1
|
Wang Z, Liang W, Ao R, An Y. Adipose Decellularized Matrix: A Promising Skeletal Muscle Tissue Engineering Material for Volume Muscle Loss. Biomater Res 2025; 29:0174. [PMID: 40248249 PMCID: PMC12003953 DOI: 10.34133/bmr.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/06/2025] [Accepted: 03/07/2025] [Indexed: 04/19/2025] Open
Abstract
Volume muscle loss is a severe injury often caused by trauma, fracture, tumor resection, or degenerative disease, leading to long-term dysfunction or disability. The current gold-standard treatment is autologous muscle tissue transplantation, with limitations due to donor site restrictions, complications, and low regeneration efficiency. Tissue engineering shows potential to overcome these challenges and achieve optimal muscle regeneration, vascularization, nerve repair, and immunomodulation. In the field of muscle tissue engineering, skeletal muscle decellularized matrices are regarded as an ideal material due to their similarity to the defect site environment, yet they suffer from difficulties in preparation, severe fibrosis, and inconsistent experimental findings. Adipose decellularized matrices (AdECMs) have demonstrated consistent efficacy in promoting muscle regeneration, and their ease of preparation and abundant availability make them even more attractive. The full potential of AdECMs for muscle regeneration remains to be explored. The aim of this review is to summarize the relevant studies on using AdECMs to promote muscle regeneration, to summarize the preparation methods of various applied forms, and to analyze their advantages and shortcomings, as well as to further explore their mechanisms and to propose possible improvements, so as to provide new ideas for the clinical solution of the problem of volume muscle loss.
Collapse
Affiliation(s)
| | - Wei Liang
- Address correspondence to: (W.L.); (Y.A.)
| | - Rigele Ao
- Department of Plastic Surgery,
Peking University Third Hospital, Beijing 100191, China
| | - Yang An
- Department of Plastic Surgery,
Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
2
|
Füge L, Schüssler F, Gerhardus J, Schwab R, Harms G, Hasenburg A, Blaeser A, Brenner W, Peters K. Comparative Analysis of Hydrogels From Porcine Extracellular Matrix for 3D Bioprinting of Adipose Tissue. J Biomed Mater Res A 2025; 113:e37832. [PMID: 40165526 DOI: 10.1002/jbm.a.37832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 04/02/2025]
Abstract
The extracellular matrix (ECM) is the natural scaffold of all soft tissues in tissue engineering. Of special interest is the use of ECM as a hydrogel, which can be used to enclose cells and to be molded into any form by 3D bioprinting. Protocols for the preparation of ECM vary in the use of physical and chemical processing steps, the use of different detergents for decellularization, and the removal of DNA and RNA residues and show a different use of solvents and wash buffers. We have, therefore, compared seven different variations for the decellularization of a primary porcine isolate to manufacture decellularized adipose tissue (DAT) for their use in adipose tissue engineering and as a hydrogel in particular. Decellularization efficacy was assessed by DNA quantification while retention of ECM components was evaluated by measuring the content of hydroxyproline and glycosaminoglycan (GAGs). Depending on the decellularization protocol, the composition and DNA content of the resulting DAT were different. All DAT samples were processed into hydrogels to assess their mechanical properties as well as their influence on cellular metabolic activity and cell differentiation. The different compositions of the DAT and the resulting hydrogels had an effect on the stability and printability of the gels. Some DAT that were digested with hydrochloric acid (HCl) were more stable than those that were digested with acetic acid (AA). In addition, depending on the protocol, there was a clear effect on adipose-derived stem cells (ASC), endothelial cells and fibroblasts, cultured with the hydrogels. The differentiation of ASC to adipocytes could be achieved on most of the hydrogels. Human dermal microvascular endothelial cells (HDMEC) showed significantly better metabolic activity on hydrogels digested with HCl than digested with AA. HDMEC cultured on hydrogel #2 digested with HCl showed a 40% higher metabolic activity compared to collagen as a positive control, whereas culturing HDMEC on hydrogel #2 digested with AA resulted in a cellular metabolic activity loss of 60%. In a triculture of all three cell types, the formation of first tubular networks by HDMEC was achieved depending on the hydrogel used.
