1
|
Wang X, Zhao S, Zhang A. Image-Based Monitoring of Thermal Ablation. Bioengineering (Basel) 2025; 12:78. [PMID: 39851352 PMCID: PMC11762831 DOI: 10.3390/bioengineering12010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Thermal therapy is a commonly used local treatment technique in clinical practice. Monitoring the treatment process is essential for ensuring its success. In this review, we analyze recent image-based methods for thermal therapy monitoring, focusing particularly on their feasibility for synchronous or immediate postoperative monitoring. This includes thermography and other techniques that track the physical changes in tissue during thermal ablation. Potential directions and challenges for further clinical applications are also summarized.
Collapse
Affiliation(s)
| | | | - Aili Zhang
- School of Biomedical Engineering, 400 Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; (X.W.); (S.Z.)
| |
Collapse
|
2
|
Zhang H, Yang J. Speckle decorrelation rate as a robust indicator for visualizing the therapeutic thermal field with OCT. OPTICS LETTERS 2024; 49:6217-6220. [PMID: 39485451 DOI: 10.1364/ol.538862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
Optical coherence tomography (OCT) is evolving from a diagnostic imaging modality to one that also facilitates therapeutic procedures. However, visualizing the therapeutic thermal field during minimally invasive thermal treatments such as laser or radio frequency ablation is challenging. This difficulty arises because tissues show minimal optical property changes until they reach the coagulation threshold at approximately 50 ∘C. To address this, we introduce the speckle decorrelation rate as a new, to our knowledge, contrast mechanism for OCT, enhancing the visualization of the therapeutic thermal field. Through ex vivo tissue experiments on a laser ablation-OCT surveillance system, we demonstrate that the speckle decorrelation rate offers superior sensitivity to detect subtle temperature changes and is less sensitive to the selection of time intervals for decorrelation calculations compared to existing speckle decorrelation methods. Our approach, which is label-free and compatible with various OCT systems, has been validated across diverse biological tissues, showing potential to augment the precision and safety of thermal therapies. Additionally, we propose a GPU-accelerated pipeline to expedite processing time, making real-time thermal field visualization feasible.
Collapse
|
3
|
von der Burchard C, Miura Y, Stanzel B, Chhablani J, Roider J, Framme C, Brinkmann R, Tode J. Regenerative Retinal Laser and Light Therapies (RELITE): Proposal of a New Nomenclature, Categorization, and Trial Reporting Standard. Lasers Surg Med 2024; 56:693-708. [PMID: 39210705 DOI: 10.1002/lsm.23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/25/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Numerous laser and light therapies have been developed to induce regenerative processes in the choroid/retinal pigment epithelium (RPE)/photoreceptor complex, leaving the neuroretina undamaged. These therapies are applied to the macula for the treatment of various diseases, most prominently diabetic maculopathy, retinal vein occlusion, central serous chorioretinopathy, and age-related macular degeneration. However, the abundance of technologies, treatment patterns, and dosimetry protocols has made understanding these therapies and comparing different approaches increasingly complex and challenging. To address this, we propose a new nomenclature system with a clear categorization that will allow for better understanding and comparability between different laser and light modalities. We propose this nomenclature system as an open standard that may be adapted in future toward new technical developments or medical advancements. METHODS A systematic literature review of reported macular laser and light therapies was conducted. A categorization into a standardized system was proposed and discussed among experts and professionals in the field. This paper does not aim to assess, compare, or evaluate the efficacy of different laser or dosimetry techniques or treatment patterns. RESULTS The literature search yielded 194 papers describing laser techniques, 50 studies describing dosimetry, 272 studies with relevant clinical trials, and 82 reviews. Following the common therapeutic aim, we propose "regenerative retinal laser and light therapies (RELITE)" as the general header. We subdivided RELITE into four main categories that refer to the intended physical and biochemical effects of temperature increase (photothermal therapy, PTT), RPE regeneration (photomicrodisruption therapy, PMT), photochemical processes (photochemical therapy, PCT), and photobiomodulation (photobiomodulation therapy, PBT). Further, we categorized the different dosimetry approaches and treatment regimens. We propose the following nomenclature system that integrates the most important parameters to enable understanding and comparability: Pattern-Dosimetry-Exposure Time/Frequency, Duty Cycle/Irradiation Diameter/Wavelength-Subcategory-Category. CONCLUSION Regenerative retinal laser and light therapies are widely used for different diseases and may become valuable in the future. A precise nomenclature system and strict reporting standards are needed to allow for a better understanding, reproduceable and comparable clinical trials, and overall acceptance. We defined categories for a systematic therapeutic goal-based nomenclature to facilitate future research in this field.
