1
|
Liu J, Chen X, Chen C, Wu J, Xie F, Li J, Han H, Zhao Y, Yang Y. Nonclinical safety and biodistribution evaluation of HC009 mRNA vaccine against COVID-19 in rat. Toxicology 2025; 514:154107. [PMID: 40064458 DOI: 10.1016/j.tox.2025.154107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 04/03/2025]
Abstract
mRNA-based technology has been evaluated in clinical trials for rapid control and prevention of emergencies and diseases. HC009, a mRNA vaccine encoding the full-length SARS-CoV-2 spike protein delivered via the QTsome platform, was tested in rats for immunogenicity, toxicity, and biodistribution. For immunogenicity and toxicity, rats received three intramuscular injections of HC009 at 3-week intervals followed by a 4-week observation period. In the biodistribution study, rats received a single intramuscular injection, with mRNA levels measured in organs at various time points. Results showed that HC009 elicited effective, long-lasting humoral immunity and Th1-biased cellular responses. The mRNA primarily localized to the injection site and spleen, with no observed vaccine-related toxicological reactions. These findings support HC009's potential for inducing an effective immune response with a favorable safety profile, warranting further clinical investigation.
Collapse
MESH Headings
- Animals
- COVID-19 Vaccines/pharmacokinetics
- COVID-19 Vaccines/toxicity
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Rats
- COVID-19/prevention & control
- COVID-19/immunology
- Tissue Distribution
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- SARS-CoV-2/immunology
- Male
- RNA, Messenger
- mRNA Vaccines
- Injections, Intramuscular
- Rats, Sprague-Dawley
- Vaccines, Synthetic/toxicity
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Female
- Immunity, Humoral/drug effects
- Antibodies, Viral/blood
Collapse
Affiliation(s)
- Juan Liu
- Nucleic Acid Medicine Innovation Center, Zhejiang Haichang Biotech Co., Ltd., Hangzhou, Zhejiang 310020, China.
| | - Xicheng Chen
- Nucleic Acid Medicine Innovation Center, Zhejiang Haichang Biotech Co., Ltd., Hangzhou, Zhejiang 310020, China
| | - Chuanqian Chen
- Nucleic Acid Medicine Innovation Center, Zhejiang Haichang Biotech Co., Ltd., Hangzhou, Zhejiang 310020, China
| | - Jie Wu
- Nucleic Acid Medicine Innovation Center, Zhejiang Haichang Biotech Co., Ltd., Hangzhou, Zhejiang 310020, China
| | - Fengyang Xie
- Nucleic Acid Medicine Innovation Center, Zhejiang Haichang Biotech Co., Ltd., Hangzhou, Zhejiang 310020, China
| | - Jing Li
- Nucleic Acid Medicine Innovation Center, Zhejiang Haichang Biotech Co., Ltd., Hangzhou, Zhejiang 310020, China
| | - Huafeng Han
- Nucleic Acid Medicine Innovation Center, Zhejiang Haichang Biotech Co., Ltd., Hangzhou, Zhejiang 310020, China
| | - Yingying Zhao
- Nucleic Acid Medicine Innovation Center, Zhejiang Haichang Biotech Co., Ltd., Hangzhou, Zhejiang 310020, China
| | - Yongsheng Yang
- Nucleic Acid Medicine Innovation Center, Zhejiang Haichang Biotech Co., Ltd., Hangzhou, Zhejiang 310020, China.
| |
Collapse
|
2
|
Fant P, Laurent S, Desert P, Combadière B, Palazzi X, Choudhary S, Gervais F, Broudic K, Rossi R, Gauthier BE. Proceedings of the 2023 Annual Scientific Meeting of the French Society of Toxicologic Pathology (SFPT) on Preclinical Development and Therapeutic Applications of mRNA-Based Technologies. Toxicol Pathol 2025; 53:423-434. [PMID: 40110665 DOI: 10.1177/01926233251326089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The 2023 annual scientific meeting of the French Society of Toxicologic Pathology (Société Française de Pathologie Toxicologique, SFPT), entitled "mRNA-based technologies: preclinical development and therapeutic applications," was held in Lyon (France) on May 25 to 26, 2023. The aim of the meeting was to discuss the biology, immunology, and preclinical development of messenger RNA (mRNA)-based vaccines and therapeutics, including immuno-oncology and rare diseases, as well as the regulatory aspect of the COVID-19 vaccines and an overview of the principles and applications of in situ hybridization techniques. This article presents the summary of five lectures along with selected figures, tables, and key literature references on this topic.
