1
|
Khan KM, Srivastava A, Dutta SB, Kumar N, Majumder SK. Reverse confocal polarized Raman spectroscopy (RCPRS) for tissue analysis. Lasers Med Sci 2025; 40:212. [PMID: 40285873 PMCID: PMC12033110 DOI: 10.1007/s10103-025-04462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Confocal Raman spectroscopy (CRS) being one of the most widely used depth-sensitive techniques for measuring layer wise Raman characteristics of layered biological tissues faces two practical problems. First, the overall probing depth is limited in a given optical design of the CRS system and second, the objective lens used for focusing touches to surface of the target sample during probing of deeper sub-surface layers. To facilitate deeper probing in a given CRS system and to avoid lens-sample touching issue, an alternate scheme of depth-sensitive Raman measurement is presented. The scheme, named reverse confocal polarized Raman spectroscopy (RCPRS), uses an experimental arrangement of plane polarized illumination and orthogonal polarized detection in which depth-sensitive measurements are performed by moving the focal plane of the illumination beam away from the tissue surface unlike to CRS which obtains depth-separation by traversing across different depths of the target tissue. The performance of the RCPRS is evaluated using a non-biological phantom and a biological tissue. It is found that the introduction of polarization reduces the interference of the signals originating from the layers surrounding the target layer and thereby improving the depth-selectivity.
Collapse
Affiliation(s)
| | - Amrita Srivastava
- Raja Ramanna Centre for Advanced Technology, Indore, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Mumbai, India
| | | | - Nitin Kumar
- Raja Ramanna Centre for Advanced Technology, Indore, India
| | - Shovan Kumar Majumder
- Raja Ramanna Centre for Advanced Technology, Indore, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Mumbai, India
| |
Collapse
|
2
|
Khan KM, Krishna H, Sahu K, Majumder SK. An Artefact-Minimized Raman Probe for Analyzing Biological Tissues. JOURNAL OF BIOPHOTONICS 2025; 18:e202400374. [PMID: 39825482 DOI: 10.1002/jbio.202400374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
Availability of a suitable tool for carrying out non-invasive measurement of Raman signatures in situ, from biological tissues having low Raman cross section is a clinically unmet need faced with manifold challenges. A Raman probe can prove to be an invaluable component of clinical Raman diagnostic systems. We present development of a Raman probe capable of measuring artefact free Raman spectra of biological tissues in situ. The developed probe uses a single lens for simultaneous illumination and collection of the Raman signal backscattered from the sample surface. This configuration ensures not only maximum overlapping of the illumination and collection volumes, ultimately leading to optimal throughput but also reduces the fiber-induced artefacts. The results show a superior performance of the developed Raman probe in measuring the Raman signatures from biological samples having lower Raman cross-sections, compared to that of the two commercially available Raman probes.
Collapse
Affiliation(s)
- Khan Mohammad Khan
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - Hemant Krishna
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - Khageswar Sahu
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shovan K Majumder
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
3
|
Fitzgerald S, Akhtar J, Schartner E, Ebendorff-Heidepriem H, Mahadevan-Jansen A, Li J. Multimodal Raman spectroscopy and optical coherence tomography for biomedical analysis. JOURNAL OF BIOPHOTONICS 2023; 16:e202200231. [PMID: 36308009 PMCID: PMC10082563 DOI: 10.1002/jbio.202200231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Optical techniques hold great potential to detect and monitor disease states as they are a fast, non-invasive toolkit. Raman spectroscopy (RS) in particular is a powerful label-free method capable of quantifying the biomolecular content of tissues. Still, spontaneous Raman scattering lacks information about tissue morphology due to its inability to rapidly assess a large field of view. Optical Coherence Tomography (OCT) is an interferometric optical method capable of fast, depth-resolved imaging of tissue morphology, but lacks detailed molecular contrast. In many cases, pairing label-free techniques into multimodal systems allows for a more diverse field of applications. Integrating RS and OCT into a single instrument allows for both structural imaging and biochemical interrogation of tissues and therefore offers a more comprehensive means for clinical diagnosis. This review summarizes the efforts made to date toward combining spontaneous RS-OCT instrumentation for biomedical analysis, including insights into primary design considerations and data interpretation.
