1
|
Hwang J, Kim K, Ahn S, Lee DE, Lee SW, Kim HJ, Kim K. Association of long-term exposure to ambient air pollution with osteoporosis among cancer survivors: Results from the Korea National Health and Nutrition Examination Survey. Prev Med 2025; 192:108228. [PMID: 39828095 DOI: 10.1016/j.ypmed.2025.108228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Recent studies suggest that ambient air pollution may contribute to osteoporosis; however, research focusing on populations with greater susceptibility is lacking. This study seeks to explore the association between air pollution and osteoporosis focusing on cancer survivors. MATERIALS AND METHODS We analyzed data from 8977 individuals (2245 cancer survivors, 6732 cancer-free population) obtained from the Korea National Health and Nutrition Examination Survey (KNHANES) during 2007-2009 and 2015-2021. Air pollution exposures to PM10, PM2.5, SO₂, NO₂, and CO were estimated using air quality models and satellite data. Moving average concentrations over 1-3 years prior to the survey were calculated. Logistic regression models adjusting for demographic and lifestyle factors were used to assess the association between air pollution and osteoporosis status. Analyses were stratified by cancer survivorship status and sex. RESULTS Among cancer survivors, particularly female cancer survivors, higher long-term exposure to air pollutants was associated with greater odds of osteoporosis. Cancer survivors exposed to higher PM10 over 1-, 2-, and 3-year periods had greater odds of osteoporosis (all p < 0.05). In female cancer survivors, 1-year exposure to PM2.5 was associated with 25 % higher odds of osteoporosis (OR = 1.25, 95 % CI = 1.02-1.54), and NO₂ exposure showed a similar association (OR = 1.42; 95 % CI = 1.06-1.90). These associations were not observed in the individuals without cancer history. CONCLUSION The association between air pollution and osteoporosis was observed in cancer survivors, especially among female cancer survivors. Our findings emphasize the need for targeted interventions for at-risk populations such as cancer survivors.
Collapse
Affiliation(s)
- Juyeon Hwang
- National Cancer Control Institute, National Cancer Center, Goyang 10408, South Korea
| | - Kyounghyeon Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Red Cross College of Nursing, Chung-Ang University, Seoul 06974, South Korea
| | - Seohyun Ahn
- National Cancer Control Institute, National Cancer Center, Goyang 10408, South Korea
| | - Da-Eun Lee
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, South Korea
| | - Seung Won Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Department of Metabiohealth, Sungkyunkwan University, Suwon 16419, South Korea; Personalized Cancer Immunotherapy Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang 10408, South Korea.
| | - Kyeezu Kim
- Department of Social and Preventive Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Personalized Cancer Immunotherapy Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea.
| |
Collapse
|
2
|
Yang J, Han C, Ye J, Hu X, Wang R, Shen J, Li L, Hu G, Shi X, Jia Z, Qu X, Liu H, Zhang X, Wu Y. PM 2.5 exposure inhibits osteoblast differentiation by increasing the ubiquitination and degradation of Smad4. Toxicol Lett 2024; 398:127-139. [PMID: 38914176 DOI: 10.1016/j.toxlet.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Increasing epidemiological evidence has shown that PM2.5 exposure is significantly associated with the occurrence of osteoporosis. It has been well demonstrated that PM2.5 exposure enhanced the differentiation and function of osteoclasts by indirectly causing chronic inflammation, while the mechanism in osteoblasts remains unclear. In our study, toxic effects were evaluated by direct exposure of 20-80 μg/ml PM2.5 to MC3T3-E1 cells and BMSCs. The results showed that PM2.5 exposure did not affect cell viability via proliferation and apoptosis, but significantly inhibited osteoblast differentiation in a dose-dependent manner. Osteogenic transcription factors Runx2 and Sp7 and other biomarkers Alp and Ocn decreased after PM2.5 exposure. RNA-seq revealed TGF-β signaling was involved in PM2.5 exposure inhibited osteoblast differentiation, which led to P-Smad1/5 and P-Smad2 reduction in the nucleus by increasing the ubiquitination and degradation of Smad4. At last, the inflammation response increased in MC3T3-E1 cells with PM2.5 exposure. Moreover, the mRNA levels of Mmp9 increased in bone marrow-derived macrophage cells treated with the conditional medium collected from MC3T3-E1 cells exposed to PM2.5. Overall, these results indicated that PM2.5 exposure inhibits osteoblast differentiation and concurrently increases the maturation of osteoclasts. Our study provides in-depth mechanistic insights into the direct impact of PM2.5 exposure on osteoblast, which would indicate the unrecognized role of PM2.5 on osteoporosis.
Collapse
Affiliation(s)
- Jiatao Yang
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Chunqing Han
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Junxing Ye
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Xiping Hu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Ruijian Wang
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Jin Shen
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Longfei Li
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Guoqin Hu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Xian Shi
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Zhongtang Jia
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Qu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Huanliang Liu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China.
| | - Yu Wu
- Lab of Modern Environmental Toxicology, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Environment and Health Research Division, Public Health School and Health Research Centre, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Zhang Y, Yu J, Pei H, Zhao X, Wang C, Wang G, Shen Z, Hua J, He B. Potential causal associations of PM2.5 and osteoporosis: a two-sample mendelian randomization study. Front Genet 2024; 15:1263916. [PMID: 38463167 PMCID: PMC10921569 DOI: 10.3389/fgene.2024.1263916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Background: Observational studies suggest a potential association between atmospheric particulate matter 2.5 (PM2.5) and osteoporosis, but a causal association is unclear due to the presence of confounding factors. Methods: We utilized bone mineral density indices at four specific sites to represent osteoporosis: femoral neck (FN-BMD), lumbar spine (LS-BMD), forearm (FA-BMD), and heel (HE-BMD). The PM2.5 data was obtained from the UK Biobank database, while the datasets for FN-BMD, LS-BMD, and FA-BMD were obtained from the GEFOS database, and the dataset for HE-BMD was obtained from the EBI database. A two-sample Mendelian randomization analysis was conducted using mainly the inverse variance weighted method, horizontal pleiotropy and heterogeneity were also assessed. Results: The results indicated that PM2.5 was not correlated with a decrease in FN-BMD (β: -0.305, 95%CI: -0.762, 0.153), LS-BMD (β: 0.134, 95%CI: -0.396, 0.666), FA-BMD (β: -0.056, 95%CI: -1.172,1.060), and HE-BMD (β: -0.084, 95%CI: -0.261,0.093). Additionally, acceptable levels of horizontal pleiotropy and heterogeneity were observed. Conclusion: In contrast to most observational studies, our research did not discover a potential causal relationship between PM2.5 and the development of osteoporosis.
