1
|
Thomalla JM, Wolfner MF. No transcription, no problem: Protein phosphorylation changes and the transition from oocyte to embryo. Curr Top Dev Biol 2025; 162:165-205. [PMID: 40180509 DOI: 10.1016/bs.ctdb.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Although mature oocytes are arrested in a differentiated state, they are provisioned with maternally-derived macromolecules that will start embryogenesis. The transition to embryogenesis, called 'egg activation', occurs without new transcription, even though it includes major cell changes like completing stalled meiosis, translating stored mRNAs, cytoskeletal remodeling, and changes to nuclear architecture. In most animals, egg activation is triggered by a rise in free calcium in the egg's cytoplasm, but we are only now beginning to understand how this induces the egg to transition to totipotency and proliferation. Here, we discuss the model that calcium-dependent protein kinases and phosphatases modify the phosphorylation landscape of the maternal proteome to activate the egg. We review recent phosphoproteomic mass spectrometry analyses that revealed broad phospho-regulation during egg activation, both in number of phospho-events and classes of regulated proteins. Our interspecies comparisons of these proteins pinpoints orthologs and protein families that are phospho-regulated in activating eggs, many of which function in hallmark events of egg activation, and others whose regulation and activity warrant further study. Finally, we discuss key phospho-regulating enzymes that may act apically or as intermediates in the phosphorylation cascades during egg activation. Knowing the regulators, targets, and effects of phospho-regulation that cause an egg to initiate embryogenesis is crucial at both fundamental and applied levels for understanding female fertility, embryo development, and cell-state transitions.
Collapse
Affiliation(s)
- Jonathon M Thomalla
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States; Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, United States
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
2
|
Rémillard-Labrosse G, Cohen S, Boucher É, Gagnon K, Vasilev F, Mihajlović AI, FitzHarris G. Oocyte and embryo culture under oil profoundly alters effective concentrations of small molecule inhibitors. Front Cell Dev Biol 2024; 12:1337937. [PMID: 38544820 PMCID: PMC10966923 DOI: 10.3389/fcell.2024.1337937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 11/11/2024] Open
Abstract
Culture of oocytes and embryos in media under oil is a cornerstone of fertility treatment, and extensively employed in experimental investigation of early mammalian development. It has been noted anecdotally by some that certain small molecule inhibitors might lose activity in oil-covered culture systems, presumably by drug partitioning into the oil. Here we took a pseudo-pharmacological approach to appraise this formally using mouse oocytes and embryos. Using different culture dish designs with defined media:oil volume ratios, we show that the EC50 of the widely employed microtubule poison nocodazole shifts as a function of the media:oil ratio, such that nocodazole concentrations that prevent cell division in oil-free culture fail to in oil-covered media drops. Relatively subtle changes in culture dish design lead to measurable changes in EC50. This effect is not specific to one type of culture oil, and can be readily observed both in oocyte and embryo culture experiments. We subsequently applied a similar approach to a small panel of widely employed cell cycle-related inhibitors, finding that most lose activity in standard oil-covered oocyte/embryo culture systems. Our data suggest that loss of small molecule activity in oil-covered oocyte and embryo culture is a widespread phenomenon with potentially far-reaching implications for data reproducibility, and we recommend avoiding oil-covered culture for experiments employing inhibitors/drugs wherever possible.
Collapse
Affiliation(s)
| | - Sydney Cohen
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Éliane Boucher
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Kéryanne Gagnon
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Filip Vasilev
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Aleksandar I. Mihajlović
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Obstetrics and Gynaecology, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Kim HM, Kang MK, Seong SY, Jo JH, Kim MJ, Shin EK, Lee CG, Han SJ. Meiotic Cell Cycle Progression in Mouse Oocytes: Role of Cyclins. Int J Mol Sci 2023; 24:13659. [PMID: 37686466 PMCID: PMC10487953 DOI: 10.3390/ijms241713659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
All eukaryotic cells, including oocytes, utilize an engine called cyclin-dependent kinase (Cdk) to drive the cell cycle. Cdks are activated by a co-factor called cyclin, which regulates their activity. The key Cdk-cyclin complex that regulates the oocyte cell cycle is known as Cdk1-cyclin B1. Recent studies have elucidated the roles of other cyclins, such as B2, B3, A2, and O, in oocyte cell cycle regulation. This review aims to discuss the recently discovered roles of various cyclins in mouse oocyte cell cycle regulation in accordance with the sequential progression of the cell cycle. In addition, this review addresses the translation and degradation of cyclins to modulate the activity of Cdks. Overall, the literature indicates that each cyclin performs unique and redundant functions at various stages of the cell cycle, while their expression and degradation are tightly regulated. Taken together, this review provides new insights into the regulatory role and function of cyclins in oocyte cell cycle progression.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Min Kook Kang
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Se Yoon Seong
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Jun Hyeon Jo
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Min Ju Kim
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Eun Kyeong Shin
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Chang Geun Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Seung Jin Han
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
- Department of Medical Biotechnology, Inje University, Gimhae 50834, Republic of Korea
- Institute of Basic Science, Inje University, Gimhae 50834, Republic of Korea
| |
Collapse
|
4
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
5
|
Suvá M, Canel NG, Salamone DF. Effect of single and combined treatments with MPF or MAPK inhibitors on parthenogenetic haploid activation of bovine oocytes. Reprod Biol 2019; 19:386-393. [PMID: 31526669 DOI: 10.1016/j.repbio.2019.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/16/2019] [Accepted: 09/01/2019] [Indexed: 11/25/2022]
Abstract
In bovine, correct oocyte artificial activation is a key step in ICSI and other reproductive biotechnologies, and still needs to be improved. The current study was designed to compare the activating efficiency of ionomycin (Io) followed by: a 4 h time window and ethanol (4h-Et), roscovitine (Rosc), dehydroleucodine (DhL), cycloheximide (CHX) or PD0325901 (PD), each as a single treatment, and then combine them in novel protocols. Parthenogenetic haploid activation was evaluated in terms of pronuclear (PN) formation, second polar body (2PB) extrusion, ploidy of day 2 embryos and in vitro development. Combined treatments with Io-4h-Et-Rosc and Io-Rosc/CHX increased PN formation (92.2% and 96%, respectively) compared with Io-Rosc, Io-CHX or Io-4h-Et, which were equally efficient at inducing PN formation (82-84%) and 2PB extrusion (62.1-70.5%). Oocyte activation with Io-DhL and Io-Rosc/DhL resulted in higher 2PB extrusion rates (90% and 95.9%, respectively) but lower PN formation (49.4-58.8%) and cleavage rates (36-57.9%), as occurred with Io-CHX/DhL (76.4% and 70.4%, respectively). For the first time, results show that Io followed by the MAPK inhibitor PD induces PN formation and 2PB extrusion, but PD combined with Rosc or CHX resulted in low rates of haploid day 2 embryos. In conclusion, DhL strongly induces 2PB extrusion but leads to poor PN formation and embryo development. PD induces bovine oocyte activation but results in low rates of haploid embryos. In contrast, the improved PN formation rates after treatment with combined Io-4h-Et-Rosc and Io-Rosc/CHX suggest they should be further evaluated in ART, aiming to increase success rates in bovine.
Collapse
Affiliation(s)
- Mariana Suvá
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, P.C. 1417, Buenos Aires, Argentina
| | - Natalia Gabriela Canel
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, P.C. 1417, Buenos Aires, Argentina
| | - Daniel Felipe Salamone
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, P.C. 1417, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Bouftas N, Wassmann K. Cycling through mammalian meiosis: B-type cyclins in oocytes. Cell Cycle 2019; 18:1537-1548. [PMID: 31208271 PMCID: PMC6619999 DOI: 10.1080/15384101.2019.1632139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
B-type cyclins in association with Cdk1 mediate key steps of mitosis and meiosis, by phosphorylating a plethora of substrates. Progression through the meiotic cell cycle requires the execution of two cell divisions named meiosis I and II without intervening S-phase, to obtain haploid gametes. These two divisions are highly asymmetric in the large oocyte. Chromosome segregation in meiosis I and sister chromatid segregation in meiosis II requires the sharp, switch-like inactivation of Cdk1 activity, which is brought about by degradation of B-type cyclins and counteracting phosphatases. Importantly and contrary to mitosis, inactivation of Cdk1 must not allow S-phase to take place at exit from meiosis I. Here, we describe recent studies on the regulation of translation and degradation of B-type cyclins in mouse oocytes, and how far their roles are redundant or specific, with a special focus on the recently discovered oocyte-specific role of cyclin B3.
