1
|
Atsigeida SV, Tuchina DK, Timashev PS, Tuchin VV. Molecular Diffusion and Optical Properties of Implantable Collagen Materials. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1035. [PMID: 40077258 PMCID: PMC11901222 DOI: 10.3390/ma18051035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025]
Abstract
The effects of optical clearing of implantable collagen materials were studied using optical clearing agents (OCAs) based on aqueous glucose solutions of various concentrations. By measuring the kinetics of the collimated transmission spectra, the diffusion D and permeability P coefficients of the OCAs of collagen materials were determined as D = (0.22 ± 0.05) × 10-6 to (1.41 ± 0.05) × 10-6 cm2/c and P = (0.55 ± 0.04) × 10-4 to (1.77 ± 0.07) × 10-4 cm/c. Studies with optical coherence tomography (OCT) confirmed that each of the OCAs used had an effect on the optical properties of collagen materials, and allowed us to quantify the group refractive indices of the collagen of various samples, which turned out to be in the range from nc = 1.476 to nc = 1.579.
Collapse
Affiliation(s)
- Sofya V. Atsigeida
- Institute of Physics and Science Medical Center, Saratov State University, 410012 Saratov, Russia; (D.K.T.); (V.V.T.)
| | - Daria K. Tuchina
- Institute of Physics and Science Medical Center, Saratov State University, 410012 Saratov, Russia; (D.K.T.); (V.V.T.)
- Laboratory of Biophotonics, Tomsk State University, 634050 Tomsk, Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Valery V. Tuchin
- Institute of Physics and Science Medical Center, Saratov State University, 410012 Saratov, Russia; (D.K.T.); (V.V.T.)
- Laboratory of Biophotonics, Tomsk State University, 634050 Tomsk, Russia
- Institute of Precision Mechanics and Control, Federal Research Center “Saratov Scientific Center of the Russian Academy of Sciences”, 410028 Saratov, Russia
| |
Collapse
|
2
|
Ou Z, Duh YS, Rommelfanger NJ, Keck CHC, Jiang S, Brinson K, Zhao S, Schmidt EL, Wu X, Yang F, Cai B, Cui H, Qi W, Wu S, Tantry A, Roth R, Ding J, Chen X, Kaltschmidt JA, Brongersma ML, Hong G. Achieving optical transparency in live animals with absorbing molecules. Science 2024; 385:eadm6869. [PMID: 39236186 PMCID: PMC11931656 DOI: 10.1126/science.adm6869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/12/2024] [Indexed: 09/07/2024]
Abstract
Optical imaging plays a central role in biology and medicine but is hindered by light scattering in live tissue. We report the counterintuitive observation that strongly absorbing molecules can achieve optical transparency in live animals. We explored the physics behind this observation and found that when strongly absorbing molecules dissolve in water, they can modify the refractive index of the aqueous medium through the Kramers-Kronig relations to match that of high-index tissue components such as lipids. We have demonstrated that our straightforward approach can reversibly render a live mouse body transparent to allow visualization of a wide range of deep-seated structures and activities. This work suggests that the search for high-performance optical clearing agents should focus on strongly absorbing molecules.
