1
|
Winter L, Ries J, Vogl C, Trumet L, Geppert CI, Lutz R, Kesting M, Weber M. Comparative Analysis of Inhibitory and Activating Immune Checkpoints PD-1, PD-L1, CD28, and CD86 in Non-Melanoma Skin Cancer. Cells 2024; 13:1569. [PMID: 39329753 PMCID: PMC11430031 DOI: 10.3390/cells13181569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
The establishment of immunotherapy applying immune checkpoint inhibitors (ICI) has provided an important new option for the treatment of solid malignant diseases. However, different tumor entities show dramatically different responses to this therapy. BCC responds worse to anti-PD-1 ICIs as compared to cSCC. Differential immune checkpoint expression could explain this discrepancy and, therefore, the aim of this study was to analyze activating and inhibitory immune checkpoints in cSCC and BCC tissues. Tissue microarrays of the invasive front as well as the tumor core of BCC and cSCC samples were used to evaluate PD-1, PD-L1, CD28, and CD86 expression and their topographic distribution profiles by chromogenic immunohistochemistry. QuPath was used to determine the labeling index. The expression of PD-1, PD-L1, and CD28 was significantly higher in both the tumor core and the invasive front of cSCC samples as compared to BCC (p < 0.001). In addition, the ratios of PD-L1/CD86 (p < 0.001) and CD28/CD86 (p < 0.001) were significantly higher in cSCC. The invasive front of both tumor entities showed higher expression levels of all immune markers compared to the tumor core in both tumor entities. The significantly higher expression of PD-1, PD-L1, and CD28 in cSCC, along with the predominance of the inhibitory ligand PD-L1 as compared to the activating CD86 in cSCC, provide a potential explanation for the better objective response rates to anti-PD-1 immunotherapy as compared to BCC. Furthermore, the predominant site of interaction between the immune system and the tumor was within the invasive front in both tumor types.
Collapse
Affiliation(s)
- Linus Winter
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.W.); (C.V.)
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC WERA), 91052 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Jutta Ries
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.W.); (C.V.)
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC WERA), 91052 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Christoph Vogl
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.W.); (C.V.)
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC WERA), 91052 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Leah Trumet
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.W.); (C.V.)
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC WERA), 91052 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
- Department of Operative Dentistry and Periodontology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Carol Immanuel Geppert
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC WERA), 91052 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Rainer Lutz
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.W.); (C.V.)
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC WERA), 91052 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.W.); (C.V.)
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC WERA), 91052 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Manuel Weber
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.W.); (C.V.)
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC WERA), 91052 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| |
Collapse
|
2
|
Diede C, Walker T, Carr DR, Shahwan KT. Grading differentiation in cutaneous squamous cell carcinoma: a review of the literature. Arch Dermatol Res 2024; 316:434. [PMID: 38935165 DOI: 10.1007/s00403-024-03184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Poor differentiation is strongly associated with poor outcomes in cutaneous squamous cell carcinoma (CSCC). In addition, the National Comprehensive Cancer Network (NCCN) guidelines designate poorly differentiated tumors as "very high risk". Despite its clear prognostic implications, there is no standardized grading system for CSCC differentiation in common use today. CSCC differentiation is graded inconsistently by both dermatopathologists and Mohs surgeons, and reliability studies have demonstrated suboptimal inter- and intra-rater reliability in both of these groups. The absence of a standardized and reliable grading system has impeded the use of differentiation in CSCC staging, despite its apparent correlation with disease outcomes. We performed a comprehensive review of the literature summarizing historical CSCC differentiation grading systems, as well as grading systems in non-cutaneous head and neck SCC as a point of reference. Relevant articles were identified by searching Embase and PubMed, as well as by reviewing reference lists for additional articles and histology textbook excerpts. CSCC grading systems that were identified and summarized include the historical Broders system, the World Health Organization system, the College of American Pathologists' system, and a system described by a 2023 Delphi consensus panel of dermatopathologists.
Collapse
Affiliation(s)
- Claire Diede
- University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Trent Walker
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - David R Carr
- Department of Dermatology, The Ohio State University Medical Center, 6700 University Blvd, Columbus, OH, 43016, USA
| | - Kathryn T Shahwan
- University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, USA.
- Department of Dermatology, The Ohio State University Medical Center, 6700 University Blvd, Columbus, OH, 43016, USA.
- Department of Dermatology, Altru Health System, Grand Forks, Grand Forks, ND, USA.
| |
Collapse
|
3
|
Danescu S, Negrutiu M, Focsan M, Baican A. An overview of cutaneous squamous cell carcinoma imaging diagnosis methods. Front Med (Lausanne) 2024; 11:1388835. [PMID: 38737758 PMCID: PMC11084285 DOI: 10.3389/fmed.2024.1388835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Cutaneous squamous cell carcinoma, a type of non-melanoma skin cancer, is a form of keratinocyte carcinoma that stands as one of the most prevalent cancers, exhibiting a rising frequency. This review provides an overview of the latest literature on imaging methods for diagnosing squamous cell carcinoma (SCC) and actinic keratosis (AK). It discusses the diagnostic criteria, advantages, and disadvantages of various techniques such as dermatoscopy, skin ultrasound (US), in vivo and ex-vivo reflectance confocal microscopy (RCM), and line-field confocal optical coherence tomography (LC-OCT). These methods offer benefits including non-invasiveness, rapidity, comprehensive lesion imaging, and enhanced sensitivity, but face challenges like high costs and the need for specialized expertise. Despite obstacles, the use of these innovative techniques is expected to increase with ongoing technological advancements, improving diagnosis and treatment planning for keratinocyte carcinomas. Standardizing LC-OCT imaging algorithms for AK, Bowen's disease, and SCC remains an area for further research.
Collapse
Affiliation(s)
- Sorina Danescu
- Department of Dermatology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mircea Negrutiu
- Department of Dermatology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Adrian Baican
- Department of Dermatology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Farabi B, Atak MF, Harris U, Kahn J, Khan S, Fink V, Hartmann D, Rao BK, Jain M. Ex vivo confocal microscopy features of common benign lesions that mimic non-melanoma skin cancers: Towards clinical integration. JOURNAL OF BIOPHOTONICS 2024; 17:e202300386. [PMID: 38200691 DOI: 10.1002/jbio.202300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Ex vivo confocal microscope (EVCM) rapidly images freshly excised tissue at a histopathological resolution. EVCM features of keratinocyte skin cancers are well-established, but those of benign clinical mimickers remain scarce. We describe EVCM features of common benign lesions and compare them with their malignant differentials. EVCM was used to image 14 benign and 3 cancer tissues. We compared EVCM features of benign lesions with corresponding histopathology and with those of keratinocyte cancers. Key features of benign lesions were identified and differentiated from malignant lesions. Elastin and fat appeared prominent in EVCM; while koilocytes and melanin were difficult to identify. Visualization of entire epidermis was challenging due to difficulty of tissue flattening during imaging. Benign lesions can be differentiated from keratinocyte cancers with EVCM. Using EVCM, a rapid, bedside diagnosis and management of skin neoplasms is possible, especially in a remote location without a histopathology lab.
