1
|
Graphene Oxide-Chitosan Network on a Dialysis Cellulose Membrane for Efficient Removal of Organic Dyes. ACS APPLIED BIO MATERIALS 2022; 5:2795-2811. [PMID: 35621372 DOI: 10.1021/acsabm.2c00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, water pollution is a significant health problem for both humans and animals due to large amounts of dye-containing wastewater. Thus, polymer composite membranes (PCMs) are considered as efficient adsorption/filtration membranes that can be utilized for removing organic dyes from contaminated water/wastewater. In this study, the goal is to explore the modification of the interfacial dialysis cellulose (DC) surface through molecular interactions of an active graphene oxide-chitosan (GO-CTS) composite hydrogel (GCCH) network without the use of an external cross-linker toward an effective dye removal ability using a simple casting process and a low-cost adsorption technique, resulting in the formation of a PCM, i.e., GO/CTS/DC membrane (GCD-mems). Concomitantly, the incorporation of the GCCH network (as an active hybrid network) and DC (as a supporting material) is considered as a promising approach toward a dye-removing PCM. As a result, the GCD-mems showed that cellulose robustly interacted via the chemical bonds of the GCCH network by maintaining the three-dimensional (3D) porous layer structures, and the functional surface of the membrane was enhanced toward specific groups for an effective dye removal approach. In addition, there is a significant improvement in dye removal performance after modification of the interfacial DC surface through molecular interactions of GCCH, i.e., high adsorption capacities of cationic and anionic dye molecules on the GCD-mems, compared to the relevant GO-based adsorbents. Also, the dye flux and rejection of the GCD-mems can simultaneously remove both methylene blue and Congo red. In the adsorption, it is appropriate with the pseudo-second-order and Langmuir models corresponding to chemical adsorption and monolayer approaches, as well as physical sieving through the 3D layers of porous channels of GCD-mems during the filtration process. Moreover, the structural stability and sustainability of the PCMs are enhanced during the recycling process, and the use of ethanol in the recycling process further simplifies the process and reduces the cost of the PCMs. Thus, the GCD-mems are encouraged as potential candidates that can be applied directly in the removal of dyes from the wastewater of textile industries or selective dialysis applications.
Collapse
|
2
|
Maggay IV, Venault A, Fang CY, Yang CC, Hsu CH, Chou CY, Ishihara K, Chang Y. Zwitterionized Nanofibrous Poly(vinylidene fluoride) Membranes for Improving the Healing of Diabetic Wounds. ACS Biomater Sci Eng 2021; 7:562-576. [PMID: 33455156 DOI: 10.1021/acsbiomaterials.0c01594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work presents nanofibrous membranes made of poly(vinylidene fluoride) (PVDF) and poly(2-methacryloyloxyethyl phosphorylcholine-co-methacryloyloxyethyl butylurethane) (PMBU) for promoting the healing of acute and chronic wounds. Membranes were prepared by an electrospinning process, which led to matrixes with a pore size mimicking the extracellular matrix. PMBU greatly improves the hydration of membranes, resulting in very low biofouling by protein or bacteria and enhanced blood compatibility while the cell viability remains close to 100%. This set of properties exhibited by the suitable combination of physical structure and material composition led to applying the zwitterionic nanofibrous membranes as wound-dressing materials for acute and chronic wounds. The results demonstrated that the zwitterionic membrane could compete with commercial dressings in terms of wound-healing kinetics and could outperform them with regard to the quality of new tissue. Histological analyses suggested that inflammation was reduced while proliferative and maturation phases were accelerated, leading to homogeneous re-epithelialization. This study unveils another potential biomedical application of antifouling zwitterionic membranes.
Collapse
Affiliation(s)
- Irish Valerie Maggay
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli District, Taoyuan 320, Taiwan, R.O.C
| | - Antoine Venault
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli District, Taoyuan 320, Taiwan, R.O.C
| | - Chi-Yao Fang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli District, Taoyuan 320, Taiwan, R.O.C
| | - Cheng-Chen Yang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli District, Taoyuan 320, Taiwan, R.O.C
| | - Chen-Hua Hsu
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli District, Taoyuan 320, Taiwan, R.O.C
| | - Chih-Yu Chou
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli District, Taoyuan 320, Taiwan, R.O.C
| | - Kazuhiko Ishihara
- Department of Bioengineering, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chungli District, Taoyuan 320, Taiwan, R.O.C
| |
Collapse
|
3
|
Salehi A, Mobarhan MA, Mohammadi J, Shahsavarani H, Shokrgozar MA, Alipour A. Efficient mineralization and osteogenic gene overexpression of mesenchymal stem cells on decellularized spinach leaf scaffold. Gene 2020; 757:144852. [DOI: 10.1016/j.gene.2020.144852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022]
|
4
|
Zhang L, Peng X, Zhong L, Chua W, Xiang Z, Sun R. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering. Curr Med Chem 2019; 26:2456-2474. [PMID: 28925867 DOI: 10.2174/0929867324666170918122125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 11/22/2022]
Abstract
The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmentally friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure is comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc. are reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.,Department of Chemistry, National University of Singapore, Singapore 117543, Singapore, China
| | - Linxin Zhong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weitian Chua
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore, China
| | - Zhihua Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Runcang Sun
- Center for Lignocellulose Science and Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
5
|
Ishihara K. Revolutionary advances in 2‐methacryloyloxyethyl phosphorylcholine polymers as biomaterials. J Biomed Mater Res A 2019; 107:933-943. [DOI: 10.1002/jbm.a.36635] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8656 Japan
| |
Collapse
|
6
|
Modulevsky DJ, Cuerrier CM, Pelling AE. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials. PLoS One 2016; 11:e0157894. [PMID: 27328066 PMCID: PMC4915699 DOI: 10.1371/journal.pone.0157894] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/07/2016] [Indexed: 12/22/2022] Open
Abstract
There is intense interest in developing novel biomaterials which support the invasion and proliferation of living cells for potential applications in tissue engineering and regenerative medicine. Decellularization of existing tissues have formed the basis of one major approach to producing 3D scaffolds for such purposes. In this study, we utilize the native hypanthium tissue of apples and a simple preparation methodology to create implantable cellulose scaffolds. To examine biocompatibility, scaffolds were subcutaneously implanted in wild-type, immunocompetent mice (males and females; 6-9 weeks old). Following the implantation, the scaffolds were resected at 1, 4 and 8 weeks and processed for histological analysis (H&E, Masson's Trichrome, anti-CD31 and anti-CD45 antibodies). Histological analysis revealed a characteristic foreign body response to the scaffold 1 week post-implantation. However, the immune response was observed to gradually disappear by 8 weeks post-implantation. By 8 weeks, there was no immune response in the surrounding dermis tissue and active fibroblast migration within the cellulose scaffold was observed. This was concomitant with the deposition of a new collagen extracellular matrix. Furthermore, active blood vessel formation within the scaffold was observed throughout the period of study indicating the pro-angiogenic properties of the native scaffolds. Finally, while the scaffolds retain much of their original shape they do undergo a slow deformation over the 8-week length of the study. Taken together, our results demonstrate that native cellulose scaffolds are biocompatible and exhibit promising potential as a surgical biomaterial.