Collapse
Affiliation(s)
- Leonie Füge
- Department of Obstetrics and Women's Health, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Felix Schüssler
- Department of Obstetrics and Women's Health, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jamina Gerhardus
- BioMedical Printing Technology, Department of Mechanical Engineering, Technical University of Darmstadt, Darmstadt, Germany
| | - Roxana Schwab
- Department of Obstetrics and Women's Health, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gregory Harms
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Biology, Wilkes University, Wilkes Barre, Pennsylvania, USA
| | - Annette Hasenburg
- Department of Obstetrics and Women's Health, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Blaeser
- BioMedical Printing Technology, Department of Mechanical Engineering, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Women's Health, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BiomaTiCS - Biomaterials, Tissues and Cells in Science, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Peters
- Department of Obstetrics and Women's Health, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- BiomaTiCS - Biomaterials, Tissues and Cells in Science, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
3
|
Wang Z, Wang L, Wang S, Chen H, Wang D, Li A, Huang Y, Pu Y, Xiong X, Lui X, Huang Y, Guo L. The Extracellular Matrix Promotes Diabetic Oral Wound Healing by Modulating the Microenvironment. Biomater Res 2025; 29:0169. [PMID: 40110050 PMCID: PMC11922533 DOI: 10.34133/bmr.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
Oral wounds in diabetes mellitus (DM) often delay healing due to reduced angiogenesis and increased inflammatory response in the local microenvironment, even leading to graft necrosis and implant failure. Therefore, developing an effective program to promote healing is of great clinical value. Much of the current research is focused on promoting wound healing through surface adhesive materials that exert a pro-angiogenic, anti-inflammatory effect. However, the application of surface bonding materials in the oral cavity is very limited due to the humid and friction-prone environment. Decellularized extracellular adipose tissue (DAT) is an easily accessible and biocompatible material derived from adipose tissue. To further explore the potential of DAT, we used multi-omics to analyze its composition and possible mechanisms. Proteomic studies revealed that DAT contains anti-inflammatory, pro-angiogenic proteins that promote DM tissue regeneration. To adapt to the moist and chewing friction environment of the mouth, we modified DAT into a temperature-sensitive hydrogel material that can be injected intramucosally. DAT hydrogel has been verified to promote angiogenesis and exert anti-inflammatory effects through macrophage phenotypic transformation. Meanwhile, transcriptome analysis suggested that the inhibitory effect of DAT on the interleukin 17 signaling pathway might be a key factor in promoting DM oral wound healing. In conclusion, after multi-omic analysis, DAT hydrogel can exert good pro-angiogenic and anti-inflammatory effects through the interleukin 17 signaling pathway and can be adapted to the specific environment of the oral cavity. This provides a potential way to promote DM oral wound healing in a clinical setting.
Collapse
Affiliation(s)
- Zhongke Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Li Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Sihan Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Hongmei Chen
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Danni Wang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Aodi Li
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Ying Huang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Yifan Pu
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Xinlei Xiong
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Xiangrui Lui
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Yuwen Huang
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| | - Ling Guo
- Department of Prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou 646000, China
| |
Collapse
|
4
|
Li C, An N, Song Q, Hu Y, Yin W, Wang Q, Le Y, Pan W, Yan X, Wang Y, Liu J. Enhancing organoid culture: harnessing the potential of decellularized extracellular matrix hydrogels for mimicking microenvironments. J Biomed Sci 2024; 31:96. [PMID: 39334251 PMCID: PMC11429032 DOI: 10.1186/s12929-024-01086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Over the past decade, organoids have emerged as a prevalent and promising research tool, mirroring the physiological architecture of the human body. However, as the field advances, the traditional use of animal or tumor-derived extracellular matrix (ECM) as scaffolds has become increasingly inadequate. This shift has led to a focus on developing synthetic scaffolds, particularly hydrogels, that more accurately mimic three-dimensional (3D) tissue structures and dynamics in vitro. The ECM-cell interaction is crucial for organoid growth, necessitating hydrogels that meet organoid-specific requirements through modifiable physical and compositional properties. Advanced composite hydrogels have been engineered to more effectively replicate in vivo conditions, offering a more accurate representation of human organs compared to traditional matrices. This review explores the evolution and current uses of decellularized ECM scaffolds, emphasizing the application of decellularized ECM hydrogels in organoid culture. It also explores the fabrication of composite hydrogels and the prospects for their future use in organoid systems.