Collapse
Affiliation(s)
- Sean Fitzgerald
- Vanderbilt Biophotonics Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jobaida Akhtar
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia, Australia
| | - Erik Schartner
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia, Australia
| | - Heike Ebendorff-Heidepriem
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia, Australia
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jiawen Li
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, South Australia, Australia
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Multimodal Approach of Optical Coherence Tomography and Raman Spectroscopy Can Improve Differentiating Benign and Malignant Skin Tumors in Animal Patients. Cancers (Basel) 2022; 14:cancers14122820. [PMID: 35740486 PMCID: PMC9221378 DOI: 10.3390/cancers14122820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Skin and subcutaneous tumors are among the most frequent neoplasms in dogs and cats. We studied 51 samples of canine and feline skin, lipomas, soft tissue sarcomas, and mast cell tumors using a multimodal approach based on optical coherence tomography and Raman spectroscopy. A supervised machine learning algorithm detected malignant tumors with the sensitivity and specificity of 94% and 98%, respectively. The proposed multimodal algorithm is a novel approach in veterinary oncology that can outperform the existing clinical methods such as the fine-needle aspiration method. Abstract As in humans, cancer is one of the leading causes of companion animal mortality. Up to 30% of all canine and feline neoplasms appear on the skin or directly under it. There are only a few available studies that have investigated pet tumors by biophotonics techniques. In this study, we acquired 1115 optical coherence tomography (OCT) images of canine and feline skin, lipomas, soft tissue sarcomas, and mast cell tumors ex vivo, which were subsequently used for automated machine vision analysis. The OCT images were analyzed using a scanning window with a size of 53 × 53 μm. The distributions of the standard deviation, mean, range, and coefficient of variation values were acquired for each image. These distributions were characterized by their mean, standard deviation, and median values, resulting in 12 parameters in total. Additionally, 1002 Raman spectral measurements were made on the same samples, and features were generated by integrating the intensity of the most prominent peaks. Linear discriminant analysis (LDA) was used for sample classification, and sensitivities/specificities were acquired by leave-one-out cross-validation. Three datasets were analyzed—OCT, Raman, and combined. The combined OCT and Raman data enabled the best sample differentiation with the sensitivities of 0.968, 1, and 0.939 and specificities of 0.956, 1, and 0.977 for skin, lipomas, and malignant tumors, respectively. Based on these results, we concluded that the proposed multimodal approach, combining Raman and OCT data, can accurately distinguish between malignant and benign tissues.
Collapse
|
5
|
Schie IW, Stiebing C, Popp J. Looking for a perfect match: multimodal combinations of Raman spectroscopy for biomedical applications. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210137VR. [PMID: 34387049 PMCID: PMC8358667 DOI: 10.1117/1.jbo.26.8.080601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Raman spectroscopy has shown very promising results in medical diagnostics by providing label-free and highly specific molecular information of pathological tissue ex vivo and in vivo. Nevertheless, the high specificity of Raman spectroscopy comes at a price, i.e., low acquisition rate, no direct access to depth information, and limited sampling areas. However, a similar case regarding advantages and disadvantages can also be made for other highly regarded optical modalities, such as optical coherence tomography, autofluorescence imaging and fluorescence spectroscopy, fluorescence lifetime microscopy, second-harmonic generation, and others. While in these modalities the acquisition speed is significantly higher, they have no or only limited molecular specificity and are only sensitive to a small group of molecules. It can be safely stated that a single modality provides only a limited view on a specific aspect of a biological specimen and cannot assess the entire complexity of a sample. To solve this issue, multimodal optical systems, which combine different optical modalities tailored to a particular need, become more and more common in translational research and will be indispensable diagnostic tools in clinical pathology in the near future. These systems can assess different and partially complementary aspects of a sample and provide a distinct set of independent biomarkers. Here, we want to give an overview on the development of multimodal systems that use RS in combination with other optical modalities to improve the diagnostic performance.