Collapse
Affiliation(s)
- Daniel J. Modulevsky
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Charles M. Cuerrier
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew E. Pelling
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
- Institute for Science, Society and Policy, University of Ottawa, Ottawa, Ontario, Canada
- SymbioticA, School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth WA 6009, Australia
| |
Collapse
|
7
|
Modulevsky DJ, Lefebvre C, Haase K, Al-Rekabi Z, Pelling AE. Apple derived cellulose scaffolds for 3D mammalian cell culture. PLoS One 2014; 9:e97835. [PMID: 24842603 PMCID: PMC4026483 DOI: 10.1371/journal.pone.0097835] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/24/2014] [Indexed: 01/10/2023] Open
Abstract
There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.
Collapse
Affiliation(s)
- Daniel J. Modulevsky
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Cory Lefebvre
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristina Haase
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Zeinab Al-Rekabi
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew E. Pelling
- Centre for Interdisciplinary NanoPhysics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
- Institute for Science, Society and Policy, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Iwasaki Y, Ishihara K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064101. [PMID: 27877525 PMCID: PMC5099758 DOI: 10.1088/1468-6996/13/6/064101] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/18/2012] [Accepted: 09/06/2012] [Indexed: 05/25/2023]
Abstract
This review article describes fundamental aspects of cell membrane-inspired phospholipid polymers and their usefulness in the development of medical devices. Since the early 1990s, polymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) units have been considered in the preparation of biomaterials. MPC polymers can provide an artificial cell membrane structure at the surface and serve as excellent biointerfaces between artificial and biological systems. They have also been applied in the surface modification of some medical devices including long-term implantable artificial organs. An MPC polymer biointerface can suppress unfavorable biological reactions such as protein adsorption and cell adhesion - in other words, specific biomolecules immobilized on an MPC polymer surface retain their original functions. MPC polymers are also being increasingly used for creating biointerfaces with artificial cell membrane structures.
Collapse
Affiliation(s)
- Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka, 564–8680, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–8656, Japan
| |
Collapse
|
9
|
Warren NJ, Muise C, Stephens A, Armes SP, Lewis AL. Near-monodisperse poly(2-(methacryloyloxy)ethyl phosphorylcholine)-based macromonomers prepared by atom transfer radical polymerization and thiol-ene click chemistry: novel reactive steric stabilizers for aqueous emulsion polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2928-2936. [PMID: 22191694 DOI: 10.1021/la204083z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) macromonomers have been prepared by the atom transfer radical polymerization (ATRP) of 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) using a bifunctional disulfide-based initiator. To attach a terminal polymerizable methacrylate group, the central disulfide bond was cleaved and the resulting thiols were conjugated to 3-(acryloyloxy)-2-hydroxypropyl methacrylate using tris(2-carboxyethyl)phosphine (TCEP) in water. Here TCEP serves as both the disulfide cleavage agent and also the catalyst for the subsequent Michael addition, which is highly selective for the acrylate group. The resulting methacrylate-terminated macromonomers were used as a reactive steric stabilizer for the aqueous emulsion polymerization of styrene, yielding near-monodisperse PMPC-stabilized polystyrene (PS) latexes of around 100-200 nm in diameter. As a comparison, the disulfide-containing PMPC homopolymer precursor and the intermediate thiol-functional PMPC homopolymer (PMPC-SH) were also evaluated as potential steric stabilizers. Interestingly, near-monodisperse latexes were also obtained in each case. These three sterically-stabilized latexes, prepared using either PMPC macromonomer, disulfide-based PMPC homopolymer, or PMPC-SH homopolymer as a reactive steric stabilizer, remained colloidally stable after both freeze-thaw experiments and the addition of an electrolyte, indicating that a coronal layer of PMPC chains prevented flocculation in each case. In contrast, both a charge-stabilized PS latex prepared in the absence of any steric stabilizer and a PS latex prepared in the presence of a nonfunctional PMPC homopolymer exhibited very poor colloidal stability when subjected to a freeze-thaw cycle or the addition of an electrolyte, as expected.