Collapse
Affiliation(s)
- Pierluigi Fant
- Charles River Laboratories Safety Assessment, Saint Germain-Nuelles, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ahn JH, Lee J, Roh G, Lee NY, Bae HJ, Kwon E, Han KM, Kim JE, Park HJ, Yoo S, Kwon SP, Bang EK, Keum G, Nam JH, Kang BC. Impact of administration routes and dose frequency on the toxicology of SARS-CoV-2 mRNA vaccines in mice model. Arch Toxicol 2025; 99:755-773. [PMID: 39656241 PMCID: PMC11775000 DOI: 10.1007/s00204-024-03912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/20/2024] [Indexed: 01/30/2025]
Abstract
The increasing use of SARS-CoV-2 mRNA vaccines has raised concerns about their potential toxicological effects, necessitating further investigation to ensure their safety. To address this issue, we aimed to evaluate the toxicological effects of SARS-CoV-2 mRNA vaccine candidates formulated with four different types of lipid nanoparticles in ICR mice, focusing on repeated doses and administration routes. We conducted an extensive analysis in which mice received the mRNA vaccine candidates intramuscularly (50 μg/head) twice at 2-week intervals, followed by necropsy at 2 and 14 dpsi (days post-secondary injection). In addition, we performed a repeated dose toxicity test involving three, four, or five doses and compared the toxicological outcomes between intravenous and intramuscular routes. Our findings revealed that all vaccine candidates significantly induced SARS-CoV-2 spike protein-specific IgG and T cell responses. However, at 2 dpsi, there was a notable temporary decrease in lymphocyte and reticulocyte counts, anemia-related parameters, and significant increases in cardiac damage markers, troponin-I and NT-proBNP. Histopathological analysis revealed severe inflammation and necrosis at the injection site, decreased erythroid cells in bone marrow, cortical atrophy of the thymus, and increased spleen cellularity. While most toxicological changes observed at 2 dpsi had resolved by 14 dpsi, spleen enlargement and injection site damage persisted. Furthermore, repeated doses led to the accumulation of toxicity, and different administration routes resulted in distinct toxicological phenotypes. These findings highlight the potential toxicological risks associated with mRNA vaccines, emphasizing the necessity to carefully consider administration routes and dosage regimens in vaccine safety evaluations, particularly given the presence of bone marrow and immune organ toxicity, which, though eventually reversible, remains a serious concern.
Collapse
Affiliation(s)
- Jae-Hun Ahn
- Department of Experiment Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Gahyun Roh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
- BK Four Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Na-Young Lee
- Department of Experiment Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Veterinary Pathology and Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hee-Jin Bae
- Department of Experiment Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Euna Kwon
- Department of Experiment Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kang-Min Han
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, CHA Ilsan Medical Center, CHA University, Goyang-si, Republic of Korea
| | - Ji-Eun Kim
- Department of Experiment Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
- BK Four Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Soyeon Yoo
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Sung Pil Kwon
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Eun-Kyoung Bang
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Gyochang Keum
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea.
- BK Four Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea.
| | - Byeong-Cheol Kang
- Department of Experiment Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Veterinary Pathology and Research Institute of Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Domingo JL. A review of the scientific literature on experimental toxicity studies of COVID-19 vaccines, with special attention to publications in toxicology journals. Arch Toxicol 2024; 98:3603-3617. [PMID: 39225797 PMCID: PMC11489230 DOI: 10.1007/s00204-024-03854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Since the reports of the first cases of COVID-19, in less than 5 years, a huge number of documents regarding that disease and the coronavirus (SARS-CoV-2), responsible for the infection, have been published. The tremendous number of scientific documents covers many topics on different issues directly related to COVID-19/SARS-CoV-2. The number of articles-including reviews-reporting adverse/side effects of the approved COVID-19 vaccines is considerable. A wide range of adverse/side effects have been reported in humans after COVID-19 vaccination: thrombotic events/thrombocytopenia, myocarditis/pericarditis, cutaneous reactions, immune-mediated effects, psychiatric adverse events, systemic lupus erythematosus, reproductive toxicity, and other miscellaneous adverse effects. In contrast, information on nonclinical studies conducted to assess the potential toxicity/adverse effects of the COVID-19 vaccines in laboratory animals, is comparatively very scarce. The present review was aimed at revising the scientific literature regarding the studies in laboratory animals on the toxic/adverse effects of COVID-19 vaccines. In addition, the investigations reported in those specific toxicology journals with the highest impact factors have been examined one by one. The results of the present review indicate that most nonclinical/experimental studies on the adverse/toxic effects of the COVID-19 vaccines and/or potential candidates showed-in general terms-a good safety profile. Only in some animal studies were certain adverse effects found. However, a rather surprising result has been the limited number of available (in the databases PubMed and Scopus) nonclinical studies performed by the companies that have been the largest manufacturers of mRNA vaccines in the world. It is assumed that these studies have been conducted. However, they have not been published in scientific journals, which does not allow the judgment of the international scientific community, including toxicologists.