Collapse
Affiliation(s)
- Yi Zhang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinsheng Yu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hang Pei
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinzheng Zhao
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Chao Wang
- Anji County Hospital of Traditional Chinese Medicine, Anji, China
| | - Guanyin Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Zan Shen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiang Hua
- First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bangjian He
- First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Bhattarai G, Shrestha SK, Sim HJ, Lee JC, Kook SH. Effects of fine particulate matter on bone marrow-conserved hematopoietic and mesenchymal stem cells: a systematic review. Exp Mol Med 2024; 56:118-128. [PMID: 38200155 PMCID: PMC10834576 DOI: 10.1038/s12276-023-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024] Open
Abstract
The harmful effects of fine particulate matter ≤2.5 µm in size (PM2.5) on human health have received considerable attention. However, while the impact of PM2.5 on the respiratory and cardiovascular systems has been well studied, less is known about the effects on stem cells in the bone marrow (BM). With an emphasis on the invasive characteristics of PM2.5, this review examines the current knowledge of the health effects of PM2.5 exposure on BM-residing stem cells. Recent studies have shown that PM2.5 enters the circulation and then travels to distant organs, including the BM, to induce oxidative stress, systemic inflammation and epigenetic changes, resulting in the reduction of BM-residing stem cell survival and function. Understanding the broader health effects of air pollution thus requires an understanding of the invasive characteristics of PM2.5 and its direct influence on stem cells in the BM. As noted in this review, further studies are needed to elucidate the underlying processes by which PM2.5 disturbs the BM microenvironment and inhibits stem cell functionality. Strategies to prevent or ameliorate the negative effects of PM2.5 exposure on BM-residing stem cells and to maintain the regenerative capacity of those cells must also be investigated. By focusing on the complex relationship between PM2.5 and BM-resident stem cells, this review highlights the importance of specific measures directed at safeguarding human health in the face of rising air pollution.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Saroj Kumar Shrestha
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
5
|
Li M, Shi P, Yang H, Tong S, Qiu N, Yao F, Du Y, Xi S, Wang F. Tumor necrosis factor mediates the impact of PM 2.5 on bone mineral density: Inflammatory proteome Mendelian randomization and colocalization analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115896. [PMID: 38184974 DOI: 10.1016/j.ecoenv.2023.115896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
To assess the causal effect of particulate matter 2.5 (PM2.5) on human bone mineral density (BMD) and to explore the possible mechanism and proportion mediated by inflammation-related protein. The genetic correlation between PM2.5 and BMD was assessed using the Linkage Disequilibrium Score (LDSC), and the causal effect between PM2.5 and BMD was assessed by two-sample Mendelian randomization (TSMR). A 2-step Mendelian randomization (MR) approach was employed to evaluate the potential role of inflammation-associated protein as the mediator in the causal association between PM2.5 and BMD. The multivariate Mendelian randomization (MVMR) study was designed to perform mediation analyses, exclude possible confounders and calculate the proportion of mediation. Subsequently, we used Bayesian colocalization analysis to consolidate the MR results. Finally, using drug-target MR design, we evaluated the potential repurposing of tumor necrosis factor (TNF) inhibitors for the treatment of osteoporosis (OP). The results of the analyses show that BMD is negatively influenced by PM2.5 (Inverse variance weighted [IVW] beta [β] = -0.288, 95% confidence interval [CI]: -0.534 - -0.042, P < 0.05). PM2.5 has a positive causal association with TNF (IVW β = 1.564, 95% CI: 0.155 - 2.973, P < 0.05) and a negative causal association with protachykinin-1 (TAC-1) (IVW β = -1.654, 95% CI: -3.063 - -0.244, P < 0.05). TNF has a negative causal association with BMD (Wald ratio β = -0.082, 95% CI: -0.165 - 0.000, P < 0.05) and TAC-1 has a positive causal association with BMD (IVW β = 0.042, 95% CI: 0.007 - 0.077, P < 0.05). After adjusting TNF and TAC-1, PM2.5 has no causal association with BMD (IVW β = -0.200, 95% CI: -0.579 - 0.179, P > 0.05). After adjusting PM2.5 and TAC-1, there was still a negative causal association between TNF and BMD (IVW β = -0.089, 95% CI: -0.166 - -0.012, P < 0.05). In the final drug-target MR study, the protective effect of TNF/TNF receptor 1 (TNFR1) inhibition on BMD was observed. For every 10% decrease of circulating C-reactive protein (CRP) achieved by TNF/TNF receptor 1 (TNFR1) blockade, β was 0.540 (95% CI: 0.040-1.040) for BMD. We found a negative causal association between PM2.5 and BMD and that causal association was mediated by TNF. The results of drug-target MR do support TNFR1 as a promising target for OP prevention among the general population.
Collapse
Affiliation(s)
- Mingzheng Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Peng Shi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Huajie Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Suyuan Tong
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Nianfeng Qiu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Fan Yao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuan Du
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shuhua Xi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Fei Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Zhang H, Shi B, Yuan C, Huang C, Huang T, Liao Z, Zhu W, Zhong W, Xu H, Ji J, Cai F, Chen Y, Sun P, Zeng X, Yang Z, Wang J, Shu B, Liang Q, Shi Q, Xu C, Tang D, Wang Y. Correlation between the non-use of cooking oil fume extractors and bone mineral density in population aged 45 years and older in China: a cross-sectional study. Front Endocrinol (Lausanne) 2024; 14:1280429. [PMID: 38239978 PMCID: PMC10794737 DOI: 10.3389/fendo.2023.1280429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/09/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The correlation between the non-use of cooking oil fumes (COFs) extractors and bone mineral density (BMD) have not been clarified. Consequently, this study attempted to explore the impact of non-use COFs extractors on BMD in population aged 45 years and older based on a cross-sectional study. Methods This study was a cross-sectional study within the framework of an ongoing prospective population-based cohort study in China. The multivariate linear regression models were used to evaluate the correlation between the non-use of fume extractors in family cooking and total lumbar spine (LS), femoral neck (FN), total hip BMD and levels of bone metabolism markers. Results A total of 3433 participants were included in the final analyses, of which 2607 (75.93%) participants used fume extractors. The results of models indicated that there were significant correlations of the non-use of fume extractors on total LS BMD (β = -0.024, 95% CI, -0.036, -0.012, p < 0.001), PINP (β = 4.363, 95% CI, 2.371, 6.356, p < 0.001) and ALP (β = 4.555, 95% CI, 2.593, 6.517, p < 0.001) levels. Conclusions This study verified that the use of fume extractors is an efficacious measure to prevent LS bone loss. For the sake of public bone health, people should install a fume extractor in the kitchen and use it routinely when cooking.
Collapse
Affiliation(s)
- Haitao Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Binhao Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Chunchun Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingrui Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhangyu Liao
- Ganzhou Nankang District Traditional Chinese Medicine Hospital, Ganzhou, China
| | - Wenhao Zhu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhong
- Ganzhou Nankang District Traditional Chinese Medicine Hospital, Ganzhou, China
| | - Hongbin Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiangxun Ji
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feihong Cai
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Xianhui Zeng
- Ganzhou Nankang District Traditional Chinese Medicine Hospital, Ganzhou, China
| | - Zhiwu Yang
- Ganzhou Nankang District Traditional Chinese Medicine Hospital, Ganzhou, China
| | - Jing Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai, China
| | - Bing Shu
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Chuanglong Xu
- Ningxia Hospital of Traditional Chinese Medicine and Chinese Medicine Research Institute, Yinchuan, China
| | - Dezhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| |
Collapse
|
7
|
Yan H, Tang W, Wang L, Huang S, Lin H, Gu L, He C, Dai Y, Yang L, Pengcuo C, Qin Z, Meng Q, Guo B, Zhao X. Ambient PM2.5 Components Are Associated With Bone Strength: Evidence From a China Multi-Ethnic Study. J Clin Endocrinol Metab 2023; 109:197-207. [PMID: 37467163 DOI: 10.1210/clinem/dgad425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
CONTEXT The relationship between the components of particulate matter with an aerodynamic diameter of 2.5 or less (PM2.5) and bone strength remains unclear. OBJECTIVE Based on a large-scale epidemiologic survey, we investigated the individual and combined associations of PM2.5 and its components with bone strength. METHODS A total of 65 906 individuals aged 30 to 79 years were derived from the China Multi-Ethnic Cohort Annual average concentrations of PM2.5 and its components were estimated using satellite remote sensing and chemical transport models. Bone strength was expressed by the calcaneus quantitative ultrasound index (QUI) measured by quantitative ultrasound. The logistic regression model and weighted quantile sum method were used to estimate the associations of single and joint exposure to PM2.5 and its components with QUI, respectively. RESULTS Our analysis shows that per-SD increase (μg/m3) in 3-year average concentrations of PM2.5 (mean difference [MD] -7.38; 95% CI, -8.35 to -6.41), black carbon (-7.91; -8.90 to -6.92), ammonium (-8.35; -9.37 to -7.34), nitrate (-8.73; -9.80 to -7.66), organic matter (-4.70; -5.77 to -3.64), and soil particles (-5.12; -6.10 to -4.15) were negatively associated with QUI. In addition, these associations were more pronounced in men, and people older than 65 years with a history of smoking and chronic alcohol consumption. CONCLUSION We found that long-term exposure to PM2.5 and its components may lead to reduced bone strength, suggesting that PM2.5 and its components may potentially increase the risk of osteoporosis and even fracture. Nitrate may be responsible for increasing its risk to a greater extent.