Collapse
Affiliation(s)
- Nicholas J Warren
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Yan L, Ishihara K. Graft copolymerization of 2‐methacryloyloxyethyl phosphorylcholine to cellulose in homogeneous media using atom transfer radical polymerization for providing new hemocompatible coating materials. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pola.22670] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lifeng Yan
- Hefei National Laboratory for Physical Science at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering and Center for NanoBio Integration,The University of Tokyo, 7‐3‐1, Hongo, Bunkyo‐ku, Tokyo 113‐8656, Japan
| |
Collapse
|
11
|
Lee BS, Chi YS, Lee KB, Kim YG, Choi IS. Functionalization of Poly(oligo(ethylene glycol) methacrylate) Films on Gold and Si/SiO2 for Immobilization of Proteins and Cells: SPR and QCM Studies. Biomacromolecules 2007; 8:3922-9. [DOI: 10.1021/bm7009043] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bong Soo Lee
- Department of Chemistry and School of Molecular Science (BK21), Center for Molecular Design and Synthesis, KAIST, Daejeon 305-701, Korea, Glycomics Team, Korea Basic Science Institute (KBSI), Daejeon 305-333, Korea, and Department of Chemistry, School of Natural Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Young Shik Chi
- Department of Chemistry and School of Molecular Science (BK21), Center for Molecular Design and Synthesis, KAIST, Daejeon 305-701, Korea, Glycomics Team, Korea Basic Science Institute (KBSI), Daejeon 305-333, Korea, and Department of Chemistry, School of Natural Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Kyung-Bok Lee
- Department of Chemistry and School of Molecular Science (BK21), Center for Molecular Design and Synthesis, KAIST, Daejeon 305-701, Korea, Glycomics Team, Korea Basic Science Institute (KBSI), Daejeon 305-333, Korea, and Department of Chemistry, School of Natural Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Yang-Gyun Kim
- Department of Chemistry and School of Molecular Science (BK21), Center for Molecular Design and Synthesis, KAIST, Daejeon 305-701, Korea, Glycomics Team, Korea Basic Science Institute (KBSI), Daejeon 305-333, Korea, and Department of Chemistry, School of Natural Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Insung S. Choi
- Department of Chemistry and School of Molecular Science (BK21), Center for Molecular Design and Synthesis, KAIST, Daejeon 305-701, Korea, Glycomics Team, Korea Basic Science Institute (KBSI), Daejeon 305-333, Korea, and Department of Chemistry, School of Natural Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
12
|
Zhou J, Meng S, Guo Z, Du Q, Zhong W. Phosphorylcholine-modified poly(ethylene-co-vinyl alcohol) microporous membranes with improved protein-adsorption-resistance property. J Memb Sci 2007. [DOI: 10.1016/j.memsci.2007.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Susanto H, Ulbricht M. Photografted thin polymer hydrogel layers on PES ultrafiltration membranes: characterization, stability, and influence on separation performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:7818-30. [PMID: 17547431 DOI: 10.1021/la700579x] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Highly fouling-resistant ultrafiltration (UF) membranes were synthesized by heterogeneous photograft copolymerization of two water-soluble monomers, poly(ethylene glycol) methacrylate (PEGMA) and N,N-dimethyl-N-(2-methacryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPE), with and without cross-linker monomer N,N'-methylene bisacrylamide (MBAA), onto a polyethersulfone (PES) UF membrane. The characteristics, the stability, and the UF separation performance of the resulting composite membranes were evaluated in detail. The membranes were characterized with respect to membrane chemistry (by ATR-IR spectroscopy and elemental analysis), surface wettability (by contact angle), surface charge (by zeta potential), surface morphology (by scanning electron microscopy), and pure water permeability and rejection of macromolecular test substances (including the "cutoff" value). The surface chemistry and wettability of the composite membranes did not change after incubating in sodium hypochlorite solution (typically used for cleaning UF membranes) for a period of 8 days. Changes in water permeability after static contact with solutions of a model protein (myoglobin) were used as a measure of fouling resistance, and the results suggest that PEGMA- and SPE-based composite membranes at a sufficient degree of graft modification showed much higher adsorptive fouling resistance than unmodified PES membranes of similar or larger nominal cutoff. This was confirmed in UF experiments with myoglobin solutions. Similar results, namely, a very much improved fouling resistance due to the grafted thin polymer hydrogel layer, were also obtained in the UF evaluation using humic acid as another strong foulant. In some cases, the addition of the cross-linker during modification could improve both permeate flux and solute rejection during UF. Overall, composite membranes prepared with an "old generation" nonfouling material, PEGMA, showed better performance than composite membranes prepared with a "new generation" one, the zwitterionic SPE.
Collapse
Affiliation(s)
- Heru Susanto
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany
| | | |
Collapse
|
14
|
Lee BS, Lee JK, Kim WJ, Jung YH, Sim SJ, Lee J, Choi IS. Surface-Initiated, Atom Transfer Radical Polymerization of Oligo(ethylene glycol) Methyl Ether Methacrylate and Subsequent Click Chemistry for Bioconjugation. Biomacromolecules 2007; 8:744-9. [PMID: 17291100 DOI: 10.1021/bm060782+] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bong Soo Lee
- Department of Chemistry and School of Molecular Science (BK21), Center for Molecular Design and Synthesis, KAIST, Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Lin YH, Chou NK, Chen KF, Ho GH, Chang CH, Wang SS, Chu SH, Hsieh KH. Effect of soft segment length on properties of hydrophilic/hydrophobic polyurethanes. POLYM INT 2007. [DOI: 10.1002/pi.2291] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Lin YH, Chou NK, Chang CH, Wang SS, Chu SH, Hsieh KH. Blood compatibility of fluorodiol-containing polyurethanes. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/pola.22072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Lin YH, Chou NK, Wu WJ, Hsu SH, Whu SW, Ho GH, Tsai CL, Wang SS, Chu SH, Hsieh KH. Physical properties of water-borne polyurethane blended with chitosan. J Appl Polym Sci 2007. [DOI: 10.1002/app.25697] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Ye SH, Watanabe J, Iwasaki Y, Ishihara K. In situ modification on cellulose acetate hollow fiber membrane modified with phospholipid polymer for biomedical application. J Memb Sci 2005. [DOI: 10.1016/j.memsci.2004.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Sakaki S, Tsuchida M, Iwasaki Y, Ishihara K. A Water-Soluble Phospholipid Polymer as a New Biocompatible Synthetic DNA Carrier. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2004. [DOI: 10.1246/bcsj.77.2283] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Iwasaki Y, Ishihara K. Phosphorylcholine-containing polymers for biomedical applications. Anal Bioanal Chem 2004; 381:534-46. [PMID: 15723256 DOI: 10.1007/s00216-004-2805-9] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/02/2004] [Accepted: 08/06/2004] [Indexed: 12/19/2022]
Affiliation(s)
- Yasuhiko Iwasaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | |
Collapse
|
21
|
Hasegawa T, Iwasaki Y, Ishihara K. Preparation of blood-compatible hollow fibers from a polymer alloy composed of polysulfone and 2-methacryloyloxyethyl phosphorylcholine polymer. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2003; 63:333-41. [PMID: 12115766 DOI: 10.1002/jbm.10210] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Blood-compatible hollow fibers were successfully prepared from a polymer alloy composed of polysulfone (PSf) and the 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer. To improve the hydrophilicity, fouling-resistance characteristics, and blood compatibility of the PSf hollow fiber in a hemodialyzer, an MPC polymer that can be blended with PSf was synthesized in order to prepare the polymer alloy (PSf/MPC polymer). The contents of the MPC polymer blended in the PSf were 7 and 15 wt%. The PSf/MPC polymer hollow fiber could be prepared by both wet and dry-wet processing methods. The hollow fiber took an asymmetric structure, that is, the hollow-fiber membrane had a dense skin layer on the porous sponge-like structure. The mechanical strength was higher than that of conventional PSf hollow fibers for hemodialysis. The surface characterization of the PSf/MPC polymer hollow fiber by x-ray photoelectron spectroscopy revealed that the MPC units were concentrated at the surface. The permeability for solutes through the PSf/MPC polymer hollow fibers was measured for 4 h. The permeabilities of both a low-molecular-weight compound and protein were greater than those of the PSf hollow fibers. The amount of adsorbed protein was lower on the PSf/MPC polymer hollow fiber when compared to that of the PSf hollow fiber. Moreover, platelet adhesion was also effectively inhibited on the PSf/MPC polymer hollow fiber. Based on these results, the addition of the MPC polymer to the PSf is a very useful method to improve the functions and blood compatibility of the hollow fiber.
