1
|
Mueller MC, Blomberg R, Tanneberger AE, Davis-Hall D, Neeves KB, Magin CM. Female Fibroblast Activation Is Estrogen-Mediated in Sex-Specific 3D-Bioprinted Pulmonary Artery Adventitia Models. ACS Biomater Sci Eng 2025; 11:2935-2945. [PMID: 40285704 DOI: 10.1021/acsbiomaterials.5c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Pulmonary arterial hypertension (PAH) is a form of pulmonary vascular disease characterized by scarring of the small blood vessels that results in reduced blood flow and increased blood pressure in the lungs. Over time, this increase in blood pressure causes damage to the heart. Idiopathic (IPAH) impacts male and female patients differently, with female patients showing a higher disease susceptibility (4:1 female-to-male ratio) but experiencing longer survival rates postdiagnosis compared to male patients. This complex sex dimorphism is known as the estrogen paradox. Prior studies suggest that estrogen signaling may be pathologic in the pulmonary vasculature and protective in the heart, yet the mechanisms underlying these sex differences in IPAH remain unclear. Many previous studies of PAH relied on male cells or cells of undisclosed origin for in vitro modeling. Here, we present a dynamic, three-dimensional (3D)-bioprinted model incorporating cells and circulating sex hormones from female patients to specifically study how female patients respond to changes in microenvironmental stiffness and sex hormone signaling on the cellular level. Poly(ethylene glycol)-α methacrylate (PEGαMA)-based hydrogels containing female human pulmonary artery adventitia fibroblasts (hPAAFs) from IPAH or control donors were 3D bioprinted to mimic pulmonary artery adventitia. These biomaterials were initially soft, like healthy blood vessels, and then stiffened using light to mimic vessel scarring in PAH. These 3D-bioprinted models showed that stiffening the microenvironment around female IPAH hPAAFs led to hPAAF activation. On both the protein and gene-expression levels, cellular activation markers significantly increased in stiffened samples and were highest in IPAH patient-derived cells. Treatment with a selective estrogen receptor modulator, which is currently in clinical trials for IPAH treatment, reduced the expression of hPAAF activation markers, demonstrating that hPAAF activation is one pathologic response mediated by estrogen signaling in the vasculature. These results showed the utility of sex-specific, 3D-bioprinted pulmonary artery adventitia models for preclinical drug discovery and validation.
Collapse
Affiliation(s)
- Mikala C Mueller
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Rachel Blomberg
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Alicia E Tanneberger
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Duncan Davis-Hall
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Keith B Neeves
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora 80045, Colorado, United States
- Hemophilia and Thrombosis Center, University of Colorado, Anschutz Medical Campus, Aurora 80045, Colorado, United States
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver|Anschutz Medical Campus, Aurora 80045, Colorado, United States
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora 80045, Colorado, United States
- Division of Pulmonary Sciences & Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora 80045, Colorado, United States
| |
Collapse
|
2
|
Moon SA, Kim JM, Lee YS, Cho HJ, Choi YJ, Yoon JH, Kim D, Che X, Jin X, Baek IJ, Lee SH, Choi JY, Koh JM. VGF and the VGF-derived peptide AQEE30 stimulate osteoblastic bone formation through the C3a receptor. Exp Mol Med 2025; 57:637-651. [PMID: 40082672 PMCID: PMC11958639 DOI: 10.1038/s12276-025-01419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 03/16/2025] Open
Abstract
New therapeutic targets, especially those that stimulate bone formation in cortical bone, are needed to overcome the limitations of current antiosteoporotic drugs. We previously demonstrated that factors secreted from megakaryocytes (MKs) promote bone formation. Here we conducted a proteomic analysis to identify a novel bone-forming factor from MK secretions. We revealed that Vgf, a nerve growth factor-responsive gene, and its derived active peptide AQEE30 in MK-conditioned medium play important roles in osteoblast proliferation and in vitro bone formation. In both Vgf-deficient male and female mice, the cortical bone mass was significantly decreased due to reductions in osteoblast number and bone formation activity. AQEE30 stimulated intracellular cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) activity in osteoblasts, whereas an adenylyl cyclase inhibitor blocked AQEE30-stimulated osteoblast proliferation and in vitro bone formation. Complement C3a receptor-1 (C3AR1) was expressed and interacted with AQEE30 in osteoblasts, and C3AR1 inhibition blocked all AQEE30-induced changes, including stimulated proliferation, bone formation and cAMP production, in osteoblasts. Injecting mini-PEGylated AQEE30 into calvaria increased the number of osteocalcin-positive cells and new bone formation. In conclusion, this study reveals a novel role of VGF in bone formation, particularly in cortical bone, and shows that AQEE30, a VGF-derived peptide, mediates this role by activating cAMP-PKA signaling via the C3AR1 receptor in osteoblasts.
