1
|
Wang Z, Zhang M, Liu L, Mithieux SM, Weiss AS. Polyglycerol sebacate-based elastomeric materials for arterial regeneration. J Biomed Mater Res A 2024; 112:574-585. [PMID: 37345954 DOI: 10.1002/jbm.a.37583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Synthetic vascular grafts are commonly used in patients with severe occlusive arterial disease when autologous grafts are not an option. Commercially available synthetic grafts are confronted with challenging outcomes: they have a lower patency rate than autologous grafts and are currently unable to promote arterial regeneration. Polyglycerol sebacate (PGS), a non-toxic polymer with a tunable degradation profile, has shown promising results as a small-diameter vascular graft component that can support the formation of neoarteries. In this review, we first present an overview of the synthesis and modification of PGS followed by an examination of its mechanical properties. We then report on the performance, degradation, regeneration, and remodeling of PGS-based small-diameter vascular grafts, with a focus on efforts to reduce thrombosis, prevent dilation, and promote cellular residency and extracellular matrix regeneration that resembles the native artery in spatial distribution and organization. We also highlight recent advances in the incorporation of novel in situ cell sources for arterial regeneration and their potential application in PGS-based vascular grafts. Finally, we compare vascular grafts fabricated using PGS-based materials with other elastomeric alternatives.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Miao Zhang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Linyang Liu
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Suzanne M Mithieux
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Anthony S Weiss
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- The University of Sydney Nano Institute, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
2
|
Sarmah H, Sawada A, Hwang Y, Miura A, Shimamura Y, Tanaka J, Yamada K, Mori M. Towards human organ generation using interspecies blastocyst complementation: Challenges and perspectives for therapy. Front Cell Dev Biol 2023; 11:1070560. [PMID: 36743411 PMCID: PMC9893295 DOI: 10.3389/fcell.2023.1070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Millions of people suffer from end-stage refractory diseases. The ideal treatment option for terminally ill patients is organ transplantation. However, donor organs are in absolute shortage, and sadly, most patients die while waiting for a donor organ. To date, no technology has achieved long-term sustainable patient-derived organ generation. In this regard, emerging technologies of chimeric human organ production via blastocyst complementation (BC) holds great promise. To take human organ generation via BC and transplantation to the next step, we reviewed current emerging organ generation technologies and the associated efficiency of chimera formation in human cells from the standpoint of developmental biology.
Collapse
Affiliation(s)
- Hemanta Sarmah
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Anri Sawada
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Youngmin Hwang
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Akihiro Miura
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Yuko Shimamura
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Junichi Tanaka
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Kazuhiko Yamada
- Department of Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Munemasa Mori
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
3
|
Saito J, Kaneko M, Ishikawa Y, Yokoyama U. Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. CYBORG AND BIONIC SYSTEMS 2021; 2021:1532103. [PMID: 36285145 PMCID: PMC9494692 DOI: 10.34133/2021/1532103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/19/2021] [Indexed: 10/06/2023] Open
Abstract
There is urgent demand for biologically compatible vascular grafts for both adult and pediatric patients. The utility of conventional nonbiodegradable materials is limited because of their thrombogenicity and inability to grow, while autologous vascular grafts involve considerable disadvantages, including the invasive procedures required to obtain these healthy vessels from patients and insufficient availability in patients with systemic atherosclerosis. All of these issues could be overcome by tissue-engineered vascular grafts (TEVGs). A large body of evidence has recently emerged in support of TEVG technologies, introducing diverse cell sources (e.g., somatic cells and stem cells) and novel fabrication methods (e.g., scaffold-guided and self-assembled approaches). Before TEVG can be applied in a clinical setting, however, several aspects of the technology must be improved, such as the feasibility of obtaining cells, their biocompatibility and mechanical properties, and the time needed for fabrication, while the safety of supplemented materials, the patency and nonthrombogenicity of TEVGs, their growth potential, and the long-term influence of implanted TEVGs in the body must be assessed. Although recent advances in TEVG fabrication have yielded promising results, more research is needed to achieve the most feasible methods for generating optimal TEVGs. This article reviews multiple aspects of TEVG fabrication, including mechanical requirements, extracellular matrix components, cell sources, and tissue engineering approaches. The potential of periodic hydrostatic pressurization in the production of scaffold-free TEVGs with optimal elasticity and stiffness is also discussed. In the future, the integration of multiple technologies is expected to enable improved TEVG performance.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Physiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Makoto Kaneko
