1
|
Majd-Marani S, Eftekhari A, Elias SG, Beffa R, Alebrahim MT, Mishra AP, Afrouz M. A novel approach in using insect-based spinach-food waste for gene targeting to cancer tissues. Sci Rep 2025; 15:13905. [PMID: 40263592 PMCID: PMC12015529 DOI: 10.1038/s41598-025-98418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
In our study, we prepared Fe3O4 nanoparticles (NPs) using food waste extract of Mealworm (Tenebrio molitor) larvae fed spinach (Spinacia oleracea), which is rich in iron. A coating was applied to Fe3O4 NPs containing hyperbranched spermine-polyethylene glycol-folic acid (FHSPF) and spermine-polyethylene glycol-folic acid (FSMPF). Polymer was loaded with siRNA or DNA. DLS1, H-NMR, FTIR, EDX, Zeta potential and TEM were used to analyze morphology of NPs. Biocompatibility, DNA release, and gene transfer properties were evaluated. Coats concentration in our NPs increased zeta potential, DNA release, encapsulation, and gene delivery efficiency. As determined by cell viability, our NPs exhibit low cytotoxicity and good compatibility; on the other hand, we evaluated their ability to transfer into MCF-7 cells using fluorescence microscopy and flow cytometry. According to this analysis, increasing DNA or siRNA concentration in NPs improved gene transfer efficiency. As a result of cytotoxicity assay, FHSPF2 NPs showed high biocompatibility; NPs were demonstrated to deliver siRNA-FAM to breast cancer cells and mice in vivo, and they were also rated excellent for delivering siRNA-FAM to the tumor site using external magnetic fields. Magnetic fields significantly cause NPs to adsorb at the tumor site.
Collapse
Affiliation(s)
- Shadi Majd-Marani
- Department of Plant Production and Genetics, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Eftekhari
- Faculty of Engineering & Natural Sciences, Tampere University, P.O. Box 541, Tampere, 33101, Finland
| | - Sabry G Elias
- Department of Crop and Soil Science, Oregon State University, Oregon, USA
| | | | | | | | - Mehdi Afrouz
- Department of Plant Production and Genetics, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
2
|
Giordani M, Mirata S, Scarfi S, Passalacqua M, Fornasini L, Drava G, Meli MA, Roselli C, Mattioli M. The cytotoxic/genotoxic role of impurities in soluble minerals: The case of natural (fibrous epsomite) versus synthetic (Epsom salt) magnesium sulphate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178666. [PMID: 39904208 DOI: 10.1016/j.scitotenv.2025.178666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/07/2025] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
Epsomite and Epsom salt are very common mineral phases, and many known uses are found in agriculture, and in food and pharmaceutical industries. Natural epsomite can be fibrous and inhalable, potentially reaching the digestive tract after dissolving in mucus and saliva. Epsom salt is a common food additive (E 518) to which humans can be exposed daily, although its health effects are still debated. This study aims to (i) determine if natural epsomite (MP) and Epsom salt (SE) may be toxic to humans and (ii) identify and quantify the impurities in natural epsomite and try to ascertain their role in the toxicity of this mineral. In vitro experiments were performed on human colon epithelial cancer cells (Caco-2), enterocyte-like Caco-2-derived monolayers, human monocytic cell line THP-1, and THP-1-derived M0 macrophages. Generally, MP showed significantly higher toxicity in terms of oxidative stress, DNA damage and inflammation than SE, whose effects can be considered negligible. The higher pathogenicity of MP undoubtedly comes from the toxic elements of impurities, which are absent in pure SE. This research clarifies the role of impurities in the toxicity of natural epsomite, which may be higher than previously supposed. Moreover, considering its extensive use in the food industry, it represents a new step in assessing the safety of ingesting magnesium sulphate.
