1
|
Zhang Y, Zhang H, Zhao S, Qi Z, He Y, Zhang X, Wu W, Yan K, Hu L, Sun S, Tang X, Zhou Q, Chen F, Gu A, Wang L, Zhang Z, Yu B, Wang D, Han Y, Xie L, Ji Y. S-Nitrosylation of Septin2 Exacerbates Aortic Aneurysm and Dissection by Coupling the TIAM1-RAC1 Axis in Macrophages. Circulation 2024; 149:1903-1920. [PMID: 38357802 DOI: 10.1161/circulationaha.123.066404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND S-Nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in cardiovascular disease. Aortic aneurysm and dissection are high-risk cardiovascular diseases without an effective cure. The aim of this study was to determine the role of SNO of Septin2 in macrophages in aortic aneurysm and dissection. METHODS Biotin-switch assay combined with liquid chromatography-tandem mass spectrometry was performed to identify the S-nitrosylated proteins in aortic tissue from both patients undergoing surgery for aortic dissection and Apoe-/- mice infused with angiotensin II. Angiotensin II-induced aortic aneurysm model and β-aminopropionitrile-induced aortic aneurysm and dissection model were used to determine the role of SNO of Septin2 (SNO-Septin2) in aortic aneurysm and dissection development. RNA-sequencing analysis was performed to recapitulate possible changes in the transcriptome profile of SNO-Septin2 in macrophages in aortic aneurysm and dissection. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation were used to uncover the TIAM1-RAC1 (Ras-related C3 botulinum toxin substrate 1) axis as the downstream target of SNO-Septin2. Both R-Ketorolac and NSC23766 treatments were used to inhibit the TIAM1-RAC1 axis. RESULTS Septin2 was identified S-nitrosylated at cysteine 111 (Cys111) in both aortic tissue from patients undergoing surgery for aortic dissection and Apoe-/- mice infused with Angiotensin II. SNO-Septin2 was demonstrated driving the development of aortic aneurysm and dissection. By RNA-sequencing, SNO-Septin2 in macrophages was demonstrated to exacerbate vascular inflammation and extracellular matrix degradation in aortic aneurysm. Next, TIAM1 (T lymphoma invasion and metastasis-inducing protein 1) was identified as a SNO-Septin2 target protein. Mechanistically, compared with unmodified Septin2, SNO-Septin2 reduced its interaction with TIAM1 and activated the TIAM1-RAC1 axis and consequent nuclear factor-κB signaling pathway, resulting in stronger inflammation and extracellular matrix degradation mediated by macrophages. Consistently, both R-Ketorolac and NSC23766 treatments protected against aortic aneurysm and dissection by inhibiting the TIAM1-RAC1 axis. CONCLUSIONS SNO-Septin2 drives aortic aneurysm and dissection through coupling the TIAM1-RAC1 axis in macrophages and activating the nuclear factor-κB signaling pathway-dependent inflammation and extracellular matrix degradation. Pharmacological blockade of RAC1 by R-Ketorolac or NSC23766 may therefore represent a potential treatment against aortic aneurysm and dissection.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Hao Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Zhenhua Qi
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Yiwei He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Xuhong Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Wencheng Wu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Ke Yan
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Lulu Hu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Shixiu Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
| | - Xinlong Tang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (X.T., Q.Z., D.W.)
| | - Qing Zhou
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (X.T., Q.Z., D.W.)
| | - Feng Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
- Department of Forensic Medicine (F.C.), Nanjing Medical University, China
| | - Aihua Gu
- School of Public Health (A.G.), Nanjing Medical University, China
| | - Liansheng Wang
- Departments of Cardiology, First Affiliated Hospital of Nanjing Medical University, China (L.W.)
| | - Zhiren Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Heilongjiang, PR China (Z.Z., Y.J.)
| | - Bo Yu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Heilongjiang, China (B.Y.)
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, China (X.T., Q.Z., D.W.)
| | - Yi Han
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, China (Y.H.)
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
- Gusu School, Nanjing Medical University, Suzhou, China (L.X., Y.J.)
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Jiangsu, China (Y.Z., H.Z., S.Z., Z.Q., Y.H., X.Z., W.W., K.Y., L.H., S.S., F.C., L.X., Y.J.)
- Gusu School, Nanjing Medical University, Suzhou, China (L.X., Y.J.)