Collapse
Affiliation(s)
- Hongyu Yan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenge Tang
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Lele Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shourui Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Lingxi Gu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Congyuan He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingxue Dai
- Infectious Disease Control Department, Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan 610041, China
| | - La Yang
- Plateau Health Science Research Center, Medical School, Tibet University, Lhasa, Tibet 850000, China
| | - Ciren Pengcuo
- Tibet Center for Disease Control and Prevention, Lhasa, Tibet 850002, China
| | - Zixiu Qin
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Kunming, Yunnan 650550, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Mousavibaygei SR, Bisadi A, ZareSakhvidi F. Outdoor air pollution exposure, bone mineral density, osteoporosis, and osteoporotic fractures: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161117. [PMID: 36586679 DOI: 10.1016/j.scitotenv.2022.161117] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/08/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The prevalence of osteoporosis and osteoporotic fractures is expected to increase with the aging of the population in the coming decades. In this study, we systematically reviewed the evidence on the association between exposure to air pollution and osteoporosis-related outcomes. METHODS We systematically searched evidence according to the PRISMA on PubMed, Scopus, and Web of Science (until August 2022). The risk of bias (RoB) was assessed using the Risk of Bias in the Non-randomized Studies of Exposures (ROBINS-E) tool. Random effects meta-analysis was applied to calculate combined estimates. We evaluated the heterogeneity using Cochran's Q test and quantified it by I2 and tau2 statistics. The overall body of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation system (GRADE) tool. RESULTS Out of 5254 retrieved articles, 19 studies (11 cross-sectional, seven cohorts, and one case-control) met our inclusion criteria. Most of the studies had a high probability of RoB (n = 17), and only two had a moderate RoB. Different outcomes including bone mineral density, bone mineral content, osteoporotic fracture, osteoporosis, and osteopenia were reported across the studies. The associations were reported for different air pollutants including PM2.5, PM10, nitrogen oxides, nitrogen dioxide, ozone, black carbon, carbon monoxide, sulfur dioxide, nitrogen oxide, and coarse particulate matter. Evidence was suggestive of the negative role of PM10, PM2.5, and nitrogen dioxide (e.g. bone mineral density pooled estimate: -0.02, 95%CI: -0.03: -0.01). The overall body of evidence for most of the exposure-outcome pairs was low and very low. CONCLUSIONS The evidence on the association between air pollution exposure and osteoporosis-related outcomes is heterogenic. However, the evidence suggests an increased risk of osteoporotic fracture and osteoporosis in outdoor air pollutants. Due to the small number of studies in each group, also observed heterogeneity, and publication bias, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Seyed Rohallah Mousavibaygei
- Assistant professor of orthopedic surgery, Department of orthopedic surgery Qom University of Medical Sciences, Qom, Iran
| | - Amir Bisadi
- Assistant professor of orthopedic surgery, Department of orthopedic surgery Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
9
|
Lu S, Xu R, Gong M, Zha Y, Li N, Chen J, Liu X, Jiang X. Risk of ozone exposure-induced fracture. Front Public Health 2023; 11:1153256. [PMID: 37006579 PMCID: PMC10061083 DOI: 10.3389/fpubh.2023.1153256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionOzone (O3) is known to induce oxidative stress that influences various cells and tissues, which may further lead to diminished bone mineral density. Nevertheless, few studies have investigated the association between O3 exposure and fractures. Considering the similar growing trends of O3 concentrations and fracture morbidity in recent years, in the present study, we aimed to examine whether O3 exposure is associated with the fracture morbidity.MethodsUsing a retrospective cohort study design, we analyzed the records of 8,075 patients with fracture admitted in the warm season to Beijing Jishuitan Hospital from 2014 to 2019 and matched them to the corresponding exposure time and concentration of O3.ResultsThe results showed that increased odds of fracture were associated with increased O3 concentrations, presumably because O3 induces oxidative stress (OS) that leads to bone mineral density (BMD) loss.DiscussionOur findings suggest that O3 exposure is a risk factor for fractures, providing new evidence of the adverse health effect induced by air pollution. We can conclude that more intensive air pollution control is needed for the prevention of fracture occurrence.
Collapse
Affiliation(s)
- Shuai Lu
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing, China
| | - Rongrong Xu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Maoqi Gong
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing, China
| | - Yejun Zha
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing, China
| | - Ning Li
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing, China
| | - Jia Chen
- Department of Endocrinology, Beijing Jishuitan Hospital, Beijing, China
| | - Xuejiao Liu
- Department of Medical Record Management and Statistics, Beijing Jishuitan Hospital, Beijing, China
| | - Xieyuan Jiang
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing, China
- *Correspondence: Xieyuan Jiang
| |
Collapse
|
10
|
Adami G, Olivi P, Pontalti M, Benini C, Ramazzini L, Magnan B, Bertoldo E, Gatti D, Fassio A, Rossini M, Negri S. Association between acute exposure to environmental air pollution and fragility hip fractures. Bone 2023; 167:116619. [PMID: 36442796 DOI: 10.1016/j.bone.2022.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/03/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Affiliation(s)
| | - Pietro Olivi
- Orthopedic Unit, University of Verona, Verona, Italy.
| | | | | | | | - Bruno Magnan
- Orthopedic Unit, University of Verona, Verona, Italy.
| | | | - Davide Gatti
- Rheumatology Unit, University of Verona, Verona, Italy.
| | - Angelo Fassio
- Rheumatology Unit, University of Verona, Verona, Italy
| | | | - Stefano Negri
- Orthopedic Unit, University of Verona, Verona, Italy.
| |
Collapse
|
11
|
Pan W, Jie W, Huang H. Vascular calcification: Molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e200. [PMID: 36620697 PMCID: PMC9811665 DOI: 10.1002/mco2.200] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
Vascular calcification (VC) is recognized as a pathological vascular disorder associated with various diseases, such as atherosclerosis, hypertension, aortic valve stenosis, coronary artery disease, diabetes mellitus, as well as chronic kidney disease. Therefore, it is a life-threatening state for human health. There were several studies targeting mechanisms of VC that revealed the importance of vascular smooth muscle cells transdifferentiating, phosphorous and calcium milieu, as well as matrix vesicles on the progress of VC. However, the underlying molecular mechanisms of VC need to be elucidated. Though there is no acknowledged effective therapeutic strategy to reverse or cure VC clinically, recent evidence has proved that VC is not a passive irreversible comorbidity but an active process regulated by many factors. Some available approaches targeting the underlying molecular mechanism provide promising prospects for the therapy of VC. This review aims to summarize the novel findings on molecular mechanisms and therapeutic interventions of VC, including the role of inflammatory responses, endoplasmic reticulum stress, mitochondrial dysfunction, iron homeostasis, metabolic imbalance, and some related signaling pathways on VC progression. We also conclude some recent studies on controversial interventions in the clinical practice of VC, such as calcium channel blockers, renin-angiotensin system inhibitions, statins, bisphosphonates, denosumab, vitamins, and ion conditioning agents.
Collapse
Affiliation(s)
- Wei Pan
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Wei Jie
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| |
Collapse
|
12
|
Yang Y, Li R, Cai M, Wang X, Li H, Wu Y, Chen L, Zou H, Zhang Z, Li H, Lin H. Ambient air pollution, bone mineral density and osteoporosis: Results from a national population-based cohort study. CHEMOSPHERE 2023; 310:136871. [PMID: 36244420 DOI: 10.1016/j.chemosphere.2022.136871] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Evidence concerning the associations of ambient air pollution exposure with bone mineral density and osteoporosis has been mixed. We conducted cross-sectional and prospective analysis of the associations between air pollution exposure and osteoporosis using data from UK Biobank study. Estimated bone mineral density (eBMD) of each participant at baseline survey was calculated using quantitative ultrasound data, and incident osteoporosis cases were identified during the follow-up period according to health-related records. Air pollution concentrations were assessed using land use regression models. We fitted multivariable linear and logistic regression models to estimate the associations of air pollution with eBMD and osteoporosis prevalence at baseline. We applied cox proportional hazard regression models to assess the relationships between air pollution and osteoporosis incidence. Among the 341,311 participants at baseline, higher air pollution exposure was associated with lower eBMD levels and increased odds of osteoporosis prevalence. For example, an IQR increase in PM2.5, PM2.5 absorbance, PM10, NO2 and NOx levels were associated with 0.0018 (95% CI: 0.0012, 0.0023) to 0.0052 (95% CI: 0.0046, 0.0058) g/cm2 decrease in eBMD. A total of 330,988 participants without osteoporosis were followed up for an average of 12.0 years. We identified 8105 incident osteoporosis cases (456 cases with pathological fracture and 7634 cases without pathological fracture) during the follow-up. The hazard ratios for an interquartile range increase in PM2.5, PM2.5 absorbance, PM10, NO2 and NOx were 1.09 (95% CI: 1.06, 1.12), 1.04 (95% CI: 1.02, 1.07), 1.04 (95% CI: 1.01, 1.07), 1.07 (95% CI: 1.04, 1.10), and 1.06 (95% CI: 1.03, 1.09), respectively. Our study suggests that ambient air pollution might be a risk factor of decreased bone mineral density and osteoporosis incidence.