Collapse
Affiliation(s)
- Claus von der Burchard
- Department of Ophthalmology, University of Kiel, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Yoko Miura
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
- Department of Ophthalmology, University of Luebeck, University Medical Center of Schleswig-Holstein, Luebeck, Germany
| | - Boris Stanzel
- Eye Clinic Sulzbach, Knappschaft Hospital Saar, Sulzbach, Germany
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Johann Roider
- Department of Ophthalmology, University of Kiel, University Medical Center of Schleswig-Holstein, Kiel, Germany
| | - Carsten Framme
- Hannover Medical School, University Eye Clinic, Hannover, Germany
| | - Ralf Brinkmann
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
- Medical Laser Center Luebeck, Luebeck, Germany
| | - Jan Tode
- Hannover Medical School, University Eye Clinic, Hannover, Germany
| |
Collapse
|
4
|
Gao T, Liang L, Ding H, Wang G. Patient-specific temperature distribution prediction in laser interstitial thermal therapy: single-irradiation data-driven method. Phys Med Biol 2024; 69:105019. [PMID: 38648787 DOI: 10.1088/1361-6560/ad4194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Laser interstitial thermal therapy (LITT) is popular for treating brain tumours and epilepsy. The strict control of tissue thermal damage extent is crucial for LITT. Temperature prediction is useful for predicting thermal damage extent. Accurately predictingin vivobrain tissue temperature is challenging due to the temperature dependence and the individual variations in tissue properties. Considering these factors is essential for improving the temperature prediction accuracy.Objective. To present a method for predicting patient-specific tissue temperature distribution within a target lesion area in the brain during LITT.Approach. A magnetic resonance temperature imaging (MRTI) data-driven estimation model was constructed and combined with a modified Pennes bioheat transfer equation (PBHE) to predict patient-specific temperature distribution. In the PBHE for temperature prediction, the individual specificity and temperature dependence of thermal tissue properties and blood perfusion, as well as the individual specificity of optical tissue properties were considered. Only MRTI data during one laser irradiation were required in the method. This enables the prediction of patient-specific temperature distribution and the resulting thermal damage region for subsequent ablations.Main results. Patient-specific temperature prediction was evaluated based on clinical data acquired during LITT in the brain, using intraoperative MRTI data as the reference standard. Our method significantly improved the prediction performance of temperature distribution and thermal damage region. The average root mean square error was decreased by 69.54%, the average intraclass correlation coefficient was increased by 37.5%, the average Dice similarity coefficient was increased by 43.14% for thermal damage region prediction.Significance. The proposed method can predict temperature distribution and thermal damage region at an individual patient level during LITT, providing a promising approach to assist in patient-specific treatment planning for LITT in the brain.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Libin Liang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hui Ding
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Guangzhi Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
5
|
Bromberger L, Heise B, Felbermayer K, Leiss-Holzinger E, Ilicic K, Schmid TE, Bergmayr A, Etzelstorfer T, Geinitz H. Radiation-induced alterations in multi-layered, in-vitro skin models detected by optical coherence tomography and histological methods. PLoS One 2023; 18:e0281662. [PMID: 36862637 PMCID: PMC9980765 DOI: 10.1371/journal.pone.0281662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/28/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Inflammatory skin reactions and skin alterations are still a potential side effect in radiation therapy (RT), which also need attention for patients' health care. METHOD In a pre-clinical study we consider alterations in irradiated in-vitro skin models of epidermal and dermal layers. Typical dose regimes in radiation therapy are applied for irradiation. For non-invasive imaging and characterization optical coherence tomography (OCT) is used. Histological staining method is additionally applied for comparison and discussion. RESULTS Structural features, such as keratinization, modifications in epidermal cell layer thickness and disorder in the layering-as indications for reactions to ionizing radiation and aging-could be observed by means of OCT and confirmed by histology. We were able to recognize known RT induced changes such as hyper-keratosis, acantholysis, and epidermal hyperplasia as well as disruption and/or demarcation of the dermo-epidermal junction. CONCLUSION The results may pave the way for OCT to be considered as a possible adjunctive tool to detect and monitor early skin inflammation and side effects of radiotherapy, thus supporting patient healthcare in the future.