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Heilongjiang, PR China (Z.Z., Y.J.)
| |
Collapse
|
2
|
Chrysostomou SE, Eder S, Pototschnig I, Mayer A, Derler M, Mussbacher M, Schauer S, Zhang D, Yan D, Liu G, Hoefler G, Weichhart T, Vesely PW, Zhang L, Schweiger M. R-ketorolac ameliorates cancer-associated cachexia and prolongs survival of tumour-bearing mice. J Cachexia Sarcopenia Muscle 2024; 15:562-574. [PMID: 38302863 PMCID: PMC10995265 DOI: 10.1002/jcsm.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Cancer-associated cachexia (CAC) is a debilitating syndrome associated with poor quality of life and reduced life expectancy of cancer patients. CAC is characterized by unintended body weight reduction due to muscle and adipose tissue loss. A major hallmark of CAC is systemic inflammation. Several non-steroidal anti-inflammatory drugs (NSAIDs) have been suggested for CAC treatment, yet no single medication has proven reliable. R-ketorolac (RK) is the R-enantiomer of a commonly used NSAID. The effect of RK on CAC has not yet been evaluated. METHODS Ten- to 11-week-old mice were inoculated with C26 or CHX207 cancer cells or vehicle control (phosphate-buffered saline [PBS]). After cachexia onset, 2 mg/kg RK or PBS was administered daily by oral gavage. Body weight, food intake and tumour size were continuously measured. At study endpoints, blood was drawn, mice were sacrificed and tissues were excised. Immune cell abundance was analysed using a Cytek® Aurora spectral flow cytometer. Cyclooxygenase (COX) activity was determined in lung homogenates using a fluorometric kit. Muscle tissues were analysed for mRNA and protein expression by quantitative real-time PCR and western blotting analysis, respectively. Muscle fibre size was determined on histological slides after haematoxylin/eosin staining. RESULTS Ten-day survival rate of C26-bearing animals was 10% while RK treatment resulted in a 100% survival rate (P = 0.0009). Chemotherapy resulted in a 10% survival rate 14 days after treatment initiation, but all mice survived upon co-medication with RK and cyclophosphamide (P = 0.0001). Increased survival was associated with a protection from body weight loss in C26 (-0.61 ± 1.82 vs. -4.48 ± 2.0 g, P = 0.0004) and CHX207 (-0.49 ± 0.33 vs. -2.49 ± 0.93 g, P = 0.0003) tumour-bearing mice treated with RK, compared with untreated mice. RK ameliorated musculus quadriceps (-1.7 ± 7.1% vs. -27.8 ± 8.3%, P = 0.0007) and gonadal white adipose tissue (-18.8 ± 49% vs. -69 ± 15.6%, P = 0.094) loss in tumour-bearing mice, compared with untreated mice. Mechanistically, RK reduced circulating interleukin-6 (IL-6) concentrations from 334 ± 151 to 164 ± 123 pg/mL (P = 0.047) in C26 and from 93 ± 39 to 35 ± 6 pg/mL (P = 0.0053) in CHX207 tumour-bearing mice. Moreover, RK protected mice from cancer-induced T-lymphopenia (+1.8 ± 42% vs. -49.2 ± 12.1% in treated vs. untreated mice, respectively). RK was ineffective in ameliorating CAC in thymus-deficient nude mice, indicating that the beneficial effect of RK depends on T-cells. CONCLUSIONS RK improved T-lymphopenia and decreased systemic IL-6 concentrations, resulting in alleviation of cachexia and increased survival of cachexigenic tumour-bearing mice, even under chemotherapy and independent of COX inhibition. Considering its potential, we propose that the use of RK should be investigated in patients suffering from CAC.
Collapse
Affiliation(s)
| | - Sandra Eder
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | | | - Anna‐Lena Mayer
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Martina Derler
- Institute of Pharmaceutical SciencesUniversity of GrazGrazAustria
| | | | - Silvia Schauer
- Diagnostic and Research Institute of PathologyMedical University of GrazGrazAustria
| | | | - Dongmei Yan
- Department of ImmunologyJilin UniversityChangchunChina
| | | | - Gerald Hoefler
- Diagnostic and Research Institute of PathologyMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Thomas Weichhart
- Institute of Medical GeneticsMedical University of ViennaViennaAustria
| | - Paul W. Vesely
- Diagnostic and Research Institute of PathologyMedical University of GrazGrazAustria
| | | | - Martina Schweiger
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth ‐ University of GrazGrazAustria
| |
Collapse
|
3
|
Bhushan R. Liquid chromatographic enantioseparation, determination, bioassay and isolation of enantiomers of Ketorolac: A review. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2021.00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractKetorolac (Ket) is a potent non-narcotic analgesic drug (among the nonsteroidal anti-inflammatory drugs). The physiological activity of Ket resides with (S)-(−)-Ket while the drug is marketed and administered as a racemic mixture. Therefore, it is desirable that the pharmacokinetics is measured and quantified for enantiomers individually and not as a total drug. The present paper is focused on relevant literature on LC enantioseparation of (RS)-Ket along with bioassay, pharmacokinetic and clinical studies within the discipline of analytical chemistry. HPLC and Thin layer chromatography (TLC) methods using both direct and indirect approaches are discussed. The methods provide chirality recognition even in the absence of pure enantiomers. Besides, a brief discussion on resolution by crystallization and enzymatic methods is included. The most interesting aspects include establishment of structure and molecular asymmetry of diastereomeric derivatives using LC-MS, proton nuclear magnetic resonance spectrometry, and by drawing conformations in three dimensional views by using certain software. A brief discussion has also been provided on the recovery of native enantiomers by TLC.