Collapse
Affiliation(s)
- Chen Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Ni An
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qingru Song
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Yuelei Hu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Wenzhen Yin
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qi Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinpeng Le
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Materials Science and Engineering, Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenting Pan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Yunfang Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| | - Juan Liu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Yang X, Jin L, Xu M, Liu X, Tan Z, Liu L. Adipose tissue reconstruction facilitated with low immunogenicity decellularized adipose tissue scaffolds. Biomed Mater 2024; 19:035023. [PMID: 38518362 DOI: 10.1088/1748-605x/ad3705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
There is currently an urgent need to develop engineered scaffolds to support new adipose tissue formation and facilitate long-term maintenance of function and defect repair to further generate prospective bioactive filler materials capable of fulfilling surgical needs. Herein, adipose regeneration methods were optimized and decellularized adipose tissue (DAT) scaffolds with good biocompatibility were fabricated. Adipose-like tissues were reconstructed using the DAT and 3T3-L1 preadipocytes, which have certain differentiation potential, and the regenerative effects of the engineered adipose tissuesin vitroandin vivowere explored. The method improved the efficiency of adipose removal from tissues, and significantly shortened the time for degreasing. Thus, the DAT not only provided a suitable space for cell growth but also promoted the proliferation, migration, and differentiation of preadipocytes within it. Following implantation of the constructed adipose tissuesin vivo, the DAT showed gradual degradation and integration with surrounding tissues, accompanied by the generation of new adipose tissue analogs. Overall, the combination of adipose-derived extracellular matrix and preadipocytes for adipose tissue reconstruction will be of benefit in the artificial construction of biomimetic implant structures for adipose tissue reconstruction, providing a practical guideline for the initial integration of adipose tissue engineering into clinical medicine.
Collapse
Affiliation(s)
- Xun Yang
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital, Shenzhen University, Shenzhen 518028, People's Republic of China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, People's Republic of China
| | - Lijuan Jin
- Institute of Shenzhen, Hunan University, Shenzhen 518000, People's Republic of China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, People's Republic of China
| | - Miaomiao Xu
- College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Xiao Liu
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, People's Republic of China
| | - Zhikai Tan
- Institute of Shenzhen, Hunan University, Shenzhen 518000, People's Republic of China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, People's Republic of China
- College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | - Lijun Liu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital, The First Affiliated Hospital, Shenzhen University, Shenzhen 518028, People's Republic of China
| |
Collapse
|
6
|
Xiong C, Yao W, Tao R, Yang S, Jiang W, Xu Y, Zhang J, Han Y. Application of Decellularized Adipose Matrix as a Bioscaffold in Different Tissue Engineering. Aesthetic Plast Surg 2024; 48:1045-1053. [PMID: 37726399 DOI: 10.1007/s00266-023-03608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023]
Abstract
With the development of tissue engineering, the application of decellularized adipose matrix as scaffold material in tissue engineering has been intensively explored due to its wide source and excellent potential in tissue regeneration. Decellularized adipose matrix is a promising candidate for adipose tissue regeneration, while modification of decellularized adipose matrix scaffold can also allow it to transcend the limitations of adipose tissue source properties and applied to other tissue engineering fields, including cartilage and bone tissue engineering, neural tissue engineering, and skin tissue engineering. In this review, we summarized the development of the applications of decellularized adipose matrix in different tissue engineering and present future perspectives.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Chenlu Xiong
- School of Medicine, Nankai University, Tianjin, China
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Wende Yao
- School of Medicine, Nankai University, Tianjin, China
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Ran Tao
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Sihan Yang
- School of Medicine, Nankai University, Tianjin, China
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Weiqian Jiang
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China
| | - Julei Zhang
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China.
- Department of Burn and Plastic Surgery, The 980st Hospital of the PLA Joint Logistics Support Force, Hebei, China.