Collapse
Affiliation(s)
- Luisa Bromberger
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Bettina Heise
- Institute for Mathematical Methods in Medicine and Data Based Modelling, Johannes Kepler University (JKU), Linz, Austria
- Research Center for Non-Destructive Testing (RECENDT)-GmbH, Linz, Austria
- * E-mail:
| | | | | | - Katarina Ilicic
- Department of Radiation Oncology, Klinikum rechts der Isar (MRI), TUM München, München, Germany
| | - Thomas Ernst Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar (MRI), TUM München, München, Germany
| | - Alexandra Bergmayr
- Department of Pathology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Tanja Etzelstorfer
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| | - Hans Geinitz
- Department of Radiation Oncology, Ordensklinikum Linz Barmherzige Schwestern (BHS), Linz, Austria
| |
Collapse
|
6
|
Beaudette K, Li J, Lamarre J, Majeau L, Boudoux C. Double-Clad Fiber-Based Multifunctional Biosensors and Multimodal Bioimaging Systems: Technology and Applications. BIOSENSORS 2022; 12:90. [PMID: 35200350 PMCID: PMC8869713 DOI: 10.3390/bios12020090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/27/2022]
Abstract
Optical fibers have been used to probe various tissue properties such as temperature, pH, absorption, and scattering. Combining different sensing and imaging modalities within a single fiber allows for increased sensitivity without compromising the compactness of an optical fiber probe. A double-clad fiber (DCF) can sustain concurrent propagation modes (single-mode, through its core, and multimode, through an inner cladding), making DCFs ideally suited for multimodal approaches. This study provides a technological review of how DCFs are used to combine multiple sensing functionalities and imaging modalities. Specifically, we discuss the working principles of DCF-based sensors and relevant instrumentation as well as fiber probe designs and functionalization schemes. Secondly, we review different applications using a DCF-based probe to perform multifunctional sensing and multimodal bioimaging.
Collapse
Affiliation(s)
- Kathy Beaudette
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Jiawen Li
- Institute for Photonics and Advanced Sensing, School of Electrical Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Joseph Lamarre
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Lucas Majeau
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
| | - Caroline Boudoux
- Castor Optics Inc., Montreal, QC H4N 2G6, Canada; (J.L.); (L.M.); (C.B.)
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
7
|
Maltais-Tariant R, Boudoux C, Uribe-Patarroyo N. Real-time co-localized OCT surveillance of laser therapy using motion corrected speckle decorrelation. BIOMEDICAL OPTICS EXPRESS 2020; 11:2925-2950. [PMID: 32637233 PMCID: PMC7316020 DOI: 10.1364/boe.385654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 05/27/2023]
Abstract
We present a system capable of real-time delivery and monitoring of laser therapy by imaging with optical coherence tomography (OCT) through a double-clad fiber (DCF). A double-clad fiber coupler is used to inject and collect OCT light into the core of a DCF and inject the therapy light into its larger inner cladding, allowing for both imaging and therapy to be perfectly coregistered. Monitoring of treatment depth is achieved by calculating the speckle intensity decorrelation occurring during tissue coagulation. Furthermore, an analytical noise correction was used on the correlation to extend the maximum monitoring depth. We also present a method for correcting motion-induced decorrelation using a lookup table. Using the value of the noise- and motion-corrected correlation coefficient in a novel approach, our system is capable of identifying the depth of thermal coagulation in real time and automatically shut the therapy laser off when the targeted depth is reached. The process is demonstrated ex vivo in rat tongue and abdominal muscles for depths ranging from 500 µm to 1000 µm with induced motion in real time.