Collapse
Affiliation(s)
- Nora Bouftas
- Institut de Biologie Paris Seine (IBPS), Sorbonne Université, Paris, France
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, Paris, France
| | - Katja Wassmann
- Institut de Biologie Paris Seine (IBPS), Sorbonne Université, Paris, France
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, Paris, France
| |
Collapse
|
7
|
Wang JC, Lv H, Wu KL, Zhang YS, Luo HN, Chen ZJ. Discs large homologue 1 (Dlg1) coordinates mouse oocyte polarisation during maturation. Reprod Fertil Dev 2018; 29:1699-1707. [PMID: 27651179 DOI: 10.1071/rd15486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 08/19/2016] [Indexed: 11/23/2022] Open
Abstract
Mouse oocyte meiotic division requires the establishment of asymmetries in the oocyte before division, indicating the presence of polarity-establishing molecules. During mouse oocyte maturation proper orientation and positioning of the meiotic spindle at the oocyte cortex, as well as polarity in the oocyte cytoplasm and its oolemma, are necessary for the formation of functional haploid oocytes. Discs large homologue 1 (Dlg1) protein is a conserved protein that regulates cell polarity. In the present study, we found that Dlg1 was expressed at different stages of oocyte development. The localisation of Dlg1 during mouse oocyte maturation and its relationship with the cytoskeleton were analysed. Our data show that at the germinal vesicle stage, Dlg1 was present in the cytoplasm, prominently surrounding the germinal vesicle membrane. During maturation, Dlg1 became highly polarised by associating with the spindle and formed characteristic crescent-shaped accumulations under the cortex. Addition of nocodazole or cytochalasin B into the culture medium at different stages changed the localisation of Dlg1, indicating that the organisation of Dlg1 is a complex multi-step process and is dependent on microtubules and microfilaments. More importantly, we found that silencing of Dlg1 compromised the G2-M transition.
Collapse
Affiliation(s)
- Jun-Chao Wang
- Centre of Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynaecology, 156 Nankai Sanma Road, Tianjin 300100, China
| | - Hong Lv
- Centre for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan 250001
| | - Ke-Liang Wu
- Centre for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan 250001
| | - Yun-Shan Zhang
- Centre of Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynaecology, 156 Nankai Sanma Road, Tianjin 300100, China
| | - Hai-Ning Luo
- Centre of Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynaecology, 156 Nankai Sanma Road, Tianjin 300100, China
| | - Zi-Jiang Chen
- Centre for Reproductive Medicine, Provincial Hospital Affiliated to Shandong University, Jinan 250001
| |
Collapse
|
8
|
Guo Q, Jin L, Zhu HY, Xing XX, Xuan MF, Luo QR, Zhang GL, Luo ZB, Wang JX, Yin XJ, Kang JD. The cyclin-dependent kinase inhibitor, JNJ-7706621, improves in vitro developmental competence of porcine parthenogenetic activation and somatic cell nuclear transfer embryos. Reprod Fertil Dev 2018; 30:1002-1010. [DOI: 10.1071/rd17194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/18/2017] [Indexed: 11/23/2022] Open
Abstract
In this study we examined the effects of JNJ-7706621, a cyclin-dependent kinase inhibitor, on the in vitro growth of pig embryos that had been produced either by parthenogenetic activation (PA) or somatic cell nuclear transfer (SCNT). A significantly higher percentage of PA embryos reached the blastocyst stage by Day 7 after exposure to 10 µM JNJ-7706621 for 4 h compared with embryos exposed to 5 µg mL−1 cytochalasin B for 4 h (P < 0.05). Similarly, the rate of Tyr15 phosphorylation of the complex of cyclin and p34cdc2 (CDK1) was significantly elevated in the JNJ-7706621-treated embryos compared with embryos exposed to cytochalasin B or non-treated controls (P < 0.05). In contrast, Thr161 phosphorylation of CDK1 was significantly lower in the JNJ-7706621-treated group compared with the cytochalasin B-treated as well as the non-treated group (P < 0.05). Similarly, the level of M-phase-promoting factor (MPF) in embryos was significantly lower in the JNJ-7706621-treated group compared with the cytochalasin B-treated and non-treated groups (P < 0.05). In addition, more SCNT embryos reached the blastocyst stage after treatment with JNJ-7706621 than following exposure to cytochalasin B (P < 0.05). In conclusion, these results reveal that exposure to 10 µM JNJ-7706621 for 4 h improves early development of PA and SCNT porcine embryos by suppressing the activity of CDK1 and a concomitant reduction in the level of MPF.
Collapse
|
9
|
Hu H, Mo X, Li X, Fu X, Hou Y. BAPTA-AM dramatically improves maturation and development of bovine oocytes from grade-3 cumulus-oocyte complexes. Mol Reprod Dev 2017; 85:38-45. [PMID: 29205619 DOI: 10.1002/mrd.22936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/29/2017] [Indexed: 01/25/2023]
Abstract
Intracellular free calcium ([Ca2+ ]i ) is essential for oocyte maturation and early embryonic development. Here, we investigated the role of [Ca2+ ]i in oocytes from cumulus-oocyte complexes (COCs) with respect to maturation and early embryonic development, using the calcium-buffering agent BAPTA-AM (1,2-bis[2-aminophenoxy]ethane-N,N,N',N'-tetraacetic acid tetrakis [acetoxymethyl ester]). COCs were graded based on compactness of the cumulus mass and appearance of the cytoplasm, with Grade 1 indicating higher quality and developmental potential than Grade 3. Results showed that: (i) [Ca2+ ]i in metaphase-II (MII) oocytes from Grade-3 COCs was significantly higher than those from Grade-1 COCs, and was significantly reduced by BAPTA-AM; (ii) nuclear maturation of oocytes from Grade-3 COCs treated with BAPTA-AM was enhanced compared to untreated COCs; (iii) protein abundance of Cyclin B and oocyte-specific Histone 1 (H1FOO) was improved in MII oocytes from Grade-3 COCs treated with BAPTA-AM; (iv) Ca2+ transients were triggered in each group upon fertilization, and the amplitude of [Ca2+ ]i oscillations increased in the Grade-3 group upon treatment with BAPTA-AM, with the magnitude approaching that of the Grade-1 group; and (v) cleavage rates and blastocyst-formation rates were improved in the Grade-3 group treated with BAPTA-AM compared to untreated controls following in vitro fertilization and parthenogenetic activation. Therefore, BAPTA-AM dramatically improved oocyte maturation, oocyte quality, and embryonic development of oocytes from Grade-3 COCs.
Collapse
Affiliation(s)
- Hongmei Hu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Xianhong Mo
- College of Life Sciences, Chifeng University, Chifeng, P. R. China
| | - Xue Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
10
|
Choi JW, Zhao MH, Liang S, Guo J, Lin ZL, Li YH, Jo YJ, Kim NH, Cui XS. Spindlin 1 is essential for metaphase II stage maintenance and chromosomal stability in porcine oocytes. Mol Hum Reprod 2017; 23:166-176. [PMID: 28364522 DOI: 10.1093/molehr/gax005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
Study question What is the function of Spindlin 1 (Spin1) in metaphase II stage oocytes in pigs? Summary answer Depletion of Spin1 induces spontaneous oocyte activation and overexpression of Spin1 causes multinuclear formation through induction of DNA damage in porcine oocytes. What is known already Little is known about the function of Spin1 in oocytes and embryos. In mouse oocytes, Spin1 is specifically expressed during gametogenesis and is essential for meiotic resumption. In somatic cells, Spin1 promotes cancer cell proliferation and activates WNT/T-cell factor signaling. Study design size, duration After knockdown (KD) or overexpression of Spin1 in porcine MII-stage oocytes, MII maintenance was checked following additional culture for 24 h. Investigated parthenotes were cultured up to the four cell (72 h) or blastocyst (7 days) stages. Participants/materials, setting, methods Spin1 was knocked down in porcine oocytes and embryos via microinjection of pig Spin1-targeting siRNA. For Spin1 overexpression, porcine Spin1-eGFP cRNA was generated. Additionally, for rescue experiments, cRNA encoding siRNA-resistant mouse Spin1 was added to the pig Spin1-targeting siRNA. For the overexpression and rescue experiments, microinjection and culture were performed using the same methods as the KD experiments. Main results and the role of chance KD of Spin1 in MII-stage porcine oocytes reduced metaphase-promoting factor and mitogen-activated protein kinase activities, resulting in spontaneous pronuclear formation without calcium activation. However, the DNA damage response was triggered by Spin1 overexpression, generating the checkpoint protein γH2A.X. Furthermore, Spin1 overexpression blocked metaphase-anaphase transition and led to multinucleation in oocytes and embryos. Large scale data None. Limitations, reasons for caution This study is based on in vitro investigations with abnormal expression levels of Spin1. This may or may not accurately reflect the situation in vivo. Wider implications of the findings Spin1 is essential to maintain MII arrest, but a high level of Spin1 induces DNA damage in oocytes and embryos. Thus, a system to accurately regulate Spin1 expression operates in porcine MII-stage oocytes and embryos. Study funding and competing interest(s) This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2015R1D1A1A01057629). The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Jeong-Woo Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Ming-Hui Zhao
- Division of Animal Biotechnology, National Institute of Animal Science, Rural Development Administration, Jeonju 55536, Republic of Korea
| | - Shuang Liang
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Jing Guo
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Zi-Li Lin
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Ying-Hua Li
- Department of Animal Science, Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Yu-Jin Jo
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| |
Collapse
|
11
|
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 2017; 154:F111-F124. [PMID: 29196493 DOI: 10.1530/rep-17-0357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) has become a useful technique for clinical applications in the horse-breeding industry. However, both ICSI blastocyst and offspring production continues to be limited for most farm and wild species. This article reviews technical differences of ICSI performance among species, possible biological and methodological reasons for the variable efficiency and potential strategies to improve the outcomes. One of the major applications of ICSI in animal production is the reproduction of high-value specimens. Unfortunately, some domestic species like the bovine show low rates of pronuclei formation after sperm injection, which led to the development of various artificial activation protocols and sperm pre-treatments that are discussed in this article. The impact of ICSI technique on equine breeding programs is considered in detail, since in contrast to other species, its use for elite horse reproduction has increased in recent years. ICSI has also been used to produce genetically modified animals; however, despite numerous attempts in several domestic species, only transgenic pigs have been consistently produced. Finally, the ICSI is a promising tool for genetic rescue of endangered and wild species. In conclusion, while ICSI has become a consistent ART for some species, it needs further development for others. The low results obtained for some domestic species, the high training needed and the equipment required have limited this technique to the production of elite specimens or for research purposes.
