1
|
Lee J, Wijesinghe RE, Jeon M, Kim J. Non-destructive morphological observation of anatomical growth process in Haemaphysalis Longicornis tick specimens using optical coherence tomography. Technol Health Care 2022; 30:61-70. [PMID: 35124584 PMCID: PMC9028609 DOI: 10.3233/thc-228006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND: Ticks are known as the representatives of hematophagous arachnids. They cause various tick-borne diseases, such as severe fever with thrombocytopenia syndrome (SFTS) and Lyme disease. To understand the mechanism of virus infection caused by ticks, morphology for the anatomical characteristics of crucial organs has been widely studied in acarological fields. The conventional methods used for tick observation have inevitable limitations. Dissection is the standard method to obtain the morphological information, and complex microscopy methods were utilized alternatively. OBJECTIVE: The study goal is to obtain the morphological information of ticks in different growth stages non-invasively. METHODS: Optical coherence tomography (OCT) is employed to acquire structural images of various internal organs without damage for observing the growth process of larva, nymph, and adult in Haemaphysalis longicornis ticks in real-time. RESULTS: Various internal organs, such as salivary glands, rectal sac, genital aperture, and anus, were well-visualized by the OCT enface and cross-sectional images, and the variation in size of these organs in each growth stage was compared quantitatively. CONCLUSIONS: Based on the obtained results, we confirmed the potential feasibility of OCT as a non-destructive real-time tool for morphological studies in acarology. Further research using OCT for acarological applications can include monitoring the growth process of ticks in terms of structural changes and investigating morphological differences between normal and virus-infected tick specimens.
Collapse
Affiliation(s)
- Junsoo Lee
- School of Electronic and Electrical Engineering, Graduate School, Kyungpook National University, Daegu, Korea
| | - Ruchire Eranga Wijesinghe
- Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, Sri Lanka
| | - Mansik Jeon
- School of Electronic and Electrical Engineering, Graduate School, Kyungpook National University, Daegu, Korea
| | - Jeehyun Kim
- School of Electronic and Electrical Engineering, Graduate School, Kyungpook National University, Daegu, Korea
| |
Collapse
|
2
|
Sully RE, Moore CJ, Garelick H, Loizidou E, Podoleanu AG, Gubala V. Nanomedicines and microneedles: a guide to their analysis and application. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3326-3347. [PMID: 34313266 DOI: 10.1039/d1ay00954k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fast-advancing progress in the research of nanomedicine and microneedle applications in the past two decades has suggested that the combination of the two concepts could help to overcome some of the challenges we are facing in healthcare. They include poor patient compliance with medication and the lack of appropriate administration forms that enable the optimal dose to reach the target site. Nanoparticles as drug vesicles can protect their cargo and deliver it to the target site, while evading the body's defence mechanisms. Unfortunately, despite intense research on nanomedicine in the past 20 years, we still haven't answered some crucial questions, e.g. about their colloidal stability in solution and their optimal formulation, which makes the translation of this exciting technology from the lab bench to a viable product difficult. Dissolvable microneedles could be an effective way to maintain and stabilise nano-sized formulations, whilst enhancing the ability of nanoparticles to penetrate the stratum corneum barrier. Both concepts have been individually investigated fairly well and many analytical techniques for tracking the fate of nanomaterials with their precious cargo, both in vitro and in vivo, have been established. Yet, to the best of our knowledge, a comprehensive overview of the analytical tools encompassing the concepts of microneedles and nanoparticles with specific and successful examples is missing. In this review, we have attempted to briefly analyse the challenges associated with nanomedicine itself, but crucially we provide an easy-to-navigate scheme of methods, suitable for characterisation and imaging the physico-chemical properties of the material matrix.