Collapse
Affiliation(s)
- Takashi Hasegawa
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Japan
| | | | | |
Collapse
|
22
|
Chemical modification of cellulose membranes with sulfo ammonium zwitterionic vinyl monomer to improve hemocompatibility. Colloids Surf B Biointerfaces 2003. [DOI: 10.1016/s0927-7765(03)00069-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Ozone-induced grafting phosphorylcholine polymer onto silicone film grafting 2-methacryloyloxyethyl phosphorylcholine onto silicone film to improve hemocompatibility. Colloids Surf B Biointerfaces 2003. [DOI: 10.1016/s0927-7765(03)00084-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Vermette P, Meagher L. Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids Surf B Biointerfaces 2003. [DOI: 10.1016/s0927-7765(02)00160-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Ishihara K, Hasegawa T, Watanabe J, Iwasaki Y. Protein adsorption-resistant hollow fibers for blood purification. Artif Organs 2002; 26:1014-9. [PMID: 12460378 DOI: 10.1046/j.1525-1594.2002.07039.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nonfouling polysulfone (PSf) hollow fiber membranes resistant to protein adsorption and deposition were newly developed by the addition of 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer. To improve hydrophilicity, permeability, and nonfouling characteristics of the PSf hollow fiber in a hemodialyzer, we synthesized a MPC polymer which can be blended with PSf for preparing the polymer alloy (PSf/MPC polymer). The composition of the MPC polymer blended in the PSf was in the range between 7.0 and 15 wt%. From the PSf/MPC polymer solution, flat membranes and hollow fibers could be prepared. These membranes took an asymmetric structure, and its mechanical strength was good. The surface characterization of the PSf/MPC polymer hollow fiber membrane by X-ray photoelectron spectroscopy revealed that the MPC units were concentrated at the surface. The permeability for solutes through the PSf/MPC polymer membrane was higher, and the amount of protein adsorbed on the PSf/MPC polymer membrane was lower than those of the PSf membrane. Moreover, platelet adhesion was also effectively inhibited on the PSf/MPC polymer membrane.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Japan.
| | | | | | | |
Collapse
|
26
|
Kingshott P, McArthur S, Thissen H, Castner DG, Griesser HJ. Ultrasensitive probing of the protein resistance of PEG surfaces by secondary ion mass spectrometry. Biomaterials 2002; 23:4775-85. [PMID: 12361616 DOI: 10.1016/s0142-9612(02)00228-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The highly sensitive surface analytical techniques X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-SIMS) were used to test the resistance of poly(ethylene glycol) (PEG) coatings towards adsorption of lysozyme (LYS) and fibronectin (FN). PEG coatings were prepared by grafting methoxy-terminated aldehyde-PEG (MW 5000 Da) onto two amino-functionalised surfaces with different amine group densities, generated by radio frequency glow discharge polymerisation of n-heptylamine and allylamine. Grafting was performed at the lower critical solution temperature to maximise the graft density of the PEG chains. XPS showed that the grafted density of PEG chains was slightly higher on the allylamine surface. XPS detected no adsorption of either protein on either PEG coating. ToF-SIMS analysis, on the other hand, found, in the positive ion spectra, minute but statistically significant signals assignable to amino acid fragment ions from both proteins adsorbed to the lower density PEG coating and from LYS but not FN on the higher density PEG coating. Negative ion spectra contained relatively more intense protein fragment ion signals for the lower density PEG coating but no changes assignable to adsorbed proteins on the higher density PEG coating. These results demonstrate the importance of utilising highly sensitive techniques to study protein adsorption on surfaces intended to be protein resistant, and that both positive and negative ion ToF-SIMS spectra should be acquired to probe for possible very low levels of protein adsorption.
Collapse
Affiliation(s)
- Peter Kingshott
- CSIRO Molecular Science, Bag 10, Clayton South MDC, Clayton, Vic 3169, Australia.
| | | | | | | | | |
Collapse
|
27
|
Iwasaki Y, Uchiyama S, Kurita K, Morimoto N, Nakabayashi N. A nonthrombogenic gas-permeable membrane composed of a phospholipid polymer skin film adhered to a polyethylene porous membrane. Biomaterials 2002; 23:3421-7. [PMID: 12099285 DOI: 10.1016/s0142-9612(02)00044-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymer membranes are widely used in biomedical applications such as hemodialysis, membrane oxygenator, etc. When the membranes come in contact with blood or body fluids, protein adsorption and cell adhesion occur rapidly. Nonspecific protein adsorption and cell adhesion on the membranes induce not only various bio-rejections but also a decrease in their performance. We hypothesized that a blood compatible gas-permeable membrane could be prepared from polyethylene (PE) porous membranes modified with phospholipid polymers. In this study, poly[(2-methacryloyloxyethyl phosphorylcholine) (MPC)-co-dodecyl methacrylate] (PMD) skin film adhered to a PE porous membrane (PMD/PE porous membrane) was prepared. Elution of PMD was not detected meaning that the PMD film did not detach from the PE porous membrane even after soaking in water for more than 6 months. The permeation coefficient of oxygen gas through the PE membrane with the adhered PMD containing more than 0.20 mole fraction of the MPC unit, was the same as that of the original PE porous membrane. The PMD surface effectively reduced biofouling. We concluded that the PMD/PE porous membrane is useful as a novel membrane oxygenator due to its excellent gas-permeability and blood compatibility.
