types 6 and 11. Human papillomaviruses are small non-enveloped viruses (>8 kb), that replicate within the nuclei of infected host cells. Infected host basal cell keratinocytes and papillomas arise from the disordered proliferation of these differentiating keratinocytes. Surgical debulking of papillomas is currently the treatment of choice; newer surgical approaches utilizing microdebriders are replacing laser ablation. Surgery aims to secure an adequate airway and improve and maintain an acceptable quality of voice. Adjuvant treatments currently used include cidofovir, indole-3-carbinol, ribavirin, mumps vaccine, and photodynamic therapy. The recent licensing of prophylactic HPV vaccines is a most interesting development. The low incidence of RRP does pose significant problems in recruitment of sufficient numbers to show statistical significance. Large multi-centre collaborative clinical trials are therefore required. Even so, sufficient clinical follow-up data would take several years.
Collapse
Affiliation(s)
- Peter Goon
- Department of Genito-urinary Medicine, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | |
Collapse
|
36
|
Chamulitrat W, Huber A, Riedel HD, Stremmel W. Nox1 Induces Differentiation Resistance in Immortalized Human Keratinocytes Generating Cells that Express Simple Epithelial Keratins. J Invest Dermatol 2007; 127:2171-83. [PMID: 17460729 DOI: 10.1038/sj.jid.5700843] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have shown that superoxide radical-generating NADPH oxidase 1 (Nox1) is increased in intermediate human transformed cells. It was unknown whether Nox1 overexpression could accelerate early transformation steps. We demonstrated that Nox1 rendered human immortalized (GM16) keratinocytes resistant against Ca(2+)/serum-induced differentiation. Nox1-transfected cells produced fast dividing resistant cells within 7-10 days after DMEM exposure. Progenitor lines (or Nox1 lines) were reproducibly generated from Nox1-transfected cells, while no lines were obtained from control transfections. From several attempts to generate control cells, one resistant population was obtained from untransfected GM16 cells after a 6-week DMEM exposure. Prolonged passaging of the control line could induce Nox1. Compared with the control line, Nox1 lines showed greater expression of Nox1, Rac1, p47phox, p67phox, NOXO1, and NOXA1 with concomitant increased superoxide generation. All five Nox1 lines contained varying amounts of E-cadherin, involucrin, vimentin, and K8/K18, while the control line did not. Since vimentin and K8/K18 are associated with malignant progression in different types of human epithelial tumors, our data demonstrate that Nox1 accelerated neoplastic-like progression by inducing generation of progenitor cells. Our data also emphasize the importance of Nox1 in inducing resistance against differentiation-induced cell death, suggesting a contribution of Nox1 and its oxidants during early stage of cell transformation.
Collapse
Affiliation(s)
- Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
37
|
Asadurian Y, Kurilin H, Lichtig H, Jackman A, Gonen P, Tommasino M, Zehbe I, Sherman L. Activities of human papillomavirus 16 E6 natural variants in human keratinocytes. J Med Virol 2007; 79:1751-60. [PMID: 17854024 DOI: 10.1002/jmv.20978] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genetic variations in the E6 oncogene have been associated with different risk for cancer progression. In the present study, the functional significance of human papillomavirus (HPV) polymorphism in the E6 oncogene was investigated. Ten HPV16 E6 variants containing amino acid substitutions in the N-terminal region of E6 were evaluated for different biological and biochemical activities in human keratinocytes, the target cells for HPV infection. Western blot analyses of primary foreskin human keratinocytes or immortalized human keratinocytes, stably transduced with the E6 variants, revealed reduced p53 and Bax levels in all E6 expressing cultures. The reduction induced by most E6 proteins was at similar levels and comparable to the reduction induced by the E6 prototype. The ability of the proteins to induce serum/calcium-differentiation resistant colonies in primary keratinocytes was more variable. Overall activities of the variants ranged between 0.24- and 2.18-fold of the E6 prototype activity. The I27R/L83V variant showed the lowest activity whereas the R8Q variant showed the highest activity. The L83V polymorphism previously associated with risk for cancer progression in some populations, showed significant activity, comparable to that of the E6 prototype, in reducing p53 and Bax levels. Furthermore, this variant showed enhancement in the ability to induce colonies resistant to serum/calcium-triggered differentiation, however, the difference from the prototype was not statistically significant. This, and augmentation of other described functions might result in differences in L83V pathogenicity.