Collapse
Affiliation(s)
- Matteo Giordani
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Serena Mirata
- Department Earth, Environment and Life Sciences, University of Genova, 16132 Genova, Italy; Inter-University Centre for the Promotion of the 3Rs Principles in Teaching & Research, 56122 Pisa, Italy
| | - Sonia Scarfi
- Department Earth, Environment and Life Sciences, University of Genova, 16132 Genova, Italy; Inter-University Centre for the Promotion of the 3Rs Principles in Teaching & Research, 56122 Pisa, Italy
| | - Mario Passalacqua
- Inter-University Centre for the Promotion of the 3Rs Principles in Teaching & Research, 56122 Pisa, Italy; Department Experimental Medicine, University of Genova, 16132 Genova, Italy
| | - Laura Fornasini
- Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, 16148 Genova, Italy
| | - Maria Assunta Meli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Carla Roselli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Mattioli
- Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
3
|
Stanco D, Lipsa D, Bogni A, Bremer-Hoffmann S, Clerbaux LA. An Adverse Outcome Pathway for food nanomaterial-induced intestinal barrier disruption. FRONTIERS IN TOXICOLOGY 2024; 6:1474397. [PMID: 39776762 PMCID: PMC11703861 DOI: 10.3389/ftox.2024.1474397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction The ingestion of nanomaterials (NMs) may impair the intestinal barrier, but the underlying mechanisms remain evasive, and evidence has not been systematically gathered or produced. A mechanistic-based approach would be instrumental in assessing whether relevant NMs disrupt the intestinal barrier, thereby supporting the NM risk assessment in the food sector. Methods In this study, we developed an adverse outcome pathway (AOP) based on biological plausibility and by leveraging information from an existing NM-relevant AOP that leads to hepatic outcomes. We then extracted the current evidence from the literature for a targeted selection of NMs with high relevance to the food sector, namely, ZnO, CuO, FeO, SiO2, and Ag NMs and nanocellulose. Results We propose a new AOP (AOP 530) that starts with endocytic lysosomal uptake, leading to lysosomal disruption inducing mitochondrial dysfunction. Mitochondrial impairments can lead to cell injury/death and disrupt the intestinal barrier. The evidence collected supports that these food-related NMs can be taken up by intestinal cells and indicates that intestinal barrier disruption may occur due to Ag, CuO, and SiO2 NMs, while only few studies support this outcome for FeO and ZnO. Lysosomal disruption and mitochondrial dysfunction are rarely evaluated. For nanocellulose, none of the studies report toxicity-related events. Conclusion The collection of existing scientific evidence supporting our AOP linking NM uptake to intestinal barrier impairments allowed us to highlight current evidence gaps and data inconsistencies. These inconsistencies could be associated with the variety of stressors, biological systems, and key event (KE)-related assays used in different studies. This underscores the need for further harmonized methodologies and the production of mechanistic evidence for the safety regulatory assessment of NMs in the food sector.
Collapse
Affiliation(s)
- Deborah Stanco
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | | | - Alessia Bogni
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | | | - Laure-Alix Clerbaux
- Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| |
Collapse
|
4
|
Udawant T, Thorat P, Thapa P, Patel M, Shekhawat S, Patel R, Sudhir A, Hudka O, Pulidindi IN, Deokar A. Antibacterial Activity of Silver-Modified CuO Nanoparticle-Coated Masks. Bioengineering (Basel) 2024; 11:1234. [PMID: 39768052 PMCID: PMC11672906 DOI: 10.3390/bioengineering11121234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
A green and cost-effective sonochemical synthetic method was followed for coating silver-modified copper oxide (Ag-CuO) nanoparticles (NPs) on disposable surgical mask. The NP-coated masks were systematically characterized using XRD and FT-IR for understanding the structural and surface functionalities. In addition, the field emission scanning electron microscopy (FE-SEM) analysis showed the homogeneous coating of Ag-CuO NPs over the mask fibers. The average particle size of Ag-CuO was found to be ~70 nm. The NP-coated masks are useful to combat a broad range of bacterial species by taking the unique advantage of the synergistic effect of Ag and metal oxide (CuO and ZnO) NPs for the generation of reactive oxygen species (ROS). Zone of inhibition (ZoI) studies demonstrated antibacterial activity against both Gram-positive S. aureus and Gram-negative E. coli bacteria, probably due to the elevated production of ROS by the defect structure of the Ag-modified metal oxide NPs. The material was found to be effective against both airborne and soil-borne bacteria. We repeat that this paper deals only with the killing effect of the nanoparticles (Ag-modified CuO) on bacteria, and no studies on viral species are performed.
Collapse
Affiliation(s)
- Tanuja Udawant
- Modern College of Arts, Science, and Commerce, Pune 411005, India; (T.U.); (P.T.)
| | - Prajkta Thorat
- Modern College of Arts, Science, and Commerce, Pune 411005, India; (T.U.); (P.T.)
| | - Payal Thapa
- Department of Life Sciences, School of Science, Gujarat State Fertilizers and Chemicals University, Vadodara 391750, India; (P.T.); (M.P.); (S.S.); (R.P.); (A.S.)
| | - Manali Patel
- Department of Life Sciences, School of Science, Gujarat State Fertilizers and Chemicals University, Vadodara 391750, India; (P.T.); (M.P.); (S.S.); (R.P.); (A.S.)