Collapse
Affiliation(s)
- Rachel E Sully
- Medway School of Pharmacy, Universities of Greenwich and Kent, Anson Building, Central Avenue, Chatham, ME4 4TB, UK.
| | | | | | | | | | | |
Collapse
|
3
|
Marques MJ, Green R, King R, Clement S, Hallett P, Podoleanu A. Sub-surface characterisation of latest-generation identification documents using optical coherence tomography. Sci Justice 2020; 61:119-129. [PMID: 33736844 DOI: 10.1016/j.scijus.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/19/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
The identification of individuals, particularly at international border crossings, coupled with the evolving sophistication of identity documents are issues that authorities must contend with. Particularly, the ability to distinguish legitimate from counterfeit documents, with high throughput, sensitivity, and selectivity is an ever-evolving challenge. Over the last decade, an increasing number of security features have been introduced by authorities in identification documents. The latest generation of travel documents (such as passports and national ID cards) forego paper substrates for several layers of polycarbonate, allowing security features to be embedded within the documents. These security features may contain information at either the superficial and sub-surface levels, thus increasing the document's resilience to counterfeiting. As the documents become harder to forge, so does the sophistication of forgery detection. There appears to be an unmet and evolving need to identify such sophisticated forgeries, in a non-destructive, high throughput manner. In this publication, we report on the application of optical coherence tomography (OCT) imaging on assessing security features in specimen passports and national ID cards. OCT allows sub-surface imaging of translucent structures, non-destructively enabling quantitative visualisation of embedded security features.
Collapse
Affiliation(s)
- Manuel J Marques
- Applied Optics Group, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom.
| | - Robert Green
- Forensic Research Group, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| | - Roberto King
- Foster and Freeman Ltd, Vale Park, 2 Vale Link, Evesham WR11 1TD, United Kingdom
| | - Simon Clement
- Foster and Freeman Ltd, Vale Park, 2 Vale Link, Evesham WR11 1TD, United Kingdom
| | - Peter Hallett
- Foster and Freeman Ltd, Vale Park, 2 Vale Link, Evesham WR11 1TD, United Kingdom
| | - Adrian Podoleanu
- Applied Optics Group, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, United Kingdom
| |
Collapse
|
4
|
Petersen CE, Wolf MJ, Smyth JT. Suppression of store-operated calcium entry causes dilated cardiomyopathy of the Drosophila heart. Biol Open 2020; 9:bio049999. [PMID: 32086252 PMCID: PMC7075072 DOI: 10.1242/bio.049999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/07/2020] [Indexed: 11/20/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is an essential Ca2+ signaling mechanism present in most animal cells. SOCE refers to Ca2+ influx that is activated by depletion of sarco/endoplasmic reticulum (S/ER) Ca2+ stores. The main components of SOCE are STIM and Orai. STIM proteins function as S/ER Ca2+ sensors, and upon S/ER Ca2+ depletion STIM rearranges to S/ER-plasma membrane junctions and activates Orai Ca2+ influx channels. Studies have implicated SOCE in cardiac hypertrophy pathogenesis, but SOCE's role in normal heart physiology remains poorly understood. We therefore analyzed heart-specific SOCE function in Drosophila, a powerful animal model of cardiac physiology. We show that heart-specific suppression of Stim and Orai in larvae and adults resulted in reduced contractility consistent with dilated cardiomyopathy. Myofibers were also highly disorganized in Stim and Orai RNAi hearts, reflecting possible decompensation or upregulated stress signaling. Furthermore, we show that reduced heart function due to SOCE suppression adversely affected animal viability, as heart specific Stim and Orai RNAi animals exhibited significant delays in post-embryonic development and adults died earlier than controls. Collectively, our results demonstrate that SOCE is essential for physiological heart function, and establish Drosophila as an important model for understanding the role of SOCE in cardiac pathophysiology.