Collapse
Affiliation(s)
- Yulia Asadurian
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Nakagawa M, Kim KH, Gillam TM, Moscicki AB. HLA class I binding promiscuity of the CD8 T-cell epitopes of human papillomavirus type 16 E6 protein. J Virol 2006; 81:1412-23. [PMID: 17108051 PMCID: PMC1797519 DOI: 10.1128/jvi.01768-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the critical steps in the progression to cervical cancer appears to be the establishment of persistent human papillomavirus (HPV) infection. We have demonstrated that the lack of cytotoxic T-lymphocyte response to HPV type 16 (HPV 16) E6 protein was associated with persistence and that the potential presence of dominant CD8 T-cell epitopes was most frequently found (n = 4 of 23) in the E6 16-40 region by examining the pattern of CD8 T-cell epitopes within the E6 protein in women who had cleared their HPV 16 infections. The goal of this study was to define the minimal/optimal amino acid sequences and the HLA restricting molecules of these dominant CD8 T-cell epitopes as well as those of subdominant ones if present. Three dominant epitopes, E6 29-38 (TIHDIILECV; restricted by the HLA-A0201 molecule), E6 29-37 (TIHDIILEC; restricted by B48), and E6 31-38 (HDIILECV; restricted by B4002), and one subdominant epitope, E6 52-61 (FAFRDLCIVY; restricted by B35) were characterized. Taken together with a previously described dominant epitope, E6 52-61 (FAFRDLCIVY; restricted by B57), the CD8 T-cell epitopes demonstrated striking HLA class I binding promiscuity. All of these epitopes were endogenously processed, but the presence of only two of the five epitopes could have been predicted based on the known binding motifs. The HLA class I promiscuity which has been described for human immunodeficiency virus may be more common than previously recognized.
Collapse
Affiliation(s)
- Mayumi Nakagawa
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
Carcinoma of the uterine cervix, a leading cause of cancer death in women worldwide, is initiated by infection with high-risk types of human papillomaviruses (HPVs). This review summarizes laboratory studies over the past 20 years that have elucidated the major features of the HPV life cycle, identified the functions of the viral proteins, and clarified the consequences of HPV infection for their host cells. This information has allowed the development of various strategies to prevent or treat infections, including prophylactic vaccination with virus-like particles, therapeutic vaccination against viral proteins expressed in cancer cells, and antiviral approaches to inhibit virus replication, spread, or pathogenesis. These strategies have the potential to cause a dramatic reduction in the incidence of cervical carcinoma and serve as the prototype for comprehensive efforts to combat virus-induced tumors.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
40
|
Turan T, Kalantari M, Calleja-Macias IE, Cubie HA, Cuschieri K, Villa LL, Skomedal H, Barrera-Saldaña HA, Bernard HU. Methylation of the human papillomavirus-18 L1 gene: A biomarker of neoplastic progression? Virology 2006; 349:175-83. [PMID: 16472835 DOI: 10.1016/j.virol.2005.12.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/08/2005] [Accepted: 12/23/2005] [Indexed: 11/20/2022]
Abstract