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, China.
| |
Collapse
|
7
|
Qi J, Li Z, Li S, Fu S, Luan J. Effectiveness of a New Enzyme-Free Method for the Preparation of a Decellularized Adipose-Derived Matrix. Aesthet Surg J 2024; 44:NP184-NP192. [PMID: 37715728 DOI: 10.1093/asj/sjad307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/02/2023] [Accepted: 09/14/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Decellularized adipose-derived matrix (DAM) represents a new alternative to tissue fillers. The function of DAM is closely associated with the decellularization technique used for its preparation. However, most techniques are time-consuming and expensive, and this might reduce the popularity of DAM. OBJECTIVES The study aimed to investigate an enzyme-free adipose decellularization method and generate a DAM capable of adipose tissue regeneration. METHODS DAMs prepared by the enzyme-free and Flynn's methods were compared and co-cultured with human adipose-derived stem cells (hADSCs) to investigate cytocompatibility. Adipose tissue formation was evaluated by injecting the DAMs into the backs of nude mice over 4 weeks. Samples were harvested for gross and perilipin immunohistochemistry analysis at 1 and 4 weeks. RESULTS The enzyme-free method is effective for adipose decellularization because it removes adipocytes and preserves the microstructure. In vitro, the DAM made by the enzyme-free method could support the attachment, growth, proliferation, and differentiation of hADSCs, and promote the enhanced secretion of vascular endothelial growth factor by hADSCs; this DAM also induced the formation and maturity of adipocytes in vivo. CONCLUSIONS This study describes a highly effective enzyme-free method for adipose tissue decellularization that also promotes adipocyte formation and adipose tissue volume stability in vitro and in vivo, resulting in a new alternative tissue filler.
Collapse
|
8
|
Cai D, Weng W. Development potential of extracellular matrix hydrogels as hemostatic materials. Front Bioeng Biotechnol 2023; 11:1187474. [PMID: 37383519 PMCID: PMC10294235 DOI: 10.3389/fbioe.2023.1187474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
The entry of subcutaneous extracellular matrix proteins into the circulation is a key step in hemostasis initiation after vascular injury. However, in cases of severe trauma, extracellular matrix proteins are unable to cover the wound, making it difficult to effectively initiate hemostasis and resulting in a series of bleeding events. Acellular-treated extracellular matrix (ECM) hydrogels are widely used in regenerative medicine and can effectively promote tissue repair due to their high mimic nature and excellent biocompatibility. ECM hydrogels contain high concentrations of extracellular matrix proteins, including collagen, fibronectin, and laminin, which can simulate subcutaneous extracellular matrix components and participate in the hemostatic process. Therefore, it has unique advantages as a hemostatic material. This paper first reviewed the preparation, composition and structure of extracellular hydrogels, as well as their mechanical properties and safety, and then analyzed the hemostatic mechanism of the hydrogels to provide a reference for the application and research, and development of ECM hydrogels in the field of hemostasis.
Collapse
|
9
|
Zhu L, Yuhan J, Yu H, Zhang B, Huang K, Zhu L. Decellularized Extracellular Matrix for Remodeling Bioengineering Organoid's Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207752. [PMID: 36929582 DOI: 10.1002/smll.202207752] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, stem cell- and tumor-derived organoids are the most promising models in developmental biology and disease modeling, respectively. The matrix is one of three main elements in the construction of an organoid and the most important module of its extracellular microenvironment. However, the source of the currently available commercial matrix, Matrigel, limits the application of organoids in clinical medicine. It is worth investigating whether the original decellularized extracellular matrix (dECM) can be exploited as the matrix of organoids and improving organoid construction are very important. In this review, tissue decellularization protocols and the characteristics of decellularization methods, the mechanical support and biological cues of extraccellular matrix (ECM), methods for construction of multifunctional dECM and responsive dECM hydrogel, and the potential applications of functional dECM are summarized. In addition, some expectations are provided for dECM as the matrix of organoids in clinical applications.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094, P. R. China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hao Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| |