Collapse
Affiliation(s)
- Daniel F Salamone
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - Natalia G Canel
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - María Belén Rodríguez
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| |
Collapse
|
12
|
The developmental competence of oocytes parthenogenetically activated by an electric pulse and anisomycin treatment. Biotechnol Lett 2016; 39:189-196. [PMID: 27864653 DOI: 10.1007/s10529-016-2249-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the developmental competence of oocytes parthenogenetically activated by an electric pulse (EP) and treated with anisomycin and to determine whether this method is applicable to somatic cell nuclear transfer (SCNT). RESULTS Embryos derived from porcine oocytes parthenogenetically activated by an EP and treatment with 0.01 µg/mL anisomycin had a significantly improved in vitro developmental capacity. Furthermore, 66.6% of blastocysts derived from these embryos had a diploid karyotype. The blastocyst formation rate of cloned embryos was similar between oocytes activated by an EP and treated with 2 mM 6-dimethylaminopurine for 4 h and those activated by an EP and treated with 0.01 µg/mL anisomycin for 4 h. The level of maturation-promoting factor was significantly decreased in oocytes activated by an EP and treated with anisomycin. Finally, the mRNA expression levels of apoptosis-related genes (Bax and Bcl-2) and pluripotency-related genes (Oct4, Nanog, and Sox2) were checked by RT-PCR. CONCLUSION Our results demonstrate that porcine oocyte activation via an EP in combination with anisomycin treatment can lead to a high blastocyst formation rate in parthenogenetic activation and SCNT experiments.
Collapse
|
13
|
Felmer R, Arias ME. Activation treatment of recipient oocytes affects the subsequent development and ploidy of bovine parthenogenetic and somatic cell nuclear transfer (SCNT) embryos. Mol Reprod Dev 2015; 82:441-9. [DOI: 10.1002/mrd.22492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Affiliation(s)
- R. Felmer
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera; Temuco Chile
- Faculty of Agriculture and Forestry; Department of Agricultural Sciences and Natural Resources; Universidad de La Frontera; Temuco Chile
| | - M. E. Arias
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera; Temuco Chile
| |
Collapse
|
14
|
Chemically induced enucleation of activated bovine oocytes: chromatin and microtubule organization and production of viable cytoplasts. ZYGOTE 2014; 23:852-62. [DOI: 10.1017/s0967199414000537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryAs the standard enucleation method in mammalian nuclear transfer is invasive and damaging to cytoplast spatial organization, alternative procedures have been developed over recent years. Among these techniques, chemically induced enucleation (IE) is especially interesting because it does not employ ultraviolet light and reduces the amount of cytoplasm eliminated during the procedure. The objective of this study was to optimize the culture conditions with demecolcine of pre-activated bovine oocytes for chemically IE, and to evaluate nuclear and microtubule organization in cytoplasts obtained by this technique and their viability. In the first experiment, a negative effect on oocyte activation was verified when demecolcine was added at the beginning of the process, reducing activation rates by approximately 30%. This effect was not observed when demecolcine was added to the medium after 1.5 h of activation. In the second experiment, although a reduction in the number of microtubules was observed in most oocytes, these structures did not disappear completely during assessment. Approximately 50% of treated oocytes presented microtubule reduction at the end of the evaluation period, while 23% of oocytes were observed to exhibit the complete disappearance of these structures and 28% exhibited visible microtubules. These findings indicated the lack of immediate microtubule repolymerization after culture in demecolcine-free medium, a fact that may negatively influence embryonic development. However, cleavage rates of 63.6–70.0% and blastocyst yield of 15.5–24.2% were obtained in the final experiment, without significant differences between techniques, indicating that chemically induced enucleation produces normal embryos.
Collapse
|
15
|
Tripathi A, Chaube SK. Reduction of phosphorylated Thr-161 Cdk1 level participates in roscovitine-induced Fas ligand-mediated apoptosis in rat eggs cultured in vitro. In Vitro Cell Dev Biol Anim 2014; 51:174-82. [PMID: 25148827 DOI: 10.1007/s11626-014-9812-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/17/2014] [Indexed: 12/28/2022]
Abstract
The present study was aimed to find out whether roscovitine reduces phosphorylated Thr-161 of cyclin-dependent kinase 1 (Cdk1) level and induces egg apoptosis through Fas ligand (FasL)-mediated pathway. For this purpose, ovulated eggs were cultured in media 199 with or without various concentrations of roscovitine (0, 25, 50, 100, 200 μM) for 3 h in vitro. The morphological apoptotic changes, phosphorylation status of Cdk1, FasL concentration, caspase-8 and caspase-3 activities, and DNA fragmentation were analyzed. Data of the present study suggest that roscovitine significantly reduced Thr-161 phosphorylated Cdk1 level without altering the total level of Cdk1 and induced cytoplasmic fragmentation, a morphological apoptotic feature in a concentration-dependent manner. The roscovitine-induced cytoplasmic fragmentation was associated with increased FasL concentration. The increased FasL concentration induced caspase-8 followed by caspase-3 activities. The increased caspases activity finally induced DNA fragmentation in eggs that showed cytoplasmic fragmentation. Taken together, these results suggest that roscovitine reduced phosphorylated Thr-161 of Cdk1 level and induces apoptosis through FasL-mediated pathway in rat eggs cultured in vitro.
Collapse
Affiliation(s)
- Anima Tripathi
- Cell Physiology Laboratory, Biochemistry Unit, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
16
|
Li S, Kang JD, Jin JX, Hong Y, Zhu HY, Jin L, Gao QS, Yan CG, Cui CD, Li WX, Yin XJ. Effect of demecolcine-assisted enucleation on the MPF level and cyclin B1 distribution in porcine oocytes. PLoS One 2014; 9:e91483. [PMID: 24626152 PMCID: PMC3953396 DOI: 10.1371/journal.pone.0091483] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/11/2014] [Indexed: 11/19/2022] Open
Abstract
Demecolcine (DEM) treatment of oocytes induces formation of a membrane protrusion containing a mass of condensed maternal chromosomes, which can be removed with minimal damage prior to somatic cell nuclear transfer (SCNT). However, the effect of this method on the distribution of maturation-promoting factor (MPF) in porcine oocytes has not been reported. Here, the level of MPF and the distribution of cyclin B1 were assessed in porcine oocytes following DEM treatment. In addition, the efficiencies of DEM-assisted and mechanical enucleation were compared, as were the development (in vitro and in vivo) of these oocytes following SCNT. MPF was uniformly distributed in oocytes that had been treated with 0.4 μg/ml DEM for 1 h. Immunofluorescence microscopy showed that in untreated oocytes, cyclin B1, the regulatory subunit of MPF, accumulated around the spindle, and was lowly detected in the cytoplasm. DEM treatment disrupted spindle microtubules, induced chromosome condensation, and reduced the level of cyclin B1 in the nuclear region. Cyclin B1 was uniformly distributed in DEM-treated oocytes and the level of MPF was increased. The potential of embryos generated from DEM-treated oocytes to develop in vivo was significantly greater than that of embryos generated from mechanically enucleated oocytes. This is the first study to report the effects of DEM-assisted enucleation of porcine oocytes on the distribution of cyclin B1. MPF in mature oocytes is important for the development of reconstructed embryos and for efficient SCNT.