Collapse
Affiliation(s)
- Banu Farabi
- New York Medical College, Valhalla, New York, USA
- Dermatology Department, NYC Health + Hospital/Metropolitan, New York, New York, USA
- Dermatology Department, NYC Health + Hospital/South Brooklyn, Brooklyn, New York, USA
| | - Mehmet Fatih Atak
- New York Medical College, Valhalla, New York, USA
- Internal Medicine Department, NYC Health + Hospitals/Metropolitan, New York, New York, USA
| | - Ucalene Harris
- Dermatology Department, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Julia Kahn
- New York Medical College, Valhalla, New York, USA
| | - Samavia Khan
- Dermatology Department, Rutgers University, Robert Wood Johnson Medical Center, New Brunswick, New Jersey, USA
| | - Veronica Fink
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Daniella Hartmann
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Babar K Rao
- Dermatology Department, Rutgers University, Robert Wood Johnson Medical Center, New Brunswick, New Jersey, USA
- Dermatology Department, Weil Cornell Medicine, New York, New York, USA
| | - Manu Jain
- Dermatology Department, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Dermatology Department, Weil Cornell Medicine, New York, New York, USA
| |
Collapse
|
5
|
Razi S, Ouellette S, Khan S, Oh KS, Truong TM, Rao BK. Role of VivaScope 2500 ex vivo confocal microscopy in skin pathology: Advantages, limitations, and future prospects. Skin Res Technol 2023; 29:e13388. [PMID: 37357649 PMCID: PMC10250963 DOI: 10.1111/srt.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/27/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Vivascope 2500 ex vivo confocal microscopy (EVCM) is an emerging optical imaging device that allows nuclear level resolution of freshly excised tissues. EVCM provides, rapid real-time pathological examination in many subspecialties of pathology including skin, prostate, breast, liver, etc. In contrast to traditional time-consuming frozen sectioning and histological analysis. AIMS To evaluate the current state of EVCM utilization. MATERIALS AND METHODS This study highlights the advantages, limitations, and prospects of EVCM in skin pathology. RESULTS Our findings demonstrate that EVCM is a promising adjunctive tool to assess margins in Mohs surgery and to provide rapid, accurate diagnosis of cutaneous tumors, infectious and inflammatory diseases. CONCLUSION EVCM is a revolutionary device that can be used as an adjunct to paraffin-fixed, hematoxylin and eosin-stained slides and frozen sectioning. Additional refinements are required before EVCM can be used as an alternative to frozen sectioning or traditional tissue processing.
Collapse
Affiliation(s)
- Shazli Razi
- Department of Dermatology and PathologyRao DermatologyNew YorkNew YorkUSA
| | - Samantha Ouellette
- Department of Dermatology and PathologyRao DermatologyNew YorkNew YorkUSA
- Center for Dermatology, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Samavia Khan
- Department of Dermatology and PathologyRao DermatologyNew YorkNew YorkUSA
- Center for Dermatology, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Kei Shing Oh
- Department of Pathology and Laboratory MedicineMount Sinai Medical CenterMiami BeachFloridaUSA
| | - Thu M. Truong
- Department of Dermatology and PathologyRao DermatologyNew YorkNew YorkUSA
- Center for Dermatology, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
- Department of MedicineRutgers New Jersey Medical SchoolNewarkNew JerseyUSA
| | - Babar K. Rao
- Department of Dermatology and PathologyRao DermatologyNew YorkNew YorkUSA
- Center for Dermatology, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| |
Collapse
|
6
|
A Feasibility Study for Immediate Histological Assessment of Various Skin Biopsies Using Ex Vivo Confocal Laser Scanning Microscopy. Diagnostics (Basel) 2022; 12:diagnostics12123030. [PMID: 36553036 PMCID: PMC9777122 DOI: 10.3390/diagnostics12123030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Digitally stained ex vivo confocal laser scanning microscopy (CLSM) scans are a possible alternative to formalin-fixed and paraffin-embedded (FFPE) and hematoxylin-eosin (H&E) stained slides. This study explores the diagnostic accuracy of digitally-stained CLSM scans in comparison to H&E-stained slides in various dermatologic diseases in a real-life setting. METHODS Samples of patients out of one selected dermatologic office were primarily scanned via CLSM; a diagnosis was made afterwards using FFPE- and H&E-stained slides by two experienced dermatopathologists. Primary outcomes were sensitivity and specificity of diagnosis in digitally stained CLSM scans in three separate diagnostic groups. RESULTS CLSM evaluation of epithelial tumors (n = 132) demonstrated a sensitivity of 64.3%/83.9% and a specificity of 84.2%/71.1%. Diagnosis of melanocytic tumors (n = 86) showed a sensitivity of 19.1%/85.1% and a specificity of 96.3%/66.7%. In the diagnosis of other tumors/cysts and inflammatory dermatoses (n = 42), a sensitivity of 96.4%/96.8% and a specificity of 57.1%/45.5% was reached. CONCLUSIONS This study shows the possibilities and limitations of a broad use of CLSM. Because of a partly low diagnostic accuracy, such an application does not seem to be recommendable at present for every indication.