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
4
|
Zamboulis A, Nakiou EA, Christodoulou E, Bikiaris DN, Kontonasaki E, Liverani L, Boccaccini AR. Polyglycerol Hyperbranched Polyesters: Synthesis, Properties and Pharmaceutical and Biomedical Applications. Int J Mol Sci 2019; 20:E6210. [PMID: 31835372 PMCID: PMC6940955 DOI: 10.3390/ijms20246210] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
In a century when environmental pollution is a major issue, polymers issued from bio-based monomers have gained important interest, as they are expected to be environment-friendly, and biocompatible, with non-toxic degradation products. In parallel, hyperbranched polymers have emerged as an easily accessible alternative to dendrimers with numerous potential applications. Glycerol (Gly) is a natural, low-cost, trifunctional monomer, with a production expected to grow significantly, and thus an excellent candidate for the synthesis of hyperbranched polyesters for pharmaceutical and biomedical applications. In the present article, we review the synthesis, properties, and applications of glycerol polyesters of aliphatic dicarboxylic acids (from succinic to sebacic acids) as well as the copolymers of glycerol or hyperbranched polyglycerol with poly(lactic acid) and poly(ε-caprolactone). Emphasis was given to summarize the synthetic procedures (monomer molar ratio, used catalysts, temperatures, etc.,) and their effect on the molecular weight, solubility, and thermal and mechanical properties of the prepared hyperbranched polymers. Their applications in pharmaceutical technology as drug carries and in biomedical applications focusing on regenerative medicine are highlighted.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Eirini A. Nakiou
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.Z.); (E.A.N.); (E.C.)
| | - Eleana Kontonasaki
- Department of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Liliana Liverani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany;
| |
Collapse
|
5
|
Fukushi M, Kinoshita K, Yamada M, Yajima Y, Utoh R, Seki M. Formation of pressurizable hydrogel-based vascular tissue models by selective gelation in composite PDMS channels. RSC Adv 2019; 9:9136-9144. [PMID: 35517655 PMCID: PMC9062067 DOI: 10.1039/c9ra00257j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022] Open
Abstract
Vascular tissue models created in vitro are of great utility in the biomedical research field, but versatile, facile strategies are still under development. In this study, we proposed a new approach to prepare vascular tissue models in PDMS-based composite channel structures embedded with barium salt powders. When a cell-containing hydrogel precursor solution was continuously pumped in the channel, the precursor solution in the vicinity of the channel wall was selectively gelled because of the barium ions as the gelation agent supplied to the flow. Based on this concept, we were able to prepare vascular tissue models, with diameters of 1–2 mm and with tunable morphologies, composed of smooth muscle cells in the hydrogel matrix and endothelial cells on the lumen. Perfusion culture was successfully performed under a pressurized condition of ∼120 mmHg. The presented platform is potentially useful for creating vascular tissue models that reproduce the physical and morphological characteristics similar to those of vascular tissues in vivo. A new approach for the preparation of vascular tissue models in PDMS-based composite channel structures embedded with barium salt powders.![]()
Collapse
Affiliation(s)
- Mayu Fukushi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku 263-8522 Japan +81-43-290-3398
| | - Keita Kinoshita
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku 263-8522 Japan +81-43-290-3398
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku 263-8522 Japan +81-43-290-3398
| | - Yuya Yajima
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku 263-8522 Japan +81-43-290-3398
| | - Rie Utoh
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku 263-8522 Japan +81-43-290-3398
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku 263-8522 Japan +81-43-290-3398
| |
Collapse
|
6
|
Abstract
Shortage of autologous blood vessel sources and disadvantages of synthetic grafts have increased interest in the development of tissue-engineered vascular grafts. However, tunica media, which comprises layered elastic laminae, largely determines arterial elasticity, and is difficult to synthesize. Here, we describe a method for fabrication of arterial grafts with elastic layer structure from cultured human vascular SMCs by periodic exposure to extremely high hydrostatic pressure (HP) during repeated cell seeding. Repeated slow cycles (0.002 Hz) between 110 and 180 kPa increased stress-fiber polymerization and fibronectin fibrillogenesis on SMCs, which is required for elastic fiber formation. To fabricate arterial grafts, seeding of rat vascular SMCs and exposure to the periodic HP were repeated alternatively ten times. The obtained medial grafts were highly elastic and tensile rupture strength was 1451 ± 159 mmHg, in which elastic fibers were abundantly formed. The patch medial grafts were sutured at the rat aorta and found to be completely patent and endothelialized after 2.5 months, although tubular medial constructs implanted in rats as interpositional aortic grafts withstood arterial blood pressure only in early acute phase. This novel organized self-assembly method would enable mass production of scaffold-free arterial grafts in vitro and have potential therapeutic applications for cardiovascular diseases.