Epigenetic transcriptional regulation plays an important role in the life cycle of human papillomaviruses (HPVs) and the carcinogenic progression of anogenital HPV associated lesions. We performed a study designed to assess the methylation status of the HPV-18 genome, specifically of the late L1 gene, the adjacent long control region (LCR), and part of the E6 oncogene in cervical specimens with a range of pathological diagnoses. In asymptomatic infections and infections with precancerous (precursor) lesions, HPV-18 DNA was mostly unmethylated, with the exception of four samples where hypermethylation of L1 was detected. In contrast, L1 sequences were strongly methylated in all cervical carcinomas, while the LCR and E6 remained unmethylated. HeLa cells, derived from a cervical adenocarcinoma, contain chromosomally integrated HPV-18 genomes. We found that L1 is hypermethylated in these cells, while the LCR and E6 are unmethylated. Treatment of HeLa cells with the methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR) led to the expected reduction of L1 methylation. After removal of 5-Aza-CdR, L1 methylation resumed and exceeded pretreatment levels. Unexpectedly, the LCR and E6 also became methylated under these conditions, albeit at lower levels than L1. We hypothesize that L1 is preferentially methylated after integration of the HPV genome into the cellular DNA, possibly since linearization prohibits its normal transcription, while the enhancer and promoter may be protected from methylation by transcription factors. Since our data suggest that HPV-18 L1 methylation can only be detected in carcinomas, except in some few precancerous lesions and asymptomatic infections, L1 methylation may constitute a powerful molecular marker for detecting this important step of neoplastic progression.
Collapse
Affiliation(s)
- Tolga Turan
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Uren A, Fallen S, Yuan H, Usubütün A, Küçükali T, Schlegel R, Toretsky JA. Activation of the canonical Wnt pathway during genital keratinocyte transformation: a model for cervical cancer progression. Cancer Res 2005; 65:6199-206. [PMID: 16024621 DOI: 10.1158/0008-5472.can-05-0455] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cervical carcinoma, the second leading cause of cancer deaths in women worldwide, is associated with human papillomavirus (HPV). HPV-infected individuals are at high risk for developing cervical carcinoma; however, the molecular mechanisms that lead to the progression of cervical cancer have not been established. We hypothesized that in a multistep carcinogenesis model, HPV provides the initial hit and activation of canonical Wnt pathway may serve as the second hit. To test this hypothesis, we evaluated the canonical Wnt pathway as a promoting factor of HPV-induced human keratinocyte transformation. In this in vitro experimental cervical carcinoma model, primary human keratinocytes immortalized by HPV were transformed by SV40 small-t (smt) antigen. We show that smt-transformed cells have high cytoplasmic beta-catenin levels, a hallmark of activated canonical Wnt pathway, and that activation of this pathway by smt is mediated through its interaction with protein phosphatase-2A. Furthermore, inhibition of downstream signaling from beta-catenin inhibited the smt-induced transformed phenotype. Wnt pathway activation transformed HPV-immortalized primary human keratinocytes even in the absence of smt. However, activation of the Wnt pathway in the absence of HPV was not sufficient to induce transformation. We also detected increased cytoplasmic and nuclear staining of beta-catenin in invasive cervical carcinoma samples from 48 patients. We detected weak cytoplasmic and no nuclear staining of beta-catenin in 18 cases of cervical dysplasia. Our results suggest that the transformation of HPV expressing human keratinocytes requires activation of the Wnt pathway and that this activation may serve as a screening tool in HPV-positive populations to detect malignant progression.