Collapse
Affiliation(s)
- Raphaël Maltais-Tariant
- Polytechnique Montréal, Department of Engineering Physics, 2900 Boulevard Edouard-Montpetit, Montreal, Qc, Canada
| | - Caroline Boudoux
- Polytechnique Montréal, Department of Engineering Physics, 2900 Boulevard Edouard-Montpetit, Montreal, Qc, Canada
- Castor Optics Inc., 361 Boul Montpellier, St-Laurent, Qc, Canada
| | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
8
|
Uribe-Patarroyo N, Post AL, Ruiz-Lopera S, Faber DJ, Bouma BE. Noise and bias in optical coherence tomography intensity signal decorrelation. OSA CONTINUUM 2020; 3:709-741. [PMID: 34085035 PMCID: PMC8171193 DOI: 10.1364/osac.385431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Functional optical coherence tomography (OCT) imaging based on the decorrelation of the intensity signal has been used extensively in angiography and is finding use in flowmetry and therapy monitoring. In this work, we present a rigorous analysis of the autocorrelation function, introduce the concepts of contrast bias, statistical bias and variability, and identify the optimal definition of the second-order autocorrelation function (ACF) g (2) to improve its estimation from limited data. We benchmark different averaging strategies in reducing statistical bias and variability. We also developed an analytical correction for the noise contributions to the decorrelation of the ACF in OCT that extends the signal-to-noise ratio range in which ACF analysis can be used. We demonstrate the use of all the tools developed in the experimental determination of the lateral speckle size depth dependence in a rotational endoscopic probe with low NA, and we show the ability to more accurately determine the rotational speed of an endoscopic probe to implement NURD detection. We finally present g (2)-based angiography of the finger nailbed, demonstrating the improved results from noise correction and the optimal bias mitigation strategies.
Collapse
Affiliation(s)
- Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, MA 02114, USA
| | - Anouk L. Post
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- These authors contributed equally to this work and are listed in alphabetical order
| | - Sebastián Ruiz-Lopera
- Applied Optics Group, Universidad EAFIT, Carrera 49 # 7 Sur-50, Medellín, Colombia
- These authors contributed equally to this work and are listed in alphabetical order
| | - Dirk J. Faber
- Amsterdam UMC, University of Amsterdam, Department of Biomedical Engineering and Physics, Cancer Center Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Brett E. Bouma
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital, 40 Blossom Street, MA 02114, USA
- Institute for Medical Engineering and Science, Massachussets Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
9
|
Wei Y, Liu S, Pan C, Yang Z, Liu Y, Yong J, Quan L. Molecular Antenna-Sensitized Upconversion Nanoparticle for Temperature Monitored Precision Photothermal Therapy. Int J Nanomedicine 2020; 15:1409-1420. [PMID: 32184595 PMCID: PMC7060035 DOI: 10.2147/ijn.s236371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/01/2020] [Indexed: 11/23/2022] Open
Abstract
Background Photothermal therapy with accurate and real-time temperature detection is desired in clinic. Upconversion nanocrystals (UCNs) are candidate materials for simultaneous temperature detection and photothermal agents carrying. However, the weak luminescence and multiple laser excitations of UCNs limit their application in thermal therapy. Materials and Methods NaYF4:Yb3+,Er3+,Nd3+, PL-PEG-NH2, IR-806 and folic acid are selected as structural components. A nanoprobe (NP) integrated with efficient photothermal conversion and sensitive temperature detection capabilities is synthesized for precise photothermal therapy. The probes are based on near-infrared upconversion nanocrystals doped with Yb, Er and Nd ions, which can be excited by 808 nm light. IR-806 dye molecules are modified on the surface as molecular antennas to strongly absorb near-infrared photons for energy transfer and conversion. Results The results show that under an 808 nm laser irradiation upconversion luminescence of the nanocrystals is enhanced based on both the Nd ion absorption and the FRET energy transfer of IR-806. The luminescence ratio at 520 and 545 nm is calculated to accurately monitor the temperature of the nanoparticles. The temperature of the nanoprobes increases significantly through energy conversion of the molecular antennas. The nanoparticles are found successfully distributed to tumor cells and tumor tissue due to the modification of the biocompatible molecules on the surface. Tumor cells can be killed efficiently based on the photothermal effect of the NPs. Under the laser irradiation, temperature at mouse tumor site increases significantly, tissue necrosis and tumor cell death can be observed. Conclusion Precision photothermal therapy can thus be achieved by highly efficient near-infrared light absorption and accurate temperature monitoring, making it promising for tumor treatment, as well as the biological microzone temperature detection.