Collapse
Affiliation(s)
- Suo Li
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Jun-Xue Jin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Yu Hong
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Hai-Ying Zhu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Long Jin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Qing-Shan Gao
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Chang-Guo Yan
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Cheng-Du Cui
- Department of veterinary medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Wen-Xue Li
- Department of veterinary medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Xi-Jun Yin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
- * E-mail:
| |
Collapse
|
17
|
Hörmanseder E, Tischer T, Mayer TU. Modulation of cell cycle control during oocyte-to-embryo transitions. EMBO J 2013; 32:2191-203. [PMID: 23892458 DOI: 10.1038/emboj.2013.164] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/03/2013] [Indexed: 12/17/2022] Open
Abstract
Ex ovo omnia--all animals come from eggs--this statement made in 1651 by the English physician William Harvey marks a seminal break with the doctrine that all essential characteristics of offspring are contributed by their fathers, while mothers contribute only a material substrate. More than 360 years later, we now have a comprehensive understanding of how haploid gametes are generated during meiosis to allow the formation of diploid offspring when sperm and egg cells fuse. In most species, immature oocytes are arrested in prophase I and this arrest is maintained for few days (fruit flies) or for decades (humans). After completion of the first meiotic division, most vertebrate eggs arrest again at metaphase of meiosis II. Upon fertilization, this second meiotic arrest point is released and embryos enter highly specialized early embryonic divisions. In this review, we discuss how the standard somatic cell cycle is modulated to meet the specific requirements of different developmental stages. Specifically, we focus on cell cycle regulation in mature vertebrate eggs arrested at metaphase II (MII-arrest), the first mitotic cell cycle, and early embryonic divisions.
Collapse
Affiliation(s)
- Eva Hörmanseder
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | | |
Collapse
|
18
|
Abstract
Egg activation is the series of events that transition a mature oocyte to an egg capable of supporting embryogenesis. Increasing evidence points toward phosphorylation as a critical regulator of these events. We used Drosophila melanogaster to investigate the relationship between known egg activation genes and phosphorylation changes that occur upon egg activation. Using the phosphorylation states of four proteins-Giant Nuclei, Young Arrest, Spindly, and Vap-33-1-as molecular markers, we showed that the egg activation genes sarah, CanB2, and cortex are required for the phospho-regulation of multiple proteins. We show that an additional egg activation gene, prage, regulates the phosphorylation state of a subset of these proteins. Finally, we show that Sarah and calcineurin are required for the Anaphase Promoting Complex/Cyclosome (APC/C)-dependent degradation of Cortex following egg activation. From these data, we present a model in which Sarah, through the activation of calcineurin, positively regulates the APC/C at the time of egg activation, which leads to a change in phosphorylation state of numerous downstream proteins.
Collapse
|
19
|
Abstract
Mouse oocytes and zygotes are semitransparent and large cells approximately 80 μm in diameter. Bisection is one of the easiest ways for performing micromanipulations on such cells. It allows living sister halves or smaller fragments to be obtained, which can be cultured and observed for long periods of time. Bisection can be used for different kinds of experiments such as analysis of nucleo-cytoplasmic interactions, the relationship between different cellular structures or between different parts of embryos, eventually for analyzing the developmental potential of embryonic fragments. Oocyte or embryo halves can be examined by immunostaining, by measuring different cellular functions and by Western blot and genetic analysis (e.g., RT-PCR). Here we describe a detailed protocol for the free-hand bisection of mouse zona pellucida-free oocytes and embryos on an agar layer using a glass needle.
Collapse
Affiliation(s)
- Zbigniew Polanski
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Cracow, Poland
| | | |
Collapse
|
20
|
Gui L, Homer H. Hec1-dependent cyclin B2 stabilization regulates the G2-M transition and early prometaphase in mouse oocytes. Dev Cell 2013; 25:43-54. [PMID: 23541922 PMCID: PMC3659288 DOI: 10.1016/j.devcel.2013.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/20/2013] [Accepted: 02/14/2013] [Indexed: 01/06/2023]
Abstract
The functions of the Ndc80/Hec1 subunit of the highly conserved Ndc80 kinetochore complex are normally restricted to M phase when it exerts a pivotal kinetochore-based role. Here, we find that in mouse oocytes, depletion of Hec1 severely compromises the G2-M transition because of impaired activation of cyclin-dependent kinase 1 (Cdk1). Unexpectedly, impaired M phase entry is due to instability of the Cdk1-activating subunit, cyclin B2, which cannot be covered by cyclin B1. Hec1 protects cyclin B2 from destruction by the Cdh1-activated anaphase-promoting complex (APCCdh1) and remains important for cyclin B2 stabilization during early M phase, required for the initial stages of acentrosomal spindle assembly. By late M phase, however, Hec1 and cyclin B2 become uncoupled, and although Hec1 remains stable, APCCdc20 triggers cyclin B2 destruction. These data identify another dimension to Hec1 function centered on M phase entry and early prometaphase progression and challenge the view that cyclin B2 is completely dispensable in mammals.
Collapse
Affiliation(s)
- Liming Gui
- Mammalian Oocyte and Embryo Research Laboratory, Cell and Developmental Biology, UCL, London WC1E 6BT, UK
| | | |
Collapse
|
21
|
Oh JS, Susor A, Schindler K, Schultz RM, Conti M. Cdc25A activity is required for the metaphase II arrest in mouse oocytes. J Cell Sci 2013; 126:1081-5. [PMID: 23345398 DOI: 10.1242/jcs.115592] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mammalian oocytes are arrested in metaphase of second meiosis (MII) until fertilization. This arrest is enforced by the cytostatic factor (CSF), which maintains the M-phase promoting factor (MPF) in a highly active state. Although the continuous synthesis and degradation of cyclin B to maintain the CSF-mediated MII arrest is well established, it is unknown whether cyclin-dependent kinase 1 (Cdk1) phosphorylations are involved in this arrest in mouse oocytes. Here, we show that a dynamic equilibrium of Cdk1 phosphorylation is required to maintain MII arrest. When the Cdc25A phosphatase is downregulated, mouse oocytes are released from MII arrest and MPF becomes inactivated. This inactivation occurs in the absence of cyclin B degradation and is dependent on Wee1B-mediated phosphorylation of Cdk1. Thus, our data demonstrate that Cdk1 activity is maintained during MII arrest not only by cyclin turnover but also by steady state phosphorylation.
Collapse
Affiliation(s)
- Jeong Su Oh
- Center for Reproductive Sciences and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Obstetrics, Gynecology and Reproductive Sciences at the University of California, San Francisco, CA 94143-0556, USA
| | | | | | | | | |
Collapse
|
22
|
Kubiak JZ. Protein kinase assays for measuring MPF and MAPK activities in mouse and rat oocytes and early embryos. Methods Mol Biol 2013; 957:77-89. [PMID: 23138945 DOI: 10.1007/978-1-62703-191-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Protein phosphorylation plays a pivotal role in cell cycle regulation. MPF (M-phase Promoting Factor) and MAPK (Mitogen-activated protein kinase) are two major kinases driving oocyte maturation and early embryonic divisions. Their activities can be measured experimentally with kinase assays that use specific exogenous substrates. The activities of MPF and MAPK are measured using histone H1 kinase and MBP (Myelin Basic Protein) kinase assays, respectively. Here, we describe detailed procedures for measuring these two activities in mouse and rat oocytes and in early mouse embryos. The assays we describe can be performed using very small amounts of biological material and produce clearly discernible measurements of histone H1 and MBP kinase activities.
Collapse
Affiliation(s)
- Jacek Z Kubiak
- Cell Cycle Group, CNRS, UMR 6290, Institute of Genetics and Development of Rennes (IGDR), Rennes, France.
| |
Collapse
|
23
|
Bernhardt ML, Kong BY, Kim AM, O'Halloran TV, Woodruff TK. A zinc-dependent mechanism regulates meiotic progression in mammalian oocytes. Biol Reprod 2012; 86:114. [PMID: 22302686 DOI: 10.1095/biolreprod.111.097253] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Precise coordination of meiotic progression is a critical determinant of an egg's capacity to be fertilized successfully, and zinc has emerged as a key regulatory element in this process. An early manifestation of a regulatory role for this transition metal is the significant increase in total intracellular zinc. This accumulation is essential for meiotic progression beyond telophase I and the establishment of meiotic arrest at metaphase II. The subsequent developmental event, fertilization, induces a rapid expulsion of labile zinc that is a hallmark event in meiotic resumption. In the present study, we show that the zinc fluxes work, in part, by altering the activity of the cytostatic factor (CSF), the cellular activity required for the establishment and maintenance of metaphase II arrest in the mature, unfertilized egg. We propose a model in which zinc exerts concentration-dependent regulation of meiosis through the CSF component EMI2, a zinc-binding protein. Together, the data support the conclusion that zinc itself, through its interaction with EMI2, is a central component of the CSF.
Collapse
Affiliation(s)
- Miranda L Bernhardt
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
24
|
Levi M, Ninio-Mani L, Shalgi R. Src protein kinases in mouse and rat oocytes and embryos. Results Probl Cell Differ 2012; 55:93-106. [PMID: 22918802 DOI: 10.1007/978-3-642-30406-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Meiosis of the mammalian oocytes is a specialized cell division, initiated during the female's embryonic life. It arrests at the germinal vesicle (GV) stage and resumes with GV breakdown, followed by segregation of the chromosomes and extrusion of the first polar body in an asymmetric cell division that concludes the first meiotic division, before arresting at metaphase of the second meiotic division (MII). Once fertilized, the oocyte exits from MII, extrudes the second polar body, and the developing zygote will continue dividing to create a blastocyst. Although the two processes of meiosis and mitosis have different developmental functions, it is believed that they share similar mechanisms. Src family kinases (SFKs) are nine non-receptor protein tyrosine kinases that regulate many key cellular functions including meiotic and mitotic cell cycles. In this review we discuss the involvement of SFKs in meiotic and mitotic cell cycle key processes as nuclear envelope breakdown, spindle stabilization, karyokinetic exit from metaphase, regulation of cortical actin, and cytokinetic cleavage furrow ingression.