Collapse
Affiliation(s)
- Aykut Uren
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, District of Columbia 20057, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Arias-Pulido H, Peyton CL, Torrez-Martínez N, Anderson DN, Wheeler CM. Human papillomavirus type 18 variant lineages in United States populations characterized by sequence analysis of LCR-E6, E2, and L1 regions. Virology 2005; 338:22-34. [PMID: 15936050 DOI: 10.1016/j.virol.2005.04.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/01/2005] [Accepted: 04/22/2005] [Indexed: 11/20/2022]
Abstract
While HPV 16 variant lineages have been well characterized, the knowledge about HPV 18 variants is limited. In this study, HPV 18 nucleotide variations in the E2 hinge region were characterized by sequence analysis in 47 control and 51 tumor specimens. Fifty of these specimens were randomly selected for sequencing of an LCR-E6 segment and 20 samples representative of LCR-E6 and E2 sequence variants were examined across the L1 region. A total of 2770 nucleotides per HPV 18 variant genome were considered in this study. HPV 18 variant nucleotides were linked among all gene segments analyzed and grouped into three main branches: Asian-American (AA), European (E), and African (Af). These three branches were equally distributed among controls and cases and when stratified by Hispanic and non-Hispanic ethnicities. Among invasive cervical cancer cases, no significant differences in the three HPV variant branches were observed among ethnic groups or when stratified by histopathology (squamous vs. adenocarcinoma). The Af branch showed the greatest nucleotide variability when compared to the HPV 18 reference sequence and was more closely related to HPV 45 than either AA or E branches. Our data also characterize nucleotide and amino acid variations in the L1 capsid gene among HPV 18 variants, which may be relevant to vaccine strategies and subsequent studies of naturally occurring HPV 18 variants. Several novel HPV 18 nucleotide variations were identified in this study.
Collapse
Affiliation(s)
- Hugo Arias-Pulido
- Department of Molecular Genetics and Microbiology, University of New Mexico, Health Sciences Center, School of Medicine, Albuquerque, NM 87111, USA.
| | | | | | | | | |
Collapse
|
43
|
Magal SS, Jackman A, Ish-Shalom S, Botzer LE, Gonen P, Schlegel R, Sherman L. Downregulation of Bax mRNA expression and protein stability by the E6 protein of human papillomavirus 16. J Gen Virol 2005; 86:611-621. [PMID: 15722521 DOI: 10.1099/vir.0.80453-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previous studies have shown that human papillomavirus (HPV) 16 E6 inhibits apoptosis induced during terminal differentiation of primary human keratinocytes (PHKs) triggered by serum and calcium. E6 inhibition of apoptosis was accompanied with prolonged expression of Bcl-2 and reduced elevation of Bax levels. In the present study, the effect of E6 on Bax mRNA expression and protein stability was investigated. These studies indicate that stable E6 expression in differentiating keratinocytes reduced the steady-state levels of Bax mRNA and shortened the half-life of Bax protein. These results were confirmed in transiently transfected 293T cells where E6 degraded Bax in a dose-dependent manner. Bax degradation was also exhibited in Saos-2 cells that lack p53, indicating its p53 independence. E6 did not form complexes with Bax and did not induce Bax degradation in vitro under experimental conditions where p53 was degraded. Finally, E6 aa 120–132 were shown to be necessary for Bax destabilization and, more importantly, for abrogating the ability of Bax to induce cellular apoptosis, highlighting the functional consequences of the E6-induced alterations in Bax expression.
Collapse
Affiliation(s)
- Sharon Shnitman Magal
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Anna Jackman
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Shahar Ish-Shalom
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Liat Edri Botzer
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Pinhas Gonen
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Richard Schlegel
- Department of Pathology, Georgetown University Medical School, Washington, DC 2007, USA
| | - Levana Sherman
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
44
|
Liu X, Yuan H, Fu B, Disbrow GL, Apolinario T, Tomaic V, Kelley ML, Baker CC, Huibregtse J, Schlegel R. The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J Biol Chem 2005; 280:10807-16. [PMID: 15655249 DOI: 10.1074/jbc.m410343200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most human cancer cells display increased telomerase activity that appears to be critical for continued cell proliferation and tumor formation. The E6 protein of malignancy-associated human papillomaviruses increases cellular telomerase in primary human keratinocytes at least partly via transcriptional activation of the telomerase catalytic subunit, hTERT. In the present study, we investigated whether E6AP, a ubiquitin ligase well known for binding and mediating some of the activities of the E6 oncoprotein, participated in the transactivation of the hTERT promoter. Our results demonstrate that E6 mutants that fail to bind E6AP are also defective for increasing telomerase activity and transactivating the hTERT promoter. More importantly, E6AP knock-out mouse cells and small interfering RNA techniques demonstrated that E6AP was required for hTERT promoter transactivation in both mouse and human cells. Neither E6 nor E6AP bound to the hTERT promoter or activated the promoter in the absence of the partner protein. With all transactivation-competent E6 proteins, induction of the hTERT promoter was dependent upon E box elements in the core promoter. It appears, therefore, that E6-mediated activation of the hTERT promoter requires a complex of E6-E6AP to engage the hTERT promoter and that activation is dependent upon Myc binding sites in the promoter. The recruitment of a cellular ubiquitin ligase to the hTERT promoter during E6-mediated transcriptional activation suggests a role for the local ubiquitination (and potential degradation) of promoter-associated regulatory proteins, including the Myc protein.