Collapse
Affiliation(s)
- Ravi Bhushan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
4
|
Grimes MM, Kenney SR, Dominguez DR, Brayer KJ, Guo Y, Wandinger-Ness A, Hudson LG. The R-enantiomer of ketorolac reduces ovarian cancer tumor burden in vivo. BMC Cancer 2021; 21:40. [PMID: 33413202 PMCID: PMC7791840 DOI: 10.1186/s12885-020-07716-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Rho-family GTPases, including Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42), are important modulators of cancer-relevant cell functions and are viewed as promising therapeutic targets. Based on high-throughput screening and cheminformatics we identified the R-enantiomer of an FDA-approved drug (ketorolac) as an inhibitor of Rac1 and Cdc42. The corresponding S-enantiomer is a non-steroidal anti-inflammatory drug (NSAID) with selective activity against cyclooxygenases. We reported previously that R-ketorolac, but not the S-enantiomer, inhibited Rac1 and Cdc42-dependent downstream signaling, growth factor stimulated actin cytoskeleton rearrangements, cell adhesion, migration and invasion in ovarian cancer cell lines and patient-derived tumor cells. METHODS In this study we treated mice with R-ketorolac and measured engraftment of tumor cells to the omentum, tumor burden, and target GTPase activity. In order to gain insights into the actions of R-ketorolac, we also performed global RNA-sequencing (RNA-seq) analysis on tumor samples. RESULTS Treatment of mice with R-ketorolac decreased omental engraftment of ovarian tumor cells at 18 h post tumor cell injection and tumor burden after 2 weeks of tumor growth. R-ketorolac treatment inhibited tumor Rac1 and Cdc42 activity with little impact on mRNA or protein expression of these GTPase targets. RNA-seq analysis revealed that R-ketorolac decreased expression of genes in the HIF-1 signaling pathway. R-ketorolac treatment also reduced expression of additional genes associated with poor prognosis in ovarian cancer. CONCLUSION These findings suggest that R-ketorolac may represent a novel therapeutic approach for ovarian cancer based on its pharmacologic activity as a Rac1 and Cdc42 inhibitor. R-ketorolac modulates relevant pathways and genes associated with disease progression and worse outcome.
Collapse
Affiliation(s)
- Martha M. Grimes
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| | - S. Ray Kenney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
- Division of Molecular Medicine, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Dayna R. Dominguez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| | - Kathryn J. Brayer
- Analytical and Translational Genomics Shared Resource, Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico USA
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Yuna Guo
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Angela Wandinger-Ness
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, New Mexico USA
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico USA
| |
Collapse
|
5
|
Pérez‐Venegas M, Rodríguez‐Treviño AM, Juaristi E. Dual Mechanoenzymatic Kinetic Resolution of (±)‐Ketorolac. ChemCatChem 2020. [DOI: 10.1002/cctc.201902292] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mario Pérez‐Venegas
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
| | | | - Eusebio Juaristi
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
- El Colegio Nacional Donceles 104 Ciudad de México 06020 Mexico
| |
Collapse
|
6
|
Dual Actions of Ketorolac in Metastatic Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11081049. [PMID: 31344967 PMCID: PMC6721416 DOI: 10.3390/cancers11081049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Cytoreductive surgery and chemotherapy are cornerstones of ovarian cancer treatment, yet disease recurrence remains a significant clinical issue. Surgery can release cancer cells into the circulation, suppress anti-tumor immunity, and induce inflammatory responses that support the growth of residual disease. Intervention within the peri-operative window is an under-explored opportunity to mitigate these consequences of surgery and influence the course of metastatic disease to improve patient outcomes. One drug associated with improved survival in cancer patients is ketorolac. Ketorolac is a chiral molecule administered as a 1:1 racemic mixture of the S- and R-enantiomers. The S-enantiomer is considered the active component for its FDA indication in pain management with selective activity against cyclooxygenase (COX) enzymes. The R-enantiomer has a previously unrecognized activity as an inhibitor of Rac1 (Ras-related C3 botulinum toxin substrate) and Cdc42 (cell division control protein 42) GTPases. Therefore, ketorolac differs from other non-steroidal anti-inflammatory drugs (NSAIDs) by functioning as two distinct pharmacologic entities due to the independent actions of each enantiomer. In this review, we summarize evidence supporting the benefits of ketorolac administration for ovarian cancer patients. We also discuss how simultaneous inhibition of these two distinct classes of targets, COX enzymes and Rac1/Cdc42, by S-ketorolac and R-ketorolac respectively, could each contribute to anti-cancer activity.