Collapse
Affiliation(s)
- Zihao Ou
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford; CA, USA
| | - Yi-Shiou Duh
- Department of Physics, Stanford University; Stanford, CA, USA
- Geballe Laboratory for Advanced Materials, Stanford University; Stanford, CA, USA
| | - Nicholas J. Rommelfanger
- Wu Tsai Neurosciences Institute, Stanford University, Stanford; CA, USA
- Department of Applied Physics, Stanford University; Stanford, CA, USA
| | - Carl H. C. Keck
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford; CA, USA
| | - Shan Jiang
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford; CA, USA
| | - Kenneth Brinson
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford; CA, USA
| | - Su Zhao
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford; CA, USA
| | - Elizabeth L. Schmidt
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford; CA, USA
| | - Xiang Wu
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford; CA, USA
| | - Fan Yang
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford; CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
| | - Han Cui
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford; CA, USA
| | - Wei Qi
- Department of Biology, Stanford University; Stanford, CA, USA
| | - Shifu Wu
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford; CA, USA
| | - Adarsh Tantry
- Wu Tsai Neurosciences Institute, Stanford University, Stanford; CA, USA
- Neurosciences IDP Graduate program, Stanford University; Stanford, CA
| | - Richard Roth
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
| | - Jun Ding
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University; Stanford, CA, USA
| | - Xiaoke Chen
- Department of Biology, Stanford University; Stanford, CA, USA
| | - Julia A. Kaltschmidt
- Wu Tsai Neurosciences Institute, Stanford University, Stanford; CA, USA
- Department of Neurosurgery, Stanford University School of Medicine; Stanford, CA, USA
| | - Mark L. Brongersma
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Geballe Laboratory for Advanced Materials, Stanford University; Stanford, CA, USA
- Department of Applied Physics, Stanford University; Stanford, CA, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford; CA, USA
| |
Collapse
|
3
|
Oliveira LR, Pinheiro MR, Tuchina DK, Timoshina PA, Carvalho MI, Oliveira LM. Light in evaluation of molecular diffusion in tissues: Discrimination of pathologies. Adv Drug Deliv Rev 2024; 212:115420. [PMID: 39096937 DOI: 10.1016/j.addr.2024.115420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
The evaluation of the diffusion properties of different molecules in tissues is a subject of great interest in various fields, such as dermatology/cosmetology, clinical medicine, implantology and food preservation. In this review, a discussion of recent studies that used kinetic spectroscopy measurements to evaluate such diffusion properties in various tissues is made. By immersing ex vivo tissues in agents or by topical application of those agents in vivo, their diffusion properties can be evaluated by kinetic collimated transmittance or diffuse reflectance spectroscopy. Using this method, recent studies were able to discriminate the diffusion properties of agents between healthy and diseased tissues, especially in the cases of cancer and diabetes mellitus. In the case of cancer, it was also possible to evaluate an increase of 5% in the mobile water content from the healthy to the cancerous colorectal and kidney tissues. Considering the application of some agents to living organisms or food products to protect them from deterioration during low temperature preservation (cryopreservation), and knowing that such agent inclusion may be reversed, some studies in these fields are also discussed. Considering the broadband application of the optical spectroscopy evaluation of the diffusion properties of agents in tissues and the physiological diagnostic data that such method can acquire, further studies concerning the optimization of fruit sweetness or evaluation of poison diffusion in tissues or antidote application for treatment optimization purposes are indicated as future perspectives.
Collapse
Affiliation(s)
- Luís R Oliveira
- Department of Public and Environmental Health, Polytechnic of Porto - School of Health (ESS), Porto, Portugal
| | - Maria R Pinheiro
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
| | - Daria K Tuchina
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russian Federation; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
| | - Polina A Timoshina
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russian Federation; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation; Lomonosov Moscow State University, Moscow, Russian Federation
| | - Maria I Carvalho
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal; Department of Electrical and Computer Engineering, Porto University - Faculty of Engineering, Porto, Portugal
| | - Luís M Oliveira
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal; Physics Department, Polytechnic of Porto - School of Engineering (ISEP), Porto, Portugal.