Collapse
Affiliation(s)
- Xuefeng Liu
- Department of Pathology and Oncology, Georgetown University Medical School, 3900 Reservoir Rd. NW, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bigler LR, Tate Thigpen J, Blessing JA, Fiorica J, Monk BJ. Evaluation of tamoxifen in persistent or recurrent nonsquamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. Int J Gynecol Cancer 2004; 14:871-4. [PMID: 15361197 DOI: 10.1111/j.1048-891x.2004.14523.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study was undertaken to estimate the antitumor activity of tamoxifen in patients with persistent or recurrent nonsquamous cell carcinoma of the cervix. Furthermore, the nature and degree of adverse effects from tamoxifen in this cohort of individuals was examined. Tamoxifen citrate was to be administered at a dose of 10 mg per orally twice a day until disease progression or unacceptable side effects prevented further therapy. A total of 34 patients (median age: 49 years) were registered to this trial; two were declared ineligible. Thirty-two patients were evaluable for adverse effects and 27 were evaluable for response. There were only six grades 3 and 4 adverse effects reported: leukopenia (in one patient), anemia (in two), emesis (in one), gastrointestinal distress (in one), and neuropathy (in one). The objective response rate was 11.1%, with one complete and two partial responses. In conclusion, tamoxifen appears to have minimal activity in nonsquamous cell carcinoma of the cervix.
Collapse
Affiliation(s)
- L R Bigler
- Department of Medicine, Division of Oncology, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | | | | | | | | |
Collapse
|
46
|
Oldak M, Smola H, Aumailley M, Rivero F, Pfister H, Smola-Hess S. The human papillomavirus type 8 E2 protein suppresses beta4-integrin expression in primary human keratinocytes. J Virol 2004; 78:10738-46. [PMID: 15367640 PMCID: PMC516394 DOI: 10.1128/jvi.78.19.10738-10746.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human papillomaviruses (HPVs) infect keratinocytes of skin and mucosa. Homeostasis of these constantly renewing, stratified epithelia is maintained by balanced keratinocyte proliferation and terminal differentiation. Instructions from the extracellular matrix engaging integrins strongly regulate these keratinocyte functions. The papillomavirus life cycle parallels the differentiation program of stratified epithelia, and viral progeny is produced only in terminally differentiating keratinocytes. Whereas papillomavirus oncoproteins can inhibit keratinocyte differentiation, the viral transcription factor E2 seems to counterbalance the impact of oncoproteins. In this study we show that high expression of HPV type 8 (HPV8) E2 in cultured primary keratinocytes leads to strong down-regulation of beta4-integrin expression levels, partial reduction of beta1-integrin, and detachment of transfected keratinocytes from underlying structures. Unlike HPV18 E2-expressing keratinocytes, HPV8 E2 transfectants did not primarily undergo apoptosis. HPV8 E2 partially suppressed beta4-integrin promoter activity by binding to a specific E2 binding site leading to displacement of at least one cellular DNA binding factor. To our knowledge, we show for the first time that specific E2 binding contributes to regulation of a cellular promoter. In vivo, decreased beta4-integrin expression is associated with detachment of keratinocytes from the underlying basement membrane and their egress from the basal to suprabasal layers. In papillomavirus disease, beta4-integrin down-regulation in keratinocytes with higher E2 expression may push virally infected cells into the transit-amplifying compartment and ensure their commitment to the differentiation process required for virus replication.