Collapse
|
7
|
Karadurmus L, Sahin IF, Kurbanoglu S, Ozkan SA. Electrochemical Determination of Non-Steroidal Anti-Inflammatory Drugs. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180917113920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electrochemical methods have been used for the determination of nonsteroidal antiinflammatory
drugs (NSAID) just as used in the determination of various drugs. Among voltammetric
methods; differential pulse voltammetric method, square wave voltammetric method and linear
sweep voltammetric method are the most commonly used ones. NSAIDs are widely used in the
treatment of inflammatory conditions such as musculoskeletal disorders (rheumatoid arthritis, osteoarthritis,
acute gouty arthritis) and dental pain, menstrual pain, postoperative pain and migraine. In
this review, some selected recent electrochemical studies were selected related to the nonsteroidal antiinflammatory
drug analyzes. The aim of this review is to evaluate and discuss the advantages, details
and usages of electroanalytical methods in the determination of nonsteroidal anti-inflammatory drug.
Collapse
Affiliation(s)
- Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - I. Firat Sahin
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Hildebrandt S, Gansäuer A. Synthesis of Dihydropyrrolizine and Tetrahydroindolizine Scaffolds from Pyrroles by Titanocene(III) Catalysis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603985] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sven Hildebrandt
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie; Universität Bonn; Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
9
|
Synthesis of Dihydropyrrolizine and Tetrahydroindolizine Scaffolds from Pyrroles by Titanocene(III) Catalysis. Angew Chem Int Ed Engl 2016; 55:9719-22. [DOI: 10.1002/anie.201603985] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/01/2016] [Indexed: 01/02/2023]
|
10
|
Oprea TI, Overington JP. Computational and Practical Aspects of Drug Repositioning. Assay Drug Dev Technol 2016; 13:299-306. [PMID: 26241209 DOI: 10.1089/adt.2015.29011.tiodrrr] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The concept of the hypothesis-driven or observational-based expansion of the therapeutic application of drugs is very seductive. This is due to a number of factors, such as lower cost of development, higher probability of success, near-term clinical potential, patient and societal benefit, and also the ability to apply the approach to rare, orphan, and underresearched diseases. Another highly attractive aspect is that the "barrier to entry" is low, at least in comparison to a full drug discovery operation. The availability of high-performance computing, and databases of various forms have also enhanced the ability to pose reasonable and testable hypotheses for drug repurposing, rescue, and repositioning. In this article we discuss several factors that are currently underdeveloped, or could benefit from clearer definition in articles presenting such work. We propose a classification scheme-drug repositioning evidence level (DREL)-for all drug repositioning projects, according to the level of scientific evidence. DREL ranges from zero, which refers to predictions that lack any experimental support, to four, which refers to drugs approved for the new indication. We also present a set of simple concepts that can allow rapid and effective filtering of hypotheses, leading to a focus on those that are most likely to lead to practical safe applications of an existing drug. Some promising repurposing leads for malaria (DREL-1) and amoebic dysentery (DREL-2) are discussed.
Collapse
Affiliation(s)
- Tudor I Oprea
- 1 Translational Informatics Division, Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, New Mexico
| | - John P Overington
- 2 European Molecular Biology Laboratory-European Bioinformatics Institute , Wellcome Trust Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
11
|
Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases. PLoS One 2015; 10:e0142182. [PMID: 26558612 PMCID: PMC4641600 DOI: 10.1371/journal.pone.0142182] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/19/2015] [Indexed: 01/02/2023] Open
Abstract
Rho family GTPases (including Rac, Rho and Cdc42) collectively control cell proliferation, adhesion and migration and are of interest as functional therapeutic targets in numerous epithelial cancers. Based on high throughput screening of the Prestwick Chemical Library® and cheminformatics we identified the R-enantiomers of two approved drugs (naproxen and ketorolac) as inhibitors of Rac1 and Cdc42. The corresponding S-enantiomers are considered the active component in racemic drug formulations, acting as non-steroidal anti-inflammatory drugs (NSAIDs) with selective activity against cyclooxygenases. Here, we show that the S-enantiomers of naproxen and ketorolac are inactive against the GTPases. Additionally, more than twenty other NSAIDs lacked inhibitory action against the GTPases, establishing the selectivity of the two identified NSAIDs. R-naproxen was first identified as a lead compound and tested in parallel with its S-enantiomer and the non-chiral 6-methoxy-naphthalene acetic acid (active metabolite of nabumetone, another NSAID) as a structural series. Cheminformatics-based substructure analyses—using the rotationally constrained carboxylate in R-naproxen—led to identification of racemic [R/S] ketorolac as a suitable FDA-approved candidate. Cell based measurement of GTPase activity (in animal and human cell lines) demonstrated that the R-enantiomers specifically inhibit epidermal growth factor stimulated Rac1 and Cdc42 activation. The GTPase inhibitory effects of the R-enantiomers in cells largely mimic those of established Rac1 (NSC23766) and Cdc42 (CID2950007/ML141) specific inhibitors. Docking predicts that rotational constraints position the carboxylate moieties of the R-enantiomers to preferentially coordinate the magnesium ion, thereby destabilizing nucleotide binding to Rac1 and Cdc42. The S-enantiomers can be docked but are less favorably positioned in proximity to the magnesium. R-naproxen and R-ketorolac have potential for rapid translation and efficacy in the treatment of several epithelial cancer types on account of established human toxicity profiles and novel activities against Rho-family GTPases.