| | - Saroj Shekhawat
- Department of Life Sciences, School of Science, Gujarat State Fertilizers and Chemicals University, Vadodara 391750, India; (P.T.); (M.P.); (S.S.); (R.P.); (A.S.)
| | - Roshni Patel
- Department of Life Sciences, School of Science, Gujarat State Fertilizers and Chemicals University, Vadodara 391750, India; (P.T.); (M.P.); (S.S.); (R.P.); (A.S.)
| | - Ankit Sudhir
- Department of Life Sciences, School of Science, Gujarat State Fertilizers and Chemicals University, Vadodara 391750, India; (P.T.); (M.P.); (S.S.); (R.P.); (A.S.)
| | - Om Hudka
- Department of Chemical Sciences, School of Science, Gujarat State Fertilizers and Chemicals University, Vadodara 391750, India;
| | - Indra Neel Pulidindi
- Jesus’ Scientific Consultancy for Industrial and Academic Research (JSCIAR), Tharamani 600113, India
| | - Archana Deokar
- Modern College of Arts, Science, and Commerce, Pune 411005, India; (T.U.); (P.T.)
- Department of Chemical Sciences, School of Science, Gujarat State Fertilizers and Chemicals University, Vadodara 391750, India;
| |
Collapse
|
5
|
Jung N, Schreiner J, Baur F, Vogel-Kindgen S, Windbergs M. Predicting nanocarrier permeation across the human intestine in vitro: model matters. Biomater Sci 2024; 12:5775-5788. [PMID: 39402906 DOI: 10.1039/d4bm01092b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
For clinical translation of oral nanocarriers, simulation of the intestinal microenvironment during in vitro testing is crucial to evaluate interactions with the intestinal mucosa. However, studies are often conducted using simplistic cell culture models, overlooking key physiological factors, and potentially leading to an overestimation of nanocarrier permeation. In this study, we systematically investigate different tissue models of the human intestine under static cultivation and dynamic flow conditions and analyze the impact of altered tissue characteristics on nanocarrier permeation. Our results reveal that the selection of cell types as well as the respective culture condition have a notable impact on the physiological characteristics of the resulting tissues. Tissue layer thickness, mucus secretion, and barrier impairment, all increase with increasing amounts of goblet cells and the application of dynamic flow conditions. Permeation studies with poly(lactic-co-glycolic acid) (PLGA) nanocarriers with and without polyethylene glycol (PEG) coating elucidate that the amount of mucus present in the respective model is the limiting factor for the permeation of PLGA nanocarriers, while tissue topography presents the key factor influencing PEG-PLGA nanocarrier permeation. Furthermore, both nanocarriers exhibit diametrically opposite permeation kinetics compared to soluble compounds. In summary, these findings reveal the critical role of the implemented test systems on permeation assessment and emphasize that, in the context of preclinical nanocarrier testing, the choice of in vitro model matters.
Collapse
Affiliation(s)
- Nathalie Jung
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Jonas Schreiner
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Florentin Baur
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Yanar KE, Baysal S, Ulaş N, Aktaş MS, Timurkan MÖ, Aydın H. Prognostic potential of copper, zinc, copper/zinc ratio, cobalamin, and serum amyloid A in cats with panleukopenia. J Vet Intern Med 2024; 38:1535-1541. [PMID: 38613433 PMCID: PMC11099764 DOI: 10.1111/jvim.17077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Copper (Cu), zinc (Zn), and the copper/zinc ratio (Cu/Zn), which have been studied in gastrointestinal disorders of humans, may facilitate disease prognosis. OBJECTIVE Evaluate the predictive potential of Cu, Zn, cobalamin, and serum amyloid A (SAA) as prognostic indicators in cats with feline panleukopenia (FPV) on admission. ANIMALS Client-owned cats diagnosed with FPV and controls. METHODS Serum Cu and Zn concentrations were assessed using the spectrophotometric method and serum concentrations of SAA and cobalamin were measured by chemiluminescent immunoassay. RESULTS On admission, survivor cats with FPV had significantly higher serum Cu and SAA concentrations and Cu/Zn ratios and significantly lower serum Zn and cobalamin concentrations than controls. Furthermore, non-survivor cats with FPV had significantly higher serum Cu and SAA concentrations and Cu/Zn ratios and significantly lower cobalamin concentrations than survivors and controls. Prognostic thresholds were calculated, with positive predictive value (PPV) for survival of 90% for Cu (≥120.3 μg/dL), 90% for Cu/Zn (≥1.34), 90% for cobalamin (≤430.4 pg/mL), and 90% for SAA (≥0.85 mg/L). CONCLUSIONS AND CLINICAL IMPORTANCE Cu (0.93 area under curve [AUC]), Cu/Zn (0.95 AUC), cobalamin (0.98 AUC), and SAA (0.98 AUC) were excellent biomarkers for predicting prognosis in cats with FPV. Their effectiveness, as assessed by sensitivity (100%), specificity (80%), AUC (0.98), and PPV (90%) from receiver operating characteristic analysis, emphasizes the performance of cobalamin and SAA.