Collapse
|
10
|
Yoon H, Seo JK, Park TE. Microphysiological system recapitulating the pathophysiology of adipose tissue in obesity. Acta Biomater 2023; 159:188-200. [PMID: 36724863 DOI: 10.1016/j.actbio.2023.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/30/2023]
Abstract
A growing body of evidence has indicated that white adipose tissue (AT) remodeling is a major trigger for obesity-associated metabolic complications. However, the scarcity of translational models is an obstacle to the development of medicines that act on adipose restoration. Here, we describe a microphysiological system (MPS) that emulates the unique features of reprogrammed AT as a new in vitro tool for studying AT pathophysiology in obesity. The AT MPS contained mature adipocytes embedded in an extracellular matrix (ECM) hydrogel interfaced with AT microvascular endothelium, which was constantly perfused with fresh media. The unique biochemical signals due to the remodeled ECM in obesity were recapitulated using a decellularized AT ECM (AT dECM) hydrogel, which preserves the features of altered ECM composition in obesity. The mature adipocytes embedded in the AT dECM hydrogel maintained their function and morphology for a week without dedifferentiation. Using the AT MPS, we successfully modeled inflammation-induced AT microvascular dysfunction, the recruitment of immune cells due to the upregulation of cell adhesion molecules, and higher cancer cell adhesion as an indicator of metastasis, which are observed in obese individuals. The AT MPS may therefore represent a promising platform for understanding the dynamic cellular interplay in obesity-induced AT remodeling and validating the efficacy of drugs targeting AT in obesity. STATEMENT OF SIGNIFICANCE: The lack of translational in vitro white adipose tissue (AT) models is one of the main obstacles for understanding the obesity-induced reprogramming and the development of medicines. We report herein the AT microphysiological system (MPS), which recapitulates obesity and normal conditions and yields cell- and AT dECM-derived signals, thereby allowing accurate comparative in vitro analyses. Using the AT MPS, we successfully modeled reprogrammed AT in obesity conditions, including inflammation-induced AT vascular dysfunction, the recruitment of immune cells, and higher cancer cell metastasis, which are observed in obese individuals. Our proposed adipose tissue model providing physiological relevance and complexity may therefore enhance the understanding of obesity-associated disorders and be used to investigate their underlying molecular mechanisms to develop pharmacologic treatment strategies.
Collapse
Affiliation(s)
- Heejeong Yoon
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
11
|
Breast cancer cells interact with tumor-derived extracellular matrix in a molecular subtype-specific manner. BIOMATERIALS ADVANCES 2023; 146:213301. [PMID: 36709629 DOI: 10.1016/j.bioadv.2023.213301] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Mimicking the native microenvironment is vital for tumor engineering. Breast cancer is a highly heterogeneous disease with various molecular subtypes exhibiting distinct biological behaviors and treatment responsiveness. The heterogeneity of extracellular matrix (ECM) of breast cancer has remained largely unexplored and underestimated. The present study addressed this issue by comparing the composition, architecture, and functional roles of ECMs derived from breast cancers of two molecular subtypes, which are luminal-A breast cancer (less aggressive, ERα+)-derived ECM (LA-ECM) and triple-negative breast cancer (high aggressive, ERα-)-derived ECM (TN-ECM). Compared with normal breast tissue-derived ECMs (B-ECM), tumor-derived ECMs showed higher contents of pro-collagen I, fibronectin, and laminin, in addition with a significantly altered architecture. Transcriptome sequencing revealed that, compared with those cultured with B-ECM, MCF7 cells (an estrogen receptor (ER)α + luminal-A breast cancer cell line) cultured with LA-ECM and TN-ECM showed approximately 9.65 % and 9.04 % changes in the expression of all detected genes, respectively. The TN-ECM induced proliferation, promoted epithelial-to-mesenchymal transition, downregulated ERα expression, and reduced endocrine treatment sensitivity of MCF7. Above results have elucidated the role of phenotype-specific tumor ECM in cell phenotype maintenance, treatment sensitivity, and cancer progression, which highlighted the importance of ECM heterogeneity as well as its role in tumor microenvironment engineering and drug screening.