Collapse
Affiliation(s)
- Yanchun Wei
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, People's Republic of China
| | - Sen Liu
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, People's Republic of China
| | - Changjiang Pan
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, People's Republic of China
| | - Zhongmei Yang
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, People's Republic of China
| | - Ying Liu
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, People's Republic of China
| | - Jianfang Yong
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, People's Republic of China
| | - Li Quan
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Blackburn BJ, Gu S, Ford MR, de Stefano V, Jenkins MW, Dupps WJ, Rollins AM. Noninvasive Assessment of Corneal Crosslinking With Phase-Decorrelation Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2019; 60:41-51. [PMID: 30601930 PMCID: PMC6322634 DOI: 10.1167/iovs.18-25535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Purpose There is strong evidence that abnormalities in corneal biomechanical play a causal role in corneal ectasias, such as keratoconus. Additionally, corneal crosslinking (CXL) treatment, which halts progression of keratoconus, directly appeals to corneal biomechanics. However, existing methods of corneal biomechanical assessment have various drawbacks: dependence on IOP, long acquisition times, or limited resolution. Here, we present a method that may avoid these limitations by using optical coherence tomography (OCT) to detect the endogenous random motion within the cornea, which can be associated with stromal crosslinking. Methods Phase-decorrelation OCT (PhD-OCT), based in the theory of dynamic light scattering, is a method to spatially resolve endogenous random motion by calculating the decorrelation rate, Γ, of the temporally evolving complex-valued OCT signal. PhD-OCT images of ex vivo porcine globes were recorded during CXL and control protocols. In addition, human patients were imaged with PhD-OCT using a clinical OCT system. Results In both the porcine cornea and the human cornea, crosslinking results in a reduction of Γ (P < 0.0001), indicating more crosslinks. This effect was repeatable in ex vivo porcine corneas (change in average Γ = −41.55 ± 9.64%, n = 5) and not seen after sham treatments (change in average Γ = 2.83 ± 12.56%, n = 5). No dependence of PhD-OCT on IOP was found, and correctable effects were caused by variations in signal-to-noise ratio, hydration, and motion. Conclusions PhD-OCT may be a useful and readily translatable tool for investigating biomechanical properties of the cornea and for enhancing the diagnosis and treatment of patients.
Collapse
Affiliation(s)
- Brecken J Blackburn
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| | - Matthew R Ford
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | | | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States
| | - William J Dupps
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States.,Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
11
|
Lo WCY, Uribe-Patarroyo N, Hoebel K, Beaudette K, Villiger M, Nishioka NS, Vakoc BJ, Bouma BE. Balloon catheter-based radiofrequency ablation monitoring in porcine esophagus using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2019; 10:2067-2089. [PMID: 31086717 PMCID: PMC6484999 DOI: 10.1364/boe.10.002067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 05/05/2023]
Abstract
We present a microscopic image guidance platform for radiofrequency ablation (RFA) using a clinical balloon-catheter-based optical coherence tomography (OCT) system, currently used in the surveillance of Barrett's esophagus patients. Our integrated thermal therapy delivery and monitoring platform consists of a flexible, customized bipolar RFA electrode array designed for use with a clinical balloon OCT catheter and a processing algorithm to accurately map the thermal coagulation process. Non-uniform rotation distortion was corrected using a feature tracking-based technique, which enables robust, frame-to-frame analysis of the temporal fluctuation of the complex OCT signal. With proper noise calibration, precise delineation of the thermal therapy zone was demonstrated using cumulative complex differential variance in porcine esophagus ex vivo with the integrated OCT-RFA system, as validated by nitroblue tetrazolium chloride (NBTC) histology. The ability to directly and accurately visualize the thermal coagulation process at high resolution is critical to the precise delivery of thermal energy to a wide range of epithelial lesions.