Collapse
Affiliation(s)
- Sung-Ah Moon
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Man Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Han Jin Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Young Jin Choi
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Jong Hyuk Yoon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dayea Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Xian Jin
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jeoung Baek
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Je-Young Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Rodrigues FAP, Oliveira CS, Sá SC, Tavaria FK, Lee SJ, Oliveira AL, Costa JB. Molecules in Motion: Unravelling the Dynamics of Vascularization Control in Tissue Engineering. Macromol Biosci 2024; 24:e2400139. [PMID: 39422632 DOI: 10.1002/mabi.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Significant progress has been made in tissue engineering (TE), aiming at providing personalized solutions and overcoming the current limitations of traditional tissue and organ transplantation. 3D bioprinting has emerged as a transformative technology in the field, able to mimic key properties of the natural architecture of the native tissues. However, most successes in the area are still limited to avascular or thin tissues due to the difficulties in controlling the vascularization of the engineered tissues. To address this issue, several molecules, biomaterials, and cells with pro- and anti-angiogenic potential have been intensively investigated. Furthermore, different bioreactors capable to provide a dynamic environment for in vitro vascularization control have been also explored. The present review summarizes the main molecules and TE strategies used to promote and inhibit vascularization in TE, as well as the techniques used to deliver them. Additionally, it also discusses the current challenges in 3D bioprinting and in tissue maturation to control in vitro/in vivo vascularization. Currently, this field of investigation is of utmost importance and may open doors for the design and development of more precise and controlled vascularization strategies in TE.
Collapse
Affiliation(s)
- Francisco A P Rodrigues
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Cláudia S Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Simone C Sá
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Freni K Tavaria
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ana L Oliveira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - João B Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| |
Collapse
|
4
|
Yang MC, Chin IL, Fang H, Drack A, Nour S, Choi YS, O'Connor AJ, Greening DW, Kalionis B, Heath DE. Tailored environments for directed mesenchymal stromal cell proliferation and differentiation using decellularized extracellular matrices in conjunction with substrate modulus. Acta Biomater 2024; 187:110-122. [PMID: 39181177 DOI: 10.1016/j.actbio.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Decellularised extracellular matrix (dECM) produced by mesenchymal stromal cells (MSCs) is a promising biomaterial for improving the ex vivo expansion of MSCs. The dECMs are often deposited on high modulus surfaces such as tissue culture plastic or glass, and subsequent differentiation assays often bias towards osteogenesis. We tested the hypothesis that dECM deposited on substrates of varying modulus will produce cell culture environments that are tailored to promote the proliferation and/or lineage-specific differentiation of MSCs. dECM was produced on type I collagen-functionalised polyacrylamide hydrogels with discrete moduli (∼4, 10, and 40 kPa) or in a linear gradient of modulus that spans the same range, and the substrates were used as culture surfaces for MSCs. Fluorescence spectroscopy and mass spectrometry characterization revealed structural compositional changes in the dECM as a function of substrate modulus. Softer substrates (4 kPa) with dECM supported the largest number of MSCs after 7 days (∼1.6-fold increase compared to glass). Additionally, osteogenic differentiation was greatest on high modulus substrates (40 kPa and glass) with dECM. Nuclear translocation of YAP1 was observed on all surfaces with a modulus of 10 kPa or greater and may be a driver for the increased osteogenesis on the high modulus surfaces. These data demonstrate that dECM technology can be integrated with environmental parameters such as substrate modulus to improve/tailor MSC proliferation and differentiation during ex vivo culture. These results have potential impact in the improved expansion of MSCs for tailored therapeutic applications and in the development of advanced tissue engineering scaffolds. STATEMENT OF SIGNIFICANCE: Mesenchymal stromal cells (MSCs) are extensively used in tissue engineering and regenerative medicine due to their ability to proliferate, differentiate, and modulate the immune environment. Controlling MSC behavior is critical for advances in the field. Decellularised extracellular matrix (dECM) can maintain MSC properties in culture, increase their proliferation rate and capacity, and enhance their stimulated differentiation. Substrate stiffness is another key driver of cell function, and previous reports have primarily looked at dECM deposition and function on stiff substrates such as glass. Herein, we produce dECM on substrates of varying stiffness to create tailored environments that enhance desired MSC properties such as proliferation and differentiation. Additionally, we complete mechanistic studies including quantitative mass spec of the ECM to understand the biological function.