Collapse
Affiliation(s)
- Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rui Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaojie Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haopeng Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yinglin Wu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lan Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongtao Zou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haitao Li
- Department of Social Medicine and Health Service Management, Shenzhen University Health Science Center, Shenzhen, 518061, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
13
|
He S, Klevebro S, Baldanzi G, Pershagen G, Lundberg B, Eneroth K, Hedman AM, Andolf E, Almqvist C, Bottai M, Melén E, Gruzieva O. Ambient air pollution and inflammation-related proteins during early childhood. ENVIRONMENTAL RESEARCH 2022; 215:114364. [PMID: 36126692 DOI: 10.1016/j.envres.2022.114364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIM Experimental studies show that short-term exposure to air pollution may alter cytokine concentrations. There is, however, a lack of epidemiological studies evaluating the association between long-term air pollution exposure and inflammation-related proteins in young children. Our objective was to examine whether air pollution exposure is associated with inflammation-related proteins during the first 2 years of life. METHODS In a pooled analysis of two birth cohorts from Stockholm County (n = 158), plasma levels of 92 systemic inflammation-related proteins were measured by Olink Proseek Multiplex Inflammation panel at 6 months, 1 year and 2 years of age. Time-weighted average exposure to particles with an aerodynamic diameter of <10 μm (PM10), <2.5 μm (PM2.5), and nitrogen dioxide (NO2) at residential addresses from birth and onwards was estimated via validated dispersion models. Stratified by sex, longitudinal cross-referenced mixed effect models were applied to estimate the overall effect of preceding air pollution exposure on combined protein levels, "inflammatory proteome", over the first 2 years of life, followed by cross-sectional protein-specific bootstrapped quantile regression analysis. RESULTS We identified significant longitudinal associations of inflammatory proteome during the first 2 years of life with preceding PM2.5 exposure, while consistent associations with PM10 and NO2 across ages were only observed among girls. Subsequent protein-specific analyses revealed significant associations of PM10 exposure with an increase in IFN-gamma and IL-12B in boys, and a decrease in IL-8 in girls at different percentiles of proteins levels, at age 6 months. Several inflammation-related proteins were also significantly associated with preceding PM10, PM2.5 and NO2 exposures, at ages 1 and 2 years, in a sex-specific manner. CONCLUSIONS Ambient air pollution exposure influences inflammation-related protein levels already during early childhood. Our results also suggest age- and sex-specific differences in the impact of air pollution on children's inflammatory profiles.
Collapse
Affiliation(s)
- Shizhen He
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Susanna Klevebro
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Gabriel Baldanzi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Björn Lundberg
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Kristina Eneroth
- Environment and Health Administration, SLB-analys, Stockholm, Sweden
| | - Anna M Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ellika Andolf
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Matteo Bottai
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
14
|
Zhang F, Zhou F, Liu H, Zhang X, Zhu S, Zhang X, Zhao G, Li D, Zhu W. Long-term exposure to air pollution might decrease bone mineral density T-score and increase the prevalence of osteoporosis in Hubei province: evidence from China Osteoporosis Prevalence Study. Osteoporos Int 2022; 33:2357-2368. [PMID: 35831465 DOI: 10.1007/s00198-022-06488-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
UNLABELLED We hypothesized that air pollution could cause oxidative damage and inflammation in the human body, which was linked to bone loss. Our result showed that long-term exposure to air pollution might decrease bone mineral density (BMD) T-score and increase the prevalence of osteoporosis in Hubei province. INTRODUCTION Osteoporosis is becoming an increasingly serious public health problem with the advent of global aging. Long-term exposure to air pollution has been linked to multitudinous adverse health outcomes, but evidence is still relatively limited and inconsistent for BMD T-score and osteoporosis. This study aimed at exploring the associations between long-term exposure to air pollution and BMD T-score and osteoporosis. METHODS The Hubei part of the China Osteoporosis Prevalence Study was extracted. Data on air pollutants were collected by the national air quality real-time release platform of China Environmental Monitoring Station. Linear mixed models and multilevel logistic regression analyses were performed to assess the associations between air pollution and BMD T-score and osteoporosis, respectively. Subgroup analyses were conducted to identify vulnerable populations. RESULTS A total of 1845 participants were included in this cross-section study. Per 10 ug/m3 increase in PM2.5 and SO2 were associated with 0.20 (95% CI: 0.04, 0.36) and 0.31 (95% CI: 0.11, 0.51) decrease in BMD T-score of the neck of femur, respectively. Per 10 ug/m3 increase in CO was linked with 0.03 (95% CI: 0.02, 0.05) decrease in BMD T-score of the total hip. Per 1 ug/m3 increase in PM2.5 was associated with 5% increase in the prevalence of osteoporosis in all participants. In general, the higher concentrations of PM2.5 with the more adverse effect on osteoporosis (P for trend = 0.01). The impact of PM2.5 on osteoporosis in males was higher than that in females [1.29, 95% CI (1.11, 1.50) vs 1.01, 95% CI (0.95, 1.07)]. Per 1 ug/m3 increase in PM10 corresponded with 4% elevation in the risks of osteoporosis in rural population. The ORs (95% CI) for the association of osteoporosis and NO2 in ever/current smoking and drinking population were 1.07 (1.01, 1.13) and 1.05 (1.00, 1.09), respectively. SO2 had a statistically significant positive effect on people with comorbidity [OR = 1.10, (95% CI: 1.00 to 1.21)], while none in people without comorbidity [OR = 0.96, (95% CI: 0.88 to 1.05)]. CONCLUSION Our study provided evidence that long-term exposure to PM2.5 was linked with the decreased BMD T-score and increased risk of osteoporosis among all participants. The adverse impacts of PM2.5, PM10, and NO2 were larger in males than in females. People having comorbidity, living in rural areas, and current/ever smoking or drinking were more vulnerable to air pollution. Public health departments should consider air pollution to formulate better preventive measures for osteoporosis.
Collapse
Affiliation(s)
- Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Fang Zhou
- Institute of Chronic Disease Prevention and Cure, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Hao Liu
- Institute of Chronic Disease Prevention and Cure, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Xupeng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Gaichan Zhao
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
15
|
Torkashvand J, Jonidi Jafari A, Pasalari H, Shahsavani A, Oshidari Y, Amoohadi V, Kermani M. The potential osteoporosis due to exposure to particulate matter in ambient air: Mechanisms and preventive methods. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:925-934. [PMID: 35653555 DOI: 10.1080/10962247.2022.2085820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Air pollution and health consequences associated with exposure to air pollutants, such as particulate matter, are of serious concerns in societies. Over the recent years, numerous studies have investigated the relation of many diseases with air pollutants. This review used a search strategy to provide the comprehensive information on the relationship between particle matters and osteoporosis. To this end, three search databases were used to find the articles focused on particle matters and osteoporosis. After the screening process, 13 articles related to the purpose of the study were selected and the relevant data were extracted. The results indicated that osteoporosis is significantly associated with PM10. However, this association with PM2.5 remains unclear. In addition, particle materials indirectly lead to the osteoporosis and bone fractures as a consequence of reduced UV-B, reduced adsorption of vitamin D. Furthermore, they can lead to other diseases by use of drugs with adverse effects on bone health, and creating conditions that may increase the risk of falling in the elderly. This review shows that although more accurate research is needed to determine the mechanism and risk of exposure to particulate matter in the air on bone health, the negative effects of this pollutant on bone mineral density (BMD) are evident.Implications: PM is usually classified by its size or aerodynamic diameter; PM10 denotes particles < 10 µm in diameter; PM2.5 particles are <2.5 µm in diameter. Many epidemiological studies have shown that short-term exposure to PM might reduce lung function. However, short-term effects might be reversible, and the main concern is attributed to long-term exposure. A major public health concern that may be affected by numerous metabolic and even environmental risk factors is osteoporosis. The purpose of this systematic review was to investigate the role of PM in the occurrence or exacerbation of osteoporosis in citizens.