Collapse
|
7
|
Grizzetti L, Kuonen F. Ex vivo confocal microscopy for surgical margin assessment: A histology-compared study on 109 specimens. SKIN HEALTH AND DISEASE 2022; 2:e91. [PMID: 35677928 PMCID: PMC9168011 DOI: 10.1002/ski2.91] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022]
Abstract
Background The assessment of surgical margins is mandatory to prevent local recurrence or distant dissemination of skin cancers. Histological examination of haematoxylin and eosin (H&E)-stained slides from paraffin-embedded or frozen samples is the gold standard for margin assessment, but is a time-consuming procedure. Ex vivo confocal laser scanning microscopy (CLSM) is an upcoming technique that scans unfixed fresh tissue rapidly, allowing fast per-operative margin assessment. Objective Here, we propose to assess the efficiency of a new ex vivo confocal microscope for the per-operative assessment of surgical margins. Methods We analyzed 16 biopsies and 93 surgical specimens of basal cell and squamous cell carcinomas by ex vivo CLSM using Histolog® Scanner V2. Surgical specimens included fusiform excisions, slow-Mohs peripheral and deep compartments, and Mohs excisions. The time required from surgical excision to image analysis was recorded and the quality of the images obtained for each specimen assessed. The presence or absence of tumour was estimated based on ex vivo CLSM images and compared with conventional H&E-stained sections from paraffin-embedded or frozen (Mohs) specimens. Results Mean time for specimen processing using Histolog Scanner was 5.1 ± 3.4 min. We obtained 89% of high quality images. Mean time for confocal image analysis was 1 ± 0.76 min. The diagnostic sensitivity and specificity for ex vivo CLSM compared to classical H&E procedures were respectively 93% and 100% when performed on tumour biopsies. The overall sensitivity and specificity for ex vivo CLSM for margin assessment compared to classical H&E procedures were respectively 61.5% and 95%, with variations depending on the type of tumour or surgical specimen analyzed. In particular, we obtained 80% sensitivity and 100% specificity for the assessment of BCC surgical margins. Conclusion Our data suggest that ex vivo CLSM using Histolog® Scanner V2 could be a valid help for surgeons for a fast and accurate per-operative margin analysis.
Collapse
Affiliation(s)
- L. Grizzetti
- Department of Dermatology and Venereology, Hôpital de BeaumontLausanne University Hospital CenterLausanneSwitzerland
| | - F. Kuonen
- Department of Dermatology and Venereology, Hôpital de BeaumontLausanne University Hospital CenterLausanneSwitzerland
| |
Collapse
|
8
|
Vladimirova G, Ruini C, Kapp F, Kendziora B, Ergün EZ, Bağcı IS, Krammer S, Jastaneyah J, Sattler EC, Flaig MJ, French LE, Hartmann D. Ex vivo confocal laser scanning microscopy: A diagnostic technique for easy real-time evaluation of benign and malignant skin tumours. JOURNAL OF BIOPHOTONICS 2022; 15:e202100372. [PMID: 35233962 DOI: 10.1002/jbio.202100372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Ex vivo confocal laser scanning microscopy (ex vivo CLSM) is a novel diagnostic tool for a quick bedside evaluation of freshly excised tissue, comparable to histology. We aimed to assess the sensitivity and specificity of ex vivo CLSM in detecting malignant features, to validate its reliability in identifying various skin tumours based on a combination of confocal features and to evaluate the digital staining mode (DS). One-hundred twenty freshly excised skin samples from 91 patients were evaluated. Each lesion was screened for the presence of 23 predefined confocal criteria with ex vivo CLSM, followed by a histopathological examination. The diagnostic agreement between ex vivo CLSM and histology was 89.2%. The diagnostic accuracy of ex vivo CLSM in detecting malignancy reached a sensitivity of 98% and a specificity of 76%. Ex vivo CLSM enabled a rapid identification of the most common skin tumours, the tumour dignity and cytological features. The DS demonstrated a close resemblance to conventional histopathology.
Collapse
Affiliation(s)
- Gabriela Vladimirova
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Cristel Ruini
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
- PhD School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Florian Kapp
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Benjamin Kendziora
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Ecem Z Ergün
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
- Department of Dermatology and Venereology, Istanbul Training and Research Hospital, Org. Abdurrahman Nafiz Gürman Cad. Etyemez, Istanbul, Turkey
| | - Işın S Bağcı
- Department of Dermatology, Stanford University School of Medicine, Redwood City, California, USA
| | - Sebastian Krammer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Jawaher Jastaneyah
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Elke C Sattler
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Michael J Flaig
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Daniela Hartmann
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
9
|
Shavlokhova V, Flechtenmacher C, Sandhu S, Vollmer M, Vollmer A, Saravi B, Engel M, Ristow O, Hoffmann J, Freudlsperger C. Ex vivo fluorescent confocal microscopy images of oral mucosa: Tissue atlas and evaluation of the learning curve. JOURNAL OF BIOPHOTONICS 2022; 15:e202100225. [PMID: 34796650 DOI: 10.1002/jbio.202100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Ex vivo fluorescence confocal microscopy (FCM) is a developing tool providing rapid digital imaging of fresh tissue utilizing high-resolution optical sectioning that highly corresponds with conventional hmatoxylin and eosin (H&E)-stained slides. A very little data on oral mucosa lesions exist currently. The present work aimed to create an image atlas of benign and malignant oral tissues and compare them to the corresponding histopathology. Furthermore, we aimed to evaluate the learning curve for confocal image interpretation. From 50 samples obtained from the oral mucosa, including oral squamous cell carcinoma (OSCC), dysplasia, and healthy oral tissue, ex vivo FCM images and corresponding H&E slides were created and collected into a tissue atlas. Additionally, two experts were asked to analyze the images to assess the learning curve. Ex vivo FCM images revealed high comparability with histopathological images. Tissues including OSCC, dysplasia, and normal oral mucosa were implemented in the image atlas to provide the diagnostic fundament for pathologists and surgeons; the learning curve was short. Future studies on this topic will be advantageous for the development of artificial intelligence-based diagnostic approaches. The current work provides a novel set of data that are structured as an atlas of common pathologies of the mucosa to enhance the existing knowledge and material on confocal images.