Collapse
Affiliation(s)
- Yasuhiko Iwasaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Japan.
| | | | | | | | | |
Collapse
|
28
|
Kingshott P, Thissen H, Griesser HJ. Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials 2002; 23:2043-56. [PMID: 11996046 DOI: 10.1016/s0142-9612(01)00334-9] [Citation(s) in RCA: 380] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of pinning density, chain length, and 'cloud point' (CP) versus non-CP grafting conditions have been studied on the ability of polyethylene glycol (PEG) layers to minimize adsorption from a multicomponent (lysozyme, human serum albumin (HSA), IgG and lactoferrin) protein solution. Methoxy-terminated aldehyde-PEG (M-PEG, MW 5000) and dialdehyde-PEG (PEG(ald)2, MW 3400) were grafted by reductive amination onto two surfaces of different amine group density, generated by radiofrequency glow discharge (r.f.g.d.) deposition of n-heptylamine (HA) (low density) or allylamine (AlA) (high density) r.f.g.d. polymer layers. The PEG graft density was varied also by increasing the temperature and salt (K2SO4) content of the grafting solution; it reached a maximum at the CP of the PEGs. The CP reaction conditions were critical for producing PEG layers capable of minimizing protein adsorption. X-ray photoelectron spectroscopy (XPS) showed that under these conditions, PEG(ald)2 produced a thick linear PEG layer, most likely by aldol condensation. Protein adsorption was assessed using XPS and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) in the surface mode (Surface-MALDI-MS). Coatings grafted at non-CP conditions showed some protein adsorption, as did the HA/M-PEG layer grafted at the CP. On the other hand, no protein adsorption was detected on the HA/PEG(ald)2, AlA/M-PEG, and AlA/PEG(ald)2 surfaces when grafted at the CP. Thus, the effects of pinning density and chain length are interrelated, but the key factor is optimization of PEG chain density by use of the CP conditions, provided that a sufficient density of pinning sites exists.
Collapse
|
29
|
Shin BC, Wisniewski N, Reichert WM. Water-soluble treatments to enhance glucose permeability of protein-resistant polymer overlayers. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2002; 12:467-77. [PMID: 11469778 DOI: 10.1163/156856201300194216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study employed two water-soluble and nontoxic molecules, sucrose and glycerol, to enhance the permeability of PEG-PHEMA polymer gels coated onto 100 kDa molecular weight cutoff polyethersulfone (PES) microdialysis probes. Sucrose precoating of the probes prior to prepolymer coating prevented penetration of the prepolymer into the microdialysis membrane. Glycerol mixed with the prepolymer introduced porosity in the polymer coating upon curing. The sucrose and glycerol were completely removed by soaking in PBS after curing of the polymer coat on the probe tip. Polymer coated probe glucose permeability was tested by measuring glucose recovery from PBS solutions. Biocompatibility was assessed by measuring glucose recovery of polymer coated probes from heparanized whole porcine blood. Results show that the sucrose and glycerol treatments yielded polymer coated probes with glucose permeability nearly equal to bare probes when tested in PBS solution, but that this increased permeability was not observed when tested in whole blood. This suggests that the thickness of the polymer films (10-100 microm), while not a limiting factor in PBS solution, may have presented a diffusion barrier to glucose recovered from blood. Surprisingly, however, the polymer coated probes exhibited less thrombus formation that did the bare probes after blood exposure.
Collapse
Affiliation(s)
- B C Shin
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
30
|
Korematsu A, Takemoto Y, Nakaya T, Inoue H. Synthesis, characterization and platelet adhesion of segmented polyurethanes grafted phospholipid analogous vinyl monomer on surface. Biomaterials 2002; 23:263-71. [PMID: 11762845 DOI: 10.1016/s0142-9612(01)00104-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New segmented polyurethanes (SPUs) grafted phospholipid analogous vinyl monomer, 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) on surface were synthesized. The soft segment of these polyurethanes was hydroxylated poly(isoprene) diol and the hard segments were 4,4'-methylenediphenyl diisocyanate (MDI) and 1,4-butanediol (BD). SPUs were hydroxylated by potassium peroxodisulfate and MPC was grafted on the surface of hydroxylated SPUs using di-ammonium cerium (IV) nitrate (ceric ammonium nitrate, CAN) as a radical initiator. The bulk characterization of synthesized SPUs was investigated by infrared spectroscopy (IR) and gel-permeation chromatography (GPC). The existence of phospholipid analogous groups on the surface of these SPUs was revealed by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The surfaces of MPC-grafted SPUs showed decreased water contact angles compared to non-grafted SPU and the presence of phosphorylcholine groups. The blood compatibilities of the new polymers were evaluated by platelet rich plasma (PRP) contact studies and viewed by scanning electron microscopy (SEM) using BioSpan and non-grafted polyurethane as references. We found that fewer platelets adhered to the MPC-grafted surfaces and that they showed less shape variation than the references. These results suggest that these grafted polymers may have the possibility of the usage for biomaterials.
Collapse
Affiliation(s)
- Arata Korematsu
- Department of Bioapplied Chemistry, Faculty of Engineering, Osaka City University, Osaka, Japan
| | | | | | | |
Collapse
|
31
|
Kros A, Gerritsen M, Murk J, Jansen JA, Sommerdijk NAJM, Nolte RJM. Biocompatible polystyrenes containing pendant tetra(ethylene glycol) and phosphorylcholine groups. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/1099-0518(20010215)39:4<468::aid-pola1015>3.0.co;2-d] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf B Biointerfaces 2000; 18:261-275. [PMID: 10915948 DOI: 10.1016/s0927-7765(99)00152-6] [Citation(s) in RCA: 348] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article provides an overview of work carried out on the synthesis and non-fouling properties of phosphorylcholine (PC)-containing polymers. The concept of biomimicry is outlined and the major classes of synthetic PC-based materials described. Studies on the interaction of these materials with various proteins are collated and the mechanism for their protein-resistant nature is discussed. Similarly, cellular interactions are also reviewed, with ex-vivo and in-vivo clinical data provided to demonstrate the usefulness of these materials for improving the properties of medical devices.