Collapse
Affiliation(s)
- Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
5
|
Sellers RS, Dormitzer PR. Toxicologic Pathology Forum: mRNA Vaccine Safety-Separating Fact From Fiction. Toxicol Pathol 2024; 52:333-342. [PMID: 39254115 PMCID: PMC11528946 DOI: 10.1177/01926233241278298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
SARS-CoV-2 spread rapidly across the globe, contributing to the death of millions of individuals from 2019 to 2023, and has continued to be a major cause of morbidity and mortality after the pandemic. At the start of the pandemic, no vaccines or anti-viral treatments were available to reduce the burden of disease associated with this virus, as it was a novel SARS coronavirus. Because of the tremendous need, the development of vaccines to protect against COVID-19 was critically important. The flexibility and ease of manufacture of nucleic acid-based vaccines, specifically mRNA-based products, allowed the accelerated development of COVID-19 vaccines. Although mRNA-based vaccines and therapeutics had been in clinical trials for over a decade, there were no licensed mRNA vaccines on the market at the start of the pandemic. The rapid development of mRNA-based COVID-19 vaccines reduced serious complications and death from the virus but also engendered significant public concerns, which continue now, years after emergency-use authorization and subsequent licensure of these vaccines. This article summarizes and addresses some of the safety concerns that continue to be expressed about these vaccines and their underlying technology.
Collapse
Affiliation(s)
- Rani S. Sellers
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
6
|
Reinig S, Kuo C, Wu CC, Huang SY, Yu JS, Shih SR. Specific long-term changes in anti-SARS-CoV-2 IgG modifications and antibody functions in mRNA, adenovector, and protein subunit vaccines. J Med Virol 2024; 96:e29793. [PMID: 39023111 DOI: 10.1002/jmv.29793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Various vaccine platforms were developed and deployed against the COVID-19 disease. The Fc-mediated functions of IgG antibodies are essential in the adaptive immune response elicited by vaccines. However, the long-term changes of protein subunit vaccines and their combinations with messenger RNA (mRNA) vaccines are unknown. A total of 272 serum and plasma samples were collected from individuals who received first to third doses of the protein subunit Medigen, the mRNA (BNT, Moderna), or the adenovector AstraZeneca vaccines. The IgG subclass level was measured using enzyme-linked immunosorbent assay, and Fc-N glycosylation was measured using liquid chromatography coupled to tandem mass spectrometry. Antibody-dependent-cellular-phagocytosis (ADCP) and complement deposition (ADCD) of anti-spike (S) IgG antibodies were measured by flow cytometry. IgG1 and 3 reached the highest anti-S IgG subclass level. IgG1, 2, and 4 subclass levels significantly increased in mRNA- and Medigen-vaccinated individuals. Fc-glycosylation was stable, except in female BNT vaccinees, who showed increased bisection and decreased galactosylation. Female BNT vaccinees had a higher anti-S IgG titer than that of males. ADCP declined in all groups. ADCD was significantly lower in AstraZeneca-vaccinated individuals. Each vaccine produced specific long-term changes in Fc structure and function. This finding is critical when selecting a vaccine platform or combination to achieve the desired immune response.
Collapse
Affiliation(s)
- Sebastian Reinig
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Chin Kuo
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chun Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Yu Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Clinical Virology Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
7
|
Reinig S, Kuo C, Wu CC, Huang SY, Yu JS, Shih SR. Specific long-term changes in anti-SARS-CoV-2 IgG modifications and antibody functions in mRNA, adenovector, and protein subunit vaccines. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.06.16.23291455. [PMID: 38559243 PMCID: PMC10980124 DOI: 10.1101/2023.06.16.23291455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Various vaccine platforms were developed and deployed against the COVID-19 disease. The Fc-mediated functions of IgG antibodies are essential in the adaptive immune response elicited by vaccines. However, the long-term changes of protein subunit vaccines and their combinations with mRNA vaccines are unknown. A total of 272 serum and plasma samples were collected from individuals who received first to third doses of the protein subunit Medigen, the mRNA (BNT), or the adenovector AstraZeneca vaccines. The IgG subclass level was measured using enzyme-linked immunosorbent assay, and Fc-N glycosylation was measured using LC-MS/MS. Antibody-dependent phagocytosis (ADCP) and complement deposition (ADCD) of anti-spike (S) IgG antibodies were measured. IgG1 and 3 reached the highest anti-S IgG subclass level. IgG1, 2, and 4 subclass levels significantly increased in mRNA- and Medigen-vaccinated individuals. Fc-glycosylation was stable, except in female BNT vaccinees, who showed increased bisection and decreased galactosylation. Female BNT vaccinees had a higher anti-S IgG titer than that of males. ADCP declined in all groups. ADCD increased in Medigen-vaccinated individuals after the third dose. Each vaccine produced specific long-term changes in Fc structure and function. This finding is critical when selecting a vaccine platform or combination to achieve the desired immune response.
Collapse
Affiliation(s)
- Sebastian Reinig
- Research center for Emerging viral infections, Chang Gung University, Taoyuan, Taiwan
| | - Chin Kuo
- Research center for Emerging viral infections, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chun Wu
- Molecular research center, Chang Gung University, Taoyuan
| | - Sheng-Yu Huang
- Research center for Emerging viral infections, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Molecular research center, Chang Gung University, Taoyuan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
| | - Shin-Ru Shih
- Research center for Emerging viral infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan
- Clinical Virology Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|