Collapse
Affiliation(s)
- Veronika Shavlokhova
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| | | | - Sameena Sandhu
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| | - Michael Vollmer
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| | - Andreas Vollmer
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| | - Babak Saravi
- Department of Orthopedics and Trauma Surgery, Medical Centre - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Michael Engel
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| | - Oliver Ristow
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| | - Jürgen Hoffmann
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| | | |
Collapse
|
10
|
Ruini C, Schlingmann S, Jonke Ž, Avci P, Padrón-Laso V, Neumeier F, Koveshazi I, Ikeliani IU, Patzer K, Kunrad E, Kendziora B, Sattler E, French LE, Hartmann D. Machine Learning Based Prediction of Squamous Cell Carcinoma in Ex Vivo Confocal Laser Scanning Microscopy. Cancers (Basel) 2021; 13:cancers13215522. [PMID: 34771684 PMCID: PMC8583634 DOI: 10.3390/cancers13215522] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023] Open
Abstract
Image classification with convolutional neural networks (CNN) offers an unprecedented opportunity to medical imaging. Regulatory agencies in the USA and Europe have already cleared numerous deep learning/machine learning based medical devices and algorithms. While the field of radiology is on the forefront of artificial intelligence (AI) revolution, conventional pathology, which commonly relies on examination of tissue samples on a glass slide, is falling behind in leveraging this technology. On the other hand, ex vivo confocal laser scanning microscopy (ex vivo CLSM), owing to its digital workflow features, has a high potential to benefit from integrating AI tools into the assessment and decision-making process. Aim of this work was to explore a preliminary application of CNN in digitally stained ex vivo CLSM images of cutaneous squamous cell carcinoma (cSCC) for automated detection of tumor tissue. Thirty-four freshly excised tissue samples were prospectively collected and examined immediately after resection. After the histologically confirmed ex vivo CLSM diagnosis, the tumor tissue was annotated for segmentation by experts, in order to train the MobileNet CNN. The model was then trained and evaluated using cross validation. The overall sensitivity and specificity of the deep neural network for detecting cSCC and tumor free areas on ex vivo CLSM slides compared to expert evaluation were 0.76 and 0.91, respectively. The area under the ROC curve was equal to 0.90 and the area under the precision-recall curve was 0.85. The results demonstrate a high potential of deep learning models to detect cSCC regions on digitally stained ex vivo CLSM slides and to distinguish them from tumor-free skin.
Collapse
Affiliation(s)
- Cristel Ruini
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (S.S.); (P.A.); (K.P.); (E.K.); (B.K.); (E.S.); (L.E.F.); (D.H.)
- PhD School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence:
| | - Sophia Schlingmann
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (S.S.); (P.A.); (K.P.); (E.K.); (B.K.); (E.S.); (L.E.F.); (D.H.)
| | - Žan Jonke
- Munich Innovation Labs GmbH, 80336 Munich, Germany; (Ž.J.); (V.P.-L.)
| | - Pinar Avci
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (S.S.); (P.A.); (K.P.); (E.K.); (B.K.); (E.S.); (L.E.F.); (D.H.)
| | | | - Florian Neumeier
- M3i Industry-in-Clinic-Platform GmbH, 80336 Munich, Germany; (F.N.); (I.K.); (I.U.I.)
| | - Istvan Koveshazi
- M3i Industry-in-Clinic-Platform GmbH, 80336 Munich, Germany; (F.N.); (I.K.); (I.U.I.)
| | - Ikenna U. Ikeliani
- M3i Industry-in-Clinic-Platform GmbH, 80336 Munich, Germany; (F.N.); (I.K.); (I.U.I.)
| | - Kathrin Patzer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (S.S.); (P.A.); (K.P.); (E.K.); (B.K.); (E.S.); (L.E.F.); (D.H.)
| | - Elena Kunrad
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (S.S.); (P.A.); (K.P.); (E.K.); (B.K.); (E.S.); (L.E.F.); (D.H.)
| | - Benjamin Kendziora
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (S.S.); (P.A.); (K.P.); (E.K.); (B.K.); (E.S.); (L.E.F.); (D.H.)
| | - Elke Sattler
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (S.S.); (P.A.); (K.P.); (E.K.); (B.K.); (E.S.); (L.E.F.); (D.H.)
| | - Lars E. French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (S.S.); (P.A.); (K.P.); (E.K.); (B.K.); (E.S.); (L.E.F.); (D.H.)
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Daniela Hartmann
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (S.S.); (P.A.); (K.P.); (E.K.); (B.K.); (E.S.); (L.E.F.); (D.H.)
| |
Collapse
|
11
|
Ruini C, Vladimirova G, Kendziora B, Salzer S, Ergun E, Sattler E, French LE, Hartmann D. Ex-vivo fluorescence confocal microscopy with digital staining for characterizing basal cell carcinoma on frozen sections: A comparison with histology. JOURNAL OF BIOPHOTONICS 2021; 14:e202100094. [PMID: 33991061 DOI: 10.1002/jbio.202100094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Ex-vivo fluorescence confocal microscopy (FCM) has been used on fresh tissue, but there is little experience on frozen sections. We evaluated the applicability of FCM on frozen sections of basal cell carcinomas (BCCs), stained with acridine orange and digitally colored to simulate hematoxylin and eosin (H&E) dyes. We compared our diagnostic accuracy in detecting and subtyping BCCs with FCM to our gold standard (H&E stained frozen sections used in 3D horizontal micrographic surgery). Fourty-six primary BCCs were analyzed for free margins as well as histological subtype with all FCM modes and conventional H&E staining. Adnexa, artifacts and diagnostic confidence were evaluated. Free margins were identified with a sensitivity and specificity of 92% and 91%. Concordance for tumor subtype was 88%. FCM may be used on both fresh tissue and frozen samples, although with reduced performance and different artifacts. The device is useful for the intraoperative diagnosis, subtyping and margin-mapping of BCCs.
Collapse
Affiliation(s)
- Cristel Ruini
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Germany
- PhD School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Italy
| | | | - Benjamin Kendziora
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Germany
| | - Suzanna Salzer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Germany
| | - Ecem Ergun
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Germany
| | - Elke Sattler
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Germany
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Daniela Hartmann
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Germany
| |
Collapse
|
12
|
Wright Q, Gonzalez Cruz JL, Wells JW, Leggatt GR. PD-1 and beyond to Activate T Cells in Cutaneous Squamous Cell Cancers: The Case for 4-1BB and VISTA Antibodies in Combination Therapy. Cancers (Basel) 2021; 13:3310. [PMID: 34282763 PMCID: PMC8269268 DOI: 10.3390/cancers13133310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 01/02/2023] Open
Abstract
Non-melanoma skin cancers (NMSC) have a higher incidence than all other cancers combined with cutaneous squamous cell carcinoma (cSCC), capable of metastasis, representing approximately 20% of NMSCs. Given the accessibility of the skin, surgery is frequently employed to treat localized disease, although certain localities, the delineation of clear margins, frequency and recurrence of tumors can make these cancers inoperable in a subset of patients. Other treatment modalities, including cryotherapy, are commonly used for individual lesions, with varying success. Immunotherapy, particularly with checkpoint antibodies, is increasingly a promising therapeutic approach in many cancers, offering the potential advantage of immune memory for protection against lesion recurrence. This review addresses a role for PD-1, 4-1BB and VISTA checkpoint antibodies as monotherapies, or in combination as a therapeutic treatment for both early and late-stage cSCC.