Collapse
Affiliation(s)
- Courtney E Petersen
- Graduate Program in Molecular and Cellular Biology, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Matthew J Wolf
- Division of Cardiovascular Medicine, Department of Medicine, The University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jeremy T Smyth
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
5
|
Ravichandran NK, Wijesinghe RE, Lee SY, Choi KS, Jeon M, Jung HY, Kim J. Non-Destructive Analysis of the Internal Anatomical Structures of Mosquito Specimens Using Optical Coherence Tomography. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1897. [PMID: 28817086 PMCID: PMC5580080 DOI: 10.3390/s17081897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/15/2022]
Abstract
The study of mosquitoes and analysis of their behavior are of crucial importance in the on-going efforts to control the alarming increase in mosquito-borne diseases. Furthermore, a non-destructive and real-time imaging technique to study the anatomical features of mosquito specimens can greatly aid the study of mosquitoes. In this study, we demonstrate the three-dimensional imaging capabilities of optical coherence tomography (OCT) for structural analysis of Anopheles sinensis mosquitoes. The anatomical features of An. sinensis head, thorax, and abdominal regions, along with the morphology of internal structures, such as foregut, midgut, and hindgut, were studied using OCT imaging. Two-dimensional and three-dimensional OCT images, used in conjunction with histological images, proved useful for anatomical analysis of mosquito specimens. By presenting this work as an initial study, we demonstrate the applicability of OCT for future mosquito-related entomological research, and also in identifying changes in mosquito anatomical structure.
Collapse
Affiliation(s)
- Naresh Kumar Ravichandran
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| | - Ruchire Eranga Wijesinghe
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| | - Seung-Yeol Lee
- School of Applied Biosciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| | - Kwang Shik Choi
- School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| | - Mansik Jeon
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| | - Hee-Young Jung
- School of Applied Biosciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| | - Jeehyun Kim
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| |
Collapse
|
6
|
Dissecting the Role of the Extracellular Matrix in Heart Disease: Lessons from the Drosophila Genetic Model. Vet Sci 2017; 4:vetsci4020024. [PMID: 29056683 PMCID: PMC5606597 DOI: 10.3390/vetsci4020024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/15/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022] Open
Abstract
The extracellular matrix (ECM) is a dynamic scaffold within organs and tissues that enables cell morphogenesis and provides structural support. Changes in the composition and organisation of the cardiac ECM are required for normal development. Congenital and age-related cardiac diseases can arise from mis-regulation of structural ECM proteins (Collagen, Laminin) or their receptors (Integrin). Key regulators of ECM turnover include matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of matrix metalloproteinases (TIMPs). MMP expression is increased in mice, pigs, and dogs with cardiomyopathy. The complexity and longevity of vertebrate animals makes a short-lived, genetically tractable model organism, such as Drosophila melanogaster, an attractive candidate for study. We survey ECM macromolecules and their role in heart development and growth, which are conserved between Drosophila and vertebrates, with focus upon the consequences of altered expression or distribution. The Drosophila heart resembles that of vertebrates during early development, and is amenable to in vivo analysis. Experimental manipulation of gene function in a tissue- or temporally-regulated manner can reveal the function of adhesion or ECM genes in the heart. Perturbation of the function of ECM proteins, or of the MMPs that facilitate ECM remodelling, induces cardiomyopathies in Drosophila, including cardiodilation, arrhythmia, and cardia bifida, that provide mechanistic insight into cardiac disease in mammals.
Collapse
|
7
|
Peterson LM, Gu S, Karunamuni G, Jenkins MW, Watanabe M, Rollins AM. Embryonic aortic arch hemodynamics are a functional biomarker for ethanol-induced congenital heart defects [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:1823-1837. [PMID: 28663868 PMCID: PMC5480583 DOI: 10.1364/boe.8.001823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 05/19/2023]
Abstract
The great arteries develop from symmetrical aortic arch arteries which are extensively remodeled. These events are vulnerable to perturbations. Hemodynamic forces have a significant role in this remodeling. In this study, optical coherence tomography (OCT) visualized live avian embryos for staging and measuring pharyngeal arch morphology. Measurements acquired with our orientation-independent, dual-angle Doppler OCT technique revealed that ethanol exposure leads to higher absolute blood flow, shear stress, and retrograde flow. Ethanol-exposed embryos had smaller cardiac neural crest (CNC) derived pharyngeal arch mesenchyme and fewer migrating CNC-derived cells. These differences in forces and CNC cell numbers could explain the abnormal aortic arch remodeling.