Collapse
Affiliation(s)
- Monika Oldak
- Institute of Virology, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Manni V, Lisi A, Rieti S, Serafino A, Ledda M, Giuliani L, Sacco D, D'Emilia E, Grimaldi S. Low electromagnetic field (50 Hz) induces differentiation on primary human oral keratinocytes (HOK). Bioelectromagnetics 2004; 25:118-26. [PMID: 14735562 DOI: 10.1002/bem.10158] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This work concerns the effect of low frequency electromagnetic fields (ELF) on biochemical properties of human oral keratinocytes (HOK). Cells exposed to a 2 mT, 50 Hz, magnetic field, showed by scanning electron microscopy (SEM) modification in shape and morphology; these modifications were also associated with different actin distribution, revealed by phalloidin fluorescence analysis. Moreover, exposed cells had a smaller clonogenic capacity, and decreased cellular growth. Indirect immunofluorescence with fluorescent antibodies against involucrin and beta-catenin, both differentiation and adhesion markers, revealed an increase in involucrin and beta-catenin expression. The advance in differentiation was confirmed by a decrease of expression of epidermal growth factor (EGF) receptor in exposed cells, supporting the idea that exposure to electromagnetic field carries keratinocytes to higher differentiation level. These observations support the hypothesis that 50 Hz electromagnetic fields may modify cell morphology and interfere in differentiation and cellular adhesion of normal keratinocytes.
Collapse
Affiliation(s)
- Vanessa Manni
- Istituto di Neurobiologia e Medicina Molecolare (INeMM), CNR, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Veldman T, Liu X, Yuan H, Schlegel R. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci U S A 2003; 100:8211-6. [PMID: 12821782 PMCID: PMC166208 DOI: 10.1073/pnas.1435900100] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The papillomavirus E6 protein binds and directs the ubiquitin-dependent degradation of the p53 tumor suppressor protein. Independent of this p53-degradative function, however, E6 induces cellular telomerase activity. This increase in enzyme activity reflects E6-enhanced transcription of the human telomerase reverse transcriptase (hTERT) catalytic subunit, but the molecular basis for this transactivation is unknown. In the present study, we demonstrate that E6/Myc interactions regulate hTERT gene expression. Mad protein, a specific antagonist of Myc, repressed E6-mediated transactivation of the hTERT promoter and this repression was relieved by Myc overexpression. The proximal Myc/ Max-binding element (E-box) in the hTERT promoter was the major determinant of both E6 and Myc responsiveness in keratinocytes. E6 did not alter Myc protein expression or Myc/Max association, and the induction of hTERT by Myc/E6 was independent of Myc phosphorylation at Thr-58/Ser-62 within the transactivation domain. However, immunoprecipitation studies demonstrated that endogenous Myc protein coprecipitated with E6 protein and chromatin immunoprecipitation analyses demonstrated that both E6 and Myc proteins bound to a minimal 295-bp hTERT promoter. Only the "high-risk" E6 proteins bound to the hTERT promoter, consistent with their preferential ability to induce telomerase. The observation that E6 associates with Myc complexes and activates a Myc-responsive gene identifies a mechanism by which this oncogene can modulate cell proliferation and differentiation.