Collapse
|
7
|
Chen SK, Chung CA, Cheng YC, Huang CJ, Ruaan RC, Chen WY, Li C, Tsao CW, Hu WW, Chien CC. Hydrostatic pressure enhances mitomycin C induced apoptosis in urothelial carcinoma cells. Urol Oncol 2013; 32:26.e17-24. [PMID: 23403205 DOI: 10.1016/j.urolonc.2012.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/13/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Urothelial carcinoma (UC) of the bladder is the second most common cancer of the genitourinary system. Clinical UC treatment usually involves transurethral resection of the bladder tumor followed by adjuvant intravesical immunotherapy or chemotherapy to prevent recurrence. Intravesical chemotherapy induces fewer side effects than immunotherapy but is less effective at preventing tumor recurrence. Improvement to intravesical chemotherapy is, therefore, needed. METHODS AND MATERIALS Cellular effects of mitomycin C (MMC) and hydrostatic pressure on UC BFTC905 cells were assessed. The viability of the UC cells was determined using cellular proliferation assay. Changes in apoptotic function were evaluated by caspase 3/7 activities, expression of FasL, and loss of mitochondrial membrane potential. RESULTS Reduced cell viability was associated with increasing hydrostatic pressure. Caspase 3/7 activities were increased following treatment of the UC cells with MMC or hydrostatic pressure. In combination with 10 kPa hydrostatic pressure, MMC treatment induced increasing FasL expression. The mitochondria of UC cells displayed increasingly impaired membrane potentials following a combined treatment with 10 μg/ml MMC and 10 kPa hydrostatic pressure. CONCLUSIONS Both MMC and hydrostatic pressure can induce apoptosis in UC cells through an extrinsic pathway. Hydrostatic pressure specifically increases MMC-induced apoptosis and might minimize the side effects of the chemotherapy by reducing the concentration of the chemical agent. This study provides a new and alternative approach for treatment of patients with UC following transurethral resection of the bladder tumor.
Collapse
Affiliation(s)
- Shao-Kuan Chen
- Department of Urology, Sijhih Cathay General Hospital, New Taipei City, Taiwan; Department of Mechanical Engineering, National Central University, Jhongli, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chih-Ang Chung
- Department of Mechanical Engineering, National Central University, Jhongli, Taiwan; Institute of Biomedical Engineering, National Central University, Jhongli, Taiwan
| | - Yu-Che Cheng
- Institute of Biomedical Engineering, National Central University, Jhongli, Taiwan; Department of Medical Research, Cathay General Hospital, Taipei, Taiwan
| | - Chi-Jung Huang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Medical Research, Cathay General Hospital, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Ruoh-Chyu Ruaan
- Institute of Biomedical Engineering, National Central University, Jhongli, Taiwan; Department of Chemical and Materials Engineering, National Central University, Jhongli, Taiwan
| | - Wen-Yih Chen
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taiwan
| | - Chuan Li
- Department of Mechanical Engineering, National Central University, Jhongli, Taiwan
| | - Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, Jhongli, Taiwan
| | - Wei-Wen Hu
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taiwan
| | - Chih-Cheng Chien
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Institute of Biomedical Engineering, National Central University, Jhongli, Taiwan; Department of Medical Research, Cathay General Hospital, Taipei, Taiwan; Department of Anesthesiology, Sijhih Cathay General Hospital, Sijhih District, New Taipei City, Taiwan.