Collapse
Affiliation(s)
| | | | | | - Graham R. Leggatt
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; (Q.W.); (J.L.G.C.); (J.W.W.)
| |
Collapse
|
13
|
Clinical Applications of In Vivo and Ex Vivo Confocal Microscopy. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11051979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Confocal laser scanning microscopy (CLSM) has been introduced in clinical settings as a tool enabling a quasi-histologic view of a given tissue, without performing a biopsy. It has been applied to many fields of medicine mainly to the skin and to the analysis of skin cancers for both in vivo and ex vivo CLSM. In vivo CLSM involves reflectance mode, which is based on refractive index of cell structures serving as endogenous chromophores, reaching a depth of exploration of 200 μm. It has been proven to increase the diagnostic accuracy of skin cancers, both melanoma and non-melanoma. While histopathologic examination is the gold standard for diagnosis, in vivo CLSM alone and in addition to dermoscopy, contributes to the reduction of the number of excised lesions to exclude a melanoma, and to improve margin recognition in lentigo maligna, enabling tissue sparing for excisions. Ex vivo CLSM can be performed in reflectance and fluorescent mode. Fluorescence confocal microscopy is applied for “real-time” pathological examination of freshly excised specimens for diagnostic purposes and for the evaluation of margin clearance after excision in Mohs surgery. Further prospective interventional studies using CLSM might contribute to increase the knowledge about its application, reproducing real-life settings.
Collapse
|
14
|
Sinem Bağcı I, Aoki R, Vladimirova G, Ergün E, Ruzicka T, Sárdy M, French LE, Hartmann D. New-generation diagnostics in inflammatory skin diseases: Immunofluorescence and histopathological assessment using ex vivo confocal laser scanning microscopy in cutaneous lupus erythematosus. Exp Dermatol 2021; 30:684-690. [PMID: 33345402 DOI: 10.1111/exd.14265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Ex vivo confocal laser scanning microscopy (CLSM) offers real-time examination of excised tissue in reflectance, fluorescence and digital haematoxylin-eosin (H&E)-like staining modes enabling application of fluorescent-labelled antibodies. We aimed to assess the diagnostic performance of ex vivo CLSM in identifying histopathological features and lupus band test in cutaneous lupus erythematosus (CLE) with comparison to conventional histopathology and direct immunofluorescence (DIF). A total of 72 sections of 18 CLE patients were stained with acridine orange (AO), anti-IgG, anti-IgM and anti-IgA; 21 control samples were stained with AO. Subsequently, ex vivo CLSM examination of all samples was performed in reflectance, fluorescence and digital H&E-like staining modes. Superficial and deep perivascular inflammatory infiltration (94.4%), interface dermatitis (88.9%), spongiosis (83.3%) and vacuolar degeneration (77.7%) were the most common features detected with ex vivo CLSM. Kappa test revealed a level of agreement ranging within "perfect" to "good" between ex vivo CLSM and conventional histopathology. ROC analysis showed that the combination of perivascular infiltration, interface dermatitis and spongiosis detected by ex vivo CLSM has the potential to distinguish between CLE and controls. Basement membrane immunoreactivity with IgG, IgM and IgA was identified in 88.8% (n = 15), 55.5% (n = 10) and 55.5% (n = 10) of the CLE samples using ex vivo CLSM, respectively, whereas DIF showed IgG, IgM and IgA positivity in 94.4% (n = 17), 100% (n = 18) and 88.9% (n = 16) of patients, respectively. In conclusion, ex vivo CLSM enables simultaneous histopathological and immunofluorescence examination in CLE showing a high agreement with conventional histopathology, albeit with a lower performance than conventional DIF.
Collapse
Affiliation(s)
- Işın Sinem Bağcı
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Aoki
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Germany
| | | | - Ecem Ergün
- Department of Dermatology and Venereology, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Thomas Ruzicka
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Germany
| | - Miklós Sárdy
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Germany.,Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Germany
| | - Daniela Hartmann
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Germany
| |
Collapse
|
15
|
Bağcı IS, Aoki R, Krammer S, Vladimirova G, Ruzicka T, Sárdy M, French LE, Hartmann D. Immunofluorescence and histopathological assessment using ex vivo confocal laser scanning microscopy in lichen planus. JOURNAL OF BIOPHOTONICS 2020; 13:e202000328. [PMID: 33025741 DOI: 10.1002/jbio.202000328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Ex vivo confocal laser scanning microscopy (CLSM) provides rapid, high-resolution imaging, fluorescence detection and digital haematoxylin-eosin (H&E)-like staining. We aimed to assess the performance of ex vivo CLSM in identifying histomorphology and immunoreactivity in lichen planus (LP) and comparing its accuracy with conventional histopathology and direct immunofluorescence (DIF). Thirty-three sections of 17 LP patients stained with acridine orange (AO) and FITC-labelled anti-fibrinogen antibody and 21 control samples stained with AO were examined using ex vivo CLSM. Ex vivo CLSM was in perfect agreement with conventional histopathology in identifying interface dermatitis, vacuolar degeneration and band-like infiltration. ROC analysis showed that the presence of vacuolar degeneration, interface dermatitis and band-like infiltration was useful to distinguish LP sections from controls (p < .0001). The detection rates of fibrinogen deposition using DIF and in conclusion ex vivo CLSM were 93.8% and 62.5%, respectively. ex vivo CLSM enables histopathological and immunofluorescence examination in LP with the advantage of digital H&E-like staining.
Collapse
Affiliation(s)
- Işın Sinem Bağcı
- Department of Dermatology, Stanford University School of Medicine, Stanford, California, USA
| | - Rui Aoki
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Sebastian Krammer
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Gabriela Vladimirova
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Thomas Ruzicka
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Miklós Sárdy
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| | - Daniela Hartmann
- Department of Dermatology and Allergy, University Hospital, LMU, Munich, Germany
| |
Collapse
|
16
|
Krammer S, Krammer C, Vladimirova G, Salzer S, Ruini C, Sattler E, French LE, Hartmann D. Ex vivo Confocal Laser Scanning Microscopy: A Potential New Diagnostic Imaging Tool in Onychomycosis Comparable With Gold Standard Techniques. Front Med (Lausanne) 2020; 7:586648. [PMID: 33240908 PMCID: PMC7677524 DOI: 10.3389/fmed.2020.586648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Ex vivo confocal laser scanning microscopy (CLSM) is an innovative imaging tool that enables real-time examination of specimens and may be used in evaluating fungal infections. We aimed to assess the applicability of ex vivo CLSM in the diagnosis of onychomycosis by comparing results to those obtained by histopathology, potassium hydroxide (KOH) examination, and fungal culture. In this prospective study, 57 patients with the clinical diagnosis of distal nail fungal infection were examined and compared using all four of the above-mentioned diagnostic tools in terms of sensitivity, positive and negative predictive value. Ex vivo CLSM showed the highest sensitivity, followed by KOH examination, histopathology and fungal culture. Regarding positive and negative predictive values, ex vivo CLSM was superior and showed even higher sensitivity than the combined gold standard comprised of KOH examination, fungal culture or histopathology.