Collapse
Affiliation(s)
- Javad Torkashvand
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hasan Pasalari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Oshidari
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Vida Amoohadi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Ma Y, Qiu S, Zhou R. Osteoporosis in Patients With Respiratory Diseases. Front Physiol 2022; 13:939253. [PMID: 35903070 PMCID: PMC9315364 DOI: 10.3389/fphys.2022.939253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Climate change, environmental pollution, and virus epidemics have sharply increased the number of patients suffering from respiratory diseases in recent years. Prolonged periods of illness and drug use increase the occurrence of complications in these patients. Osteoporosis is the common bone metabolism disease with respiratory disturbance, which affects prognosis and increases mortality of patients. The problem of osteoporosis in patients with respiratory diseases needs more attention. In this review, we concluded the characteristics of osteoporosis in some respiratory diseases including COPD, asthma, COVID-19, tuberculosis, and lung cancer. We revealed that hypoxia was the common pathogenesis of osteoporosis secondary to respiratory diseases, with malnutrition and corticosteroid abuse driving the progression of osteoporosis. Hypoxia-induced ROS accumulation and activated HIF-1α lead to attenuated osteogenesis and enhanced osteoclastogenesis in patients with respiratory diseases. Tuberculosis and cancer also invaded bone tissue and reduced bone strength by direct infiltration. For the treatment of osteoporosis in respiratory patients, oral-optimized bisphosphonates were the best treatment modality. Vitamin D was a necessary supplement, both for calcium absorption in osteogenesis and for improvement of respiratory lesions. Reasonable adjustment of the dose and course of corticosteroids according to the etiology and condition of patients is beneficial to prevent the occurrence and development of osteoporosis. Additionally, HIF-1α was a potential target for the treatment of osteoporosis in respiratory patients, which could be activated under hypoxia condition and involved in the process of bone remodeling.
Collapse
Affiliation(s)
- Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Renyi Zhou
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Renyi Zhou,
| |
Collapse
|
17
|
Raqib R, Akhtar E, Sultana T, Ahmed S, Chowdhury MAH, Shahriar MH, Kader SB, Eunus M, Haq MA, Sarwar G, Islam T, Alam DS, Parvez F, Begum BA, Ahsan H, Yunus M. Association of household air pollution with cellular and humoral immune responses among women in rural Bangladesh. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118892. [PMID: 35077836 PMCID: PMC9850293 DOI: 10.1016/j.envpol.2022.118892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 05/29/2023]
Abstract
Household air pollution (HAP) arising from combustion of biomass fuel (BMF) is a leading cause of morbidity and mortality in low-income countries. Air pollution may stimulate pro-inflammatory responses by activating diverse immune cells and cyto/chemokine expression, thereby contributing to diseases. We aimed to study cellular immune responses among women chronically exposed to HAP through use of BMF for domestic cooking. Among 200 healthy, non-smoking women in rural Bangladesh, we assessed exposure to HAP by measuring particulate matter 2.5 (PM2.5), black carbon (BC) and carbon monoxide (CO), through use of personal monitors RTI MicroPEM™ and Lascar CO logger respectively, for 48 h. Blood samples were collected following HAP exposure assessment and were analyzed for immunoprofiling by flow cytometry, plasma IgE by immunoassay analyzer and cyto/chemokine response from monocyte-derived-macrophages (MDM) and -dendritic cells (MDDC) by multiplex immunoassay. In multivariate linear regression model, a doubling of PM2.5 was associated with small increments in immature/early B cells (CD19+CD38+) and plasmablasts (CD19+CD38+CD27+). In contrast, a doubling of CO was associated with 1.20% reduction in CD19+ B lymphocytes (95% confidence interval (CI) = -2.36, -0.01). A doubling of PM2.5 and BC each was associated with 3.12% (95%CI = -5.85, -0.38) and 4.07% (95%CI = -7.96, -0.17) decrements in memory B cells (CD19+CD27+), respectively. Exposure to CO was associated with increased plasma IgE levels (beta(β) = 240.4, 95%CI = 3.06, 477.8). PM2.5 and CO exposure was associated with increased MDM production of CXCL10 (β = 12287, 95%CI = 1038, 23536) and CCL5 (β = 835.7, 95%CI = 95.5, 1576), respectively. Conversely, BC exposure was associated with reduction in MDDC-produced CCL5 (β = -3583, 95%CI = -6358, -807.8) and TNF-α (β = -15521, 95%CI = -28968, -2074). Our findings suggest that chronic HAP exposure through BMF use adversely affects proportions of B lymphocytes, particularly memory B cells, plasma IgE levels and functions of antigen presenting cells in rural women.
Collapse
Affiliation(s)
| | - Evana Akhtar
- Infectious Diseases Division, icddr,b, Bangladesh
| | | | - Shyfuddin Ahmed
- Health Systems and Population Studies Division, icddr,b, Dhaka, 1212, Bangladesh
| | | | | | - Shirmin Bintay Kader
- Health Systems and Population Studies Division, icddr,b, Dhaka, 1212, Bangladesh
| | - Mahbbul Eunus
- U-Chicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Golam Sarwar
- U-Chicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- U-Chicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | | | - Faruque Parvez
- Mailman School of Public Health, Columbia University, New York, USA
| | | | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, USA
| | | |
Collapse
|
18
|
Su R, Jin X, Zhao W, Wu X, Zhai F, Li Z. Rutin ameliorates the promotion effect of fine particulate matter on vascular calcification in calcifying vascular cells and ApoE -/- mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113410. [PMID: 35279519 DOI: 10.1016/j.ecoenv.2022.113410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric PM2.5 exposure greatly contributes to the incidence of and mortality from cardiovascular disease (CVD). Owing to the crucial role of vascular calcification in the progression of CVD, it is imperative to elucidate the effects of PM2.5 on vascular calcification to understand the toxic mechanisms of haze-induced CVD. However, the effects of PM2.5 exposure on vascular calcification and the underlying molecular mechanisms are still unclear. In this work, the in vitro and in vivo models were used to illuminate the effects of PM2.5 on vascular calcification. We found that PM2.5 promoted the deposition of hydroxyapatite in calcifying vascular cells. Moreover, hydroxyapatite deposition was significantly enhanced by 3.5 times compared with those in the control group in aortas of ApoE-/- mice after exposure winter PM2.5 (1.5 mg/kg b.w.), accompanied by activation of the OPG/RANKL pathway and inflammatory cytokines' expressions. Moreover, PM2.5-induced reactive oxygen species (ROS) generation was observed. NAC, an ROS inhibitor, observably alleviated the promotion effects of PM2.5 on vascular calcification. Furthermore, rutin effectively prevented vascular calcification by regulating the OPG/RANKL pathway. Our results suggest that PM2.5 play an important role in the occurrence and development of vascular calcification, and that rutin has an antagonistic effect on it.
Collapse
Affiliation(s)
- Ruijun Su
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wenjing Zhao
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xiaoying Wu
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Feihong Zhai
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
19
|
Chen J, Wang T, Xu H, Zhu Y, Du Y, Liu B, Zhao Q, Zhang Y, Liu L, Yuan L, Fang J, Xie Y, Liu S, Wu R, Shao D, Song X, He B, Brunekreef B, Huang W. An extended analysis of cardiovascular benefits of indoor air filtration intervention among elderly: a randomized crossover trial (Beijing indoor air purifier study, BIAPSY). GLOBAL HEALTH JOURNAL 2022. [DOI: 10.1016/j.glohj.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Adami G, Cattani G, Rossini M, Viapiana O, Olivi P, Orsolini G, Bertoldo E, Fracassi E, Gatti D, Fassio A. Association between exposure to fine particulate matter and osteoporosis: a population-based cohort study. Osteoporos Int 2022; 33:169-176. [PMID: 34268604 PMCID: PMC8758604 DOI: 10.1007/s00198-021-06060-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022]
Abstract
Long-term environmental air pollution exposure was associated with osteoporosis' risk in a cohort of women at high risk of fracture. Cortical sites seemed to be more susceptible to the exposure's effect. INTRODUCTION Environmental air pollution has been associated with disruption of bone health at a molecular level. Particulate matter (PM) exposure can simultaneously stimulate bone resorption and halt bone formation. The primary aim of the present study is to describe the association between long-term exposure to PM and osteoporosis in a large cohort of women at high risk of fracture. METHODS Clinical, demographic, and densitometric data were extracted from the DeFRAcalc79 dataset, which gathers data on women at risk for osteoporosis. Data on the monitoring of PM10 and PM2.5 concentrations were retrieved from the Italian institute of environment protection and research (Istituto Superiore per la Protezione e la Ricerca Ambientale, ISPRA). Generalized linear models with robust estimators were employed to determine the relationship between BMD and PM long-term exposure. RESULTS A total 59,950 women from 110 Italian provinces were included in the study. PM 2.5 exposure was negatively associated with T-score levels at the femoral neck (β -0.005, 95 CI -0.007 to -0.003) and lumbar spine (β -0.003, 95% CI -0.006 to -0.001). Chronic exposure to PM2.5 above 25 μg/m3 was associated with a 16% higher risk of having osteoporotic T-score at any site (aOR 1.161, 95% CI 1.105 to 1.220), and exposure to PM10 above 30 μg/m3 was associated with a 15% higher risk of having osteoporotic T-score at any site (aOR 1.148, 95% CI 1.098 to 1.200). CONCLUSION Long-term exposure to air pollution was associated with higher risk of osteoporosis. Femoral neck site seemed to be more susceptible to the detrimental effect of PM exposure than lumbar spine site. KEY MESSAGE Exposure to air pollution is associated with osteoporosis, mainly at femoral site.