Collapse
Affiliation(s)
- Mattan Levi
- Department of Cell and Developmental Biology, Tel Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | | | | |
Collapse
|
25
|
Polański Z, Homer H, Kubiak JZ. Cyclin B in mouse oocytes and embryos: importance for human reproduction and aneuploidy. Results Probl Cell Differ 2012; 55:69-91. [PMID: 22918801 DOI: 10.1007/978-3-642-30406-4_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oocyte maturation and early embryo development require precise coordination between cell cycle progression and the developmental programme. Cyclin B plays a major role in this process: its accumulation and degradation is critical for driving the cell cycle through activation and inactivation of the major cell cycle kinase, CDK1. CDK1 activation is required for M-phase entry whereas its inactivation leads to exit from M-phase. The tempo of oocyte meiotic and embryonic mitotic divisions is set by the rate of cyclin B accumulation and the timing of its destruction. By controlling when cyclin B destruction is triggered and by co-ordinating this with the completion of chromosome alignment, the spindle assembly checkpoint (SAC) is a critical quality control system important for averting aneuploidy and for building in the flexibility required to better integrate cell cycle progression with development. In this review we focus on cyclin B metabolism in mouse oocytes and embryos and illustrate how the cell cycle-powered clock (in fact cyclin B-powered clock) controls oocyte maturation and early embryo development, thereby providing important insight into human reproduction and potential causes of Down syndrome.
Collapse
Affiliation(s)
- Zbigniew Polański
- Department of Genetics and Evolution, Jagiellonian University, Kraków, Poland
| | | | | |
Collapse
|
26
|
Kloc M, Ghobrial RM, Borsuk E, Kubiak JZ. Polarity and asymmetry during mouse oogenesis and oocyte maturation. Results Probl Cell Differ 2012; 55:23-44. [PMID: 22918799 DOI: 10.1007/978-3-642-30406-4_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell polarity and asymmetry play a fundamental role in embryo development. The unequal segregation of determinants, cues, and activities is the major event in the differentiation of cell fate and function in all multicellular organisms. In oocytes, polarity and asymmetry in the distribution of different molecules are prerequisites for the progression and proper outcome of embryonic development. The mouse oocyte, like the oocytes of other mammals, seems to apply a less stringent strategy of polarization than other vertebrates. The mouse embryo undergoes a regulative type of development, which permits the full rectification of development even if the embryo loses up to half of its cells or its size is experimentally doubled during the early stages of embryogenesis. Such pliability is strongly related to the proper oocyte polarization before fertilization. Thus, the molecular mechanisms leading to the development and maintenance of oocyte polarity must be included in any fundamental understanding of the principles of embryo development. In this chapter, we provide an overview of current knowledge regarding the development and maintenance of polarity and asymmetry in the distribution of organelles and molecules in the mouse oocyte. Curiously, the mouse oocyte becomes polarized at least twice during ontogenesis; the question of how this phenomenon is achieved and what role it might play is addressed in this chapter.
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Methodist Hospital, Department of Surgery, Houston, TX, USA.
| | | | | | | |
Collapse
|
27
|
Marteil G, Gagné JP, Borsuk E, Richard-Parpaillon L, Poirier GG, Kubiak JZ. Proteomics reveals a switch in CDK1-associated proteins upon M-phase exit during the Xenopus laevis oocyte to embryo transition. Int J Biochem Cell Biol 2011; 44:53-64. [PMID: 21959252 DOI: 10.1016/j.biocel.2011.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/09/2011] [Accepted: 09/14/2011] [Indexed: 02/04/2023]
Abstract
Cyclin-dependent kinase 1 (CDK1) is a major M-phase kinase which requires the binding to a regulatory protein, Cyclin B, to be active. CDK1/Cyclin B complex is called M-phase promoting factor (MPF) for its key role in controlling both meiotic and mitotic M-phase of the cell cycle. CDK1 inactivation is necessary for oocyte activation and initiation of embryo development. This complex process requires both Cyclin B polyubiquitination and proteosomal degradation via the ubiquitin-conjugation pathway, followed by the dephosphorylation of the monomeric CDK1 on Thr161. Previous proteomic analyses revealed a number of CDK1-associated proteins in human HeLa cells. It is, however, unknown whether specific partners are involved in CDK1 inactivation upon M-phase exit. To better understand CDK1 regulation during MII-arrest and oocyte activation, we immunoprecipitated (IPed) CDK1 together with its associated proteins from M-phase-arrested and M-phase-exiting Xenopus laevis oocytes. A mass spectrometry (MS) analysis revealed a number of new putative CDK1 partners. Most importantly, the composition of the CDK1-associated complex changed rapidly during M-phase exit. Additionally, an analysis of CDK1 complexes precipitated with beads covered with p9 protein, a fission yeast suc1 homologue well known for its high affinity for CDKs, was performed to identify the most abundant proteins associated with CDK1. The screen was auto-validated by identification of: (i) two forms of CDK1: Cdc2A and B, (ii) a set of Cyclins B with clearly diminishing number of peptides identified upon M-phase exit, (iii) a number of known CDK1 substrates (e.g. peroxiredoxine) and partners (e.g. HSPA8, a member of the HSP70 family) both in IP and in p9 precipitated pellets. In IP samples we also identified chaperones, which can modulate CDK1 three-dimensional structure, as well as calcineurin, a protein necessary for successful oocyte activation. These results shed a new light on CDK1 regulation via a dynamic change in the composition of the protein complex upon M-phase exit and the oocyte to embryo transition.
Collapse
Affiliation(s)
- Gaëlle Marteil
- CNRS, UMR 6061, Institute of Genetics and Development of Rennes, Rennes, France
| | | | | | | | | | | |
Collapse
|
28
|
Chebotareva T, Taylor J, Mullins JJ, Wilmut I. Rat eggs cannot wait: Spontaneous exit from meiotic metaphase-II arrest. Mol Reprod Dev 2011; 78:795-807. [PMID: 21910153 DOI: 10.1002/mrd.21385] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/15/2011] [Indexed: 11/06/2022]
Abstract
Mammalian eggs await fertilisation while arrested at the second metaphase stage of meiotic division. A network of signalling pathways enables the establishment and maintenance of this metaphase-II arrest. In the absence of fertilisation, mammalian eggs can spontaneously exit metaphase II when parthenogenetically stimulated, or sometimes without any obvious stimulation. Ovulated rat eggs abortively release from metaphase-II arrest once removed from egg donors. Spontaneously activated rat eggs extrude the second polar body and proceed to the so-called metaphase III-'like' stage, with clumps of condensed chromatin scattered in the egg cytoplasm. It is still unclear what makes rat eggs susceptible to spontaneous activation; however, a vague picture of the signalling pathways involved in the process of spontaneous activation is beginning to emerge. Such cell cycle instability is one of the major reasons why it is more difficult to establish nuclear transfer in the rat. This review examines the known predisposing factors and biochemical mechanisms involved in spontaneous activation. The strategies used to prevent spontaneous metaphase-II release in rat eggs will also be discussed.
Collapse
Affiliation(s)
- Tatiana Chebotareva
- MRC Centre for Regenerative Medicine, Edinburgh University, Edinburgh, Scotland, UK.
| | | | | | | |
Collapse
|
29
|
Abstract
Entry into, and passage through, the two meiotic divisions of the oocyte has to be highly coordinated to ensure proper segregation of chromosomes. This coordination ensures that the hallmark stops and starts of the meiotic process occur at the right time to prevent aneuploidy. The Anaphase-Promoting Complex is an activity mostly studied in the mitotic cell cycle division, where it has essential functions during mitosis. As detailed here the Anaphase-Promoting Complex also plays vital roles in controlling at least three meiotic events: maintenance of prophase I arrest, timely and faithful segregation of homologous chromosomes in meiosis I, and the meiotic arrest following ovulation.