Collapse
Affiliation(s)
- Iwan W. Schie
- Leibniz Institute of Photonic Technology, Jena, Germany
- University of Applied Sciences—Jena, Department for Medical Engineering and Biotechnology, Jena, Germany
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
| |
Collapse
|
6
|
Dutta SB, Krishna H, Khan KM, Gupta S, Majumder SK. Fluorescence photobleaching of urine for improved signal to noise ratio of the Raman signal - An exploratory study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119144. [PMID: 33188968 DOI: 10.1016/j.saa.2020.119144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
Urine analysis is an important clinical test routinely performed in pathology labs for disease diagnosis and prognosis. In recent years, near-infrared Raman spectroscopy has drawn considerable attention for urine analysis as it can provide rapid, reliable, and reagent-free analysis of urine samples. However, one important practical problem encountered in such Raman measurements is the orders of magnitude stronger spectral background preventing one to utilize the full dynamic range of the detector which is required for the measurement of Raman signal with good signal-to-noise ratio (SNR). We report here the results of an exploratory study carried out on human urine samples to show that the photobleaching, which is a major disadvantage during the fluorescence measurement, could be utilized for suppressing the measured background to improve the SNR of the Raman peaks. It was found that once the photobleaching reached its plateau, there were improvements by ~67% and ~47% in the SNR and the signal to background ratio (SBR), respectively, of the Raman signals as compared to the spectra measured at the start of acquisition. Further, the reduced background also allowed us to utilize the full dynamic range of the detector at increased integration time without saturating the detector indicating the possibility of obtaining an improved detection limit.
Collapse
Affiliation(s)
- Surjendu Bikash Dutta
- Discipline of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India; Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Hemant Krishna
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Khan Mohammad Khan
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Sharad Gupta
- Discipline of Biosciences and Biomedical Engineering & Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Shovan Kumar Majumder
- Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India; Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
7
|
Vardaki MZ, Kourkoumelis N. Tissue Phantoms for Biomedical Applications in Raman Spectroscopy: A Review. Biomed Eng Comput Biol 2020; 11:1179597220948100. [PMID: 32884391 PMCID: PMC7440735 DOI: 10.1177/1179597220948100] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Raman spectroscopy is a group of analytical techniques, currently applied in several research fields, including clinical diagnostics. Tissue-mimicking optical phantoms have been established as an essential intermediate stage for medical applications with their employment from spectroscopic techniques to be constantly growing. This review outlines the types of tissue phantoms currently employed in different biomedical applications of Raman spectroscopy, focusing on their composition and optical properties. It is therefore an attempt to present an informed range of options for potential use to the researchers.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
8
|
Khan KM, Dutta SB, Kumar N, Dalal A, Srivastava A, Krishna H, Majumder SK. Inverse spatially-offset Raman spectroscopy using optical fibers: An axicon lens-free approach. JOURNAL OF BIOPHOTONICS 2019; 12:e201900140. [PMID: 31215767 DOI: 10.1002/jbio.201900140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Inverse spatially offset Raman spectroscopy (I-SORS) seeks to interrogate deep inside a Raman-active, layered, diffusely scattering sample. It makes a collimated laser beam incident onto the sample surface in the form of concentric illumination rings (of varying radii) from whose center the back-scattered Raman signal is collected for detection. Since formation of illumination rings of different sizes requires an axicon to be moved along the axis of the collimated laser beam and axicons below a certain minimum size (~1 inch) are not readily available, this classical configuration incorporating an axicon cannot be used for designing a compact I-SORS probe of narrower diameter. We report a novel scheme of implementing I-SORS which overcomes this limitation by implementing ring illumination and point collection using two multi-mode optical fibers. An important advantage of the proposed scheme is that unlike the previously reported inverse SORS configurations, it does not require physical movement of any of the optical components for generating spatial offsets needed for probing sub-surface depths. Another advantage is its fiber-optic configuration which is ideally suited for designing a compact and pencil-sized I-SORS probe, often desired in many practical situations for carrying out depth-sensitive Raman measurements in situ from a layered turbid sample.