Collapse
Affiliation(s)
- G. Adami
- Rheumatology Unit, University of Verona, Pz Scuro 10, 37134 Verona, Italy
| | - G. Cattani
- Italian Institute for Environmental Protection and Research, Rome, Italy
| | - M. Rossini
- Rheumatology Unit, University of Verona, Pz Scuro 10, 37134 Verona, Italy
| | - O. Viapiana
- Rheumatology Unit, University of Verona, Pz Scuro 10, 37134 Verona, Italy
| | - P. Olivi
- Orthopedic Unit, University of Verona, Verona, Italy
| | - G. Orsolini
- Rheumatology Unit, University of Verona, Pz Scuro 10, 37134 Verona, Italy
| | - E. Bertoldo
- Rheumatology Unit, University of Verona, Pz Scuro 10, 37134 Verona, Italy
| | - E. Fracassi
- Rheumatology Unit, University of Verona, Pz Scuro 10, 37134 Verona, Italy
| | - D. Gatti
- Rheumatology Unit, University of Verona, Pz Scuro 10, 37134 Verona, Italy
| | - A. Fassio
- Rheumatology Unit, University of Verona, Pz Scuro 10, 37134 Verona, Italy
| |
Collapse
|
21
|
Junqueira JJM, Lourenço JD, da Silva KR, Jorgetti V, Vieira RP, de Araujo AA, De Angelis K, Correia AT, Alves LHV, Tibério IDFLC, Barbosa AP, Lopes FDTQDS. Increased bone resorption by long-term cigarette smoke exposure in animal model. Heliyon 2021; 7:e08587. [PMID: 34977408 PMCID: PMC8686037 DOI: 10.1016/j.heliyon.2021.e08587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/14/2021] [Accepted: 12/08/2021] [Indexed: 10/31/2022] Open
Abstract
INTRODUCTION Clinical and experimental studies have been attesting the deleterious effects of smoking mainly due to the stimulation of osteoclastogenesis and inhibition of osteoblastogenesis. However the physiological mechanisms that can explain these changes are not fully understood. AIMS To evaluate the trabecular bone resorption effect caused by long-term exposure to cigarette smoke and the action of cytokines and reactive oxygen species involved in this process. METHODS Sixty young adult C57BL/6 mice were allocated to two groups: control, 30 animals exposed to filtered air for 1, 3 and 6 months; and smoke, 30 animals exposed to cigarette smoke for 1, 3 and 6 months. Femoral and tibial extraction was performed to evaluate the bone mineral matrix, bone cytokines (Receptor activator of nuclear factor-kappa B ligand - RANKL and Osteoprotegerin - OPG) and oxidative stress markers (Thiobarbituric acid reactive substances - Tbars). RESULTS Exposure to cigarette smoke (CS) generated changes in bone structural parameters in the 6th month of follow-up, demonstrating an evident bone loss; reduction in OPG/RANKL ratio from the 3rd month on and increase in Tbars in the first month, both closely related to the increase in osteoclastogenic activity and bone resorption. CONCLUSION These findings reinforce the importance of CS-induced oxidative stress in bone compromising the bone cellular activities with a consequent impairment in bone turn over and changes in bone structure.
Collapse
Affiliation(s)
- Jader Joel Machado Junqueira
- Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Juliana Dias Lourenço
- Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Kaique Rodrigues da Silva
- Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Vanda Jorgetti
- Department of Medicine, Laboratory of Renal Physiopathology (LIM-16), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Rodolfo P. Vieira
- Post-graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
- Post-graduation Program in Bioengineering, Brasil University, São Paulo, SP, Brazil
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil
| | | | - Kátia De Angelis
- Exercise Physiology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Aristides Tadeu Correia
- Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Luan Henrique Vasconcelos Alves
- Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Alexandre Póvoa Barbosa
- Department of Medicine, Laboratory of Experimental Therapeutics (LIM-20), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
22
|
Xu H, Liu S, Wang Y, Wu R, Yi T, Wang T, Zhu Y, Fang J, Xie Y, Zhao Q, Song X, Chen J, Rajagopaplan S, Brook RD, Li J, Cao J, Huang W. The mediating role of vascular inflammation in traffic-related air pollution associated changes in insulin resistance in healthy adults. Int J Hyg Environ Health 2021; 239:113878. [PMID: 34757311 DOI: 10.1016/j.ijheh.2021.113878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
AIM The precise pathophysiologic pathway linking traffic-related air pollution (TRAP) to diabetes mellitus is not well elucidated. We aimed to investigate whether activation of vascular inflammation can be a mechanistic linkage between ambient TRAP and insulin resistance. METHODS Study outcomes were determined by assessing a series of circulating biomarkers indicative of insulin resistance and vascular inflammation among 73 healthy adults who underwent repeated clinical visits in Beijing, China, 2014-2016. Concomitantly, concentrations of ambient TRAP indices, including particulate matter in diameter <2.5 μm (PM2.5), particles in size fractions of 5-560 nm, black carbon, carbon monoxide, nitrogen dioxide, and oxides of nitrogen, were continuously monitored. RESULTS Participants experienced extremely high levels of TRAP exposures, with mean (standard deviation) PM2.5 concentrations of 91.8 (48.3) μg/m3, throughout the study. We found that interquartile range increases in exposure to moving average concentrations of various TRAP indices at prior up to 7 days were associated with significant elevations of 8.9-49.6% in insulin levels. Higher pollutant levels were also related to worsening metrics of insulin resistance (soluble insulin receptor ectodomain, adipokines, and homeostasis model assessment of insulin resistance) and heightened vascular inflammatory responses, particularly disruptions of the receptor activator of nuclear factor κB ligand/osteoprotegerin system balance and elevations of monocyte/macrophage and T cell activation markers. Mediation analyses showed that activation of vascular inflammation could explain up to 66% of the alterations in metrics of insulin resistance attributable to air pollution. CONCLUSION Our results suggest that ambient traffic pollution exposure was capable of promoting insulin resistance possibly via generating vascular inflammation.
Collapse
Affiliation(s)
- Hongbing Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Shengcong Liu
- Division of Cardiology, Peking University First Hospital, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Yang Wang
- Department of Prevention and Health Care, Hospital of Health Science Center, Peking University, Beijing, China
| | - Rongshan Wu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Tieci Yi
- Division of Cardiology, Peking University First Hospital, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Tong Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Yutong Zhu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Yunfei Xie
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Qian Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Jie Chen
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Institute for Risk Assessment Sciences, University Medical Centre Utrecht, University of Utrecht, the Netherlands
| | - Sanjay Rajagopaplan
- Division of Cardiovascular Medicine, Case Western Reserve University, Ohio, USA
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan, Michigan, USA
| | - Jianping Li
- Division of Cardiology, Peking University First Hospital, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China
| | - Junji Cao
- Institute of Atmospheric Physics Chinese Academy of Sciences, Beijing, China.
| | - Wei Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, And Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Beijing, China.
| |
Collapse
|
23
|
Xu H, Zhu Y, Li L, Liu S, Song X, Yi T, Wang Y, Wang T, Zhao Q, Liu L, Wu R, Liu S, Feng B, Chen J, Zheng L, Rajagopaplan S, Brook RD, Li J, Cao J, Huang W. Combustion-derived particulate organic matter associated with hemodynamic abnormality and metabolic dysfunction in healthy adults. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126261. [PMID: 34098265 DOI: 10.1016/j.jhazmat.2021.126261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Epidemiological evidence on cardiometabolic health of particulate organic matter (POM) and its sources is sparse. In a panel of 73 healthy adults in Beijing, China, daily concentrations of ambient fine particulate matter-bound polycyclic aromatic hydrocarbons (PAHs) and n-alkanes were measured throughout the study period, and Positive Matrix Factorization approach was used to identity PAHs sources. Linear mixed-effect models and mediation analyses were applied to examine the associations and potential interlink pathways between POM and biomarkers indicative of hemodynamics, insulin resistance, vascular calcification and immune inflammation. We found that significant alterations in cardiometabolic measures were associated with POM exposures. In specific, interquartile range increases in PAHs concentrations at prior up to 9 days were observed in association with significant elevations of 2.6-2.9% in diastolic blood pressure, 6.6-8.1% in soluble ST2, 10.5-14.5% in insulin, 40.9-45.7% in osteoprotegerin, and 36.3-48.7% in interleukin-17A. Greater associations were generally observed for PAHs originating from traffic emissions and coal burning. Mediation analyses revealed that POM exposures may prompt the genesis of hemodynamic abnormalities, possibly via worsening insulin resistance and calcification potential. These findings suggested that cardiometabolic health benefits would be achieved by reducing PM from combustion emissions.