Collapse
|
12
|
Wang X, Ma Y, Lu F, Chang Q. The diversified hydrogels for biomedical applications and their imperative roles in tissue regeneration. Biomater Sci 2023; 11:2639-2660. [PMID: 36790251 DOI: 10.1039/d2bm01486f] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Repair and regeneration of tissues after injury are complex pathophysiological processes. Microbial infection, malnutrition, and an ischemic and hypoxic microenvironment in the injured area can impede the typical healing cascade. Distinguished by biomimicry of the extracellular matrix, high aqueous content, and diverse functions, hydrogels have revolutionized clinical practices in tissue regeneration owing to their outstanding hydrophilicity, biocompatibility, and biodegradability. Various hydrogels such as smart hydrogels, nanocomposite hydrogels, and acellular matrix hydrogels are widely used for applications ranging from bench-scale to an industrial scale. In this review, some emerging hydrogels in the biomedical field are briefly discussed. The protective roles of hydrogels in wound dressings and their diverse biological effects on multiple tissues such as bone, cartilage, nerve, muscle, and adipose tissue are also discussed. The vehicle functions of hydrogels for chemicals and cell payloads are detailed. Additionally, this review emphasizes the particular characteristics of hydrogel products that promote tissue repair and reconstruction such as anti-infection, inflammation regulation, and angiogenesis.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Yuan Ma
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 510515, China.
| |
Collapse
|
13
|
Long J, Qin Z, Chen G, Song B, Zhang Z. Decellularized extracellular matrix (d-ECM): the key role of the inflammatory process in pre-regeneration after implantation. Biomater Sci 2023; 11:1215-1235. [PMID: 36625281 DOI: 10.1039/d2bm01204a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Clinical medicine is encountering the challenge of repairing soft-tissue defects. Currently, natural and synthetic materials have been developed as natural scaffolds. Among them, the decellularized extracellular matrix (d-ECM) can achieve tissue remodeling following injury and, thus, replace defects due to its advantages of the extensiveness of the source and excellent biological and mechanical properties. However, by analyzing the existing decellularization techniques, we found that different preparation methods directly affect the residual components of the d-ECM, and further have different effects on inflammation and regeneration of soft tissues. Therefore, we analyzed the role of different residual components of the d-ECM after decellularization. Then, we explored the inflammatory process and immune cells in an attempt to understand the mechanisms and causes of tissue degeneration and regeneration after transplantation. In this paper, we summarize the current studies related to updated protocols for the preparation of the d-ECM, biogenic and exogenous residual substances, inflammation, and immune cells influencing the fate of the d-ECM.
Collapse
Affiliation(s)
- Jie Long
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Zijin Qin
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Guo Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Ziang Zhang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
14
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
15
|
Xia B, Chen G. Research progress of natural tissue-derived hydrogels for tissue repair and reconstruction. Int J Biol Macromol 2022; 214:480-491. [PMID: 35753517 DOI: 10.1016/j.ijbiomac.2022.06.137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022]
Abstract
There are many different grafts to repair damaged tissue. Various types of biological scaffolds, including films, fibers, microspheres, and hydrogels, can be used for tissue repair. A hydrogel, which is composed a natural or synthetic polymer network with high water absorption capacity, can provide a microenvironment closely resembling the extracellular matrix (ECM) of natural tissues to stimulate cell adhesion, proliferation, and differentiation. It has been shown to have great application potential in the field of tissue repair and regeneration. Hydrogels derived from natural tissues retain a variety of proteins and growth factors in optimal proportions, which is beneficial for the regeneration of specific tissues. This article reviews the latest research advances in the field of hydrogels from a variety of natural tissue sources, including bone tissue, blood vessels, nerve tissue, adipose tissue, skin tissue, and muscle tissue, including preparation methods, advantages, and applications in tissue engineering and regenerative medicine. Finally, it summarizes and discusses the challenges faced by natural tissue-derived hydrogels used in tissue repair, as well as future research and application directions.