Collapse
Affiliation(s)
- Lindsy M. Peterson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Ganga Karunamuni
- Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Michiko Watanabe
- Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
8
|
Moulton MJ, Letsou A. Modeling congenital disease and inborn errors of development in Drosophila melanogaster. Dis Model Mech 2016; 9:253-69. [PMID: 26935104 PMCID: PMC4826979 DOI: 10.1242/dmm.023564] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fly models that faithfully recapitulate various aspects of human disease and human health-related biology are being used for research into disease diagnosis and prevention. Established and new genetic strategies in Drosophila have yielded numerous substantial successes in modeling congenital disorders or inborn errors of human development, as well as neurodegenerative disease and cancer. Moreover, although our ability to generate sequence datasets continues to outpace our ability to analyze these datasets, the development of high-throughput analysis platforms in Drosophila has provided access through the bottleneck in the identification of disease gene candidates. In this Review, we describe both the traditional and newer methods that are facilitating the incorporation of Drosophila into the human disease discovery process, with a focus on the models that have enhanced our understanding of human developmental disorders and congenital disease. Enviable features of the Drosophila experimental system, which make it particularly useful in facilitating the much anticipated move from genotype to phenotype (understanding and predicting phenotypes directly from the primary DNA sequence), include its genetic tractability, the low cost for high-throughput discovery, and a genome and underlying biology that are highly evolutionarily conserved. In embracing the fly in the human disease-gene discovery process, we can expect to speed up and reduce the cost of this process, allowing experimental scales that are not feasible and/or would be too costly in higher eukaryotes.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
9
|
Jiang M, Liu T, Liu X, Jiao S. Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm. BIOMEDICAL OPTICS EXPRESS 2014; 5:4242-8. [PMID: 25574436 PMCID: PMC4285602 DOI: 10.1364/boe.5.004242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 05/03/2023]
Abstract
We accomplished spectral domain optical coherence tomography and auto-fluorescence microscopy for imaging the retina with a single broadband light source centered at 480 nm. This technique is able to provide simultaneous structural imaging and lipofuscin molecular contrast of the retina. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. To test the capabilities of the technique we periodically imaged the retinas of the same rats for four weeks. The images successfully demonstrated lipofuscin accumulation in the retinal pigment epithelium with aging. The experimental results showed that the dual-modal imaging system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.
Collapse
Affiliation(s)
- Minshan Jiang
- Engineering Research Center of Optical Instruments and Systems, Ministry of Education, Shanghai Key Lab of Modern Optical Systems, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093,
China
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler Street, Miami, Florida, 33174,
USA
| | - Tan Liu
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler Street, Miami, Florida, 33174,
USA
| | - Xiaojing Liu
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler Street, Miami, Florida, 33174,
USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler Street, Miami, Florida, 33174,
USA
| |
Collapse
|
10
|
Brown K, Harvey M. Optical coherence tomography: age estimation of Calliphora vicina pupae in vivo? Forensic Sci Int 2014; 242:157-161. [PMID: 25064575 DOI: 10.1016/j.forsciint.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 11/16/2022]
Abstract
Necrophagous blowfly pupae are valuable contributors to the estimation of post-mortem interval, should an accurate age estimate be obtained. At present, this is reliant on a combination of rearing and destructive methods conducted on preserved samples, including morphological observation and gene expression analyses. This study demonstrates the use of optical coherence tomography (OCT) as a tool for in vivo morphological observation and pupal age estimation. Using a Michelson OCT microscope, alive and preserved four and ten-day old Calliphora vicina pupae were scanned in different orientations. Two and three-dimensional images were created. Morphological characteristics such as the brain, mouthparts and legs were identifiable in both living and preserved samples, with distinct differences noted between the two ages. Absorption of light by the puparium results in a vertical resolution of 1-2 mm, preventing observation of deeper tissues. The use of contrast agents or a longer wavelength laser would improve the images obtainable. At present, the data suggests OCT provides a primary view of external and internal morphology, which can be used to distinguish younger and older pupae for further analysis of age and PMI estimation.