Collapse
Affiliation(s)
- Michael C Yang
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC, Australia; Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Ian L Chin
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC Australia
| | - Auriane Drack
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC Australia
| | - Shirin Nour
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC, Australia; Department of Chemical Engineering, Polymer Science Group, University of Melbourne, Parkville, VIC, Australia
| | - Yu Suk Choi
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Cardiovascular Research, Translation, and Implementation, La Trobe University, Bundoora, VIC, Australia; Central Clinical School, Monash University, Clayton, VIC, Australia; Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC Australia
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC, Australia; Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Parkville, VIC, Australia.
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Paone LS, Benmassaoud MM, Curran A, Vega SL, Galie PA. A 3D-printed blood-brain barrier model with tunable topology and cell-matrix interactions. Biofabrication 2023; 16:015005. [PMID: 37820611 DOI: 10.1088/1758-5090/ad0260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Recent developments in digital light processing (DLP) can advance the structural and biochemical complexity of perfusablein vitromodels of the blood-brain barrier. Here, we describe a strategy to functionalize complex, DLP-printed vascular models with multiple peptide motifs in a single hydrogel. Different peptides can be clicked into the walls of distinct topologies, or the peptide motifs lining channel walls can differ from those in the bulk of the hydrogel. The flexibility of this approach is used to both characterize the effects of various bioactive domains on endothelial coverage and tight junction formation, in addition to facilitating astrocyte attachment in the hydrogel surrounding the endothelialized vessel to mimic endothelial-astrocyte interaction. Peptides derived from proteins mediating cell-extracellular matrix (e.g. RGD and IKVAV) and cell-cell (e.g. HAVDI) adhesions are used to mediate endothelial cell attachment and coverage. HAVDI and IKVAV-lined channels exhibit significantly greater endothelialization and increased zonula-occluden-1 (ZO-1) localization to cell-cell junctions of endothelial cells, indicative of tight junction formation. RGD is then used in the bulk hydrogel to create an endothelial-astrocyte co-culture model of the blood-brain barrier that overcomes the limitations of previous platforms incapable of complex topology or tunable bioactive domains. This approach yields an adjustable, biofabricated platform to interrogate the effects of cell-matrix interaction on blood-brain barrier mechanobiology.
Collapse
Affiliation(s)
- Louis S Paone
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States of America
| | | | - Aidan Curran
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States of America
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States of America
- Department of Orthopedic Surgery, Cooper Medical School of Rowan University, Camden, NJ, United States of America
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States of America
| |
Collapse
|
6
|
Bucci R, Vaghi F, Erba E, Romanelli A, Gelmi ML, Clerici F. Peptide grafting strategies before and after electrospinning of nanofibers. Acta Biomater 2021; 122:82-100. [PMID: 33326882 DOI: 10.1016/j.actbio.2020.11.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
Nanofiber films produced by electrospinning currently provide a promising platform for different applications. Although nonfunctionalized nanofiber films from natural or synthetic polymers are extensively used, electrospun materials combined with peptides are gaining more interest. In fact, the selection of specific peptides improves the performance of the material for biological applications and mainly for tissue engineering, mostly by maintaining similar mechanical properties with respect to the simple polymer. The main drawback in using peptides blended with a polymer is the quick release of the peptides. To avoid this problem, covalent linking of the peptide is more beneficial. Here, we reviewed synthetic protocols that enable covalent grafting of peptides to polymers before or after the electrospinning procedures to obtain more robust electrospun materials. Applications and the performance of the new material compared to that of the starting polymer are discussed.