Collapse
|
33
|
|
34
|
Furuzono T, Ishihara K, Nakabayashi N, Tamada Y. Chemical modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine. II. Graft-polymerization onto fabric through 2-methacryloyloxyethyl isocyanate and interaction between fabric and platelets. Biomaterials 2000; 21:327-33. [PMID: 10656313 DOI: 10.1016/s0142-9612(99)00177-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
2-Methacryloyloxyethyl phosphorylcholine (MPC) was grafted onto silk fabric in a two-step heterogeneous system through the vinyl bonds of 2-methacryloyloxyethyl isocyanate (MOI) modified on the fabric. First, habutae silk fabric was modified with the MOI monomer in anhydrous dimethyl sulfoxide using di-n-butyltin (IV) dilaurate and hydroquinone at 35 degrees C. The saturated weight gain of modified MOI monomer on the fabric was 7.3 wt% versus the original silk. Second, graft polymerization with MPC onto the MOI modified silk was conducted using 2,2'-azo bis[2-(2-imidazolin-2-yl)propane dihydrochloride] (VA-044) as an azo polymerization initiator. The weight of the grafted MPC eventually gained was about 26.0 wt%. The MOI-modified and MPC-grafted silk fabrics were analyzed by Fourier transform infrared (FT-IR) spectroscopy. To confirm the improved biocompatibility of the silk fabric, platelet adhesion was preliminarily tested measuring lactate dehydrogenase. The number of platelets adhering to polyMPC-grafted silk fabric decreased by about one tenth compared to original and MOI-modified silk after 60 min of contact with human platelet-rich plasma (1.0 x 10(6) platelets cm(-2)).
Collapse
Affiliation(s)
- T Furuzono
- National Institute of Sericultural and Entomological Science, Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
35
|
Uchida T, Furuzono T, Ishihara K, Nakabayashi N, Akashi M. Graft copolymers having hydrophobic backbone and hydrophilic branches. XXX. Preparation of polystyrene-core nanospheres having a poly(2-methacryloyloxyethyl phosphorylcholine) corona. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1099-0518(20000901)38:17<3052::aid-pola50>3.0.co;2-o] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Sugiyama K, Shiraishi K, Okada K, Matsuo O. Biocompatible Block Copolymers Composed of Polydimethylsiloxane and Poly[(2-methacryloyloxy)ethyl phosphorylcholine] Segments. Polym J 1999. [DOI: 10.1295/polymj.31.883] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Furuzono T, Ishihara K, Nakabayashi N, Tamada Y. Chemical modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine I. Graft-polymerization onto fabric using ammonium persulfate and interaction between fabric and platelets. J Appl Polym Sci 1999. [DOI: 10.1002/(sici)1097-4628(19990919)73:12<2541::aid-app23>3.0.co;2-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Iwasaki Y, Ijuin M, Mikami A, Nakabayashi N, Ishihara K. Behavior of blood cells in contact with water-soluble phospholipid polymer. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1999; 46:360-7. [PMID: 10397993 DOI: 10.1002/(sici)1097-4636(19990905)46:3<360::aid-jbm8>3.0.co;2-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Omega-Methacryloyloxyalkyl phosphorylcholine (MAPC) polymer, which has various methylene chain lengths between the phosphorylcholine group and the backbone, was synthesized with attention to formation of the biomembrane. The effect of water-soluble poly(MAPC) on the function and activation of blood cells was evaluated to determine the interaction between blood cells and the MAPC polymer. The poly(MAPC) and the MAPC copolymer with a small amount of fluorescent units were synthesized by a conventional radical polymerization technique. Using a fluorescence spectrometer, it was determined that the MAPC polymer was adsorbed on the plasma membrane of platelets when the platelets were suspended in an aqueous solution of the MAPC copolymer. The hemolytic activity of poly(MAPC) was less than that of other water-soluble polymers, such as poly(ethylene glycol) and poly(1-vinyl-2-pyrrolidone) (PVPy). The change in the plasma membrane fluidity of platelets on contact with poly(MAPC) was determined with 1,6-diphenyl-1,3,5,-hexatriene. The plasma membrane fluidity of platelets decreased with an increase in the methylene chain length of the MAPC unit. The aggregation activity of platelets after contact with poly(MAPC) was also evaluated, but no significant difference between that of polymer-contacted platelets and native platelets was observed. Finally, the activity of platelets on contact with poly(MAPC) was determined by measuring the cytoplasmic calcium ion concentration ([Ca2+]i) in platelets. The increase in [Ca2+]i in the platelets after contact with poly(MAPC) was similar to that of native platelets. We conclude that the poly(MAPC) reduced platelet activation even though the poly(MAPC) adsorbed on the membrane surface of the platelets. In particular, poly(10-methacryloyloxydecyl phosphorylcholine) significantly reduced platelet activation compared with PVPy.
Collapse
Affiliation(s)
- Y Iwasaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | |
Collapse
|
39
|
Iwasaki Y, Ishihara K, Nakabayashi N, Khang G, Jeon JH, Lee JW, Lee HB. Platelet adhesion on the gradient surfaces grafted with phospholipid polymer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1998; 9:801-16. [PMID: 9724895 DOI: 10.1163/156856298x00163] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have synthesized omega-methacryloyloxyalkyl phosphorylcholine (MAPC) polymers as new blood-compatible materials, with attention to the surface structure of the biomembrane and investigated their blood compatibility. The blood compatibility observed on the MAPC polymers is due to their strong affinity to phospholipids. When the blood comes in contact with the MAPC polymer, phospholipids in the plasma preferentially adsorb on the surface, compared with the plasma proteins or cells. The adsorbed phospholipids construct a biomembrane-like structure on the MAPC polymer surface. The MAPC polymers then have an excellent blood compatibility. In this study, we prepared a gradient poly(MAPC)-grafted polyethylene (PE) surface using a corona discharge treatment method to clarify the effect of the chemical structure of the MAPC unit on the blood compatibility of the MAPC polymers. The surface composition of MAPC and the hydrophilicity on the poly(MAPC)-grafted PE surface were determined by X-ray photoelectron spectroscopic (XPS) analysis and contact angle measurement with water, respectively. The phosphorus/carbon (P/C) ratio determined by the XPS analysis increased, but the water contact angle decreased with increasing corona irradiation energy. These results indicated that the surface density of the MAPC unit was increased. More than 2.5 cm from the starting point of the corona irradiation, the P/C ratio and water contact angle of the surface achieved a constant level. Thus, the surface was completely covered with the grafted poly(MAPC) chain. The effect of the methylene chain length of the MAPC unit on surface properties was also observed. The phospholipid polar group of the MAPC unit was effectively exposed on the surface as the chain length became longer. Moreover, the hydrophobicity of the surface was increased with the increase in the methylene chain length of the MAPC unit. The number of platelets adhering to the poly(MAPC)-grafted PE surface was reduced from the same point where the P/C ratio became constant.