| |
Collapse
|
4
|
Jamshidnejad-Tosaramandani T, Kashanian S, Karimi I, Schiöth HB. Synthesis of an insulin-loaded mucoadhesive nanoparticle designed for intranasal administration: focus on new diffusion media. Front Pharmacol 2023; 14:1227423. [PMID: 37701036 PMCID: PMC10494546 DOI: 10.3389/fphar.2023.1227423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023] Open
Abstract
Intranasal administration is a drug delivery approach to provide a non-invasive pharmacological response in the central nervous system with relatively small peripheral side effects. To improve the residence time of intranasal drug delivery systems in the nasal mucosa, mucoadhesive polymers (e.g., chitosan) can be used. Here, insulin-loaded chitosan nanoparticles were synthesized and their physiochemical properties were evaluated based on requirements of intranasal administration. The nanoparticles were spherical (a hydrodynamic diameter of 165.3 nm, polydispersity index of 0.24, and zeta potential of +21.6 mV) that granted mucoadhesion without any noticeable toxicity to the nasal tissue. We applied a new approach using the Krebs-Henseleit buffer solution along with simulated nasal fluid in a Franz's diffusion cell to study this intranasal drug delivery system. We used the Krebs-Henseleit buffer because of its ability to supply glucose to the cells which serves as a novel ex vivo diffusion medium to maintain the viability of the tissue during the experiment. Based on diffusion rate and histopathological endpoints, the Krebs-Henseleit buffer solution can be a substituent solution to the commonly used simulated nasal fluid for such drug delivery systems.
Collapse
Affiliation(s)
- Tahereh Jamshidnejad-Tosaramandani
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
- Sensor and Biosensor Research Center (SBRC), Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Isaac Karimi
- Laboratory for Computational Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Bini F, Pica A, Marinozzi A, Marinozzi F. 3D Tortuosity and Diffusion Characterization in the Human Mineralized Collagen Fibril Using a Random Walk Model. Bioengineering (Basel) 2023; 10:bioengineering10050558. [PMID: 37237628 DOI: 10.3390/bioengineering10050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Bone tissue is mainly composed at the nanoscale of apatite minerals, collagen molecules and water that form the mineralized collagen fibril (MCF). In this work, we developed a 3D random walk model to investigate the influence of bone nanostructure on water diffusion. We computed 1000 random walk trajectories of water molecules within the MCF geometric model. An important parameter to analyse transport behaviour in porous media is tortuosity, computed as the ratio between the effective path length and the straight-line distance between initial and final points. The diffusion coefficient is determined from the linear fit of the mean squared displacement of water molecules as a function of time. To achieve more insight into the diffusion phenomenon within MCF, we estimated the tortuosity and diffusivity at different quotes in the longitudinal direction of the model. Tortuosity is characterized by increasing values in the longitudinal direction. As expected, the diffusion coefficient decreases as tortuosity increases. Diffusivity outcomes confirm the findings achieved by experimental investigations. The computational model provides insights into the relation between the MCF structure and mass transport behaviour that may contribute to the improvement of bone-mimicking scaffolds.
Collapse
Affiliation(s)
- Fabiano Bini
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Via Eudossiana, 18, 00184 Rome, Italy
| | - Andrada Pica
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Via Eudossiana, 18, 00184 Rome, Italy
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 43/B, 07100 Sassari, Italy
| | - Andrea Marinozzi
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, Via Eudossiana, 18, 00184 Rome, Italy
| |
Collapse
|
6
|
The Glycerol-Induced Perfusion-Kinetics of the Cat Ovaries in the Follicular and Luteal Phases of the Cycle. Diagnostics (Basel) 2023; 13:diagnostics13030490. [PMID: 36766594 PMCID: PMC9914571 DOI: 10.3390/diagnostics13030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The method of immersion optical clearing reduces light scattering in tissues, which improves the use of optical technologies in the practice of clinicians. In this work, we studied the optical and molecular diffusion properties of cat ovarian tissues in the follicular (F-ph) and luteal (L-ph) phases under the influence of glycerol using reflectance spectroscopy in a broad wavelength range from 200 to 800 nm. It was found that the reflectance and transmittance of the ovaries are significantly lower in the range from 200 to 600 nm than for longer wavelengths from 600 to 800 nm, and the efficiency of optical clearing is much lower for the ovaries in the luteal phase compared to the follicular phase. For shorter wavelengths, the following tissue transparency windows were observed: centered at 350 nm and wide (46 ± 5) nm, centered at 500 nm and wide (25 ± 7) nm for the F-ph state and with a center of 500 nm and a width of (21 ± 6) nm for the L-ph state. Using the free diffusion model, Fick's law of molecular diffusion and the Bouguer-Beer-Lambert radiation attenuation law, the glycerol/tissue water diffusion coefficient was estimated as D = (1.9 ± 0.2)10-6 cm2/s for ovaries at F-ph state and D = (2.4 ± 0.2)10-6 cm2/s-in L-ph state, and the time of complete dehydration of ovarian samples, 0.8 mm thick, as 22.3 min in F-ph state and 17.7 min in L-ph state. The ability to determine the phase in which the ovaries are stated, follicular or luteal, is also important in cryopreservation, new reproductive technologies and ovarian implantation.