Collapse
|
7
|
Karimi F, Thombare VJ, Hutton CA, O'Connor AJ, Qiao GG, Heath DE. Biomaterials functionalized with nanoclusters of integrin- and syndecan-binding ligands improve cell adhesion and mechanosensing under shear flow conditions. J Biomed Mater Res A 2020; 109:313-325. [PMID: 32490581 DOI: 10.1002/jbm.a.37024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
We have engineered biomaterials that display nanoclusters of ligands that bind both integrin and syndecan-4 cell receptors. These surfaces regulate cell behaviors under static conditions including adhesion, spreading, actin stress fiber formation, and migration. The syndecan-4 receptors are also critical mediators of cellular mechanotransduction. In this contribution we assess whether this novel class of materials can regulate the response of cells to applied mechanical stimulation, using the shear stress imparted by laminar fluid flow as a model stimulus. Specifically, we assess endothelial cell detachment due to flow, cell alignment due to flow, and cell adhesion from the flowing fluid. A high degree of cell retention was observed on surfaces containing integrin-binding ligands or a mixed population of integrin- and syndecan-binding ligands. However, the presence of both ligand types was necessary for the cells to align in the direction of flow. These results imply that integrin engagement is necessary for adhesion strength, but engagement of both receptor types aids in appropriate mechanotransduction. Additionally, it was found that surfaces functionalized with both ligand types were able to scavenge a larger number of cells from flow, and to do so at a faster rate, compared to surfaces functionalized with only integrin- or syndecan-binding ligands. These results show that interfaces functionalized with both integrin- and syndecan-binding ligands regulate a significant range of biophysical cell behaviors in response to shear stress.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, University of Melbourne, Parkville, Victoria, Australia.,Polymer Science Group, Department of Chemical Engineering, Particulate Fluid Processing Centre, University of Melbourne, Parkville, Victoria, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Varsha Jagannath Thombare
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Craig A Hutton
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical Engineering, Particulate Fluid Processing Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Particulate Fluids Processing Centre, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Schulz C, Krüger-Genge A, Jung F, Lendlein A. Aptamer supported in vitro endothelialization of poly(ether imide) films. Clin Hemorheol Microcirc 2020; 75:201-217. [PMID: 31985458 DOI: 10.3233/ch-190775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Implantation of synthetic small-diameter vascular bypass grafts is often associated with an increased risk of failure, due to thrombotic events or late intimal hyperplasia. As one of the causes an insufficient hemocompatibility of the artificial surface is discussed. Endothelialization of synthetic grafts is reported to be a promising strategy for creating a self-renewing and regulative anti-thrombotic graft surface. However, the establishment of a shear resistant cell monolayer is still challenging. In our study, cyto- and immuno-compatible poly(ether imide) (PEI) films were explored as potential biomaterial for cardiovascular applications. Recently, we reported that the initial adherence of primary human umbilical vein endothelial cells (HUVEC) was delayed on PEI-films and about 9 days were needed to establish a confluent and almost shear resistant HUVEC monolayer. To accelerate the initial adherence of HUVEC, the PEI-film surface was functionalized with an aptamer-cRGD peptide based endothelialization supporting system. With this functionalization the initial adherence as well as the shear resistance of HUVEC on PEI-films was considerable improved compared to the unmodified polymer surface. The in vitro results confirm the general applicability of aptamers for an efficient functionalization of substrate surfaces.
Collapse
Affiliation(s)
- Christian Schulz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Anne Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Teltow and Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Teltow and Berlin, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
9
|
Heath DE. A Review of Decellularized Extracellular Matrix Biomaterials for Regenerative Engineering Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-018-0080-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Beyond RGD; nanoclusters of syndecan- and integrin-binding ligands synergistically enhance cell/material interactions. Biomaterials 2018; 187:81-92. [DOI: 10.1016/j.biomaterials.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/19/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022]
|
11
|
Krüger-Genge A, Schulz C, Kratz K, Lendlein A, Jung F. Comparison of two substrate materials used as negative control in endothelialization studies: Glass versus polymeric tissue culture plate. Clin Hemorheol Microcirc 2018; 69:437-445. [PMID: 29843229 DOI: 10.3233/ch-189904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The endothelialization of synthetic surfaces applied as cardiovascular implant materials is an important issue to ensure the anti-thrombotic quality of a biomaterial. However, the rapid and constant development of a functionally-confluent endothelial cell monolayer is challenging. In order to investigate the compatibility of potential implant materials with endothelial cells several in vitro studies are performed. Here, glass and tissue culture plates (TCP) are often used as reference materials for in vitro pre-testing. However, a direct comparison of both substrates is lacking.Therefore, a comparison of study results is difficult, since results are often related to various reference materials. In this study, the endothelialization of glass and TCP was investigated in terms of adherence, morphology, integrity, viability and function using human umbilical vein endothelial cells (HUVEC).On both substrates an almost functionally confluent HUVEC monolayer was developed after nine days of cell seeding with clearly visible cell rims, decreased stress fiber formation and a pronounced marginal filament band. The viability of HUVEC was comparable for both substrates nine days after cell seeding with only a few dead cells. According to that, the cell membrane integrity as well as the metabolic activity showed no differences between TCP and glass. However, a significant difference was observed for the secretion of IL-6 and IL-8. The concentration of both cytokines, which are associated with migratory activity, was increased in the supernatant of HUVEC seeded on TCP. This result matches well with the slightly increased number of adherent HUVEC on TCP.In conclusion, these findings indicate that both reference materials are almost comparable and can be used equivalently as control materials in in vitro endothelialization studies.