Collapse
Affiliation(s)
- Y Iwasaki
- Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Baumgartner JN, Cooper SL. Influence of thrombus components in mediating Staphylococcus aureus adhesion to polyurethane surfaces. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1998; 40:660-70. [PMID: 9599043 DOI: 10.1002/(sici)1097-4636(19980615)40:4<660::aid-jbm18>3.0.co;2-j] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The role of protein and cellular components of thrombi in mediating bacterial adhesion on artificial surfaces was investigated in this study. The attachment of Staphylococcus aureus on polyurethane surfaces was observed directly using an automated video microscopy system. Surfaces were preconditioned with components of platelet-fibrin thrombi, including fibrinogen, thrombin, plasma, and isolated platelets. Experiments were performed in a radial flow chamber, and attachment rate constants were compared on the preconditioned surfaces in an effort to understand the complex relationship that exists between bacterial infection and thrombosis on synthetic biomaterials. Preadsorption of fibrinogen to surfaces significantly increased S. aureus adhesion compared to those preadsorbed with albumin alone while the presence of fibrin dramatically increased bacterial attachment compared to plasma preadsorbed surfaces. While the presence of adherent platelets also increased bacterial attachment, fibrin appeared to play a larger role in mediating bacterial adhesion on polyurethane surfaces. Striking results were obtained on the zwitterionic phosphonated polyurethane for a number of pretreatment conditions with regard to decreased bacterial adhesion and fibrinogen deposition.
Collapse
Affiliation(s)
- J N Baumgartner
- Department of Chemical Engineering, University of Delaware, College of Engineering, Newark 19716, USA
| | | |
Collapse
|
41
|
Iwasaki Y, Mikami A, Kurita K, Yui N, Ishihara K, Nakabayashi N. Reduction of surface-induced platelet activation on phospholipid polymer. ACTA ACUST UNITED AC 1997. [DOI: 10.1002/(sici)1097-4636(19970915)36:4%3c508::aid-jbm8%3e3.0.co;2-i] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Iwasaki Y, Mikami A, Kurita K, Yui N, Ishihara K, Nakabayashi N. Reduction of surface-induced platelet activation on phospholipid polymer. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1997; 36:508-15. [PMID: 9294766 DOI: 10.1002/(sici)1097-4636(19970915)36:4<508::aid-jbm8>3.0.co;2-i] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
omega-Methacryloyloxyalkyl phosphorylcholine (MA-PC) polymers which have been synthesized with attention to the surface structure of a biomembrane show excellent blood compatibility, i.e., resistance to protein adsorption and blood cell adhesion. To clarify the stability of platelets in contact with the MAPC polymer surfaces, cytoplasmic free calcium concentration ([Ca2+],) in the platelets was measured. A platelet suspension was passed through a column packed with various polymer beads after treatment with plasma, and the [Ca2+]i in the platelets eluted from the column was measured. The [Ca2+]i in contact with the MAPC polymers, i.e., poly[2-methacryloyloxyethyl phosphorylcholine-co-nbutyl methacrylate (BMA)] (PMEB) and poly(6-methacryloyloxyhexyl phosphorylcholine-co-BMA) (PMHB), was less than that in contact with poly(BMA). However, poly(10-methacryloyloxydecyl phosphorylcholine-co-BMA) (PMDB) was not effective in suppressing the increase in [Ca2+]i, and thus was at the same level as in the poly(BMA). This result indicated that platelets in contact with PMEB or PMHB were less activated compared with those in contact with PMDB and poly(BMA). Moreover, the state of the platelets adhered to these polymer surfaces, both morphologically and immunologically, was examined. Scanning electron microscopic observation of the polymer surface after contact with a platelet suspension revealed that many platelets adhered and changed their shape on the poly(BMA). The numbers of adhetent platelets were reduced on all MAPC polymer surface. The relative amount of alpha-granule membrane glycoprotein (GMP-140) which appears on the cell membrane by activation of platelets on the PMEB surfaces was less than that on poly(BMA) and poly(2-hydroxyethyl methacrylate). These results suggest that PMEB and PMHB suppressed not only platelet adhesion but also activation of the platelets in contact with these surface.