| |
Collapse
|
8
|
Neal RA, Jean A, Park H, Wu PB, Hsiao J, Engelmayr GC, Langer R, Freed LE. Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features. Tissue Eng Part A 2012. [PMID: 23190320 DOI: 10.1089/ten.tea.2012.0330] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue-engineered constructs, at the interface of material science, biology, engineering, and medicine, have the capacity to improve outcomes for cardiac patients by providing living cells and degradable biomaterials that can regenerate the native myocardium. With an ultimate goal of both delivering cells and providing mechanical support to the healing heart, we designed three-dimensional (3D) elastomeric scaffolds with (1) stiffnesses and anisotropy mimicking explanted myocardial specimens as predicted by finite-element (FE) modeling, (2) systematically varied combinations of rectangular pore pattern, pore aspect ratio, and strut width, and (3) structural features approaching tissue scale. Based on predicted mechanical properties, three scaffold designs were selected from eight candidates for fabrication from poly(glycerol sebacate) by micromolding from silicon wafers. Large 20×20 mm scaffolds with high aspect ratio features (5:1 strut height:strut width) were reproducibly cast, cured, and demolded at a relatively high throughput. Empirically measured mechanical properties demonstrated that scaffolds were cardiac mimetic and validated FE model predictions. Two-layered scaffolds providing fully interconnected pore networks were fabricated by layer-by-layer assembly. C2C12 myoblasts cultured on one-layered scaffolds exhibited specific patterns of cell elongation and interconnectivity that appeared to be guided by the scaffold pore pattern. Neonatal rat heart cells cultured on two-layered scaffolds for 1 week were contractile, both spontaneously and in response to electrical stimulation, and expressed sarcomeric α-actinin, a cardiac biomarker. This work not only demonstrated several scaffold designs that promoted functional assembly of rat heart cells, but also provided the foundation for further computational and empirical investigations of 3D elastomeric scaffolds for cardiac tissue engineering.
Collapse
Affiliation(s)
- Rebekah A Neal
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, and Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Jen MC, Baler K, Hood AR, Shin S, Shea LD, Ameer GA. Sustained, localized transgene expression mediated from lentivirus-loaded biodegradable polyester elastomers. J Biomed Mater Res A 2012; 101:1328-35. [PMID: 23065823 DOI: 10.1002/jbm.a.34449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 08/03/2012] [Accepted: 08/20/2012] [Indexed: 12/27/2022]
Abstract
The study of biomaterials for gene delivery in tissue engineering and regenerative medicine is a growing area, necessitating the investigation of new biomaterials and gene delivery vectors. Poly(1,8-octanediol citrate) (POC) and poly(glycerol-sebacate) (PGS) are biodegradable, biocompatible elastomers that have tunable mechanical properties, surface characteristics, and degradation rate. The objective of this work was to investigate whether POC and PGS would support the immobilization and release of lentivirus to allow sustained and localized transgene expression. Porous biomaterials were prepared using salt as a porogen, and in vitro and in vivo transgene expression from immobilized and released lentiviruses were assessed. Cells seeded onto biomaterials loaded with lentiviruses yielded titer-dependent transgene expression in vitro. Lentivirus activity on both biomaterials was maintained for at least 5 days. When implanted subcutaneously in rats, POC and PGS with immobilized lentivirus exhibited sustained and localized transgene expression for at least 5 weeks. This research demonstrates that lentivirus immobilization on POC and PGS is feasible and potentially useful for a variety of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Michele C Jen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
10
|
Successful development of small diameter tissue-engineering vascular vessels by our novel integrally designed pulsatile perfusion-based bioreactor. PLoS One 2012; 7:e42569. [PMID: 22880036 PMCID: PMC3411804 DOI: 10.1371/journal.pone.0042569] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/09/2012] [Indexed: 01/04/2023] Open
Abstract
Small-diameter (<4 mm) vascular constructs are urgently needed for patients requiring replacement of their peripheral vessels. However, successful development of constructs remains a significant challenge. In this study, we successfully developed small-diameter vascular constructs with high patency using our integrally designed computer-controlled bioreactor system. This computer-controlled bioreactor system can confer physiological mechanical stimuli and fluid flow similar to physiological stimuli to the cultured grafts. The medium circulating system optimizes the culture conditions by maintaining fixed concentration of O2 and CO2 in the medium flow and constant delivery of nutrients and waste metabolites, as well as eliminates the complicated replacement of culture medium in traditional vascular tissue engineering. Biochemical and mechanical assay of newly developed grafts confirm the feasibility of the bioreactor system for small-diameter vascular engineering. Furthermore, the computer-controlled bioreactor is superior for cultured cell proliferation compared with the traditional non-computer-controlled bioreactor. Specifically, our novel bioreactor system may be a potential alternative for tissue engineering of large-scale small-diameter vascular vessels for clinical use.