Collapse
Affiliation(s)
- Anne Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Christian Schulz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| |
Collapse
|
12
|
Karimi F, O'Connor AJ, Qiao GG, Heath DE. Integrin Clustering Matters: A Review of Biomaterials Functionalized with Multivalent Integrin-Binding Ligands to Improve Cell Adhesion, Migration, Differentiation, Angiogenesis, and Biomedical Device Integration. Adv Healthc Mater 2018; 7:e1701324. [PMID: 29577678 DOI: 10.1002/adhm.201701324] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/24/2018] [Indexed: 01/17/2023]
Abstract
Material systems that exhibit tailored interactions with cells are a cornerstone of biomaterial and tissue engineering technologies. One method of achieving these tailored interactions is to biofunctionalize materials with peptide ligands that bind integrin receptors present on the cell surface. However, cell biology research has illustrated that both integrin binding and integrin clustering are required to achieve a full adhesion response. This biophysical knowledge has motivated researchers to develop material systems biofunctionalized with nanoscale clusters of ligands that promote both integrin occupancy and clustering of the receptors. These materials have improved a wide variety of biological interactions in vitro including cell adhesion, proliferation, migration speed, gene expression, and stem cell differentiation; and improved in vivo outcomes including increased angiogenesis, tissue healing, and biomedical device integration. This review first introduces the techniques that enable the fabrication of these nanopatterned materials, describes the improved biological effects that have been achieved, and lastly discusses the current limitations of the technology and where future advances may occur. Although this technology is still in its nascency, it will undoubtedly play an important role in the future development of biomaterials and tissue engineering scaffolds for both in vitro and in vivo applications.
Collapse
Affiliation(s)
- Fatemeh Karimi
- School of Chemical and Biomedical Engineering; Particulate Fluids Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
- Polymer Science Group; Department of Chemical Engineering; Particulate Fluid Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| | - Andrea J. O'Connor
- School of Chemical and Biomedical Engineering; Particulate Fluids Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| | - Greg G. Qiao
- Polymer Science Group; Department of Chemical Engineering; Particulate Fluid Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| | - Daniel E. Heath
- School of Chemical and Biomedical Engineering; Particulate Fluids Processing Centre; University of Melbourne; Parkville VIC 3010 Australia
| |
Collapse
|
13
|
Kusuma GD, Yang MC, Brennecke SP, O'Connor AJ, Kalionis B, Heath DE. Transferable Matrixes Produced from Decellularized Extracellular Matrix Promote Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells and Facilitate Scale-Up. ACS Biomater Sci Eng 2018; 4:1760-1769. [PMID: 33445333 DOI: 10.1021/acsbiomaterials.7b00747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Decellularized extracellular matrixes (dECM) derived from mesenchymal stem cell (MSC) cultures have recently emerged as cell culture substrates that improve the proliferation, differentiation, and maintenance of MSC phenotype during ex vivo expansion. These biomaterials have considerable potential in the fields of stem cell biology, tissue engineering, and regenerative medicine. Processing the dECMs into concentrated solutions of biomolecules that enable the useful properties of the native dECM to be transferred to a new surface via a simple adsorption step would greatly increase the usefulness and impact of this technology. The development of such solutions, hereafter referred to as transferable matrixes, is the focus of this article. In this work, we produced transferable matrixes from dECM derived from two human placental MSC cell lines (DMSC23 and CMSC29) using pepsin digestion (P-ECM), urea extraction (U-ECM), and mechanical homogenization in acetic acid (AA-ECM). Native dECMs improved primary DMSC proliferation as well as osteogenic and adipogenic differentiation, compared with traditional expansion procedures. Interestingly, tissue culture plastic coated with P-ECM was able to replicate the proliferative effects of native dECM, while U-ECM was able to replicate osteogenic differentiation. These data illustrate the feasibility of producing dECM-derived transferable matrixes that replicate key features of the native matrixes and show that different processing techniques produce transferable matrixes with varying bioactivities. Additionally, these transferable matrixes are able to coat 1.3-5.2 times the surface area covered by the native dECM, facilitating scale-up of this technology.