Collapse
Affiliation(s)
- Hongbing Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Yutong Zhu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Lijuan Li
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Shengcong Liu
- Division of Cardiology, Peking University First Hospital, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Tieci Yi
- Division of Cardiology, Peking University First Hospital, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Yang Wang
- Department of Prevention and Health Care, Hospital of Health Science Center, Peking University, Beijing, China
| | - Tong Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Qian Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Lingyan Liu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Rongshan Wu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Shuo Liu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Baihuan Feng
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Jie Chen
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Institute for Risk Assessment Sciences, University Medical Centre Utrecht, University of Utrecht, The Netherlands
| | - Lemin Zheng
- Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University School of Basic Medical Sciences, Beijing, China
| | - Sanjay Rajagopaplan
- Division of Cardiovascular Medicine, Case Western Reserve Medical School, Cleveland, OH, USA
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jianping Li
- Division of Cardiology, Peking University First Hospital, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.
| | - Wei Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Health Science Center, Peking University, Beijing, China.
| |
Collapse
|
24
|
Pang KL, Ekeuku SO, Chin KY. Particulate Air Pollution and Osteoporosis: A Systematic Review. Risk Manag Healthc Policy 2021; 14:2715-2732. [PMID: 34194253 PMCID: PMC8238075 DOI: 10.2147/rmhp.s316429] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
Air pollution is associated with inflammation and oxidative stress, which predispose to several chronic diseases in human. Emerging evidence suggests that the severity and progression of osteoporosis are directly associated with inflammation induced by air pollutants like particulate matter (PM). This systematic review examined the relationship between PM and bone health or fractures. A comprehensive literature search was conducted from January until February 2021 using the PubMed, Scopus, Web of Science, Google Scholar and Cochrane Library databases. Human cross-sectional, cohort and case-control studies were considered. Of the 1500 papers identified, 14 articles were included based on the inclusion and exclusion criteria. The air pollution index investigated by most studies were PM2.5 and PM10. Current studies demonstrated inconsistent associations between PM and osteoporosis risk or fractures, which may partly due to the heterogeneity in subjects' characteristics, study design and analysis. In conclusion, there is an inconclusive relationship between osteoporosis risk and fracture and PM exposures which require further validation.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Lin YH, Wang CF, Chiu H, Lai BC, Tu HP, Wu PY, Huang JC, Chen SC. Air Pollutants Interaction and Gender Difference on Bone Mineral Density T-Score in Taiwanese Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9165. [PMID: 33302461 PMCID: PMC7764089 DOI: 10.3390/ijerph17249165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/18/2022]
Abstract
Osteoporosis is defined as a systemic skeletal disease characterized by a reduction in bone mass and microarchitectural deterioration of bone tissue. Previous studies have reported associations between air pollution and lower bone mineral density; however, few studies have investigated the association between air pollution and osteoporosis. In this study, we combined two databases, the first including 5000 individuals registered in the Taiwan Biobank, and the second containing detailed daily data on air pollution. After multivariable adjustments, ozone (O3) (unstandardized coefficient β, 0.015; p = 0.008) was significantly positively associated with T-score, whereas carbon monoxide (CO) (unstandardized coefficient β, -0.809; p < 0.001), sulfur dioxide (SO2) (unstandardized coefficient β, -0.050; p = 0.005), nitric oxide (NO) (unstandardized coefficient β, -0.040; p < 0.001), nitrogen dioxide (NO2) (unstandardized coefficient β, -0.023; p < 0.001), and nitrogen oxide (NOx) (unstandardized coefficient β, -0.017; p < 0.001) were significantly negatively associated with T-score. The interactions between CO and NOx (p = 0.001) and SO2 and NO2 (p = 0.004) on T-score were statistically significant. An increase in exposure to CO, NO and NOx was associated with a faster decline in T-score in the female participants compared to the male participants. In addition, an increase in O3 was associated with a faster increase in T-score in the female participants compared to the male participants. In conclusion, the air pollutants CO, SO2, NO, NO2, and NOx were associated with osteoporosis. In addition, there were interaction and synergetic effects between CO and NOx and SO2 and NO2 on T-score. We also observed differences in the associations between air pollutants and T-score between the female and male participants.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chen-Feng Wang
- Institute of Electronics, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Hsuan Chiu
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Bo-Cheng Lai
- Institute of Electronics, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Yu Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Jiun-Chi Huang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Szu-Chia Chen
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
26
|
Jaafari J, Naddafi K, Yunesian M, Nabizadeh R, Hassanvand MS, Shamsipour M, Ghozikali MG, Shamsollahi HR, Nazmara S, Yaghmaeian K. The acute effects of short term exposure to particulate matter from natural and anthropogenic sources on inflammation and coagulation markers in healthy young adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139417. [PMID: 32498012 DOI: 10.1016/j.scitotenv.2020.139417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 05/13/2023]
Abstract
Airborne particulate matter is associated with increasing the risk of cardiovascular diseases. The purpose of this study was to investigate the association between air pollution conditions and MDA, vWF, and fibrinogen markers in the blood of two panels of healthy young individuals in an urban area in Tehran city with a high air pollution background and another group was living in a rural area (Ahmad Abad Mostofi), with a low air pollution background. In each group, 4 blood samples were taken as follows: one in inversion days, the second in winter, but during the existence of normal condition in terms of air pollution, the third sample in the spring during the normal condition in terms of air pollution and the fourth sample during the dust storm conditions. In the urban and rural groups, there was a significant difference between the concentration of MDA, vWF, fibrinogen between inversion and cold season control conditions, and between dust storm conditions and warm season control conditions (p < 0.05). The results showed that the association of dust storm condition on the measured biomarkers was stronger than the inversion condition, which health consideration in the dust conditions be taken into account similar to the inversion conditions.
Collapse
Affiliation(s)
- Jalil Jaafari
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Shamsollahi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Prada D, López G, Solleiro-Villavicencio H, Garcia-Cuellar C, Baccarelli AA. Molecular and cellular mechanisms linking air pollution and bone damage. ENVIRONMENTAL RESEARCH 2020; 185:109465. [PMID: 32305664 PMCID: PMC7430176 DOI: 10.1016/j.envres.2020.109465] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 05/04/2023]
Abstract
Air pollution is the second most important risk factor associated with noncommunicable diseases after smoking. The effects of pollution on health are commonly attributable to particulate matter (PM), a complex mixture of particles suspended in the air. PM can penetrate the lower respiratory tract and has harmful direct and indirect effects on different organs and tissues. Direct effects are caused by the ability of PM components to cross the respiratory membrane and enter the bloodstream; indirect effects are systemic consequences of the local airway response. Recent work suggests that PM is an independent risk factor for low bone mineral density and osteoporosis-related fractures. Osteoporosis is a common age-related disease closely linked to bone fractures, with severe clinical consequences affecting quality of life, morbidity, and mortality. In this review, we discuss potential mechanisms behind the association between outdoor air pollution, especially PM, and bone damage. The discussion features four main mechanisms: 1) several different atmospheric pollutants can induce low-grade systemic inflammation, which affects bone metabolism through a specific effect of cytokines such as TNFα, IL-1β, IL-6, and IL-17 on osteoblast and osteoclast differentiation and function; 2) some pollutants, particularly certain gas and metal compounds, can cause oxidative damage in the airway and bone cells; 3) different groups of pollutants can act as endocrine disruptors when binding to the receptors in bone cells, changing their functioning; and 4) air pollution can directly and indirectly cause vitamin D deficiency. Characterizing these mechanisms will better define the physiopathology of bone damage, and recognizing air pollution as a modifiable risk factor for osteoporosis will inform environmental policies. Such knowledge will also guide the prevention of fractures due to fragility and help reduce health-related costs.
Collapse
Affiliation(s)
- Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA; Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico; Department of Biomedical Informatics, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Gerard López
- Program of Support and Promotion of Research (AFINES), School of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico; Department of Physiology, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico.
| | - Helena Solleiro-Villavicencio
- Program of Support and Promotion of Research (AFINES), School of Medicine, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Claudia Garcia-Cuellar
- Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerología - Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 14080, Mexico.