Collapse
Affiliation(s)
- William C Y Lo
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Néstor Uribe-Patarroyo
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Katharina Hoebel
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Kathy Beaudette
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
| | - Norman S Nishioka
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Department of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | - Benjamin J Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Brett E Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 40 Blossom Street, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
12
|
Liu D, Zhang Y, Jiang G, Yu W, Xu B, Zhu J. Fabrication of Dissolving Microneedles with Thermal-Responsive Coating for NIR-Triggered Transdermal Delivery of Metformin on Diabetic Rats. ACS Biomater Sci Eng 2018; 4:1687-1695. [DOI: 10.1021/acsbiomaterials.8b00159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Depeng Liu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Yang Zhang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Guohua Jiang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018 China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, 310018 China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weijiang Yu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Bin Xu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| | - Jiangyin Zhu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018 China
| |
Collapse
|
13
|
Beaudette K, Strupler M, Ren J, Bouma BE, Boudoux C. Radiometric model for coaxial single- and multimode optical emission from double-clad fiber. APPLIED OPTICS 2018; 57:1110-1118. [PMID: 29469894 DOI: 10.1364/ao.57.001110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Double-clad fibers (DCFs) are versatile waveguides supporting a single-mode core surrounded by a multimode inner cladding. DCFs are increasingly used for multimodal biomedical applications, such as imaging or therapy, for which the core is typically used for coherent illumination and the inner cladding, to support a concurrent modality. Proper optimization is, however, critical to ensure high optical performance and requires accurate modeling of coaxial single- and multimode output beams. In this paper, we present an approach based on geometrical optics and radiometry, which provides a simple and efficient modeling tool for designing and optimizing DCF-based systems. A radiometric definition of single- and multimode output beams in terms of irradiance and radiant intensity allows for the modeling of the energy distribution along the beams' propagation. We confirmed the validity of the model through comparison with experimental measurements and demonstrate the use of the model for optimizing a catheter for concurrent OCT and laser coagulation.
Collapse
|
14
|
Moy WJ, Su E, Chen JJ, Oh C, Jing JC, Qu Y, He Y, Chen Z, Wong BJF. Association of Electrochemical Therapy With Optical, Mechanical, and Acoustic Impedance Properties of Porcine Skin. JAMA FACIAL PLAST SU 2017; 19:502-509. [PMID: 28654968 DOI: 10.1001/jamafacial.2017.0341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance The classic management of burn scars and other injuries to the skin has largely relied on soft-tissue transfer to resurface damaged tissue with local tissue transfer or skin graft placement. In situ generation of electrochemical reactions using needle electrodes and an application of current may be a new approach to treat scars and skin. Objective To examine the changes in optical, mechanical, and acoustic impedance properties in porcine skin after electrochemical therapy. Design, Setting, and Participants This preclinical pilot study, performed from August 1, 2015, to November 1, 2016, investigated the effects of localized pH-driven electrochemical therapy of ex vivo porcine skin using 24 skin samples. Platinum-plated needle electrodes were inserted into fresh porcine skin samples. A DC power supply provided a voltage of 4 to 5 V with a 3-minute application time. Specimens were analyzed using optical coherence tomography, optical coherence elastography, and ultrasonography. Ultrasonography was performed under 3 conditions (n = 2 per condition), optical coherence tomography was performed under 2 conditions (n = 2 per condition), and optical coherence elastography was performed under 2 conditions (n = 2 per condition). The remaining samples were used for the positive and negative control groups (n = 10). Exposures Platinum-plated needle electrodes were inserted into fresh porcine skin samples. A DC power supply provided a voltage of 4 to 5 V with a 3-minute application. Main Outcomes and Measures Tissue softening was observed at the anode and cathode sites as a result of electrochemical modification. Volumetric changes were noted using each optical and acoustic technique. Results A total of 24 ex vivo porcine skin samples were used for this pilot study. Optical coherence tomography measured spatial distribution of superficial tissue changes around each electrode site. At 4 V for 3 minutes, a total volumetric effect of 0.47 mm3 was found at the anode site and 0.51 mm3 at the cathode site. For 5 V for 3 minutes, a total volumetric effect of 0.85 mm3 was found at the anode site and 1.05 mm3 at the cathode site. Conclusions and Relevance Electrochemical therapy is a low-cost technique that is on par with the costs of suture and scalpel. The use of electrochemical therapy to create mechanical and physiologic changes in tissue has the potential to locally remodel the soft-tissue matrix, which ultimately may lead to an inexpensive scar treatment or skin rejuvenation therapy. Level of Evidence NA.