Collapse
Affiliation(s)
- Keith T Jones
- University of Newcastle, 2308 Newcastle, NSW, Australia.
| |
Collapse
|
30
|
Kim KH, Kim EY, Kim Y, Kim E, Lee HS, Yoon SY, Lee KA. Gas6 downregulation impaired cytoplasmic maturation and pronuclear formation independent to the MPF activity. PLoS One 2011; 6:e23304. [PMID: 21850267 PMCID: PMC3151302 DOI: 10.1371/journal.pone.0023304] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 07/14/2011] [Indexed: 11/18/2022] Open
Abstract
Previously, we found that the growth arrest-specific gene 6 (Gas6) is more highly expressed in germinal vesicle (GV) oocytes than in metaphase II (MII) oocytes using annealing control primer (ACP)-PCR technology. The current study was undertaken to investigate the role of Gas6 in oocyte maturation and fertilization using RNA interference (RNAi). Interestingly, despite the specific and marked decrease in Gas6 mRNA and protein expression in GVs after Gas6 RNAi, nuclear maturation including spindle structures and chromosome segregation was not affected. The only discernible effect induced by Gas6 RNAi was a change in maturation promoting factor (MPF) activity. After parthenogenetic activation, Gas6 RNAi-treated oocytes at the MII stage had not developed further and arrested at MII (90.0%). After stimulation with Sr(2+), Gas6-silenced MII oocytes had markedly reduced Ca(2+) oscillation and exhibited no exocytosis of cortical granules. In these oocytes, sperm penetration occurred during fertilization but not pronucleus (PN) formation. By roscovitine and colcemid treatment, we found that the Gas6 knockdown affected cytoplasmic maturation directly, independent to the changed MPF activity. These results strongly suggest that 1) the Gas6 signaling itself is important to the cytoplasmic maturation, but not nuclear maturation, and 2) the decreased Gas6 expression and decreased MPF activity separately or mutually influence sperm head decondensation and PN formation.
Collapse
Affiliation(s)
- Kyeoung-Hwa Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Eun-Young Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Yuna Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Eunju Kim
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Hyun-Seo Lee
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Sook-Young Yoon
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
| | - Kyung-Ah Lee
- Department of Biomedical Science, College of Life Science, Fertility Center, CHA Research Institute, CHA University, CHA General Hospital, Seoul, Korea
- * E-mail:
| |
Collapse
|
31
|
Østrup O, Strejcek F, Petrovicova I, Lucas-Hahn A, Morovic M, Lemme E, Petersen B, Laurincikova N, Niemann H, Laurincik J, Hyttel P. Role of ooplasm in nuclear and nucleolar remodeling of intergeneric somatic cell nuclear transfer embryos during the first cell cycle. Cell Reprogram 2011; 13:145-55. [PMID: 21473691 DOI: 10.1089/cell.2010.0061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Initially, development of the zygote is under control of the oocyte ooplasm. However, it is presently unknown if and to what extent is the ooplasm able to interact with a transferred somatic cell from another species in the context of interspecies somatic cell nuclear transfer (SCNT). Here, one-cell stage embryos were processed at different points in time post activation (2 hpa, 4 hpa, 8 hpa, and 12 hpa) for detailed nuclear and nucleolar analysis by TEM, and immunofluorescence for visualization of nucleolar proteins related to transcription (UBF) and processing (fibrillarin). Bovine and porcine intergeneric SCNT embryos were compared to their parthenogenetic counterparts to assess the effects of the introduced somatic cell. Despite the absence of morphological remodeling (premature chromatin condensation, nuclear envelope breakdown), reconstructed embryos showed nuclear and nucleolar precursor body (NPB) morphology similar to the host ooplasm, which, together with detected posttranslational activity of somatic cell introduced into the bovine ooplasm, suggests a universal function of ooplasmic factors. However, the lack of distinct UBF localization in intergeneric embryos indicates failures in sequence-specific interactions between the ooplasm and chromatin of another genus. In conclusion, the results demonstrate a possible reason why the intergeneric SCNT embryos never reached the full term.
Collapse
Affiliation(s)
- Olga Østrup
- Department of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Groennegaardsvej 7, Frederiksberg C, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li Q, Miao DQ, Zhou P, Wu YG, Gao D, Wei DL, Cui W, Tan JH. Glucose Metabolism in Mouse Cumulus Cells Prevents Oocyte Aging by Maintaining Both Energy Supply and the Intracellular Redox Potential1. Biol Reprod 2011; 84:1111-8. [DOI: 10.1095/biolreprod.110.089557] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
33
|
Chang HY, Jennings PC, Stewart J, Verrills NM, Jones KT. Essential role of protein phosphatase 2A in metaphase II arrest and activation of mouse eggs shown by okadaic acid, dominant negative protein phosphatase 2A, and FTY720. J Biol Chem 2011; 286:14705-12. [PMID: 21383018 DOI: 10.1074/jbc.m110.193227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrate eggs arrest at second meiotic metaphase. The fertilizing sperm causes meiotic exit through Ca(2+)-mediated activation of the anaphase-promoting complex/cyclosome (APC/C). Although the loss in activity of the M-phase kinase CDK1 is known to be an essential downstream event of this process, the contribution of phosphatases to arrest and meiotic resumption is less apparent, especially in mammals. Therefore, we explored the role of protein phosphatase 2A (PP2A) in mouse eggs using pharmacological inhibition and activation as well as a functionally dominant-negative catalytic PP2A subunit (dn-PP2Ac-L199P) coupled with live cell imaging. We observed that PP2A inhibition using okadaic acid induced events normally observed at fertilization: degradation of the APC/C substrates cyclin B1 and securin resulting from loss of the APC/C inhibitor Emi2. Although sister chromatids separated, chromatin remained condensed, and polar body extrusion was blocked as a result of a rapid spindle disruption, which could be ameliorated by non-degradable cyclin B1, suggesting that spindle integrity was affected by CDK1 loss. Similar cell cycle effects to okadaic acid were also observed using dominant-negative PP2Ac. Preincubation of eggs with the PP2A activator FTY720 could block many of the actions of okadaic acid, including Emi2, cyclin B1, and securin degradation and sister chromatid separation. Therefore, in conclusion, we used okadaic acid, dn-PP2Ac-L199P, and FTY720 on mouse eggs to demonstrate that PP2A is needed to for both continued metaphase arrest and successful exit from meiosis.
Collapse
Affiliation(s)
- Heng-Yu Chang
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | | | | | | | | |
Collapse
|
34
|
Schindler K. Protein kinases and protein phosphatases that regulate meiotic maturation in mouse oocytes. Results Probl Cell Differ 2011; 53:309-341. [PMID: 21630151 DOI: 10.1007/978-3-642-19065-0_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oocytes arrest at prophase of meiosis I (MI) and in vivo do not resume meiosis until they receive ovulatory cues. Meiotic resumption entails two rounds of chromosome segregation without an intervening round of DNA replication and an arrest at metaphase of meiosis II (MII); fertilization triggers exit from MII and entry into interphase. During meiotic resumption, there is a burst of protein phosphorylation and dephosphorylation that dramatically changes during the course of oocyte meiotic maturation. Many of these phosphorylation and dephosphorylation events are key to regulating meiotic cell cycle arrest and/or progression, chromosome dynamics, and meiotic spindle assembly and disassembly. This review, which is subdivided into sections based upon meiotic cell cycle stages, focuses on the major protein kinases and phosphatases that have defined requirements during meiosis in mouse oocytes and, when possible, connects these regulatory pathways.
Collapse
Affiliation(s)
- Karen Schindler
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Rosales O, Opazo C, Diaz ES, Villegas JV, Sanchez R, Morales P. Proteasome activity and proteasome subunit transcripts in human spermatozoa separated by a discontinuous Percoll gradient. Andrologia 2010; 43:106-13. [DOI: 10.1111/j.1439-0272.2009.01029.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
36
|
Suzuki T, Yoshida N, Suzuki E, Okuda E, Perry ACF. Full-term mouse development by abolishing Zn2+-dependent metaphase II arrest without Ca2+ release. Development 2010; 137:2659-69. [DOI: 10.1242/dev.049791] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, a rise in intracellular free Ca2+ (Ca2+i) levels during fertilization initiates second metaphase (mII) exit and the developmental programme. The Ca2+ rise has long been considered to be crucial for development, but verifying this contribution would benefit from defining its role during fertilization. Here, we delineate the role of Ca2+ release during mII exit in wild-type mouse eggs and show that it is dispensable for full-term development. Exit from mII can be induced by Zn2+-specific sequestration without Ca2+ release, eliciting Cyclin B degradation in a manner dependent upon the proteasome pathway and intact microtubules, but not accompanied by degradation of the meiotic regulator Emi2. Parthenogenotes generated by Zn2+ sequestration developed in vitro with normal expression of Ca2+-sensitive genes. Meiotic exit induced by either Ca2+ oscillations or a single Ca2+ rise in oocytes containing a signaling-deficient sperm resulted in comparable developmental rates. In the absence of Ca2+ release, full-term development occurred ∼50% less efficiently, but at readily detectable rates, with the birth of 27 offspring. These results show in intact mouse oocytes that Zn2+ is essential for mII arrest and suggest that triggering meiotic exit is the sole indispensable developmental role of Ca2+ signaling in mammalian fertilization.