Collapse
|
12
|
Guo Y, Kenney SR, Muller CY, Adams S, Rutledge T, Romero E, Murray-Krezan C, Prekeris R, Sklar LA, Hudson LG, Wandinger-Ness A. R-Ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis. Mol Cancer Ther 2015. [PMID: 26206334 DOI: 10.1158/1535-7163.mct-15-0419] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cdc42 (cell division control protein 42) and Rac1 (Ras-related C3 botulinum toxin substrate 1) are attractive therapeutic targets in ovarian cancer based on established importance in tumor cell migration, adhesion, and invasion. Despite a predicted benefit, targeting GTPases has not yet been translated to clinical practice. We previously established that Cdc42 and constitutively active Rac1b are overexpressed in primary ovarian tumor tissues. Through high-throughput screening and computational shape homology approaches, we identified R-ketorolac as a Cdc42 and Rac1 inhibitor, distinct from the anti-inflammatory, cyclooxygenase inhibitory activity of S-ketorolac. In the present study, we establish R-ketorolac as an allosteric inhibitor of Cdc42 and Rac1. Cell-based assays validate R-ketorolac activity against Cdc42 and Rac1. Studies on immortalized human ovarian adenocarcinoma cells (SKOV3ip) and primary patient-derived ovarian cancer cells show that R-ketorolac is a robust inhibitor of growth factor or serum-dependent Cdc42 and Rac1 activation with a potency and cellular efficacy similar to small-molecule inhibitors of Cdc42 (CID2950007/ML141) and Rac1 (NSC23766). Furthermore, GTPase inhibition by R-ketorolac reduces downstream p21-activated kinases (PAK1/PAK2) effector activation by >80%. Multiple assays of cell behavior using SKOV3ip and primary patient-derived ovarian cancer cells show that R-ketorolac significantly inhibits cell adhesion, migration, and invasion. In summary, we provide evidence for R-ketorolac as a direct inhibitor of Cdc42 and Rac1 that is capable of modulating downstream GTPase-dependent, physiologic responses, which are critical to tumor metastasis. Our findings demonstrate the selective inhibition of Cdc42 and Rac1 GTPases by an FDA-approved drug, racemic ketorolac, that can be used in humans.
Collapse
Affiliation(s)
- Yuna Guo
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - S Ray Kenney
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico
| | - Carolyn Y Muller
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Sarah Adams
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Teresa Rutledge
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Elsa Romero
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Cristina Murray-Krezan
- Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Larry A Sklar
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Laurie G Hudson
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico
| | - Angela Wandinger-Ness
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico.
| |
Collapse
|
13
|
Guo Y, Kenney SR, Cook L, Adams SF, Rutledge T, Romero E, Oprea TI, Sklar LA, Bedrick E, Wiggins CL, Kang H, Lomo L, Muller CY, Wandinger-Ness A, Hudson LG. A Novel Pharmacologic Activity of Ketorolac for Therapeutic Benefit in Ovarian Cancer Patients. Clin Cancer Res 2015; 21:5064-72. [PMID: 26071482 DOI: 10.1158/1078-0432.ccr-15-0461] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/02/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE We previously identified the R-enantiomer of ketorolac as an inhibitor of the Rho-family GTPases Rac1 and Cdc42. Rac1 and Cdc42 regulate cancer-relevant functions, including cytoskeleton remodeling necessary for tumor cell adhesion and migration. This study investigated whether administration of racemic (R,S) ketorolac after ovarian cancer surgery leads to peritoneal distribution of R-ketorolac, target GTPase inhibition in cells retrieved from the peritoneal cavity, and measureable impact on patient outcomes. EXPERIMENTAL DESIGN Eligible patients had suspected advanced-stage ovarian, fallopian tube or primary peritoneal cancer. Secondary eligibility was met when ovarian cancer was confirmed and optimally debulked, an intraperitoneal port was placed, and there were no contraindications for ketorolac administration. R- and S-ketorolac were measured in serum and peritoneal fluid, and GTPase activity was measured in peritoneal cells. A retrospective study correlated perioperative ketorolac and ovarian cancer-specific survival in ovarian cancer cases. RESULTS Elevated expression and activity of Rac1 and Cdc42 was detected in ovarian cancer patient tissues, confirming target relevance. Ketorolac in peritoneal fluids was enriched in the R-enantiomer and peritoneal cell GTPase activity was inhibited after ketorolac administration when R-ketorolac was at peak levels. After adjusting for age, AJCC stage, completion of chemotherapy, and neoadjuvant therapy, women given perioperative ketorolac had a lower hazard of death (HR, 0.30; 95% confidence interval, 0.11-0.88). CONCLUSIONS Ketorolac has a novel pharmacologic activity conferred by the R-enantiomer and R-ketorolac achieves sufficient levels in the peritoneal cavity to inhibit Rac1 and Cdc42, potentially contributing to the observed survival benefit in women who received ketorolac.