Collapse
Affiliation(s)
- Gina D Kusuma
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria 3052, Australia.,School of Chemical and Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Michael C Yang
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria 3052, Australia.,School of Chemical and Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shaun P Brennecke
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrea J O'Connor
- School of Chemical and Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Bill Kalionis
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Daniel E Heath
- School of Chemical and Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
14
|
Affiliation(s)
- Daniel E. Heath
- Department of Chemical and Biomolecular Engineering; Particulate Fluids Processing Centre; The University of Melbourne; Parkville Victoria Australia
| |
Collapse
|
15
|
Kusuma GD, Brennecke SP, O’Connor AJ, Kalionis B, Heath DE. Decellularized extracellular matrices produced from immortal cell lines derived from different parts of the placenta support primary mesenchymal stem cell expansion. PLoS One 2017; 12:e0171488. [PMID: 28152107 PMCID: PMC5289638 DOI: 10.1371/journal.pone.0171488] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/20/2017] [Indexed: 01/02/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) exhibit undesired phenotypic changes during ex vivo expansion, limiting production of the large quantities of high quality primary MSCs needed for both basic research and cell therapies. Primary MSCs retain many desired MSC properties including proliferative capacity and differentiation potential when expanded on decellularized extracellular matrix (dECM) prepared from primary MSCs. However, the need to use low passage number primary MSCs (passage 3 or lower) to produce the dECM drastically limits the utility and impact of this technology. Here, we report that primary MSCs expanded on dECM prepared from high passage number (passage 25) human telomerase reverse transcriptase (hTERT) transduced immortal MSC cell lines also exhibit increased proliferation and osteogenic differentiation. Two hTERT-transduced placenta-derived MSC cell lines, CMSC29 and DMSC23 [derived from placental chorionic villi (CMSCs) and decidua basalis (DMSCs), respectively], were used to prepare dECM-coated substrates. These dECM substrates showed structural and biochemical differences. Primary DMSCs cultured on dECM-DMSC23 showed a three-fold increase in cell number after 14 days expansion in culture and increased osteogenic differentiation compared with controls. Primary CMSCs cultured on the dECM-DMSC23 exhibited a two-fold increase in cell number and increased osteogenic differentiation. We conclude that immortal MSC cell lines derived from different parts of the placenta produce dECM with varying abilities for supporting increased primary MSC expansion while maintaining important primary MSC properties. Additionally, this is the first demonstration of using high passage number cells to produce dECM that can promote primary MSC expansion, and this advancement greatly increases the feasibility and applicability of dECM-based technologies.
Collapse
Affiliation(s)
- Gina D. Kusuma
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
- Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Shaun P. Brennecke
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrea J. O’Connor
- Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Bill Kalionis
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, Royal Women’s Hospital, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (BK); (DEH)
| | - Daniel E. Heath
- Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (BK); (DEH)
| |
Collapse
|
16
|
Karimi F, McKenzie TG, O'Connor AJ, Qiao GG, Heath DE. Nano-scale clustering of integrin-binding ligands regulates endothelial cell adhesion, migration, and endothelialization rate: novel materials for small diameter vascular graft applications. J Mater Chem B 2017; 5:5942-5953. [DOI: 10.1039/c7tb01298e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Blood contacting devices are commonly used in today's medical landscape.
Collapse
Affiliation(s)
- Fatemeh Karimi
- School of Chemical and Biomedical Engineering
- Particulate Fluids Processing Centre
- University of Melbourne
- Melbourne
- Australia
| | - Thomas G. McKenzie
- Polymer Science Group
- Department of Chemical Engineering
- Particulate Fluids Processing Centre
- University of Melbourne
- Melbourne
| | - Andrea J. O'Connor
- School of Chemical and Biomedical Engineering
- Particulate Fluids Processing Centre
- University of Melbourne
- Melbourne
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- Particulate Fluids Processing Centre
- University of Melbourne
- Melbourne
| | - Daniel E. Heath
- School of Chemical and Biomedical Engineering
- Particulate Fluids Processing Centre
- University of Melbourne
- Melbourne
- Australia
| |
Collapse
|
17
|
Zhou J, Nie B, Zhu Z, Ding J, Yang W, Shi J, Dong X, Xu J, Dong N. Promoting endothelialization on decellularized porcine aortic valve by immobilizing branched polyethylene glycolmodified with cyclic-RGD peptide: an in vitro study. ACTA ACUST UNITED AC 2015; 10:065014. [PMID: 26584634 DOI: 10.1088/1748-6041/10/6/065014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We functionally modify a decellularized porcine aortic valve using a novel complex biologically active cyclic- (c)-RGD modified with branched polyethylene glycol (PEG), namely, c-RDG-PEG. Human umbilical vein endothelial cell (HUVEC) adhesion and proliferation were detected for up to 8 d after seeding on the scaffold. (1)H nuclear magnetic resonance (D2O) showed signal peaks at 7.27 and 7.38 ppm associated with protons of the phenyl group in c-RGD-PEG. Attenuated total reflectance Fourier transform infrared spectroscopy showed characteristic peaks for PEG at 1100 and 1342 cm(-1). These represented vibration peaks of C-O and -CH2 bonds, suggesting successful grafting of c-RGD-PEG to a decellularized porcine aortic valve (DPAV). The tensile strengths were significantly increased in the c-RGD-PEG-DPAV group compared to the native valve and DPAV groups (P < 0.05), while the elastic modulus was sigficantly decreased in the c-RGD-PEG-DPAV group compared to the native valve and DPAV groups (P < 0.05). HUVEC proliferation was significantly higher in the c-RGD-PEG-DPAV group than in the PEG-DPAV and DPAV groups (P < 0.01). Maximum adhesion occurred at 4 h, and on the 8th day, a confluent and compact monolayer formed on the valve surface. The modified DPAV resulted in good adhesion and proliferation of endothelial cells and is an appropriate approach to modify tissue engineered heart valves for promoting endothelialization.