Collapse
Affiliation(s)
- Khan Mohd Khan
- Homi Bhabha National Institute (HBNI), Training School Complex, Mumbai, India
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - Surjendu B Dutta
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - Nitin Kumar
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - Anita Dalal
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - Amrita Srivastava
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - Hemant Krishna
- Homi Bhabha National Institute (HBNI), Training School Complex, Mumbai, India
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - Shovan K Majumder
- Homi Bhabha National Institute (HBNI), Training School Complex, Mumbai, India
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore, India
| |
Collapse
|
9
|
Dutta SB, Shrivastava R, Krishna H, Khan KM, Gupta S, Majumder SK. Nanotrap-Enhanced Raman Spectroscopy: An Efficient Technique for Trace Detection of Bioanalytes. Anal Chem 2019; 91:3555-3560. [DOI: 10.1021/acs.analchem.8b05371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Surjendu Bikash Dutta
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Rashmi Shrivastava
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Hemant Krishna
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Khan Mohammad Khan
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | | | - Shovan K. Majumder
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
10
|
Leitgeb RA, Baumann B. Multimodal Optical Medical Imaging Concepts Based on Optical Coherence Tomography. FRONTIERS IN PHYSICS 2018; 6. [PMID: 0 DOI: 10.3389/fphy.2018.00114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
11
|
Mehta DS. Quantitative Phase Optical Microscopic Techniques for Biomedical Imaging and Diagnostic Applications. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2018. [DOI: 10.1007/s40010-018-0518-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Wang J, Zheng W, Lin K, Huang Z. Characterizing biochemical and morphological variations of clinically relevant anatomical locations of oral tissue in vivo with hybrid Raman spectroscopy and optical coherence tomography technique. JOURNAL OF BIOPHOTONICS 2018; 11. [PMID: 28985038 DOI: 10.1002/jbio.201700113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/04/2017] [Indexed: 05/08/2023]
Abstract
This study aims to characterize biochemical and morphological variations of the clinically relevant anatomical locations of in vivo oral tissue (ie, alveolar process, lateral tongue and floor of the mouth) by using hybrid Raman spectroscopy (RS) and optical coherence tomography (OCT) technique. A total of 1049 in vivo fingerprint (FP: 800-1800 cm-1 ) and high wavenumber (HW: 2800-3600 cm-1 ) Raman spectra were acquired from different oral tissue (alveolar process = 331, lateral tongue = 339 and floor of mouth = 379) of 26 normal subjects in the oral cavity under the OCT imaging guidance. The total Raman dataset were split into 2 parts: 80% for training and 20% for testing. Tissue optical attenuation coefficients of alveolar process, lateral tongue and the floor of the mouth were derived from OCT images, revealing the inter-anatomical morphological differences; while RS uncovers subtle FP/HW Raman spectral differences among different oral tissues that can be attributed to the differences in inter- and intra-cellular proteins, lipids, DNA and water structures and conformations, enlightening biochemical variability of different oral tissues at the molecular level. Partial least squares-discriminant analysis implemented on the training dataset show that the integrated tissue optical attenuation coefficients and FP/HW Raman spectra provide diagnostic sensitivities of 99.6%, 82.3%, 50.2%, and specificities of 97.0%, 75.1%, 92.1%, respectively, which are superior to using either RS (sensitivities of 90.2%, 77.5%, 48.8%, and specificities of 95.8%, 72.1%, 88.8%) or optical attenuation coefficients derived from OCT (sensitivities of 75.0%, 78.2%, 47.2%, and specificities of 96.2%, 67.7%, 85.0%) for the differentiation among alveolar process, lateral tongue and the floor of the mouth. Furthermore, the diagnostic algorithms applied to the independent testing dataset based on hybrid RS-OCT technique gives predictive diagnostic sensitivities of 100%, 76.5%, 51.3%, and specificities of 95.1%, 77.6%, 89.6%, respectively, for the classifications among alveolar process, lateral tongue and the floor of the mouth, which performs much better than either RS or optical attenuation coefficient derived from OCT imaging. This work suggests that inter-anatomical morphological and biochemical variability are significant which should be considered as an important parameter in the interpretation and rendering of hybrid RS-OCT technique for oral tissue diagnosis and characterization.
Collapse
Affiliation(s)
- Jianfeng Wang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Wei Zheng
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Kan Lin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| |
Collapse
|
13
|
Chen M, Mas J, Forbes LH, Andrews MR, Dholakia K. Depth-resolved multimodal imaging: Wavelength modulated spatially offset Raman spectroscopy with optical coherence tomography. JOURNAL OF BIOPHOTONICS 2018; 11:e201700129. [PMID: 28703472 DOI: 10.1002/jbio.201700129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 05/22/2023]
Abstract
A major challenge in biophotonics is multimodal imaging to obtain both morphological and molecular information at depth. We demonstrate a hybrid approach integrating optical coherence tomography (OCT) with wavelength modulated spatially offset Raman spectroscopy (WM-SORS). With depth colocalization obtained from the OCT, we can penetrate 1.2-mm deep into strong scattering media (lard) to acquire up to a 14-fold enhancement of a Raman signal from a hidden target (polystyrene) with a spatial offset. Our approach is capable of detecting both Raman and OCT signals for pharmaceutical particles embedded in turbid media and revealing the white matter at depth within a 0.6-mm thick brain tissue layer. This depth resolved label-free multimodal approach is a powerful route to analyze complex biomedical samples.