Collapse
Affiliation(s)
- Yuna Guo
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - S Ray Kenney
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico.
| | - Linda Cook
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Epidemiology, Biostatistics, and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Sarah F Adams
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Teresa Rutledge
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Elsa Romero
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Tudor I Oprea
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Translational Informatics, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Larry A Sklar
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Edward Bedrick
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Epidemiology, Biostatistics, and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Charles L Wiggins
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Epidemiology, Biostatistics, and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Huining Kang
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Epidemiology, Biostatistics, and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Lesley Lomo
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Carolyn Y Muller
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Angela Wandinger-Ness
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico. Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Laurie G Hudson
- Cancer Center, University of New Mexico, Albuquerque, New Mexico. Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico
| |
Collapse
|
14
|
Oprea TI, Overington JP. Computational and Practical Aspects of Drug Repositioning. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/drrr.2014.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
McTiernan CD, Fasciani C, González-Béjar M, Roca-Sanjuán D, Alarcon EI, Netto-Ferreira JC. Ketorolac beats ketoprofen: lower photodecarboxylation, photohemolysis and phototoxicity. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00258f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Turner CL, Eggleston GW, Lunos S, Johnson N, Wiedmann TS, Bowles WR. Sniffing out endodontic pain: use of an intranasal analgesic in a randomized clinical trial. J Endod 2011; 37:439-44. [PMID: 21419286 DOI: 10.1016/j.joen.2010.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/10/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Orofacial pain is a common encounter in dentistry (affecting 12% of the population) and is a primary reason for patients seeking emergency care. Dentists often prescribe oral analgesics, which have disadvantages of decreased absorption rates and delayed onset. Intranasal (IN) delivery takes advantage of a large surface area of mucosal tissue for rapid absorption. The purpose of this study was to evaluate the efficacy of IN ketorolac for endodontic pain using a randomized, double-blind, placebo-controlled parallel design study. METHODS Twenty-two patients presenting with moderate to severe endodontic pain were selected to receive IN treatment with placebo (n = 11) or ketorolac (n = 11) 30 minutes before endodontic treatment was started and immediately after the completion of endodontic treatment. Baseline pain levels were recorded before IN treatment. Pain levels were also recorded at 15 and 30 minutes after the initial IN dosing (before endodontic treatment); 30 minutes after completion of endodontic treatment; and 4, 8, and 12 hours after the initial IN spray. Primary analysis was a repeated-measures analysis of variance. RESULTS IN ketorolac alone or with endodontic treatment showed significantly better pain relief compared with IN placebo spray alone or with endodontic treatment at 30 minutes after the first or second intranasal dose and at 4 hours after the first intranasal dose (P = .03). CONCLUSIONS These results suggest that IN ketorolac may provide a novel and efficacious method for pain relief in endodontic pain patients.
Collapse
|
17
|
Buczynski MW, Svensson CI, Dumlao DS, Fitzsimmons BL, Shim JH, Scherbart TJ, Jacobsen FE, Hua XY, Yaksh TL, Dennis EA. Inflammatory hyperalgesia induces essential bioactive lipid production in the spinal cord. J Neurochem 2010; 114:981-93. [PMID: 20492349 DOI: 10.1111/j.1471-4159.2010.06815.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lipid molecules play an important role in regulating the sensitivity of sensory neurons and enhancing pain perception, and growing evidence indicates that the effect occurs both at the site of injury and in the spinal cord. Using high-throughput mass spectrometry methodology, we sought to determine the contribution of spinal bioactive lipid species to inflammation-induced hyperalgesia in rats. Quantitative analysis of CSF and spinal cord tissue for eicosanoids, ethanolamides and fatty acids revealed the presence of 102 distinct lipid species. After induction of peripheral inflammation by intra-plantar injection of carrageenan to the ipsilateral hind paw, lipid changes in cyclooxygenase (COX) and 12-lipoxygenase (12-LOX) signaling pathways peaked at 4 h in the CSF. In contrast, changes occurred in a temporally disparate manner in the spinal cord with LOX-derived hepoxilins followed by COX-derived prostaglandin E(2), and subsequently the ethanolamine anandamide. Systemic treatment with the mu opioid agonist morphine, the COX inhibitor ketorolac, or the LOX inhibitor nordihydroguaiaretic acid significantly reduced tactile allodynia, while their effects on the lipid metabolites were different. Morphine did not alter the lipid profile in the presence or absence of carrageenan inflammation. Ketorolac caused a global reduction in eicosanoid metabolism in naïve animals that remained suppressed following injection of carrageenan. Nordihydroguaiaretic acid-treated animals also displayed reduced basal levels of COX and 12-LOX metabolites, but only 12-LOX metabolites remained decreased after carrageenan treatment. These findings suggest that both COX and 12-LOX play an important role in the induction of carrageenan-mediated hyperalgesia through these pathways.