Collapse
Affiliation(s)
- Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, PR China; Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, PR China.
| |
Collapse
|
16
|
Nellinger S, Mrsic I, Keller S, Heine S, Southan A, Bach M, Volz A, Chassé T, Kluger PJ. Cell‐derived and enzyme‐based decellularized extracellular matrix exhibit compositional and structural differences that are relevant for its use as a biomaterial. Biotechnol Bioeng 2022; 119:1142-1156. [DOI: 10.1002/bit.28047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/01/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Svenja Nellinger
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Ivana Mrsic
- Institute of Physical and Theoretical Chemistry, University of Tuebingen Auf der Morgenstelle 18 72076 Tuebingen Germany
| | - Silke Keller
- 3R‐Center for In Vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen Österbergstr. 3 72074 Tübingen Germany
- Department for Microphysiological Systems Institute of Biomedical Engineering, Faculty of Medicine of the Eberhard Karls University Tübingen Österbergstr. 3 72074 Tübingen Germany
| | - Simon Heine
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart Nobelstr. 12 70569 Stuttgart Germany
| | - Monika Bach
- Core Facility Hohenheim, University of Hohenheim Emil‐Wolff‐Str. 12 70599 Stuttgart Germany
| | - Ann‐Cathrin Volz
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Thomas Chassé
- Institute of Physical and Theoretical Chemistry, University of Tuebingen Auf der Morgenstelle 18 72076 Tuebingen Germany
| | - Petra J. Kluger
- School of Applied Chemistry, Reutlingen University Alteburgstr. 150 72762 Reutlingen Germany
| |
Collapse
|
17
|
Liu K, Zhao M, Li Y, Luo L, Hu D. VEGF loaded porcine decellularized adipose tissue derived hydrogel could enhance angiogenesis in vitro and in vivo. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:569-589. [PMID: 34779715 DOI: 10.1080/09205063.2021.2002235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Decellularized adipose tissue (DAT) has been widely applied in soft tissue regeneration, however, DAT may play a promising role in accelerating wound healing because of suitable physical characteristics and biological properties. In this research, we fabricated the DAT hydrogel and the VEGF loaded heparinized-DAT hydrogel (VEGF hydrogel) and evaluated their efficiency in full-thickness skin wound model. We designed one method to encapsulate VEGF to hep-DAT hydrogel in order to control VEGF release rate. Result showed that the VEGF release could last up to 3 day, and 1 ml hep-DAT hydrogel (5 mg/ml) could bind up to (64.521 ± 11.550) ng VEGF which was 4.2 times to that of DAT hydrogels. Moreover, the VEGF released in 3 days still preserved biological activities that the released VEGF could enhance tube formation of HUVECs in vitro. Otherwise, the VEGF hydrogel could significantly accelerate wound healing compared with DAT hydrogel and VEGF injection, collagen deposition and newly formed vessels in the VEGF hydrogel groups were also higher than those of other groups. We believed that the VEGF hydrogel could be one attractive biomaterial for potential clinical applications.
Collapse
Affiliation(s)
- Kaituo Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China.,Department of Burns and Plastic Surgery, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, China
| | - Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Liang Luo
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Bai R, Liu J, Zhang J, Shi J, Jin Z, Li Y, Ding X, Zhu X, Yuan C, Xiu B, Liu H, Yuan Z, Liu Z. Conductive single-wall carbon nanotubes/extracellular matrix hybrid hydrogels promote the lineage-specific development of seeding cells for tissue repair through reconstructing an integrin-dependent niche. J Nanobiotechnology 2021; 19:252. [PMID: 34425841 PMCID: PMC8381546 DOI: 10.1186/s12951-021-00993-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The niche of tissue development in vivo involves the growth matrix, biophysical cues and cell-cell interactions. Although natural extracellular matrixes may provide good supporting for seeding cells in vitro, it is evitable to destroy biophysical cues during decellularization. Reconstructing the bioactivities of extracellular matrix-based scaffolds is essential for their usage in tissue repair. RESULTS In the study, a hybrid hydrogel was developed by incorporating single-wall carbon nanotubes (SWCNTs) into heart-derived extracellular matrixes. Interestingly, insoluble SWCNTs were well dispersed in hybrid hydrogel solution via the interaction with extracellular matrix proteins. Importantly, an augmented integrin-dependent niche was reconstructed in the hybrid hydrogel, which could work like biophysical cues to activate integrin-related pathway of seeding cells. As supporting scaffolds in vitro, the hybrid hydrogels were observed to significantly promote seeding cell adhesion, differentiation, as well as structural and functional development towards mature cardiac tissues. As injectable carrier scaffolds in vivo, the hybrid hydrogels were then used to delivery stem cells for myocardial repair in rats. Similarly, significantly enhanced cardiac differentiation and maturation(12.5 ± 2.3% VS 32.8 ± 5%) of stem cells were detected in vivo, resulting in improved myocardial regeneration and repair. CONCLUSIONS The study represented a simple and powerful approach for exploring bioactive scaffold to promote stem cell-based tissue repair.