Collapse
Affiliation(s)
- Toru Suzuki
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Naoko Yoshida
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Emi Suzuki
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Erina Okuda
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Anthony C. F. Perry
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047 Japan
| |
Collapse
|
37
|
Canel N, Bevacqua R, Fernández-Martín R, Salamone DF. Activation with Ionomycin followed by Dehydroleucodine and Cytochalasin B for the Production of Parthenogenetic and Cloned Bovine Embryos. Cell Reprogram 2010; 12:491-9. [DOI: 10.1089/cell.2009.0109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Natalia Canel
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Romina Bevacqua
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Rafael Fernández-Martín
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Daniel F. Salamone
- Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
38
|
Tripathi A, Kumar KVP, Chaube SK. Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol 2010; 223:592-600. [PMID: 20232297 DOI: 10.1002/jcp.22108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Meiotic cell cycle in mammalian oocytes is a dynamic process that involves several stop/go channels. The cell cycle arrest in oocyte occurs at various stages such as diplotene, metaphase-I (M-I), metaphase-II (M-II), and so called metaphase-like arrest (M-III). Leutinizing hormone surge induces meiotic resumption from diplotene arrest in follicular microenvironment by overriding several factors responsible for the maintenance of meiotic arrest. The inhibitory factors are synthesized in oocyte or in the associated follicular somatic cells and transferred to the oocyte. The major factors include hypoxanthine, cyclic adenosine 3', 5'-monophosphate, cyclic guanosine 3', 5'-monophosphate, reactive oxygen species, protein kinase A, and protein kinase C. In the presence of active protein kinases, epidermal-like growth factors are produced that activate mitogen-activated protein kinase in cumulus granulosa cells. The maturation promoting factor, cytostatic factors, and spindle assembly checkpoint proteins are also involved in that maintenance of arrest at various stages of meiotic cell cycle in mammalian oocytes. In this review, we briefly summarize the role of these factors in the maintenance of meiotic cell cycle arrest in mammalian oocytes.
Collapse
Affiliation(s)
- Anima Tripathi
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | | | |
Collapse
|
39
|
Levi M, Shalgi R. The role of Fyn kinase in the release from metaphase in mammalian oocytes. Mol Cell Endocrinol 2010; 314:228-33. [PMID: 19733625 DOI: 10.1016/j.mce.2009.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 08/30/2009] [Indexed: 01/06/2023]
Abstract
Meiosis in mammalian oocytes starts during embryonic life and arrests for the first time before birth, at prophase of the first meiotic division. The second meiotic arrest occurs after spindle formation at metaphase of the second meiotic division (MII) in selected oocytes designated for ovulation. The fertilizing spermatozoon induces the release from MII arrest only after the oocyte's spindle assembly checkpoint (SAC) was deactivated. Src family kinases (SFKs) are nine non-receptor protein tyrosine kinases that regulate many key cellular functions. Fyn is an SFK expressed in many cell types, including oocytes. Recent studies, including ours, imply a role for Fyn in exit from meiotic and mitotic metaphases. Other studies demonstrate that SFKs, particularly Fyn, are required for regulation of microtubules polymerization and spindle stabilization. Altogether, Fyn is suggested to play an essential role in signaling events that implicate SAC pathway and hence in regulating the exit from metaphase in oocytes and zygote.
Collapse
Affiliation(s)
- M Levi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | | |
Collapse
|
40
|
Sterthaus O, Skoczylas E, De Geyter C, Bürki K, Ledermann B. Evaluation of in vitro cultured rat oocytes, from different strains, by spindle morphology and maturation-promoting-factor activity combined with nuclear-transfer experiments. CLONING AND STEM CELLS 2009; 11:463-72. [PMID: 19751114 DOI: 10.1089/clo.2009.0014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although successful nuclear transfer (NT) has been reported in the rat 6 years ago, somatic cell nuclear transfer (SCNT) in the rat could not be repeated. Our experiments with rat SCNT reveal the difficulties related to rat cloning. We first focussed on the most appropriate rat strain that could be used as an oocyte donor. Then we describe how rat oocytes can be kept in a nonactivated state during in vitro culture, because the latter undergo spontaneous partial activation through rapid extrusion of the second polar body after isolation from the oviduct. In the SCNT experiments performed with the one-step manipulation technique it was possible to produce rat embryos, which developed in vivo up to the blastocyst stage. In addition, we identified the implantation sites of SCNT rat embryos reconstructed with Sprague-Dawley (SD) oocytes. Furthermore, different rat strains were used as oocyte donors and their oocytes were cultured under different conditions to establish a stable nonactivating oocyte culture system. The ratio of activated to nonactivated oocytes was measured by spindle-stability and maturation promoting factor (MPF) activity. These measurements indicated that a substrain of the SD rat strain, the so-called OFA-SD strain, is the one providing the most stable oocytes, when their oocytes are cultured in the presence of the proteasome inhibitor MG132. However, it was not possible to obtain any implantation sites with reconstructed oocytes derived from the OFA-SD strain transferred to foster mothers. This goal was not achieved, even when the trichostatin A (TSA) treatment was used, which is known to enhance the cloning efficiency of reconstructed mouse, porcine, bovine, and rabbit oocytes both in vitro and in vivo by enhancing the reprogramming efficiency of the recipient nucleus.
Collapse
Affiliation(s)
- Oliver Sterthaus
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
41
|
The effect of the time interval between injection and parthenogenetic activation on the spindle formation and the in vitro developmental potential of somatic cell nuclear-transferred rat oocytes. ZYGOTE 2009; 18:9-15. [PMID: 19678975 DOI: 10.1017/s0967199409990025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We examined the optimal conditions for somatic cell nuclear transfer (SCNT) in the rat. First, we examined the effect of preincubation time before activation on SCNT rat oocytes produced in the presence of MG132 with regard to spindle formation and the potential to develop into blastocysts. The spindles of SCNT oocytes continued to elongate with an increase in the culture duration and, in approximately half of oocytes, the chromosomes were distributed along the spindles at 120 min after incubation. Such abnormal spindle formation in SCNT oocytes is a possible reason for the low developmental potential of SCNT rat oocytes. To inhibit the formation of abnormal spindle formation, we examined secondly the developmental potential of rat SCNT oocytes that had been preincubated with nocodazole and demecolcine instead of MG132. The developmental rates in SCNT oocytes, however, were decreased. For successful rat somatic cell cloning, two steps might be required: (1) to culture the somatic cell nuclei for a sufficient time in MII oocyte cytoplasm to enhance nuclear reprogramming; and (2) to induce normal spindle formation with normal chromosomal construction.
Collapse
|
42
|
Liu N, Wu YG, Lan GC, Sui HS, Ge L, Wang JZ, Liu Y, Qiao TW, Tan JH. Pyruvate prevents aging of mouse oocytes. Reproduction 2009; 138:223-34. [PMID: 19465488 DOI: 10.1530/rep-09-0122] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inhibiting oocyte aging is important not only for healthy reproduction but also for the success of assisted reproduction techniques. Although our previous studies showed that cumulus cells accelerated aging of mouse oocytes, the underlying mechanism is unknown. The objective of this paper was to study the effects of pyruvate and cumulus cells on mouse oocyte aging. Freshly ovulated mouse cumulus-oocyte complexes (COCs) or cumulus-denuded oocytes (DOs) were cultured in Chatot-Ziomek-Bavister (CZB) medium or COC-conditioned CZB medium supplemented with different concentrations of pyruvate before being examined for aging signs and developmental potential. Pyruvate supplementation to CZB medium decreased rates of ethanol-induced activation in both COCs and DOs by maintaining their maturation-promoting factor activities, but more pyruvate was needed for COCs than for DOs. Addition of pyruvate to the COC-conditioned CZB also alleviated aging of DOs. Observations on cortical granules, level of BCL2 proteins, histone acetylation, intracellular concentration of glutathione, and embryo development all confirmed that pyruvate supplementation inhibited aging of mouse oocytes. It is concluded that the aging of mouse oocytes, facilitated by culture in COCs, can be partially prevented by the addition of pyruvate to the culture medium.
Collapse
Affiliation(s)
- Na Liu
- Laboratory for Animal Reproduction and Embryology, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-An City, Shandong Province, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abdalla H, Hirabayashi M, Hochi S. The ability of freeze-dried bull spermatozoa to induce calcium oscillations and resumption of meiosis. Theriogenology 2009; 71:543-52. [DOI: 10.1016/j.theriogenology.2008.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 08/06/2008] [Accepted: 08/18/2008] [Indexed: 11/27/2022]
|
44
|
Ajduk A, Ciemerych MA, Nixon V, Swann K, Maleszewski M. Fertilization differently affects the levels of cyclin B1 and M-phase promoting factor activity in maturing and metaphase II mouse oocytes. Reproduction 2008; 136:741-52. [DOI: 10.1530/rep-08-0271] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fertilization affects levels of cyclin B1 and M-phase promoting factor (MPF) activity in maturing and metaphase II mouse oocytes in two distinct ways. In metaphase II oocytes, it leads to a Ca2+-dependent, continuous degradation of cyclin B1 and inactivation of cyclin dependent kinase (CDC2A)–cyclin B1 complex (MPF). In this paper, we show that neither mono- nor polyspermic fertilization of prometaphase I and metaphase I oocytes triggered degradation of cyclin B1. However, polyspermic fertilization of prometaphase I oocytes led to a transient decrease in MPF activity that lasted for 2 h. The inactivation of MPF in polyspermic prometaphase I oocytes did not depend on the fertilization-induced increase in the cytoplasmic concentration of free Ca2+ions, but was caused, at least in part, by dephosphorylation of CDC2A at threonine 161 (Thr161). We found that polyspermic fertilization did not affect glutathione levels in prometaphase I oocytes, and concluded that the decrease in MPF activity and dephosphorylation of CDC2A at Thr161 in polyspermic prometaphase I oocytes were not caused by a change in the redox status of the cell induced by an introduction of excessive amount of sperm protamines. Instead, we propose that inactivation of MPF activity in polyspermic maturing oocytes is caused by a change in nucleo-cytoplasmic ratio that leads to a ‘titration’ of kinases and phosphatases responsible for keeping MPF in an active state. This idea is supported by the finding that oocytes fused with thymocytes rather than spermatozoa also showed a transient decrease in MPF activity.