Collapse
|
11
|
Masoumi N, Jean A, Zugates JT, Johnson KL, Engelmayr GC. Laser microfabricated poly(glycerol sebacate) scaffolds for heart valve tissue engineering. J Biomed Mater Res A 2012; 101:104-14. [PMID: 22826211 DOI: 10.1002/jbm.a.34305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 05/01/2012] [Accepted: 05/22/2012] [Indexed: 02/04/2023]
Abstract
Microfabricated poly(glycerol sebacate) (PGS) scaffolds may be applicable to tissue engineering heart valve leaflets by virtue of their controllable microstructure, stiffness, and elasticity. In this study, PGS scaffolds were computationally designed and microfabricated by laser ablation to match the anisotropy and peak tangent moduli of native bovine aortic heart valve leaflets. Finite element simulations predicted PGS curing conditions, scaffold pore shape, and strut width capable of matching the scaffold effective stiffnesses to the leaflet peak tangent moduli. On the basis of simulation predicted effective stiffnesses of 1.041 and 0.208 MPa for the scaffold preferred (PD) and orthogonal, cross-preferred (XD) material directions, scaffolds with diamond-shaped pores were microfabricated by laser ablation of PGS cured 12 h at 160°C. Effective stiffnesses measured for the scaffold PD (0.83 ± 0.13 MPa) and XD (0.21 ± 0.03 MPa) were similar to both predicted values and peak tangent moduli measured for bovine aortic valve leaflets in the circumferential (1.00 ± 0.16 MPa) and radial (0.26 ± 0.03 MPa) directions. Scaffolds cultivated with fibroblasts for 3 weeks accumulated collagen (736 ± 193 μg/g wet weight) and DNA (17 ± 4 μg/g wet weight). This study provides a basis for the computational design of biomimetic microfabricated PGS scaffolds for tissue-engineered heart valves.
Collapse
Affiliation(s)
- Nafiseh Masoumi
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
12
|
Allen R, Wang Y. Rapid Self-Assembly of Tubular Arterial Media Layer from Smooth Muscle Cells in Transient Fibrin Gel. JOURNAL OF TISSUE SCIENCE & ENGINEERING 2011; 10. [PMID: 23087841 DOI: 10.4172/2157-7552.1000105e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND: Tissue engineered blood vessels could address the large clinical need for small caliber vascular grafts. Self-assembly approaches that employ transient scaffolds to form tissues from only cells and secreted matrix could form completely autologous vascular grafts that rapidly remodel and integrate with host tissue in vivo. The objective of this study was to develop a simple and rapid method to self-assemble vascular cells into vascular grafts. HYPOTHESIS: We hypothesized that entrapment in rapidly degrading fibrin gels could facilitate self-assembly of vascular smooth muscle cells into a tubular tissue comprised mainly of SMCs and secreted matrix. METHODS: Baboon SMCs were entrapped in fibrin around a silicone tube and cultured for 14 days without fibrinolysis inhibitor. Spontaneous delamination from the inner tube allowed for simple isolation of constructs with forceps. RESULTS: Engineered tissues are tubular, handleable, and highly cellular, with substantial collagen deposition. Fibrin is largely degraded within 14 days. Tensile elastic modulus of ring segments is 36.2 kPa and 1.60 MPa for the toe and heel regions of the stress-strain relation, respectively. CONCLUSION: Fibrin entrapment without fibrinolysis inhibitor can facilitate rapid self-assembly of SMCs into tubular tissues. Future work will focus on mechanical conditioning and co-culture with vascular endothelial cells to improve mechanical strength and impart antithrombogenicity.
Collapse
Affiliation(s)
- Robert Allen
- Department of Bioengineering and Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | | |
Collapse
|