Collapse
Affiliation(s)
- Katherine Brown
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, England.
| | - Michelle Harvey
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia.
| |
Collapse
|
11
|
Marques MJ, Bradu A, Podoleanu AG. Towards simultaneous Talbot bands based optical coherence tomography and scanning laser ophthalmoscopy imaging. BIOMEDICAL OPTICS EXPRESS 2014; 5:1428-1444. [PMID: 24877006 PMCID: PMC4026900 DOI: 10.1364/boe.5.001428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 05/29/2023]
Abstract
We report a Talbot bands-based optical coherence tomography (OCT) system capable of producing longitudinal B-scan OCT images and en-face scanning laser ophthalmoscopy (SLO) images of the human retina in-vivo. The OCT channel employs a broadband optical source and a spectrometer. A gap is created between the sample and reference beams while on their way towards the spectrometer's dispersive element to create Talbot bands. The spatial separation of the two beams facilitates collection by an SLO channel of optical power originating exclusively from the retina, deprived from any contribution from the reference beam. Three different modes of operation are presented, constrained by the minimum integration time of the camera used in the spectrometer and by the galvo-scanners' scanning rate: (i) a simultaneous acquisition mode over the two channels, useful for small size imaging, that conserves the pixel-to-pixel correspondence between them; (ii) a hybrid sequential mode, where the system switches itself between the two regimes and (iii) a sequential "on-demand" mode, where the system can be used in either OCT or SLO regimes for as long as required. The two sequential modes present varying degrees of trade-off between pixel-to-pixel correspondence and independent full control of parameters within each channel. Images of the optic nerve and fovea regions obtained in the simultaneous (i) and in the hybrid sequential mode (ii) are presented.
Collapse
|
12
|
Jenkins MW, Watanabe M, Rollins AM. Longitudinal Imaging of Heart Development With Optical Coherence Tomography. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2012; 18:1166-1175. [PMID: 26236147 PMCID: PMC4520323 DOI: 10.1109/jstqe.2011.2166060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Optical coherence tomography (OCT) has great potential for deciphering the role of mechanics in normal and abnormal heart development. OCT images tissue microstructure and blood flow deep into the tissue (1-2mm) at high spatiotemporal resolutions allowing unprecedented images of the developing heart. Here, we review the advancement of OCT technology to image heart development and report some of our recent findings utilizing OCT imaging under environmental control for longitudinal imaging. Precise control of the environment is absolutely required in longitudinal studies that follow the growth of the embryo or studies comparing normal versus perturbed heart development to obtain meaningful in vivo results. These types of studies are essential to tease out the influence of cardiac dynamics on molecular expression and their role in the progression of congenital heart defects.
Collapse
Affiliation(s)
- Michael W. Jenkins
- Department of Biomedical Engineering and Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Michiko Watanabe
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering and Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
13
|
Axenov-Gribanov DV, Gurkov AN, Shakhtanova NS, Bedulina DS, Timofeyev MA, Meglinski I. Optical diagnostic test of stress conditions of aquatic organisms. JOURNAL OF BIOPHOTONICS 2011; 4:619-626. [PMID: 21548104 DOI: 10.1002/jbio.201100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 05/30/2023]
Abstract
Global climate change has become a dire reality and its impact is expected to rise dramatically in the near future. Combined with the day-to-day human activities the climatic changes heavily affect the environment. In particular, a global temperature increase accompanied by a number of anthropogenic chemicals falling within the freshwater ecosystem results in a dramatic enhancement of the overall stress for most aquatic organisms. This leads to a significant shift in the species inventory and potential breakdown of the water ecosystem with severe consequences for local economies and water supply. In order to understand and predict the influence of climatic changes on the physiological and biochemical processes that take place in living aquatic organisms we explore the application of optical spectroscopy for monitoring and quantitative assessment of antioxidant enzymes activity in benthic amphipods of Lake Baikal. We demonstrate that the changes of the enzymes activity in Baikal amphipods undergoing thermal and/or hypoxia stress can be observed and documented by UV and optical spectroscopy both in vivo and in vitro.