Collapse
Affiliation(s)
- Kerim Emre Yanar
- Department of Internal MedicineFaculty of Veterinary Medicine, Atatürk UniversityErzurum 25240Turkey
| | - Sümeyye Baysal
- Department of Internal MedicineFaculty of Veterinary Medicine, Atatürk UniversityErzurum 25240Turkey
| | - Nergis Ulaş
- Department of Internal MedicineFaculty of Veterinary Medicine, Atatürk UniversityErzurum 25240Turkey
| | - Mustafa Sinan Aktaş
- Department of Internal MedicineFaculty of Veterinary Medicine, Atatürk UniversityErzurum 25240Turkey
| | - Mehmet Özkan Timurkan
- Department of VirologyFaculty of Veterinary Medicine, Atatürk UniversityErzurum 25240Turkey
| | - Hakan Aydın
- Department of VirologyFaculty of Veterinary Medicine, Atatürk UniversityErzurum 25240Turkey
| |
Collapse
|
7
|
Cao Y, Tian S, Geng Y, Zhang L, Zhao Q, Chen J, Li Y, Hu X, Huang J, Ning P. Interactions between CuO NPs and PS: The release of copper ions and oxidative damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166285. [PMID: 37586511 DOI: 10.1016/j.scitotenv.2023.166285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) can adversely affect lung health possibly by inducing oxidative damage through the release of copper ions. However, the migration and transformation processes of CuO NPs in lung lining fluid is still unclear, and there are still conflicting reports of redox reactions involving copper ions. To address this, we examined the release of copper ions from CuO NPs in simulated lung fluid supplemented with pulmonary surfactant (PS), and further analyzed the mechanisms of PS-CuO NPs interactions and the health hazards. The results showed that the phospholipid of PS was adsorbed on the particle surface, which not only induced aggregation of the particles but also provided a reaction environment for the interaction of PS with CuO NPs. PS was able to promote the release of ions from CuO NPs, of which the protein was a key component. Lipid peroxidation, protein destabilization, and disruption of the interfacial chemistry also occurred in the PS-CuO NPs interactions, during which copper ions were present only as divalent cations. Meanwhile, the contribution of the particle surface cannot be neglected in the oxidative damage to the lung caused by CuO NPs. Through reacting with biomolecules, CuO NPs accomplished ion release and induced oxidative damage associated with PS. This research was the first to reveal the mechanism of CuO NPs releasing copper ions and inducing lipid oxidative damage in the presence of PS, which provides a new idea of transition metal-induced health risk in human body.
Collapse
Affiliation(s)
- Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Linfeng Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jie Chen
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xuewei Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jianhong Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
8
|
Li J, Li J, Zhai L, Lu K. Co-exposure of polycarbonate microplastics aggravated the toxic effects of imidacloprid on the liver and gut microbiota in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104194. [PMID: 37348773 DOI: 10.1016/j.etap.2023.104194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
The joint toxicity of microplastics (MPs) and pesticides may be different from MPs or pesticides individually, however, the information about the combined toxicity of MPs and pesticides is not well understood. Herein, we investigated the joint toxicity of polycarbonate (PC) MPs and imidacloprid (IMI) on mice. After orally exposure for 4 weeks, PC and/or IMI lowered the body weight gain of mice. Single exposure of IMI induced the tissue damage in liver by disturbing the redox homeostasis, and PC significantly aggravated the imbalance of redox homeostasis by facilitating the accumulation of IMI in liver. Additionally, compared to single exposure of PC or IMI, PC+IMI exposure caused more severe damage to the gut microstructure and microbial diversity. Several key metabolic pathways, especially the lipid metabolism, were significantly affected. Overall, these findings provide new insight into understanding the potential risk of co-exposure of microplastics and pesticides to animal and human health.