Collapse
Affiliation(s)
- Mingzhou Chen
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Josep Mas
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | | | | | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| |
Collapse
|
14
|
Klemes J, Kotzianova A, Pokorny M, Mojzes P, Novak J, Sukova L, Demuth J, Vesely J, Sasek L, Velebny V. Non-invasive diagnostic system and its opto-mechanical probe for combining confocal Raman spectroscopy and optical coherence tomography. JOURNAL OF BIOPHOTONICS 2017; 10:1442-1449. [PMID: 28464557 DOI: 10.1002/jbio.201600284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 05/22/2023]
Abstract
Non-invasive optical diagnostic methods allow important information about studied systems to be obtained in a non-destructive way. Complete diagnosis requires information about the chemical composition as well as the morphological structure of a sample. We report on the development of an opto-mechanical probe that combines Raman spectroscopy (RS) and optical coherence tomography (OCT), two methods that provide all the crucial information needed for a non-invasive diagnosis. The aim of this paper is to introduce the technical design, construction and optimization of a dual opto-mechanical probe combining two in-house developed devices for confocal RS and OCT. The unique benefit of the probe is a gradual acquisition of OCT and RS data, which allows to use the acquired OCT images to pinpoint locations of interest for RS measurements. The parameters and the correct functioning of the probe were verified by RS scanning of various samples (silicon wafer and ex vivo tissue) based on their OCT images - lateral as well as depth scanning was performed. Both the OCT and RS systems were developed, optimized and tested with the ultimate aim of verifying the functionality of the probe. Picture: Schematic illustration and visualization of the developed RS-OCT probe.
Collapse
Affiliation(s)
- Jan Klemes
- Contipro a.s., R&D Department, CZ-56102, Dolni Dobrouc, Czech Republic
| | - Adela Kotzianova
- Contipro a.s., R&D Department, CZ-56102, Dolni Dobrouc, Czech Republic
- Masaryk University, Faculty of Science, Department of Chemistry, CZ-62500, Brno, Czech Republic
| | - Marek Pokorny
- Contipro a.s., R&D Department, CZ-56102, Dolni Dobrouc, Czech Republic
| | - Peter Mojzes
- Charles University, Faculty of Mathematics and Physics, Institute of Physics, CZ-12116, Prague, Czech Republic
| | | | - Lada Sukova
- Contipro a.s., R&D Department, CZ-56102, Dolni Dobrouc, Czech Republic
| | | | | | | | - Vladimir Velebny
- Contipro a.s., R&D Department, CZ-56102, Dolni Dobrouc, Czech Republic
| |
Collapse
|
15
|
Krafft C. Modern trends in biophotonics for clinical diagnosis and therapy to solve unmet clinical needs. JOURNAL OF BIOPHOTONICS 2016; 9:1362-1375. [PMID: 27943650 DOI: 10.1002/jbio.201600290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This contribution covers recent original research papers in the biophotonics field. The content is organized into main techniques such as multiphoton microscopy, Raman spectroscopy, infrared spectroscopy, optical coherence tomography and photoacoustic tomography, and their applications in the context of fluid, cell, tissue and skin diagnostics. Special attention is paid to vascular and blood flow diagnostics, photothermal and photodynamic therapy, tissue therapy, cell characterization, and biosensors for biomarker detection.
Collapse
Affiliation(s)
- Christoph Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| |
Collapse
|
16
|
Majumder S, Khan K, Krishna H, Kulkarni C. Depth-Sensitive Raman Spectroscopy of Intact Formalin-Fixed and Paraffin-Embedded Tissue Blocks for Objective Diagnosis of Cancer- An Exploratory Study. ACTA ACUST UNITED AC 2016. [DOI: 10.6000/1927-7229.2016.05.04.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
17
|
Khan KM, Kumar R, Krishna H, Ghosh N, Majumder SK. Spatially-offset fluorescence spectroscopy (SOFS) using ring illumination and point collection for sub-surface measurements in layered tissue. Biomed Eng Lett 2016. [DOI: 10.1007/s13534-016-0238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Wang J, Zheng W, Lin K, Huang Z. Development of a hybrid Raman spectroscopy and optical coherence tomography technique for real-time in vivo tissue measurements. OPTICS LETTERS 2016; 41:3045-8. [PMID: 27367097 DOI: 10.1364/ol.41.003045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report on the development of a unique sideview handheld hybrid Raman spectroscopy (RS) and optical coherence tomography (OCT) technique for real-time in vivo tissue measurements. A sideview handheld RS-OCT optical probe is designed to coalign the optical paths of RS and OCT sampling arms, whereby a compact long-pass dichroic mirror (LPDM) is utilized to transmit the OCT signal through a gradient index rod lens and a reflection mirror, whereas the LPDM deflects the tissue Raman signal by 90°, leading to coaligned RS/OCT optical samplings on the tissue. Further study shows that the hybrid RS and OCT technique developed is capable of simultaneously acquiring both morphological and biochemical information about the oral tissue in vivo, facilitating real-time, in vivo tissue diagnoses and characterizations in the oral cavity.