Collapse
Affiliation(s)
- Denis V Axenov-Gribanov
- Baikal Research Centre, Irkutsk State University, Karl-Marx St. 510, 664003, Irkutsk, Russia
| | | | | | | | | | | |
Collapse
|
14
|
Tsai MT, Chang FY, Lee CK, Chi TT, Yang KM, Lin LY, Wu JT, Yang CC. Observations of cardiac beating behaviors of wild-type and mutant Drosophilae with optical coherence tomography. JOURNAL OF BIOPHOTONICS 2011; 4:610-618. [PMID: 21538996 DOI: 10.1002/jbio.201100009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 05/30/2023]
Abstract
Time-resolved optical coherence tomography (OCT) scanning images of wild-type and mutant fruit flies (Drosophila melanogaster), illustrating the heartbeat patterns for evaluating their cardiac functions, are demonstrated. Based on the heartbeat patterns, the beat rate and the relative phase between the first two heart segments can be evaluated. The OCT scanning results of mutant flies with impaired proteasome function in cardiac muscles show irregular heartbeat patterns and systematically decreased average beat rates, when compared with the regular patterns of ~4.97 beats/s in average beat rate of the wild-type. In both wild-type and proteasome mutant flies, the beatings at different locations in the same heart segment are essentially synchronized. However, between different heart segments, although the beating in the second segment shows a lag in phase behind that of the first segment in a wild-type, in a proteasome mutant, the beating in the second segment becomes significantly leading that of the first segment. Besides the comparison between the wild-type and proteasomal mutant flies, the influences of using different methods for immobilizing flies during OCT scanning on the heart functions are demonstrated.
Collapse
Affiliation(s)
- Meng-Tsan Tsai
- Department of Electrical Engineering, Chang Gung University, Kwei-Shan, Tao-Yuan, 33302 Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 2011; 63:411-36. [PMID: 21415126 PMCID: PMC3082451 DOI: 10.1124/pr.110.003293] [Citation(s) in RCA: 706] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process.
Collapse
Affiliation(s)
- Udai Bhan Pandey
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | | |
Collapse
|
16
|
Optical coherence tomography in biomedical research. Anal Bioanal Chem 2011; 400:2721-43. [DOI: 10.1007/s00216-011-5052-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 12/16/2022]
|
17
|
Gu S, Jenkins MW, Watanabe M, Rollins AM. High-speed optical coherence tomography imaging of the beating avian embryonic heart. Cold Spring Harb Protoc 2011; 2011:pdb.top98. [PMID: 21285278 DOI: 10.1101/pdb.top98] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
INTRODUCTIONCongenital heart defects (CHDs) affect thousands of newborns each year in the United States. Recent research using animal model systems indicates that the abnormal function of the early tubular heart precedes structural defects such as septal defects. Optical coherence tomography (OCT) is an imaging modality that can provide high spatial and temporal resolution to study both the structure and the function of the tubular heart. With technical advances in OCT imaging speed, especially with frequency domain OCT and image-based retrospective gating, it is now possible to image a beating avian embryonic heart in three dimensions under physiological conditions and follow morphogenesis over critical periods of developmental time. These technological advances have already revealed novel aspects of heart development. By expanding our understanding of heart development, research using OCT technology combined with other imaging modalities may eventually lead to strategies to predict, treat, and even prevent CHDs.
Collapse
|
18
|
Piazza N, Wessells RJ. Drosophila models of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:155-210. [PMID: 21377627 PMCID: PMC3551295 DOI: 10.1016/b978-0-12-384878-9.00005-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fruit fly Drosophila melanogaster has emerged as a useful model for cardiac diseases, both developmental abnormalities and adult functional impairment. Using the tools of both classical and molecular genetics, the study of the developing fly heart has been instrumental in identifying the major signaling events of cardiac field formation, cardiomyocyte specification, and the formation of the functioning heart tube. The larval stage of fly cardiac development has become an important model system for testing isolated preparations of living hearts for the effects of biological and pharmacological compounds on cardiac activity. Meanwhile, the recent development of effective techniques to study adult cardiac performance in the fly has opened new uses for the Drosophila model system. The fly system is now being used to study long-term alterations in adult performance caused by factors such as diet, exercise, and normal aging. The fly is a unique and valuable system for the study of such complex, long-term interactions, as it is the only invertebrate genetic model system with a working heart developmentally homologous to the vertebrate heart. Thus, the fly model combines the advantages of invertebrate genetics (such as large populations, facile molecular genetic techniques, and short lifespan) with physiological measurement techniques that allow meaningful comparisons with data from vertebrate model systems. As such, the fly model is well situated to make important contributions to the understanding of complicated interactions between environmental factors and genetics in the long-term regulation of cardiac performance.