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, 10032, USA.
| |
Collapse
|
28
|
Ranzani OT, Milà C, Kulkarni B, Kinra S, Tonne C. Association of Ambient and Household Air Pollution With Bone Mineral Content Among Adults in Peri-urban South India. JAMA Netw Open 2020; 3:e1918504. [PMID: 31899531 PMCID: PMC6991311 DOI: 10.1001/jamanetworkopen.2019.18504] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPORTANCE Air pollution is a major threat to global health. Osteoporosis is responsible for a substantial burden of disease globally and is expected to increase in prevalence because of population aging. Few studies have investigated the association between air pollution and bone health, and their findings were inconclusive. OBJECTIVE To quantify the association between ambient and household air pollution and bone mass in a sample of the general population in peri-urban India. DESIGN, SETTING, AND PARTICIPANTS This was a population-based cross-sectional analysis of the Andhra Pradesh Children and Parents Study cohort, which recruited participants from 28 villages near Hyderabad, South India, during 2009 to 2012. Separate linear mixed models were fitted with nested random intercepts (household within villages) for each exposure-outcome pair and were sequentially adjusted for potential confounders. Data analysis was conducted between April 2019 and July 2019. EXPOSURES Annual mean ambient particulate matter air pollution less than 2.5 µm in aerodynamic diameter (PM2.5) and black carbon (BC) levels at the residence estimated by land-use regression and self-reported use of biomass cooking fuel. MAIN OUTCOMES AND MEASURES The primary outcome was bone mineral content (BMC) measured in grams, corrected by bone area at the lumbar spine and left hip, as measured by dual-energy x-ray absorptiometry. The secondary outcome was bone mineral density measured in grams per centimeters squared. RESULTS A total of 3717 participants were analyzed (mean [SD] age, 35.7 [14.0] years; 1711 [46.0%] women). The annual mean (SD) PM2.5 exposure was 32.8 (2.5) μg/m3, and the annual mean (SD) BC exposure was 2.5 (0.2) μg/m3; 57.8% of participants used biomass cooking fuels. In fully adjusted models, PM2.5 was associated with lower BMC in the spine (mean difference, -0.57 g per 3 μg/m3 increase in PM2.5; 95% CI, -1.06 to -0.07 g per 3 μg/m3 increase in PM2.5) and hip (mean difference, -0.13 g per 3 μg/m3 increase in PM2.5; 95% CI, -0.3 to 0.03 g per 3 μg/m3 increase in PM2.5). After confounder adjustment, exposure to PM2.5 was also associated with lower bone mineral density in the spine (mean difference, -0.011 g/cm2 per 3 μg/m3 increase in PM2.5; 95% CI, -0.021 to 0 g/cm2 per 3 μg/m3 increase in PM2.5) and hip (mean difference, -0.004 g/cm2 per 3 μg/m3 increase in PM2.5; 95% CI, -0.008 to 0.001 g/cm2 per 3 μg/m3 increase in PM2.5). Exposure to BC was associated with lower BMC in the spine (mean difference, -1.13 g per 1 μg/m3 increase in BC; 95% CI, -2.81 to 0.54 g per 1 μg/m3 increase in BC) and hip (mean difference, -0.35 g per 1 μg/m3 increase in BC; 95% CI, -0.96 to 0.25 g per 1 μg/m3 increase in BC), although the confidence intervals were wider. There was no association between biomass fuel use and spine BMC (mean difference, 0.12 g; 95% CI, -0.45 to 0.68 g). CONCLUSIONS AND RELEVANCE In a cross-sectional analysis of a population-based cohort, ambient air pollution was associated with lower BMC in a young adult population in a peri-urban area of South India.
Collapse
Affiliation(s)
- Otavio T. Ranzani
- Barcelona Institute for Global Health, Universitat Pompeu Fabra, CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Carles Milà
- Barcelona Institute for Global Health, Universitat Pompeu Fabra, CIBER Epidemiología y Salud Pública, Barcelona, Spain
| | - Bharati Kulkarni
- National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Sanjay Kinra
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Cathryn Tonne
- Barcelona Institute for Global Health, Universitat Pompeu Fabra, CIBER Epidemiología y Salud Pública, Barcelona, Spain
| |
Collapse
|
29
|
Abstract
Inflammation is a common and essential event in the pathogenesis of diverse diseases. Decades of research has converged on an understanding that all combustion-derived particulate matter (PM) is inflammatory to some extent in the lungs and also systemically, substantially explaining a significant portion of the massive cardiopulmonary disease burden associated with these exposures. In general, this means that efforts to do the following can all be beneficial: reduce particulates at the source, decrease the inflammatory potential of PM output, and, where PM inhalation is unavoidable, administer anti-inflammatory treatment. A range of research, including basic illumination of inflammatory pathways, assessment of disease burden in large cohorts, tailored treatment trials, and epidemiologic, animal, and in vitro studies, is highlighted in this review. However, meaningful translation of this research to decrease the burden of disease and deliver a clear and cohesive message to guide daily clinical practice remains rudimentary. Ongoing efforts to better understand substantial differences in the concentration and type of PM to which the global community is exposed and then distill how that influences inflammation promises to have real-world benefit. This review addresses this complex topic in 3 sections, including ambient PM (typically associated with ground-level transportation), wildfire-induced PM, and PM from indoor biomass burning. Recognizing the overlap between these domains, we also describe differences and suggest future directions to better inform clinical practice and public health.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Occupational and Environmental Health, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Chris Carlsten
- Air Pollution Exposure Laboratory, Department of Medicine and School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
30
|
Li W, Dorans KS, Wilker EH, Rice MB, Ljungman PL, Schwartz JD, Coull BA, Koutrakis P, Gold DR, Keaney JF, Vasan RS, Benjamin EJ, Mittleman MA. Short-term exposure to ambient air pollution and circulating biomarkers of endothelial cell activation: The Framingham Heart Study. ENVIRONMENTAL RESEARCH 2019; 171:36-43. [PMID: 30654247 PMCID: PMC6478022 DOI: 10.1016/j.envres.2018.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Short-term exposure to air pollution has been associated with cardiovascular events, potentially by promoting endothelial cell activation and inflammation. A few large-scale studies have examined the associations and have had mixed results. METHODS We included 3820 non-current smoking participants (mean age 56 years, 54% women) from the Framingham Offspring cohort examinations 7 (1998-2001) and 8 (2005-2008), and Third Generation cohort examination 1 (2002-2005), who lived within 50 km of a central monitoring station. We calculated the 1- to 7-day moving averages of fine particulate matter (PM2.5), black carbon (BC), sulfate (SO42-), nitrogen oxides (NOx), and ozone before examination visits. We used linear mixed effect models for P-selectin, monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1, lipoprotein-associated phospholipase A2 activity and mass, and osteoprotegerin that were measured up to twice, and linear regression models for CD40 ligand and interleukin-18 that were measured once, adjusting for demographics, life style and clinical factors, socioeconomic position, time, and meteorology. RESULTS We found negative associations of PM2.5 and BC with P-selectin, of ozone with MCP-1, and of SO42- and NOx with osteoprotegerin. At the 5-day moving average, a 5 µg/m3 higher PM2.5 was associated with 1.6% (95% CI: - 2.8, - 0.3) lower levels of P-selectin; a 10 ppb higher ozone was associated with 1.7% (95% CI: - 3.2, - 0.1) lower levels of MCP-1; and a 20 ppb higher NOx was associated with 2.0% (95% CI: - 3.6, - 0.4) lower levels of osteoprotegerin. CONCLUSIONS We did not find evidence of positive associations between short-term air pollution exposure and endothelial cell activation. On the contrary, short-term exposure to higher levels of ambient pollutants were associated with lower levels of P-selectin, MCP-1, and osteoprotegerin in the Framingham Heart Study.
Collapse
Affiliation(s)
- Wenyuan Li
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Kirsten S Dorans
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Tulane School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Elissa H Wilker
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mary B Rice
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Petter L Ljungman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joel D Schwartz
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States
| | - Brent A Coull
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States
| | - Petros Koutrakis
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States
| | - Diane R Gold
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - John F Keaney
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Ramachandran S Vasan
- Boston University Schools of Medicine and Public Health, Boston, MA, United States; National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, United States
| | - Emelia J Benjamin
- Boston University Schools of Medicine and Public Health, Boston, MA, United States; National Heart, Lung, and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, United States
| | - Murray A Mittleman
- Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, United States; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|