Collapse
|
49
|
Chamulitrat W, Schmidt R, Chunglok W, Kohl A, Tomakidi P. Epithelium and fibroblast-like phenotypes derived from HPV16 E6/E7-immortalized human gingival keratinocytes following chronic ethanol treatment. Eur J Cell Biol 2003; 82:313-22. [PMID: 12868599 DOI: 10.1078/0171-9335-00317] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) may be critical for neoplastic progression and its eventual tumorigenicity of epithelia. In this context, we investigated whether EMT and EMT-associated features occurred after chronic ethanol treatment of human gingival keratinocytes immortalized with the E6/E7 oncogenes of human papillomavirus (HPV) type 16. Following a nine-week treatment of cells with 30 mM ethanol in keratinocyte growth medium, they were cultured in normal DMEM with 10% serum. These cell populations were able to proliferate in this medium gradually exhibiting elongated morphology indicating that these cells underwent EMT. Control cells without ethanol treatment did not survive subcultures in DMEM. Upon long-term subcultures of ethanol-treated cells, two phenotypes were obtained exhibiting epithelium-like and spindle-shape fibroblast-like morphology (respectively, termed as EPI and FIB cells), the latter indicating EMT. In comparison to EPI cells, the phenotypic transition to FIB cells was concomitant with a decrease in the expression of keratins, desmoplakins and a complete loss of K14. Moreover, FIB cell transition strongly correlates with an increase in the expression of vimentin and simple epithelial keratin K18. These alterations in FIB cells were associated with the ability of these cells to exhibit anchorage-independent growth, while EPI cells exhibited anchorage-dependent growth. Concerning the transformation stage, FIB cells represent a progressively more advanced transformed phenotype which may reflect an early step during HPV- and ethanol-dependent multi-step carcinogenesis.
Collapse
MESH Headings
- Animals
- Cell Division/drug effects
- Cell Line, Transformed
- Cell Transformation, Viral
- Cell Transplantation
- Cells, Cultured
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/transplantation
- Ethanol/pharmacology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gingiva/cytology
- Humans
- Immunoblotting
- Keratin-14
- Keratinocytes/cytology
- Keratinocytes/drug effects
- Keratinocytes/metabolism
- Keratins/biosynthesis
- Male
- Mice
- Mice, Nude
- Microscopy, Confocal
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Oncogene Proteins, Viral/physiology
- Papillomaviridae/genetics
- Papillomaviridae/metabolism
- Papillomavirus E7 Proteins
- Repressor Proteins
- Transplantation, Heterologous
- Vimentin/biosynthesis
Collapse
Affiliation(s)
- Walee Chamulitrat
- Deutsches Krebsforschungszentrum, Department of Applied Tumorvirology, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
50
|
Hadaschik D, Hinterkeuser K, Oldak M, Pfister HJ, Smola-Hess S. The Papillomavirus E2 protein binds to and synergizes with C/EBP factors involved in keratinocyte differentiation. J Virol 2003; 77:5253-65. [PMID: 12692227 PMCID: PMC153950 DOI: 10.1128/jvi.77.9.5253-5265.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus life cycle is closely linked to the differentiation program of the host keratinocyte. Thus, late gene expression and viral maturation are restricted to terminally differentiated keratinocytes. A variety of cellular transcription factors including those of the C/EBP family are involved in the regulation of keratinocyte differentiation. In this study we show that the papillomavirus transcription factor E2 cooperates with C/EBPalpha and -beta in transcriptional activation. This synergism was independent of an E2 binding site. E2 and C/EBP factors synergistically transactivated a synthetic promoter construct containing classical C/EBPbeta sites and the C/EBPalpha-responsive proximal promoter of the involucrin gene, which is naturally expressed in differentiating keratinocytes. C/EBPalpha or -beta coprecipitated with E2 proteins derived from human papillomavirus type 8 (HPV8), HPV16, HPV18, and bovine papillomavirus type 1 in vitro and in vivo, indicating complex formation by the cellular and viral factors. The interaction domains could be mapped to the C terminus of E2 and amino acids 261 to 302 located within the bZIP motif of C/EBPbeta. Our data suggest that E2, via its interaction with C/EBP factors, may contribute to enhancing keratinocyte differentiation, which is suppressed by the viral oncoproteins E6 and E7 in HPV-induced lesions.
Collapse
|