Collapse
Affiliation(s)
- Jianliang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China. These authors contributed equally to this study and share the first authorship
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Miklas JW, Dallabrida SM, Reis LA, Ismail N, Rupnick M, Radisic M. QHREDGS enhances tube formation, metabolism and survival of endothelial cells in collagen-chitosan hydrogels. PLoS One 2013; 8:e72956. [PMID: 24013716 PMCID: PMC3754933 DOI: 10.1371/journal.pone.0072956] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 07/22/2013] [Indexed: 12/29/2022] Open
Abstract
Cell survival in complex, vascularized tissues, has been implicated as a major bottleneck in advancement of therapies based on cardiac tissue engineering. This limitation motivates the search for small, inexpensive molecules that would simultaneously be cardio-protective and vasculogenic. Here, we present peptide sequence QHREDGS, based upon the fibrinogen-like domain of angiopoietin-1, as a prime candidate molecule. We demonstrated previously that QHREDGS improved cardiomyocyte metabolism and mitigated serum starved apoptosis. In this paper we further demonstrate the potency of QHREDGS in its ability to enhance endothelial cell survival, metabolism and tube formation. When endothelial cells were exposed to the soluble form of QHREDGS, improvements in endothelial cell barrier functionality, nitric oxide production and cell metabolism (ATP levels) in serum starved conditions were found. The functionality of the peptide was then examined when conjugated to collagen-chitosan hydrogel, a potential carrier for in vivo application. The presence of the peptide in the hydrogel mitigated paclitaxel induced apoptosis of endothelial cells in a dose dependent manner. Furthermore, the peptide modified hydrogels stimulated tube-like structure formation of encapsulated endothelial cells. When integrin αvβ3 or α5β1 were antibody blocked during cell encapsulation in peptide modified hydrogels, tube formation was abolished. Therefore, the dual protective nature of the novel peptide QHREDGS may position this peptide as an appealing augmentation for collagen-chitosan hydrogels that could be used for biomaterial delivered cell therapies in the settings of myocardial infarction.
Collapse
Affiliation(s)
- Jason W. Miklas
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Susan M. Dallabrida
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Lewis A. Reis
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Nesreen Ismail
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Maria Rupnick
- Brigham and Women’s Hospital, Cardiovascular Division, Boston, Massachusetts, United States of America (Affiliates of Harvard Medical School, Boston, Massachusetts, United States of America)
| | - Milica Radisic
- The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
19
|
McHugh KJ, Tao SL, Saint-Geniez M. A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1659-1670. [PMID: 23625319 PMCID: PMC4086292 DOI: 10.1007/s10856-013-4934-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
Porous scaffolds have the ability to minimize transport barriers for both two- (2D) and three-dimensional tissue engineering. However, current porous scaffolds may be non-ideal for 2D tissues such as epithelium due to inherent fabrication-based characteristics. While 2D tissues require porosity to support molecular transport, pores must be small enough to prevent cell migration into the scaffold in order to avoid non-epithelial tissue architecture and compromised function. Though electrospun meshes are the most popular porous scaffolds used today, their heterogeneous pore size and intense topography may be poorly-suited for epithelium. Porous scaffolds produced using other methods have similar unavoidable limitations, frequently involving insufficient pore resolution and control, which make them incompatible with 2D tissues. In addition, many of these techniques require an entirely new round of process development in order to change material or pore size. Herein we describe "pore casting," a fabrication method that produces flat scaffolds with deterministic pore shape, size, and location that can be easily altered to accommodate new materials or pore dimensions. As proof-of-concept, pore-cast poly(ε-caprolactone) (PCL) scaffolds were fabricated and compared to electrospun PCL in vitro using canine kidney epithelium, human colon epithelium, and human umbilical vein endothelium. All cell types demonstrated improved morphology and function on pore-cast scaffolds, likely due to reduced topography and universally small pore size. These results suggest that pore casting is an attractive option for creating 2D tissue engineering scaffolds, especially when the application may benefit from well-controlled pore size or architecture.