Collapse
|
19
|
Abstract
Clinical diagnostic devices provide new sources of information that give insight about the state of health which can then be used to manage patient care. These tools can be as simple as an otoscope to better visualize the ear canal or as complex as a wireless capsule endoscope to monitor the gastrointestinal tract. It is with tools such as these that medical practitioners can determine when a patient is healthy and to make an appropriate diagnosis when he/she is not. The goal of diagnostic medicine then is to efficiently determine the presence and cause of disease in order to provide the most appropriate intervention. The earliest form of medical diagnostics relied on the eye - direct visual observation of the interaction of light with the sample. This technique was espoused by Hippocrates in his 5th century BCE work Epidemics, in which the pallor of a patient's skin and the coloring of the bodily fluids could be indicative of health. In the last hundred years, medical diagnosis has moved from relying on visual inspection to relying on numerous technological tools that are based on various types of interaction of the sample with different types of energy - light, ultrasound, radio waves, X-rays etc. Modern advances in science and technology have depended on enhancing technologies for the detection of these interactions for improved visualization of human health. Optical methods have been focused on providing this information in the micron to millimeter scale while ultrasound, X-ray, and radio waves have been key in aiding in the millimeter to centimeter scale. While a few optical technologies have achieved the status of medical instruments, many remain in the research and development phase despite persistent efforts by many researchers in the translation of these methods for clinical care. Of these, Raman spectroscopy has been described as a sensitive method that can provide biochemical information about tissue state while maintaining the capability of delivering this information in real-time, non-invasively, and in an automated manner. This review presents the various instrumentation considerations relevant to the clinical implementation of Raman spectroscopy and reviews a subset of interesting applications that have successfully demonstrated the efficacy of this technique for clinical diagnostics and monitoring in large (n ≥ 50) in vivo human studies.
Collapse
Affiliation(s)
- Isaac Pence
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.
| | | |
Collapse
|
20
|
Radu AI, Ussembayev YY, Jahn M, Schubert US, Weber K, Cialla-May D, Hoeppener S, Heisterkamp A, Popp J. HD DVD substrates for surface enhanced Raman spectroscopy analysis: fabrication, theoretical predictions and practical performance. RSC Adv 2016. [DOI: 10.1039/c6ra06029c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Commercially available HD-DVD templates have been used to theoretically predict the occurrence of surface plasmons supermodes which improve the detection of surface enhanced Raman signals.
Collapse
Affiliation(s)
- A. I. Radu
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - Ye. Ye. Ussembayev
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - M. Jahn
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - U. S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - K. Weber
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - D. Cialla-May
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| | - S. Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - A. Heisterkamp
- Institute of Applied Optics
- Friedrich Schiller University
- 07743 Jena
- Germany
| | - J. Popp
- Friedrich Schiller University Jena
- Institute of Physical Chemistry and Abbe Center of Photonics
- 07745 Jena
- Germany
- Leibniz Institute of Photonic Technology Jena
| |
Collapse
|
21
|
Khan KM, Majumder SK, Gupta PK. Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue. JOURNAL OF BIOPHOTONICS 2015; 8:889-896. [PMID: 26248877 DOI: 10.1002/jbio.201400125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/30/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
We report the development of a depth-sensitive Raman spectroscopy system using the configuration of cone-shell excitation and cone detection. The system uses a 785 nm diode laser and three identical axicons for Raman excitation of the target sample in the form of a hollow conic section. The Raman scattered light from the sample, passed through the same (but solid) conic section, is collected for detection. Apart from its ability of probing larger depths (~ few mm), an important attraction of the system is that the probing depths can be varied by simply varying the separation between axicons in the excitation arm. Furthermore, no adjustment is required in the sample arm, which is a significant advantage for noncontact, depth-sensitive measurement. Evaluation of the performance of the developed setup on nonbiological phantom and biological tissue sample demonstrated its ability to recover Raman spectra of layers located at depths of ~2-3 mm beneath the surface.