Collapse
|
7
|
Zhan YJ, Zhang SW, Zhu S, Jiang N. Tissue Clearing and Its Application in the Musculoskeletal System. ACS OMEGA 2023; 8:1739-1758. [PMID: 36687066 PMCID: PMC9850472 DOI: 10.1021/acsomega.2c05180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The musculoskeletal system is an integral part of the human body. Currently, most skeletal muscle research is conducted through conventional histological sections due to technological limitations and the structure of skeletal muscles. For studying and observing bones and muscles, there is an urgent need for three-dimensional, objective imaging technologies. Optical tissue-clearing technologies seem to offer a novel and accessible approach to research of the musculoskeletal system. Using this approach, the components which cause refraction or prevent light from penetrating into the tissue are physically and chemically eliminated; then the liquid in the tissue is replaced with high-refractive-index chemicals. This innovative method, which allows three-dimensional reconstruction at the cellular and subcellular scale, significantly improves imaging depth and resolution. Nonetheless, this technology was not originally developed to image bones or muscles. When compared with brain and nerve organs which have attracted considerable attention in this field, the musculoskeletal system contains fewer lipids and has high levels of hemoglobin, collagen fibers, and inorganic hydroxyapatite crystals. Currently, three-dimensional imaging methods are widely used in the diagnosis and treatment of skeletal and muscular illnesses. In this regard, it is vitally important to review and evaluate the optical tissue-clearing technologies currently employed in the musculoskeletal system, so that researchers may make an informed decision. In the meantime, this study offers guidelines and recommendations for expanding the use of this technology in the musculoskeletal system.
Collapse
Affiliation(s)
- Yan-Jing Zhan
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shi-Wen Zhang
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- West
China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - SongSong Zhu
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- West
China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Nan Jiang
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- West
China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Martins IS, Silva HF, Lazareva EN, Chernomyrdin NV, Zaytsev KI, Oliveira LM, Tuchin VV. Measurement of tissue optical properties in a wide spectral range: a review [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:249-298. [PMID: 36698664 PMCID: PMC9841994 DOI: 10.1364/boe.479320] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
A distinctive feature of this review is a critical analysis of methods and results of measurements of the optical properties of tissues in a wide spectral range from deep UV to terahertz waves. Much attention is paid to measurements of the refractive index of biological tissues and liquids, the knowledge of which is necessary for the effective application of many methods of optical imaging and diagnostics. The optical parameters of healthy and pathological tissues are presented, and the reasons for their differences are discussed, which is important for the discrimination of pathologies and the demarcation of their boundaries. When considering the interaction of terahertz radiation with tissues, the concept of an effective medium is discussed, and relaxation models of the effective optical properties of tissues are presented. Attention is drawn to the manifestation of the scattering properties of tissues in the THz range and the problems of measuring the optical properties of tissues in this range are discussed. In conclusion, a method for the dynamic analysis of the optical properties of tissues under optical clearing using an application of immersion agents is presented. The main mechanisms and technologies of optical clearing, as well as examples of the successful application for differentiation of healthy and pathological tissues, are analyzed.