Collapse
Affiliation(s)
- Sebastian Krammer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Christian Krammer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Gabriela Vladimirova
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Suzanna Salzer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Cristel Ruini
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Elke Sattler
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Daniela Hartmann
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
17
|
Mentzel J, Stecher MM, Paasch U, Simon JC, Grunewald S. Ex vivo confocal laser scanning microscopy with digital staining is able to map characteristic histopathological features and tissue reaction patterns of inflammatory skin diseases. J Eur Acad Dermatol Venereol 2020; 35:e263-e265. [PMID: 33085808 DOI: 10.1111/jdv.17006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- J Mentzel
- Department of Dermatology, Venerology and Allergology, University of Leipzig, Leipzig, Germany
| | - M-M Stecher
- Department of Dermatology, Venerology and Allergology, University of Leipzig, Leipzig, Germany
| | - U Paasch
- Department of Dermatology, Venerology and Allergology, University of Leipzig, Leipzig, Germany
| | - J C Simon
- Department of Dermatology, Venerology and Allergology, University of Leipzig, Leipzig, Germany
| | - S Grunewald
- Department of Dermatology, Venerology and Allergology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
18
|
Lupu M, Caruntu A, Boda D, Caruntu C. In Vivo Reflectance Confocal Microscopy-Diagnostic Criteria for Actinic Cheilitis and Squamous Cell Carcinoma of the Lip. J Clin Med 2020; 9:jcm9061987. [PMID: 32630380 PMCID: PMC7356181 DOI: 10.3390/jcm9061987] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
Actinic cheilitis (AC) is one of the most frequent pathologies to affect the lips. Studies show that the most commonplace oral malignancy, squamous cell carcinoma (SCC), often emerges from AC lesions. Invasive diagnostic techniques performed on the lips carry a high risk of complications, but reflectance confocal microscopy (RCM), a non-invasive skin imaging technique, may change the current diagnostic pathway. This retrospective study was aimed at consolidating the RCM diagnostic criteria for AC and lip SCC. The study was conducted in two tertiary care centers in Bucharest, Romania. We included adults with histopathologically confirmed AC and SCC who also underwent RCM examination. Of the twelve lesions included in the study, four were AC and eight were SCC. An atypical honeycomb pattern and the presence of target cells in the epidermis were RCM features associated with AC. SCC was typified by the presence of complete disruption of the epidermal architecture and dermal inflammatory infiltrates. The mean blood vessel diameter in SCC was 18.55 µm larger than that in AC (p = 0.006) and there was no significant difference (p = 0.64) in blood vessel density, as measured by RCM, between SCC and AC. These data confirm that RCM can be useful for the in vivo distinction between AC and lip SCC.
Collapse
Affiliation(s)
- Mihai Lupu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.L.); (D.B.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence: ; Tel.: +40-72-2345-344
| | - Daniel Boda
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.L.); (D.B.)
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania;
| | - Constantin Caruntu
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania;
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
19
|
Malvehy J, Pérez-Anker J, Toll A, Pigem R, Garcia A, Alos LL, Puig S. Ex vivo confocal microscopy: revolution in fast pathology in dermatology. Br J Dermatol 2020; 183:1011-1025. [PMID: 32134506 DOI: 10.1111/bjd.19017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
Abstract
Confocal microscopy with in vivo and ex vivo modalities has been used in the evaluation of skin cancer and other dermatological disorders. Recent developments in ex vivo confocal microscopy allow for faster pathology assessment with greater accuracy by the visualization of cellular and architectural details, similarly to standard pathology, in either paraffin-embedded or frozen samples. They include the possibility of multimodal confocal microscopy using different lasers and fusion images. New staining protocols including immunostaining, with no damage to conventional histopathology preparation, have been recently described in melanocytic tumours and inflammatory skin diseases. Digital staining with haematoxylin and eosin is also incorporated in the new devices. In this review the applications of ex vivo confocal microscopy will be presented with the description of the technique and the technology, clinical evidence in dermatology and other fields, and further applications.
Collapse
Affiliation(s)
- J Malvehy
- Dermatology Department, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| | - J Pérez-Anker
- Dermatology Department, University of Barcelona, Barcelona, Spain
| | - A Toll
- Dermatology Department, University of Barcelona, Barcelona, Spain
| | - R Pigem
- Dermatology Department, University of Barcelona, Barcelona, Spain
| | - A Garcia
- Pathology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - L L Alos
- Pathology Department, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - S Puig
- Dermatology Department, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Biomedical Research Networking Centre on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain
| |
Collapse
|
20
|
Schüürmann M, Stecher MM, Paasch U, Simon JC, Grunewald S. Evaluation of digital staining for ex vivo confocal laser scanning microscopy. J Eur Acad Dermatol Venereol 2020; 34:1496-1499. [PMID: 31732988 DOI: 10.1111/jdv.16085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ex vivo confocal laser scanning microscopy (CLSM) is a novel diagnostic tool for the fast examination of native tissue. However, CLSM produces black/white/green images, depending on the refraction indices of the tissue structures, complemented by nuclear fluorescence staining, which the vast majority of Mohs surgeons and dermatopathologists are not trained to interpret. Digital staining is applicable to ex vivo CLSM investigations to simulate the images of conventional slides stained with haematoxylin and eosin (H&E). OBJECTIVES The aim of our study was to evaluate in detail the appearance of human skin structures using digitally stained ex vivo CLSM images and compare the results to that of conventional H&E slides of the same specimen. METHODS After providing informed consent, 26 patients donated their Burow's triangles (healthy skin) that resulted from plastic reconstruction after the R0 excision of skin tumours. After being investigated by ex vivo CLSM, including automated digital staining (VivaScope 2500M-4G, MAVIG GmbH), the specimens were fixed in formalin, embedded in paraffin and stained with H&E. RESULTS Almost all skin structures in the digitally stained ex vivo CLSM images morphologically resembled the structures in the histopathological images acquired from H&E slides. Due to the high refraction index of melanin, the hair shafts appeared bright pink, and the melanocytes and melanophages were poorly imaged, resulting in a strong pink appearance that vastly differed from the appearance of conventional H&E-stained histopathology. CONCLUSIONS Digital staining of ex vivo CLSM images is an easy and highly useful tool to facilitate the interpretation of black-field images generated by confocal laser scanning microscopy for dermatopathologists and Mohs surgeons who are familiar with H&E staining. Unlike the pigmented structures, the cutaneous and subcutaneous structures had excellent visualization with only minimal differences from their appearance on H&E slides.