Collapse
Affiliation(s)
- Khan Mohammad Khan
- Optical Spectroscopy and Diagnostic Lab, Laser Biomedical Applications and Instrumentation Division, R & D Block-A1, Raja Ramanna Centre for Advanced Technology, Indore, 452 013, India
| | - Shovan Kumar Majumder
- Optical Spectroscopy and Diagnostic Lab, Laser Biomedical Applications and Instrumentation Division, R & D Block-A1, Raja Ramanna Centre for Advanced Technology, Indore, 452 013, India. ,
| | - Pradeep Kumar Gupta
- Optical Spectroscopy and Diagnostic Lab, Laser Biomedical Applications and Instrumentation Division, R & D Block-A1, Raja Ramanna Centre for Advanced Technology, Indore, 452 013, India
| |
Collapse
|
22
|
Paudel A, Raijada D, Rantanen J. Raman spectroscopy in pharmaceutical product design. Adv Drug Deliv Rev 2015; 89:3-20. [PMID: 25868453 DOI: 10.1016/j.addr.2015.04.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/15/2015] [Accepted: 04/01/2015] [Indexed: 12/20/2022]
Abstract
Almost 100 years after the discovery of the Raman scattering phenomenon, related analytical techniques have emerged as important tools in biomedical sciences. Raman spectroscopy and microscopy are frontier, non-invasive analytical techniques amenable for diverse biomedical areas, ranging from molecular-based drug discovery, design of innovative drug delivery systems and quality control of finished products. This review presents concise accounts of various conventional and emerging Raman instrumentations including associated hyphenated tools of pharmaceutical interest. Moreover, relevant application cases of Raman spectroscopy in early and late phase pharmaceutical development, process analysis and micro-structural analysis of drug delivery systems are introduced. Finally, potential areas of future advancement and application of Raman spectroscopic techniques are discussed.
Collapse
|
23
|
Maher JR, Chuchuen O, Henderson MH, Kim S, Rinehart MT, Kashuba ADM, Wax A, Katz DF. Co-localized confocal Raman spectroscopy and optical coherence tomography (CRS-OCT) for depth-resolved analyte detection in tissue. BIOMEDICAL OPTICS EXPRESS 2015; 6:2022-35. [PMID: 26114026 PMCID: PMC4473741 DOI: 10.1364/boe.6.002022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 05/21/2023]
Abstract
We report the development of a combined confocal Raman spectroscopy (CRS) and optical coherence tomography (OCT) instrument (CRS-OCT) capable of measuring analytes in targeted biological tissues with sub-100-micron spatial resolution. The OCT subsystem was used to measure depth-resolved tissue morphology and guide the acquisition of chemically-specific Raman spectra. To demonstrate its utility, the instrument was used to accurately measure depth-resolved, physiologically-relevant concentrations of Tenofovir, a microbicide drug used to prevent the sexual transmission of HIV, in ex vivo tissue samples.
Collapse
Affiliation(s)
- Jason R. Maher
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Oranat Chuchuen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Marcus H. Henderson
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Sanghoon Kim
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Matthew T. Rinehart
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Angela D. M. Kashuba
- University of North Carolina Eshelman School of Pharmacy and University of North Carolina Center for AIDS Research, University of North Carolina, Chapel Hill, NC, USA
- Department of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - David F. Katz
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Obstetrics and Gynecology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
24
|
Perspectivas de futuro en láseres, nuevas tecnologías y nanotecnología en dermatología. ACTAS DERMO-SIFILIOGRAFICAS 2015; 106:168-79. [DOI: 10.1016/j.ad.2014.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/17/2014] [Accepted: 07/20/2014] [Indexed: 02/06/2023] Open
|
25
|
Future Prospects in Dermatologic Applications of Lasers, Nanotechnology, and Other New Technologies. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.adengl.2015.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Vogler N, Heuke S, Bocklitz TW, Schmitt M, Popp J. Multimodal Imaging Spectroscopy of Tissue. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:359-87. [PMID: 26070717 DOI: 10.1146/annurev-anchem-071114-040352] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Advanced optical imaging technologies have experienced increased visibility in medical research, as they allow for a label-free and nondestructive investigation of tissue in either an excised state or living organisms. In addition to a multitude of ex vivo studies proving the applicability of these optical imaging approaches, a transfer of various modalities toward in vivo diagnosis is currently in progress as well. Furthermore, combining optical imaging techniques, referred to as multimodal imaging, allows for an improved diagnostic reliability due to the complementary nature of retrieved information. In this review, we provide a summary of ongoing multifold efforts in multimodal tissue imaging and focus in particular on in vivo applications for medical diagnosis. We also discuss the advantages and potential limitations of the imaging methods and outline opportunities for future developments.