Collapse
Affiliation(s)
- Matthew W Buczynski
- Department of Pharmacology, Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bielory L, Leonov A. Stereoconfiguration of antiallergic and immunologic drugs. Ann Allergy Asthma Immunol 2008; 100:1-8; quiz 8-11, 36. [PMID: 18254475 DOI: 10.1016/s1081-1206(10)60396-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To review the concept of chirality and its current role in the pharmacology of antiallergic, antiasthmatic, and immunologic agents. DATA SOURCES Ovid MEDLINE and PubMed databases from 1950 to the present time were searched. STUDY SELECTION Articles that described the pharmacology of chiral antiallergic, antiasthmatic, and immunologic medications were used for this review. RESULTS Stereoselectivity affects the pharmacologic profiles of medications in different ways from class to class and within the classes. This summary illustrates that enantiomers differ not only in potency in receptor binding and physiologic effects but also in pharmacokinetic parameters such as volume of distribution, plasma protein binding, metabolism, and clearance. Different enantiomers may produce unrelated pharmacologic effects as well. This review summarizes the variety of possible effects that different stereoisomers may produce and further underlines the importance of the purification and in-depth analysis of chiral compounds. CONCLUSION Chirality plays an important role in pharmacokinetics and pharmacodynamics of various pharmaceutical agents. The importance of stereoisomeric purity in the pharmacologic industry has increased during the past decade as demonstrated by the increased number of studies that examined the in vivo and in vitro effects produced by changes in stereoconfiguration of pharmaceutical agents. This review highlights such effects in certain frequently used medications used in the treatment of asthma and various allergic and immunologic disorders.
Collapse
Affiliation(s)
- Leonard Bielory
- Division of Allergy, Immunology and Rheumatology, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA.
| | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW To review the role of chirality in current ocular pharmacology. The importance of stereo-isomeric purity has frequently been emphasized in recent years. Development of chirally pure medications can lead to improved efficacy and side-effect profiles. Practitioners prescribing ocular agents may benefit from understanding the effects of chirality in their evaluation of old and new medications. RECENT FINDINGS Chirality can affect multiple classes of ocular agents. Although the ways in which stereo-isomers influence the properties of a drug differ, this review illustrates the benefit of knowledge of individual isomers' effects in clinical decision making. The variety of possible effects stereo-isomers produce further underlines the importance of purification and in-depth analysis of chiral compounds. SUMMARY Many important agents exist as a mixture of two different stereoisomers. Both isomers may produce a pharmacological effect; however, these effects may be different from one another and one isomer may even give a result opposite from the desired pharmacological effect. Here we examine published findings on ocular medications relating to their chiral nature and summarize the possible ways chirality affects the activity of a few ocular agents. Many more ocular medications have not been investigated to ascertain their chiral properties. This review adds to the recent emphasis on investigating stereo-isomers for individual selectivity of beneficial and adverse profiles.
Collapse
Affiliation(s)
- Andrey Leonov
- UMDNJ - New Jersey Medical School, Newark, NJ 07103, USA
| | | |
Collapse
|
20
|
Abstract
The increasing use of nonsteroidal antiinflammatory drugs (NSAIDs) in small animals has resulted in the development of new and innovative additions to this class of drugs. Examples of NSAIDs now available for use in small animals include aspirin, etodolac, carprofen, ketoprofen, meloxicam, deracoxib, and tepoxalin. The purposes of this article are to review the pathophysiology of prostaglandin synthesis and inhibition, the mechanisms of action, pharmacokinetics, pharmacological effects, and potential adverse reactions of aspirin and the newly released NSAIDs.
Collapse
Affiliation(s)
- Stephen L Curry
- Department of Veterinary Medicine and Surgery and the Comparative Orthopaedic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
21
|
Di Bari L, Pescitelli G, Salvadori P, Rovini M, Anzini M, Cappelli A, Vomero S. Synthesis, resolution, and absolute configuration of two novel and selective cyclooxygenase-2 inhibitors based on the 1,5-diarylpyrrole structure. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.tetasy.2006.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Pinardi G, Sierralta F, Miranda HF. Interaction between the antinociceptive effect of ketoprofen and adrenergic modulatory systems. Inflammation 2001; 25:233-9. [PMID: 11580099 DOI: 10.1023/a:1010923820109] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The interaction between the antinociceptive activity of ketoprofen and adrenergic agents was evaluated in the writhing test of mice. Dose-response curves were obtained for systemic and intrathecal antinociceptive effects of ketoprofen, phenylephrine, clonidine, desipramine, and prazosin; and ED50 were calculated. The interactions were evaluated by isobolographic analysis of the systemic or intrathecal co-administration of fixed-ratio combinations of ketoprofen with each adrenergic agent. The intraperitoneal combinations of ketoprofen with phenylephrine, clonidine, and prazosin showed supra-additivity, indicating that activation of alpha1 and alpha2 adrenoceptors play a role in nociceptive transmission at supraspinal levels. The same combinations given intrathecal were only additive. Desipramine intraperitoneal was also supra-additive: however, when ketoprofen was administered intrathecally with desipramine, only an additive interaction was obtained. The supra-additive interactions suggest that complementary mechanisms of antinociception have been activated, related with interference with the multiplicity of receptors and systems involved in the transmission of the nociceptive information. Racemic ketoprofen has an antinociceptive activity which is probably not only due to COX inhibition but also involves noradrenergic systems at spinal and supraspinal levels.