Collapse
Affiliation(s)
- M Schüürmann
- Department of Dermatology, Venerology and Allergology, University of Leipzig, Leipzig, Germany
| | - M M Stecher
- Department of Dermatology, Venerology and Allergology, University of Leipzig, Leipzig, Germany
| | - U Paasch
- Department of Dermatology, Venerology and Allergology, University of Leipzig, Leipzig, Germany
| | - J C Simon
- Department of Dermatology, Venerology and Allergology, University of Leipzig, Leipzig, Germany
| | - S Grunewald
- Department of Dermatology, Venerology and Allergology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Bertoni L, Puliatti S, Reggiani Bonetti L, Maiorana A, Eissa A, Azzoni P, Bevilacqua L, Spandri V, Kaleci S, Zoeir A, Sighinolfi MC, Micali S, Bianchi G, Pellacani G, Rocco B, Montironi R. Ex vivo fluorescence confocal microscopy: prostatic and periprostatic tissues atlas and evaluation of the learning curve. Virchows Arch 2020; 476:511-520. [PMID: 31907606 DOI: 10.1007/s00428-019-02738-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022]
Abstract
Ex vivo fluorescence confocal microscopy (FCM) is an optical technology that provides fast H&E-like images of freshly excised tissues, and it has been mainly used for "real-time" pathological examination of dermatological malignancies. It has also shown to be a promising tool for fast pathological examination of prostatic tissues. We aim to create an atlas for FCM images of prostatic and periprostatic tissues to facilitate the interpretation of these images. Furthermore, we aimed to evaluate the learning curve of images interpretation of this new technology. Eighty fresh and unprepared biopsies obtained from radical prostatectomy specimens were evaluated using the FCM VivaScope® 2500 M-G4 (Mavig GmbH, Munich, Germany; Caliber I.D.; Rochester NY, USA) by two pathologists. Images of FCM with the corresponding H&E are illustrated to create the atlas. Furthermore, the two pathologists were asked to re-evaluate the 80 specimens after 90 days interval in order to assess the learning curve of images' interpretation of FCM. FCM was able to differentiate between different types of prostatic and periprostatic tissues including benign prostatic glands, benign prostatic hyperplasia, high-grade intraepithelial neoplasm, and prostatic adenocarcinoma. As regards the learning curve, FCM demonstrated a short learning curve. We created an atlas that can serve as the base for urologists and pathologists for learning and interpreting FCM images of prostatic and periprostatic tissues. Furthermore, FCM images is easily interpretable; however, further studies are required to explore the potential applications of this new technology in prostate cancer diagnosis and management.
Collapse
Affiliation(s)
- Laura Bertoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Puliatti
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy. .,Department of Urology, Ospedale Policlinico e Nuovo Ospedale Civile S. Agostino Estense Modena, University of Modena and Reggio Emilia, Via del Pozzo, 71, 41124, Modena, Italy.
| | - Luca Reggiani Bonetti
- Department of Pathology, Ospedale Policlinico e Nuovo Ospedale Civile S. Agostino Estense Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Department of Pathology, Ospedale Policlinico e Nuovo Ospedale Civile S. Agostino Estense Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Ahmed Eissa
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy.,Urology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Paola Azzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luigi Bevilacqua
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Spandri
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy
| | - Shaniko Kaleci
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Ahmed Zoeir
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy.,Urology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Salvatore Micali
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giampaolo Bianchi
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Pellacani
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Bernardo Rocco
- Department of Urology, University of Modena and Reggio Emilia, Modena, Italy
| | - Rodolfo Montironi
- Department of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| |
Collapse
|
22
|
Bağcı IS, Aoki R, Krammer S, Ruzicka T, Sárdy M, Hartmann D. Ex vivo confocal laser scanning microscopy: An innovative method for direct immunofluorescence of cutaneous vasculitis. JOURNAL OF BIOPHOTONICS 2019; 12:e201800425. [PMID: 31021054 DOI: 10.1002/jbio.201800425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/05/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Ex vivo confocal laser scanning microscopy (ex vivo CLSM) offers an innovative diagnostic approach through vertical scanning of skin samples with a resolution close to conventional histology. In addition, it enables fluorescence detection in tissues. We aimed to assess the applicability of ex vivo CLSM in the detection of vascular immune complexes in cutaneous vasculitis and to compare its diagnostic accuracy with direct immunofluorescence (DIF) microscopy. Eighty-two sections of 49 vasculitis patients with relevant DIF microscopy findings were examined using ex vivo CLSM following staining with fluorescent-labeled IgG, IgM, IgA, C3 and fibrinogen antibodies. DIF microscopy showed immunoreactivity of vessels with IgG, IgM, IgA, C3 and Fibrinogen in 2.0%, 49.9%, 12.2%, 59.2% and 44.9% of the patients, respectively. Ex vivo CLSM detected positive vessels with the same antibodies in 2.0%, 38.8%, 8.2%, 42.9% and 36.7% of the patients, respectively. The detection rate of positive superficial dermal vessels was significantly higher in DIF microscopy as compared to ex vivo CLSM (P < .05). Whereas, ex vivo CLSM identified positive deep dermal vessels more frequently compared to DIF microscopy. In conclusion, ex vivo CLSM could identify specific binding of the antibodies in vessels and showed a comparable performance to conventional DIF microscopy in diagnosing vasculitis.