Collapse
|
45
|
Lan GC, Wu YG, Han D, Ge L, Liu Y, Wang HL, Wang JZ, Tan JH. Demecolcine-assisted enucleation of goat oocytes: protocol optimization, mechanism investigation, and application to improve the developmental potential of cloned embryos. CLONING AND STEM CELLS 2008; 10:189-202. [PMID: 18373477 DOI: 10.1089/clo.2007.0088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although demecolcine-assisted enucleation has been performed successfully in porcine and cattle, the mechanism and protocol optimization of chemically assisted enucleation need further investigation. The present study optimized the protocol for goat oocyte enucleation and demonstrated that a 30-min treatment with 0.8 ng/mL demecolcine-induced cytoplasmic protrusions in over 90% of the oocytes. Rates of enucleation, cell fusion, and blastocyst formation were significantly higher after demecolcine-assisted than after blind aspiration enucleation, although differences in rates of live births remain to be unequivocally determined between the two treatments. The ability to form protrusions decreased significantly as spindles became less organized in aged oocytes and the oocytes with a poor cumulus expansion. More than 93% of the demecolcine-induced protrusions persisted for 2 h in the absence of cytochalasin B (CB) but most disappeared within 30 min of CB treatment. The spindle disintegrated, an actin-rich ring formed around the chromosome mass and the MAP kinase activity increased significantly after demecolcine treatment. When oocytes with induced protrusions were treated with CB, however, the contractile ring disappeared, the spindle reintegrated, and both MPF and MAP kinase activities decreased significantly. It is concluded that (1) cytoplasmic protrusions can be induced in goat oocytes with a very low concentration of demecolcine; (2) oocyte selection and enucleation can be achieved simultaneously with demecolcine treatment; and (3) an interactive effect between the MAP kinase, MPF, microfilaments and microtubules might be implicated in the control of cytoplasmic protrusion formation after demecolcine treatment.
Collapse
Affiliation(s)
- Guo-Cheng Lan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City 271018, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Perry ACF, Verlhac MH. Second meiotic arrest and exit in frogs and mice. EMBO Rep 2008; 9:246-51. [PMID: 18311174 DOI: 10.1038/embor.2008.22] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 01/28/2008] [Indexed: 11/09/2022] Open
Abstract
Mature vertebrate oocytes typically undergo programmed arrest at the second meiotic cell cycle until they are signalled to initiate embryonic development at fertilization. Here, we describe the underlying molecular mechanisms of this second meiotic arrest and release in Xenopus, and compare and contrast them with their counterparts in mice.
Collapse
Affiliation(s)
- Anthony C F Perry
- Laboratory of Mammalian Molecular Embryology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| | | |
Collapse
|
47
|
Segers I, Adriaenssens T, Coucke W, Cortvrindt R, Smitz J. Timing of Nuclear Maturation and Postovulatory Aging in Oocytes of In Vitro-Grown Mouse Follicles with or Without Oil Overlay1. Biol Reprod 2008; 78:859-68. [DOI: 10.1095/biolreprod.107.062539] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
48
|
Marangos P, Carroll J. Securin regulates entry into M-phase by modulating the stability of cyclin B. Nat Cell Biol 2008; 10:445-51. [PMID: 18364698 DOI: 10.1038/ncb1707] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 01/18/2008] [Indexed: 11/09/2022]
Abstract
Timely progression into mitosis is necessary for normal cell division. This transition is sensitive to the levels of cyclin B, the regulatory subunit of the master mitotic kinase, Cdk1. Cyclin B accumulates during G2 and prophase when its rate of destruction by the anaphase promoting complex (APC) is low. Securin is also an APC substrate and is known for its role in inactivating the cohesin-cleaving enzyme, separase, until the metaphase to anaphase transition. Here we show that securin has an additional role in cell-cycle regulation, that of modulating the timing of entry into M-phase. In mouse oocytes, excess securin caused stabilization of cyclin B and precocious entry into M-phase. Depletion of securin increased cyclin B degradation, resulting in delayed progression into M-phase. This effect required APC activity and was reversed by expression of wild-type securin. These data reveal a role for securin at the G2-M transition and suggest a more general mechanism whereby physiological levels of co-competing APC substrates function in modulating the timing of cell-cycle transitions.
Collapse
Affiliation(s)
- Petros Marangos
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, UK.
| | | |
Collapse
|
49
|
Ross PJ, Beyhan Z, Iager AE, Yoon SY, Malcuit C, Schellander K, Fissore RA, Cibelli JB. Parthenogenetic activation of bovine oocytes using bovine and murine phospholipase C zeta. BMC DEVELOPMENTAL BIOLOGY 2008; 8:16. [PMID: 18284699 PMCID: PMC2266721 DOI: 10.1186/1471-213x-8-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 02/19/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND During natural fertilization, sperm fusion with the oocyte induces long lasting intracellular calcium oscillations which in turn are responsible for oocyte activation. PLCZ1 has been identified as the factor that the sperm delivers into the egg to induce such a response. We tested the hypothesis that PLCZ1 cRNA injection can be used to activate bovine oocytes. RESULTS Mouse and bovine PLCZ1 cRNAs were injected into matured bovine oocytes at different concentrations. Within the concentrations tested, mouse PLCZ1 injection activated bovine oocytes at a maximum rate when the pipette concentration of cRNA ranged from 0.25 to 1 mug/muL, while bovine PLCZ1 was optimal at 0.1 mug/muL. At their most effective concentrations, PLCZ1 induced parthenogenetic development at rates similar to those observed using other activation stimuli such as Ionomycin/CHX and Ionomycin/DMAP. Injection of mouse and bovine PLCZ1 cRNA induced dose-dependent sperm-like calcium oscillations whose frequency increased over time. Injection of bovine and mouse PLCZ1 cRNA also induced IP3R-1 degradation, although bovine PLCZ1 cRNA evoked greater receptor degradation than its mouse counterpart. CONCLUSION Injection of PLCZ1 cRNA efficiently activated bovine oocytes by inducing a sperm-like calcium oscillatory pattern. Importantly, the high rate of aneuploidy encountered in parthenogenetic embryos activated by certain chemical means was not observed in PLCZ1 activated embryos.
Collapse
Affiliation(s)
- Pablo J Ross
- Cellular Reprogramming Laboratory, Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Tomashov-Matar R, Levi M, Shalgi R. The involvement of Src family kinases (SFKs) in the events leading to resumption of meiosis. Mol Cell Endocrinol 2008; 282:56-62. [PMID: 18166263 DOI: 10.1016/j.mce.2007.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ovulated mammalian eggs remain arrested at the second meiotic metaphase (MII) until fertilization. The fertilizing spermatozoon initiates a sequence of biochemical events, collectively referred to as 'egg activation', which overcome this arrest. The initial observable change within the activated egg is a transient rise in intracellular Ca2+ concentration ([Ca2+]i) followed by cortical granule exocytosis (CGE) and resumption of the second meiotic division (RMII). To date, the mechanism by which the fertilizing spermatozoon activates the signaling pathways upstream to the Ca2+ release and the manner by which the signals downstream to Ca2+ release evoke RMII are not well documented. Protein tyrosine kinases (PTKs) were suggested as possible inducers of some aspects of egg activation. Src family kinases (SFKs) constitute a large family of evolutionarily conserved PTKs that mediate crucial biological functions. At present, the theory that one or more SFKs are necessary and sufficient for Ca2+ regulation at fertilization is documented in eggs of marine invertebrates. The mechanism leading to Ca2+ release during fertilization is less established in mammalian eggs. A controversy still exists as to whether SFKs within the mammalian egg are sufficient and/or necessary for Ca2+ release, or whether they play a role during egg activation via other signaling pathways. This article summarizes the possible signaling pathways involved upstream to Ca2+ release but focuses mainly on the involvement of SFKs downstream to Ca2+ release toward RMII, in invertebrate and vertebrate eggs.
Collapse
Affiliation(s)
- R Tomashov-Matar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | | | | |
Collapse
|