Collapse
Affiliation(s)
- Inês S. Martins
- Center for Innovation in Engineering and Industrial Technology, ISEP, Porto, Portugal
| | - Hugo F. Silva
- Porto University, School of Engineering, Porto, Portugal
| | - Ekaterina N. Lazareva
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | | | - Kirill I. Zaytsev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - Luís M. Oliveira
- Physics Department, Polytechnic of Porto – School of Engineering (ISEP), Porto, Portugal
- Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Porto, Portugal
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| |
Collapse
|
9
|
Silva HF, Martins IS, Bogdanov AA, Tuchin VV, Oliveira LM. Characterization of optical clearing mechanisms in muscle during treatment with glycerol and gadobutrol solutions. JOURNAL OF BIOPHOTONICS 2023; 16:e202200205. [PMID: 36101493 DOI: 10.1002/jbio.202200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The recent increasing interest in the application of radiology contrasting agents to create transparency in biological tissues implies that the diffusion properties of those agents need evaluation. The comparison of those properties with the ones obtained for other optical clearing agents allows to perform an optimized agent selection to create optimized transparency in clinical applications. In this study, the evaluation and comparison of the diffusion properties of gadobutrol and glycerol in skeletal muscle was made, showing that although gadobutrol has a higher molar mass than glycerol, its low viscosity allows for a faster diffusion in the muscle. The characterization of the tissue dehydration and refractive index matching mechanisms of optical clearing was made in skeletal muscle, namely by the estimation of the diffusion coefficients for water, glycerol and gadobutrol. The estimated tortuosity values of glycerol (2.2) and of gadobutrol (1.7) showed a longer path-length for glycerol in the muscle.
Collapse
Affiliation(s)
- Hugo F Silva
- Centre of Innovation in Engineering and Industrial Technology (CIETI), Polytechnic of Porto, Porto, Portugal
| | - Inês S Martins
- Centre of Innovation in Engineering and Industrial Technology (CIETI), Polytechnic of Porto, Porto, Portugal
| | - Alexei A Bogdanov
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
- Department of Radiology, UMass Chan Medical School, Worcester, Massachusetts, USA
- Department of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russian Federation
| | - Valery V Tuchin
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
- Science Medical Center, Saratov State University, Saratov, Russian Federation
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russian Federation
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, FRC "Saratov Research Centre of Russian Academy of Sciences,", Saratov, Russian Federation
| | - Luís M Oliveira
- Centre of Innovation in Engineering and Industrial Technology (CIETI), Polytechnic of Porto, Porto, Portugal
- Physics Department, School of Engineering, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|
10
|
Carneiro I, Carvalho S, Henrique R, Oliveira L, Tuchin V. Moving tissue spectral window to the deep-ultraviolet via optical clearing. JOURNAL OF BIOPHOTONICS 2019; 12:e201900181. [PMID: 31465137 DOI: 10.1002/jbio.201900181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/25/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
The optical immersion clearing technique has been successfully applied through the last 30 years in the visible to near infrared spectral range, and has proven to be a promising method to promote the application of optical technologies in clinical practice. To investigate its potential in the ultraviolet range, collimated transmittance spectra from 200 to 1000 nm were measured from colorectal muscle samples under treatment with glycerol-water solutions. The treatments created two new optical windows with transmittance efficiency peaks at 230 and 300 nm, with magnitude increasing with glycerol concentration in the treating solution. Such discovery opens the opportunity to develop clinical procedures to perform diagnosis or treatments in the ultraviolet.
Collapse
Affiliation(s)
- Isa Carneiro
- Department of Pathology and Cancer Biology, and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Sónia Carvalho
- Department of Pathology and Cancer Biology, and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Rui Henrique
- Department of Pathology and Cancer Biology, and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar - University of Porto (ICBAS-UP), Porto, Portugal
| | - Luís Oliveira
- Physics Department - Polytechnic Institute of Porto, School of Engineering, Porto, Portugal
- Centre of Innovation in Engineering and Industrial Technology (CIETI), School of Engineering, Polytechnic of Porto, Porto, Portugal
| | - Valery Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, Russian Federation
- Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk, Russian Federation
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control of the Russian Academy of Sciences, Saratov, Russian Federation
- Laboratory of Molecular Imaging, Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|