Collapse
Affiliation(s)
- Jiao Li
- Nanjing Qixia District Hospital, Nanjing 210033, China; Nanjing Medical University, Nanjing 210029, China
| | - Jie Li
- Clinical Oncology School of Fujian Medical University, Department of radiology, Fujian Cancer Hospital, Fuzhou 350000, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Antonello G, Marucco A, Gazzano E, Kainourgios P, Ravagli C, Gonzalez-Paredes A, Sprio S, Padín-González E, Soliman MG, Beal D, Barbero F, Gasco P, Baldi G, Carriere M, Monopoli MP, Charitidis CA, Bergamaschi E, Fenoglio I, Riganti C. Changes of physico-chemical properties of nano-biomaterials by digestion fluids affect the physiological properties of epithelial intestinal cells and barrier models. Part Fibre Toxicol 2022; 19:49. [PMID: 35854319 PMCID: PMC9297619 DOI: 10.1186/s12989-022-00491-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure. Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal (OGI) tract. How these transformations affect their interaction with intestinal cells is still poorly understood. NBMs of different chemical nature—lipid-surfactant nanoparticles (LSNPs), carbon nanoparticles (CNPs), surface modified Fe3O4 nanoparticles (FNPs) and hydroxyapatite nanoparticles (HNPs)—were treated in a simulated human digestive system (SHDS) and then characterised. The biological effects of SHDS-treated and untreated NBMs were evaluated on primary (HCoEpiC) and immortalised (Caco-2, HCT116) epithelial intestinal cells and on an intestinal barrier model. Results The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells. The differences between SHDS-treated and untreated NBMs could be attributed to the irreversible modification of the NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their chemical nature, while pH- or enzyme-mediated partial degradation was detected for hydroxyapatite or polymer-coated iron oxide nanoparticles and lipid nanoparticles, respectively. The formation of a bio-corona, which contains proteases, was also demonstrated on all the analysed NBMs. In viability assays, undifferentiated primary cells were more sensitive than immortalised cells to digested NBMs, but neither pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS-treated NBMs up-regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal barrier, with different patterns between each NBM, and increase the expression of both pro- and anti-inflammatory cytokines (IL-1β, TNF-α, IL-22, IL-10). Notably, none of these NBMs showed any significant genotoxic effect. Conclusions Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of chemical and microscopic characterization, SHDS and in vitro tests on both immortalised and primary cells as a robust screening pipeline useful to monitor the changes in the physico-chemical properties of ingested NBMs and their effects on intestinal cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00491-w.
Collapse
Affiliation(s)
- Giulia Antonello
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.,Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy.,Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy
| | - Arianna Marucco
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Elena Gazzano
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Panagiotis Kainourgios
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Costanza Ravagli
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | | | - Simone Sprio
- National Research Council, Institute of Science and Technology for Ceramics ISTEC-CNR, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Esperanza Padín-González
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Mahmoud G Soliman
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - David Beal
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Francesco Barbero
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Paolo Gasco
- Nanovector Srl, Headwork, Via Livorno 60, 10144, Turin, Italy
| | - Giovanni Baldi
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | - Marie Carriere
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Costas A Charitidis
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy.
| |
Collapse
|
10
|
Artificial Digestion of Polydisperse Copper Oxide Nanoparticles: Investigation of Effects on the Human In Vitro Intestinal Co-Culture Model Caco-2/HT29-MTX. TOXICS 2022; 10:toxics10030130. [PMID: 35324755 PMCID: PMC8955801 DOI: 10.3390/toxics10030130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023]
Abstract
Copper oxide nanoparticles (CuO-NP) are increasingly used in consumer-related products, which may result in increased oral ingestion. Digestion of particles can change their physicochemical properties and toxicity. Therefore, our aim was to simulate the gastrointestinal tract using a static in vitro digestion model. Toxic properties of digested and undigested CuO-NP were compared using an epithelial mono-culture (Caco-2) and a mucus-secreting co-culture model (Caco-2/HT29-MTX). Effects on intestinal barrier integrity, permeability, cell viability and apoptosis were analyzed. CuO-NP concentrations of 1, 10 and 100 µg mL−1 were used. Particle characterization by dynamic light scattering and transmission electron microscopy showed similar mean particle sizes before and after digestion, resulting in comparable delivered particle doses in vitro. Only slight effects on barrier integrity and cell viability were detected for 100 µg mL−1 CuO-NP, while the ion control CuCl2 always caused significantly higher adverse effects. The utilized cell models were not significantly different. In summary, undigested and digested CuO-NP show comparable effects on the mono-/co-cultures, which are weaker than those of copper ions. Only in the highest concentration, CuO-NP showed weak effects on barrier integrity and cell viability. Nevertheless, a slightly increased apoptosis rate indicates existing cellular stress, which gives reason for further investigations.
Collapse
|