Collapse
Affiliation(s)
- G Pinardi
- Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, Santiago.
| | | | | |
Collapse
|
23
|
Ossipov MH, Jerussi TP, Ren K, Sun H, Porreca F. Differential effects of spinal (R)-ketoprofen and (S)-ketoprofen against signs of neuropathic pain and tonic nociception: evidence for a novel mechanism of action of (R)-ketoprofen against tactile allodynia. Pain 2000; 87:193-199. [PMID: 10924812 DOI: 10.1016/s0304-3959(00)00280-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The spinal activity of racemic ketoprofen and its enantiomers in models of neuropathic and tonic pain was explored in rats. Tactile allodynia and thermal hyperalgesia were induced by tight ligation of the L(5)/L(6) spinal nerves. Tonic pain was modeled by the formalin-induced flinch response. The spinal injection of (S)-ketoprofen alone or of morphine alone did not produce antiallodynic activity. A 1:1 combination of these drugs produced a robust dose-dependent antiallodynic action, consistent with previous observations where (S)-ketorolac combined with morphine also produced antiallodynia. (R)-ketoprofen given alone spinally produced a dose-dependent antiallodynia, but its activity was not augmented by spinal morphine. Conversely, (S)-ketoprofen, but not (R)-ketoprofen, blocked the second phase of the formalin-induced flinch response; neither enantiomer significantly blocked phase one of the formalin response. Again, (S)-, but not (R)-ketoprofen, interacted synergistically with spinal morphine in suppressing the phase II formalin response. These results are consistent with a spinal COX inhibitory action of (S)-ketoprofen. These results also point to a novel, as yet undefined, mechanism of action of (R)-ketoprofen against signs of neuropathic pain that does not appear to involve COX inhibition. The ability to modulate tactile allodynia is of special interest as this represents an aspect of clinical neuropathic pain that is very difficult to treat adequately.
Collapse
Affiliation(s)
- M H Ossipov
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA Sepracor, Inc., Marlborough MA 01752, USA
| | | | | | | | | |
Collapse
|
24
|
La Corte R, Caselli M, Castellino G, Bajocchi G, Trotta F. Prophylaxis and treatment of NSAID-induced gastroduodenal disorders. Drug Saf 1999; 20:527-43. [PMID: 10392669 DOI: 10.2165/00002018-199920060-00006] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A significant percentage of patients taking nonsteroidal anti-inflammatory drugs (NSAIDs) experience some type of adverse gastrointestinal symptoms, lesions of the gastroduodenal tract being clinically the most relevant. NSAIDs cause gastrointestinal damage by 2 independent mechanisms: a topical effect, which is pH and pKa related, and a systemic effect mediated by cyclooxygenase (COX) inhibition with a reduction in prostaglandin synthesis. Using endoscopy, gastroduodenal lesions identified include subepithelial haemorrhages, erosions and ulcers. The prevalence of ulceration in NSAID users has been reported as being between 14 and 31% with a 2-fold higher frequency of gastric ulcers compared with duodenal ulcers. Among the strategies used to decrease the risk of ulcer development are: (i) the use of analgesics other than NSAIDs; (ii) use of the lowest possible dosage of NSAID; (iii) the use of a COX-2 selective NSAID; (iv) the use of low doses of corticosteroids instead of NSAIDs; (v) avoidance of concomitant use of NSAIDs and corticosteroids; and (vi) use of preventive therapy. In an attempt to reduce the incidence of NSAID-induced gastrointestinal lesions, the following approaches have been proposed: (i) use of the prostaglandin analogue misoprostol, which is an antiulcer drug which has been proven to be as effective in the prevention of NSAID-induced gastric and duodenal ulcers as in the reduction of serious upper gastrointestinal complications; (ii) histamine H2 receptor antagonists (H2 antagonists), e.g. ranitidine, cimetidine and famotidine, which are useful in the prevention of NSAID-induced duodenal ulcers during long term treatment, but not in the prevention of NSAID-induced gastric ulcers; (iii) proton pump inhibitors, e.g omeprazole, and pantoprazole, whose efficacy in preventing NSAID-associated ulcers has been recently demonstrated; and (iv) barrier agents, e.g. sucralfate, which cannot be recommended as prophylactic agents to prevent NSAID-induced gastropathy. The first step in the treatment of NSAID-associated ulcers lies in a reduction in the dosage of the NSAID or discontinuation of the drug. If NSAID treatment cannot be withdrawn, a proton pump inhibitor appears to be the most effective treatment in healing ulcers, accelerating the slow healing observed with H2 antagonists.
Collapse
Affiliation(s)
- R La Corte
- Rheumatology Division, Azienda Ospedaliera S. Anna, Ferrara, Italy
| | | | | | | | | |
Collapse
|