Collapse
Affiliation(s)
- Nicole Piazza
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
19
|
Ma L, Bradu A, Podoleanu AG, Bloor JW. Arrhythmia caused by a Drosophila tropomyosin mutation is revealed using a novel optical coherence tomography instrument. PLoS One 2010; 5:e14348. [PMID: 21179409 PMCID: PMC3003684 DOI: 10.1371/journal.pone.0014348] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/23/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a severe cardiac condition that causes high mortality. Many genes have been confirmed to be involved in this disease. An ideal system with which to uncover disease mechanisms would be one that can measure the changes in a wide range of cardiac activities associated with mutations in specific, diversely functional cardiac genes. Such a system needs a genetically manipulable model organism that allows in vivo measurement of cardiac phenotypes and a detecting instrument capable of recording multiple phenotype parameters. METHODOLOGY AND PRINCIPAL FINDINGS With a simple heart, a transparent body surface at larval stages and available genetic tools we chose Drosophila melanogaster as our model organism and developed for it a dual en-face/Doppler optical coherence tomography (OCT) instrument capable of recording multiple aspects of heart activity, including heart contraction cycle dynamics, ostia dynamics, heartbeat rate and rhythm, speed of heart wall movement and light reflectivity of cardiomyocytes in situ. We applied this OCT instrument to a model of Tropomyosin-associated DCM established in adult Drosophila. We show that DCM pre-exists in the larval stage and is accompanied by an arrhythmia previously unidentified in this model. We also detect reduced mobility and light reflectivity of cardiomyocytes in mutants. CONCLUSION These results demonstrate the capability of our OCT instrument to characterize in detail cardiac activity in genetic models for heart disease in Drosophila.
Collapse
Affiliation(s)
- Lisha Ma
- Cell and Developmental Biology Group, School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom.
| | | | | | | |
Collapse
|
20
|
Neagu L, Bradu A, Ma L, Bloor JW, Podoleanu AG. Multiple-depth en face optical coherence tomography using active recirculation loops. OPTICS LETTERS 2010; 35:2296-8. [PMID: 20596225 DOI: 10.1364/ol.35.002296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present a novel low-coherence interferometer configuration, equipped in each arm with an adjustable optical path length ring. By compensating for the losses in the rings using semiconductor optical amplifiers, interference of low-coherence light after traversing the two rings 18 times is obtained. This configuration is employed to demonstrate simultaneous en face optical coherence tomography imaging at five different depths in a Drosophila melanogaster fly.
Collapse
Affiliation(s)
- Liviu Neagu
- Applied Optics Group, School of Physical Sciences, University of Kent, CT2 7NH Canterbury, UK
| | | | | | | | | |
Collapse
|
21
|
Bildgebung und Bildverarbeitung. BIOMED ENG-BIOMED TE 2010. [DOI: 10.1515/bmt.2010.701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Drexler W, Andersen PE. Optical coherence tomography in biophotonics. JOURNAL OF BIOPHOTONICS 2009; 2:339-341. [PMID: 19598171 DOI: 10.1002/jbio.200910542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
23
|
Larin KV, Larina IV, Liebling M, Dickinson ME. Live Imaging of Early Developmental Processes in Mammalian Embryos with Optical Coherence Tomography. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2009; 2:253-259. [PMID: 20582330 PMCID: PMC2891056 DOI: 10.1142/s1793545809000619] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Early embryonic imaging of cardiovascular development in mammalian models requires a method that can penetrate through and distinguish the many tissue layers with high spatial and temporal resolution. In this paper we evaluate the capability of Optical Coherence Tomography (OCT) technique for structural 3D embryonic imaging in mouse embryos at different stages of the developmental process ranging from 7.5 dpc up to 10.5 dpc. Obtained results suggest that the collected data is suitable for quantitative and qualitative measurements to assess cardiovascular function in mouse models, which is likely to expand our knowledge of the complexity of the embryonic heart, and its development into an adult heart.
Collapse
Affiliation(s)
- Kirill V. Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Irina V. Larina
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Michael Liebling
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|