Collapse
Affiliation(s)
- Kevin J. McHugh
- The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, MA 02136
- Department of Biomedical Engineering, Boston University, 44 Cummington St., Boston, MA 02115
- Schepens Eye Research Institute, 20 Staniford St., Boston MA, 02114
| | - Sarah L. Tao
- The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, MA 02136
| | - Magali Saint-Geniez
- Schepens Eye Research Institute, 20 Staniford St., Boston MA, 02114
- Department of Ophthalmology, Harvard Medical School, 243 Charles Street Boston, MA 02114
| |
Collapse
|
20
|
Wang X, Cooper S. Adhesion of endothelial cells and endothelial progenitor cells on peptide-linked polymers in shear flow. Tissue Eng Part A 2013; 19:1113-21. [PMID: 23167808 PMCID: PMC3609637 DOI: 10.1089/ten.tea.2011.0653] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/16/2012] [Indexed: 11/12/2022] Open
Abstract
The initial adhesion of human umbilical vein endothelial cells (HUVECs), cord blood endothelial colony-forming cells (ECFCs), and human blood outgrowth endothelial cells (HBOECs) was studied under radial flow conditions. The surface of a variable shear-rate device was either coated with polymer films or covered by synthetic fibers. Spin-coating was applied to produce smooth polymer films, while fibrous scaffolds were generated by electrospinning. The polymer was composed of hexyl methacrylate, methyl methacrylate, poly(ethylene glycol) methacrylate (PEGMA), and CGRGDS peptide. The peptide was incorporated into the polymer system by coupling to an acrylate-PEG-N-hydroxysuccinimide comonomer. A shear-rate-dependent increase of the attached cells with time was observed with all cell types. The adhesion of ECs increased on RGD-linked polymer surfaces compared to polymers without adhesive peptides. The number of attached ECFCs and HBOECs are significantly higher than that of HUVECs within the entire shear-rate range and surfaces examined, especially on RGD-linked polymers at low shear rates. Their superior adhesion ability of endothelial progenitor cells under flow conditions suggests they are a promising source for in vivo seeding of vascular grafts and shows the potential to be used for self-endothelialized implants.
Collapse
Affiliation(s)
- Xin Wang
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
21
|
Heath DE, Kobe C, Jones D, Moldovan NI, Cooper SL. In vitro endothelialization of electrospun terpolymer scaffolds: evaluation of scaffold type and cell source. Tissue Eng Part A 2012; 19:79-90. [PMID: 22834688 DOI: 10.1089/ten.tea.2011.0655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A family of methacrylic terpolymer biomaterials was electrospun into three-dimensional scaffolds. The glass transition temperature of the polymer correlates with the morphology of the resulting scaffold. Glassy materials produce scaffolds with discrete fibers and large pore areas (1531±1365 μm(2)), while rubbery materials produce scaffolds with fused fibers and smaller pore areas (154±110 μm(2)). Three different endothelial-like cell populations were seeded onto these scaffolds under static conditions: human umbilical vein endothelial cells (HUVECs), adult human peripheral blood-derived outgrowth endothelial cells, and umbilical cord blood-derived human blood outgrowth endothelial cells. Cellular behavior depended on both cell type and scaffold topography. Specifically, cord blood-derived outgrowth endothelial cells showed more robust adhesion and growth on all scaffolds in comparison to other cell types as measured by the density of adherent cells, the number of proliferative cells, and the enzymatic activity of the adherent cells. Peripheral blood-derived outgrowth cells exhibited less ability to inhabit the terpolymer interfaces in comparison to their cord blood-derived counterparts. HUVECs also exhibited less of a capacity to colonize the terpolymer interfaces in comparison to the cord blood-derived cells. However, the mature endothelial cells did show scaffold-dependent behavior. Specifically, we observed an increase in their ability to populate the low-porosity scaffolds. All cells maintained an endothelial phenotype after 1 week of culture on the electrospun scaffolds.
Collapse
Affiliation(s)
- Daniel E Heath
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|