Collapse
Affiliation(s)
- Y Iwasaki
- Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Iwasaki Y, Tanaka S, Hara M, Ishihara K, Nakabayashi N. Stabilization of Liposomes Attached to Polymer Surfaces Having Phosphorylcholine Groups. J Colloid Interface Sci 1997; 192:432-9. [PMID: 9367566 DOI: 10.1006/jcis.1997.5047] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The adsorption state of liposomes on a polymer surface containing a phosphorylcholine group, that is, omega-methacryloyloxyalkyl phosphorylcholine (MAPC) polymer, was evaluated using a quartz crystal microbalance and an atomic force microscope. After a quartz crystal resonator coated with the MAPC polymer or poly[2-hydroxyethyl methacrylate (HEMA)] was equilibrated with distilled water, the quartz crystal was contacted with a dipalmitoylphosphatidylcholine (DPPC) liposomal suspension. The resonance frequency change during liposome adsorption on the poly(HEMA)-coated resonator was larger than that on the MAPC polymer-coated resonator. The temperature response based on the phase transition of adsorbed DPPC liposomes, that is, the liquid crystalline state to gel state, on the MAPC polymer-coated resonator was more sensitive than that on the poly(HEMA)-coated resonator. Moreover, when the DPPC liposomes adsorbed on the polymer surfaces were disintegrated with a nonionic surfactant, it took longer for the frequency to return to the initial value of the poly(HEMA)-coated resonator than to that of the MAPC polymer-coated resonator. According to atomic force microscopic observation of the polymer surface after treatment with the liposomal suspension, the DPPC liposomes adsorbed on the MAPC polymers maintained their spherical shape well. We conclude that DPPC liposomes adsorbed on the poly(HEMA) surface can penetrate a hydrated layer and its ordered structure. On the other hand, DPPC liposomes may adsorb to the MAPC polymer surface without change in their original structure. Copyright 1997Academic Press
Collapse
Affiliation(s)
- Y Iwasaki
- Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo, 101, Japan
| | | | | | | | | |
Collapse
|
44
|
Baumgartner JN, Yang CZ, Cooper SL. Physical property analysis and bacterial adhesion on a series of phosphonated polyurethanes. Biomaterials 1997; 18:831-7. [PMID: 9184746 DOI: 10.1016/s0142-9612(96)00197-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glycerophosphorylcholine (GPC) was incorporated as the chain extender in a series of poly(tetramethylene oxide)-based polyurethane block copolymers. In order to determine the feasibility of use of these polyurethanes in biomedical devices, the effects of GPC incorporation on physical properties were studied. The effect of soft-segment molecular weight was also investigated. Biocompatibility of these materials was studied with regard to bacterial adhesion and protein deposition. Tensile testing showed that as GPC content increased, elongation at break decreased, while Young's modulus increased. Differential scanning calorimetry (DSC) results showed slightly decreased glass transition temperatures (Tgs) with increasing GPC content, indicating increased phase separation. Dynamic mechanical analysis (DMA) confirmed the decrease in Tg and the increase in rubbery plateau modulus with increasing GPC content. Water absorption was also increased with GPC content. Decreased bacterial adhesion was found on the GPC-containing materials compared to other functionalized polyurethanes. These experiments were carried out in a radial flow chamber utilizing automated video microscopy. Bacterial attachment was found to be lower on the GPC-containing polyurethanes both in the absence of and after pre-adsorption with plasma proteins.
Collapse
Affiliation(s)
- J N Baumgartner
- Department of Chemical Engineering, University of Delaware, Newark 19716, USA
| | | | | |
Collapse
|
45
|
Iwasaki Y, Fujiike A, Kurita K, Ishihara K, Nakabayashi N. Protein adsorption and platelet adhesion on polymer surfaces having phospholipid polar group connected with oxyethylene chain. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1997; 8:91-102. [PMID: 8957706 DOI: 10.1163/156856296x00174] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We evaluated the blood compatibility of various amphiphilic polymers, that is, n-butyl methacrylate (BMA) copolymers with methacrylates having a phosphorylcholine (PC), hydroxy (OH) or methoxy (MeO) group as an end polar group in the oxyethylene side chain. The amount of proteins adsorbed on the PC-polymer from human plasma was smaller than that on not only the poly(2-hydroxyethyl methacrylate) and poly(methyl methacrylate) but also the OH-polymer and MeO-polymer. The PC group could weaken the interaction between plasma proteins and polymer surfaces. The amount of adsorbed proteins on the PC-polymer decreased with an increase in the mole fraction of the PC units in the polymers. We could observe an effect of the oxyethylene chain length (n is the number of repeating units of oxyethylene) on protein adsorption between n = 2 and n = 3. The platelet adhesion on these polymer surfaces was evaluated using rabbit platelet-rich plasma. On the polymers without the PC group, that is, poly(BMA), OH-polymer, and MeO-polymer, many platelets adhered and a considerable shape change in the adherent platelets occurred. On the other hand, the PC-polymers could effectively suppress platelet adhesion. The platelet adhesion behavior on the polymers was strongly dependent on the adsorbed proteins. Platelet adhesion was completely inhibited on all of the PC-polymers studied having a 0.3 PC unit mole fraction. However, it was observed that the oxyethylene chains on the PC-polymers with a 0.1 PC unit mole fraction affected platelet adhesion.
Collapse
Affiliation(s)
- Y Iwasaki
- Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, Japan
| | | | | | | | | |
Collapse
|
46
|
Ishihara K, Nakabayashi N. Hemocompatible cellulose dialysis membranes modified with phospholipid polymers. Artif Organs 1995; 19:1215-21. [PMID: 8967877 DOI: 10.1111/j.1525-1594.1995.tb02288.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hemocompatibility is one of the most important properties for hemodialysis membranes. For improvement of the hemocompatibility on a cellulose dialysis membrane, modifications with new blood-compatible phospholipid polymers were carried out. These methods included a direct grafting of the phospholipid monomer on the membrane surface, coating the membrane surface with a water-soluble graft copolymer composed of a cellulose backbone and phospholipid polymer as a branch, and covalent bonding with a reactive phospholipid polymer on the membrane surface. These modified membranes could reduce protein adsorption as well as complement activation and platelet adhesion on the surface without any adverse effects on the membrane performance.
Collapse
Affiliation(s)
- K Ishihara
- Division of Organic Materials, Tokyo Medical and Dental University, Japan
| | | |
Collapse
|
47
|
Ishihara K, Hanyuda H, Nakabayashi N. Synthesis of phospholipid polymers having a urethane bond in the side chain as coating material on segmented polyurethane and their platelet adhesion-resistant properties. Biomaterials 1995; 16:873-9. [PMID: 8527604 DOI: 10.1016/0142-9612(95)94150-j] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Surface modification of segmented polyurethanes (SPUs) was carried out using new blood compatible polymers having both phospholipid polar groups and urethane bonds in the side chains. The polymers were composed of 2-methacryloyloxyethyl phosphorylcholine (MPC), n-butyl methacrylate (BMA) and methacrylate with a urethane bond (MU). The MPC copolymers were soluble in ethanol. The SPU membranes were immersed in an ethanol solution of MPC copolymers and dried in vacuo for coating. The surface formed was completely covered with the MPC copolymer which was confirmed by X-ray photoelectron spectroscopic analysis. The polymer coatings were hardly detached in water, ethanol and 40% aqueous solution of ethanol compared with poly(MPC-co-BMA) which did not have the MU moieties. Therefore, the MU moieties had affinity for the SPU. The surface modification of the SPUs suppressed platelet adhesion effectively after contact with platelet-rich plasma for 180 min.
Collapse
Affiliation(s)
- K Ishihara
- Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|