Collapse
Affiliation(s)
- Wesley J Moy
- Beckman Laser Institute and Medical Clinic, University of California, Irvine.,Department of Biomedical Engineering, University of California, Irvine
| | - Erica Su
- Beckman Laser Institute and Medical Clinic, University of California, Irvine
| | - Jason J Chen
- Beckman Laser Institute and Medical Clinic, University of California, Irvine
| | - Connie Oh
- Beckman Laser Institute and Medical Clinic, University of California, Irvine
| | - Joe C Jing
- Beckman Laser Institute and Medical Clinic, University of California, Irvine.,Department of Biomedical Engineering, University of California, Irvine
| | - Yueqiao Qu
- Beckman Laser Institute and Medical Clinic, University of California, Irvine.,Department of Biomedical Engineering, University of California, Irvine
| | | | - Zhongping Chen
- Beckman Laser Institute and Medical Clinic, University of California, Irvine.,Department of Biomedical Engineering, University of California, Irvine
| | - Brian J F Wong
- Beckman Laser Institute and Medical Clinic, University of California, Irvine.,Department of Biomedical Engineering, University of California, Irvine.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, Irvine
| |
Collapse
|
15
|
Lee HC, Ahsen OO, Liu JJ, Tsai TH, Huang Q, Mashimo H, Fujimoto JG. Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76001. [PMID: 28687822 PMCID: PMC5499807 DOI: 10.1117/1.jbo.22.7.076001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/08/2017] [Indexed: 05/08/2023]
Abstract
Radiofrequency ablation (RFA) is widely used for the eradication of dysplasia and the treatment of early stage esophageal carcinoma in patients with Barrett’s esophagus (BE). However, there are several factors, such as variation of BE epithelium (EP) thickness among individual patients and varying RFA catheter-tissue contact, which may compromise RFA efficacy. We used a high-speed optical coherence tomography (OCT) system to identify and monitor changes in the esophageal tissue architecture from RFA. Two different OCT imaging/RFA application protocols were performed using an <italic<ex vivo</italic< swine esophagus model: (1) post-RFA volumetric OCT imaging for quantitative analysis of the coagulum formation using RFA applications with different energy settings, and (2) M-mode OCT imaging for monitoring the dynamics of tissue architectural changes in real time during RFA application. Post-RFA volumetric OCT measurements showed an increase in the coagulum thickness with respect to the increasing RFA energies. Using a subset of the specimens, OCT measurements of coagulum and coagulum + residual EP thickness were shown to agree with histology, which accounted for specimen shrinkage during histological processing. In addition, we demonstrated the feasibility of OCT for real-time visualization of the architectural changes during RFA application with different energy settings. Results suggest feasibility of using OCT for RFA treatment planning and guidance.
Collapse
Affiliation(s)
- Hsiang-Chieh Lee
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Cambridge, Massachusetts, United States
| | - Osman O. Ahsen
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Cambridge, Massachusetts, United States
| | - Jonathan J. Liu
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Cambridge, Massachusetts, United States
| | - Tsung-Han Tsai
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Cambridge, Massachusetts, United States
| | - Qin Huang
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Hiroshi Mashimo
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - James G. Fujimoto
- Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Cambridge, Massachusetts, United States
- Address all correspondence to: James G. Fujimoto, E-mail:
| |
Collapse
|