Collapse
Affiliation(s)
- Nadine Vogler
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, 07743 Jena, Germany;
| | | | | | | | | |
Collapse
|
27
|
Kamali T, Považay B, Kumar S, Silberberg Y, Hermann B, Werkmeister R, Drexler W, Unterhuber A. Hybrid single-source online Fourier transform coherent anti-Stokes Raman scattering/optical coherence tomography. OPTICS LETTERS 2014; 39:5709-12. [PMID: 25360965 DOI: 10.1364/ol.39.005709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We demonstrate a multimodal optical coherence tomography (OCT) and online Fourier transform coherent anti-Stokes Raman scattering (FTCARS) platform using a single sub-12 femtosecond (fs) Ti:sapphire laser enabling simultaneous extraction of structural and chemical ("morphomolecular") information of biological samples. Spectral domain OCT prescreens the specimen providing a fast ultrahigh (4×12 μm axial and transverse) resolution wide field morphologic overview. Additional complementary intrinsic molecular information is obtained by zooming into regions of interest for fast label-free chemical mapping with online FTCARS spectroscopy. Background-free CARS is based on a Michelson interferometer in combination with a highly linear piezo stage, which allows for quick point-to-point extraction of CARS spectra in the fingerprint region in less than 125 ms with a resolution better than 4 cm(-1) without the need for averaging. OCT morphology and CARS spectral maps indicating phosphate and carbonate bond vibrations from human bone samples are extracted to demonstrate the performance of this hybrid imaging platform.
Collapse
|
28
|
|
29
|
Chuchuen O, Henderson MH, Sykes C, Kim MS, Kashuba ADM, Katz DF. Quantitative analysis of microbicide concentrations in fluids, gels and tissues using confocal Raman spectroscopy. PLoS One 2013; 8:e85124. [PMID: 24386455 PMCID: PMC3875564 DOI: 10.1371/journal.pone.0085124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 11/22/2013] [Indexed: 01/03/2023] Open
Abstract
Topical vaginal anti-HIV microbicides are an important focus in female-based strategies to prevent the sexual transmission of HIV. Understanding microbicide pharmacokinetics is essential to development, characterization and implementation of efficacious microbicide drug delivery formulations. Current methods to measure drug concentrations in tissue (e.g., LC-MS/MS, liquid chromatography coupled with tandem mass spectrometry) are highly sensitive, but destructive and complex. This project explored the use of confocal Raman spectroscopy to detect microbicide drugs and to measure their local concentrations in fluids, drug delivery gels, and tissues. We evaluated three candidate microbicide drugs: tenofovir, Dapivirine and IQP-0528. Measurements were performed in freshly excised porcine buccal tissue specimens, gel vehicles and fluids using two Horiba Raman microscopes, one of which is confocal. Characteristic spectral peak calibrations for each drug were obtained using serial dilutions in the three matrices. These specific Raman bands demonstrated strong linear concentration dependences in the matrices and were characterized with respect to their unique vibrational signatures. At least one specific Raman feature was identified for each drug as a marker band for detection in tissue. Sensitivity of detection was evaluated in the three matrices. A specific peak was also identified for tenofovir diphosphate, the anti-HIV bioactive product of tenofovir after phosphorylation in host cells. Z-scans of drug concentrations vs. depth in excised tissue specimens, incubated under layers of tenofovir solution in a Transwell assay, showed decreasing concentration with depth from the surface into the tissue. Time-dependent concentration profiles were obtained from tissue samples incubated in the Transwell assay, for times ranging 30 minutes - 6 hours. Calibrations and measurements from tissue permeation studies for tenofovir showed good correlation with gold standard LC-MS/MS data. These results demonstrate that confocal Raman spectroscopy holds promise as a tool for practical, minimally invasive, label-free measurement of microbicide drug concentrations in fluids, gels and tissues.
Collapse
Affiliation(s)
- Oranat Chuchuen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Marcus H. Henderson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Craig Sykes
- University of North Carolina Eshelman School of Pharmacy and University of North Carolina Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Min Sung Kim
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Angela D. M. Kashuba
- University of North Carolina Eshelman School of Pharmacy and University of North Carolina Center for AIDS Research, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - David F. Katz
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- Department of Obstetrics and Gynecology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|