Collapse
Affiliation(s)
- Işın S Bağcı
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Rui Aoki
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Krammer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Ruzicka
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Miklós Sárdy
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Daniela Hartmann
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
23
|
Bağcı I, Aoki R, Krammer S, Ruzicka T, Sárdy M, French L, Hartmann D. Ex vivo
confocal laser scanning microscopy for bullous pemphigoid diagnostics: new era in direct immunofluorescence? J Eur Acad Dermatol Venereol 2019; 33:2123-2130. [DOI: 10.1111/jdv.15767] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Affiliation(s)
- I.S. Bağcı
- Department of Dermatology and Allergy University Hospital LMU Munich Munich Germany
| | - R. Aoki
- Department of Dermatology and Allergy University Hospital LMU Munich Munich Germany
| | - S. Krammer
- Department of Dermatology and Allergy University Hospital LMU Munich Munich Germany
| | - T. Ruzicka
- Department of Dermatology and Allergy University Hospital LMU Munich Munich Germany
| | - M. Sárdy
- Department of Dermatology and Allergy University Hospital LMU Munich Munich Germany
- Department of Dermatology, Venereology and Dermatooncology Faculty of Medicine Semmelweis University Budapest Hungary
| | - L.E. French
- Department of Dermatology and Allergy University Hospital LMU Munich Munich Germany
| | - D. Hartmann
- Department of Dermatology and Allergy University Hospital LMU Munich Munich Germany
| |
Collapse
|
24
|
Longo C, Pampena R, Bombonato C, Gardini S, Piana S, Mirra M, Raucci M, Kyrgidis A, Pellacani G, Ragazzi M. Diagnostic accuracy of ex vivo fluorescence confocal microscopy in Mohs surgery of basal cell carcinomas: a prospective study on 753 margins. Br J Dermatol 2019; 180:1473-1480. [PMID: 30512198 DOI: 10.1111/bjd.17507] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Frozen histological sections are used for intraoperative margin assessment during Mohs surgery. Fluorescence confocal microscopy (FCM) is a new tool that offers a promising and faster alternative to frozen histology. OBJECTIVES To evaluate prospectively in a clinical setting the accuracy of FCM vs. frozen sections in margin assessment of basal cell carcinoma (BCC). METHODS Patients with BCC scheduled for Mohs surgery were prospectively enrolled. Freshly excised surgical specimens were examined by FCM and then frozen sections were evaluated. Permanent sections were obtained, in order to validate the sample technique. A blind re-evaluation was also performed for discordant cases. Sensitivity and specificity levels, as well as positive and negative predictive values (PPV and NPV, respectively), were calculated and receiver-operating characteristic curves generated. RESULTS We enrolled 127 BCCs in as many patients (40·2% females). Seven hundred and fifty-three sections were examined. All BCCs were located in the head and neck area. In evaluating the performance of FCM vs. frozen sections, sensitivity was 79·8%, specificity was 95·8%, PPV was 80·5% and NPV was 95·7% [area under the curve 0·88, 95% confidence interval 0·84-0·92 (P < 0·001)]. Forty-nine discordant cases were re-evaluated; 24 were false positive and 25 false negative. The performance of FCM and frozen sections was also evaluated according to the final histopathological assessment. CONCLUSIONS We found high levels of accuracy for FCM vs. frozen section evaluation in intraoperative BCC margin assessment during Mohs surgery. Some technical issues prevent the wide use of this technique, but new devices promise to overcome these limitations.
Collapse
Affiliation(s)
- C Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy.,Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Centro Oncologico ad Alta Tecnologia Diagnostica-Dermatologia, Reggio Emilia, Italy
| | - R Pampena
- Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Centro Oncologico ad Alta Tecnologia Diagnostica-Dermatologia, Reggio Emilia, Italy
| | - C Bombonato
- Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Centro Oncologico ad Alta Tecnologia Diagnostica-Dermatologia, Reggio Emilia, Italy
| | - S Gardini
- Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Centro Oncologico ad Alta Tecnologia Diagnostica-Dermatologia, Reggio Emilia, Italy
| | - S Piana
- Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Pathology Unit, Reggio Emilia, Italy
| | - M Mirra
- Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Centro Oncologico ad Alta Tecnologia Diagnostica-Dermatologia, Reggio Emilia, Italy
| | - M Raucci
- Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Centro Oncologico ad Alta Tecnologia Diagnostica-Dermatologia, Reggio Emilia, Italy
| | - A Kyrgidis
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Pellacani
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - M Ragazzi
- Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Pathology Unit, Reggio Emilia, Italy
| |
Collapse
|
25
|
Bertoni L, Azzoni P, Reggiani C, Pisciotta A, Carnevale G, Chester J, Kaleci S, Reggiani Bonetti L, Cesinaro AM, Longo C, Pellacani G. Ex vivo fluorescence confocal microscopy for intraoperative, real-time diagnosis of cutaneous inflammatory diseases: A preliminary study. Exp Dermatol 2018; 27:1152-1159. [PMID: 30033578 DOI: 10.1111/exd.13754] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022]
Abstract
Ex vivo fluorescence confocal microscopy (FCM) is an innovative imaging tool that can be used intraoperatively to obtain real-time images of untreated excised tissue with almost histologic resolution. As inflammatory diseases often share overlapping clinical features, histopathology evaluation is required for dubious cases, delaying definitive diagnoses, and therefore therapy. This study identifies key-features at ex vivo FCM for differential diagnoses of cutaneous inflammatory diseases, in particular, psoriasis, eczema, lichen planus and discoid lupus erythematosus. Retrospective ex vivo FCM and histological evaluations with relevant diagnoses were correlated with prospectively reported histopathologic diagnoses, to evaluate agreement and the level of expertise required for correct diagnoses. We demonstrated that ex vivo FCM enabled the distinction of the main inflammatory features in most cases, providing a substantial concordance to histopathologic diagnoses. Moreover, ex vivo FCM and histological evaluations reached a substantial agreement with histopathologic diagnoses both for all raters and for each operator. After a yet to be defined learning curve, these preliminary results suggest that dermatologists may be able to satisfactorily interpret ex vivo FCM images for correct real-time diagnoses. Despite some limitations mainly related to the equipment of FCM with a single objective lens, our study suggests that ex vivo FCM seems a promising tool in assisting diagnoses of cutaneous inflammatory lesions, with a level of accuracy quite close to that offered by histopathology. This is the first study to investigate ex vivo FCM application in cutaneous inflammatory lesions, and to evaluate the diagnostic capability of this technology.
Collapse
Affiliation(s)
- Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Azzoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Camilla Reggiani
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Johanna Chester
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Shaniko Kaleci
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Reggiani Bonetti
- Department of Diagnostic, Clinic and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Maria Cesinaro
- Anatomic Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy.,Centro Oncologico ad Alta Tecnologia Diagnostica, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giovanni Pellacani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.,Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|