Collapse
Affiliation(s)
- Rui Bai
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Jianfeng Liu
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiao Zhang
- Department of Cardiology, Beijing Electric Power Hospital, State Grid Corporation of China, Beijing, 100073, China
| | - Jinmiao Shi
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhigeng Jin
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Yi Li
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Xiaoyu Ding
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xiaoming Zhu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Chao Yuan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Bingshui Xiu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huiliang Liu
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Zengqiang Yuan
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Zhiqiang Liu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
19
|
Investigating the Viability of Epithelial Cells on Polymer Based Thin-Films. Polymers (Basel) 2021; 13:polym13142311. [PMID: 34301068 PMCID: PMC8309445 DOI: 10.3390/polym13142311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
The development of novel polymer-based materials opens up possibilities for several novel applications, such as advanced wound dressings, bioinks for 3D biofabrication, drug delivery systems, etc. The aim of this study was to evaluate the viability of vascular and intestinal epithelial cells on different polymers as a selection procedure for more advanced cell-polymer applications. In addition, possible correlations between increased cell viability and material properties were investigated. Twelve polymers were selected, and thin films were prepared by dissolution and spin coating on silicon wafers. The prepared thin films were structurally characterized by Fourier transform infrared spectroscopy, atomic force microscopy, and goniometry. Their biocompatibility was determined using two epithelial cell lines (human umbilical vein endothelial cells and human intestinal epithelial cells), assessing the metabolic activity, cell density, and morphology. The tested cell lines showed different preferences regarding the culture substrate. No clear correlation was found between viability and individual substrate characteristics, suggesting that complex synergistic effects may play an important role in substrate design. These results show that a systematic approach is required to compare the biocompatibility of simple cell culture substrates as well as more complex applications (e.g., bioinks).
Collapse
|
20
|
Zhang W, Du A, Liu S, Lv M, Chen S. Research progress in decellularized extracellular matrix-derived hydrogels. Regen Ther 2021; 18:88-96. [PMID: 34095366 PMCID: PMC8142036 DOI: 10.1016/j.reth.2021.04.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/21/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Decellularized extracellular matrix (dECM) is widely used in regenerative medicine as a scaffold material due to its unique biological activity and good biocompatibility. Hydrogel is a three-dimensional network structure polymer with high water content and high swelling that can simulate the water environment of human tissues, has good biocompatibility, and can exchange nutrients, oxygen, and waste with cells. At present, hydrogel is the ideal biological material for tissue engineering. In recent years, rapid development of the hydrogel theory and technology and progress in the use of dECM to form hydrogels have attracted considerable attention to dECM hydrogels as an innovative method for tissue engineering and regenerative medicine. This article introduces the classification of hydrogels, and focuses on the history and formation of dECM hydrogels, the source of dECM, the application of dECM hydrogels in tissue engineering and the commercial application of dECM materials.
Collapse
Affiliation(s)
- Wenhui Zhang
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Aoling Du
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Shun Liu
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Mingyue Lv
- Anesthesia Class 1 of Chuanshan College, South China University, Hengyang, Hunan 421001, China
| | - Shenghua Chen
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
21
|
Liu PC, Tan QW, Zhang Y, Wang H, Zhou L, Yang QR, Xu L, He T, Xie HQ, Lv Q. Hydrogel from acellular porcine adipose tissue promotes survival of adipose tissue transplantation. Biomed Mater 2021; 16. [PMID: 33873165 DOI: 10.1088/1748-605x/abf982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Lipofilling is a popular technique for soft tissue augmentation, limited by unpredictable graft survival. This study aimed at exploring the effect of hydrogel from acellular porcine adipose tissue (HAPA) on angiogenesis and survival of adipose tissue used for lipofilling. The effect of HAPA on adipose-derived stem cells (ADSCs) proliferation, adipogenic differentiation, and vascular endothelial growth factor (VEGF) secretion were evaluated in hypoxia and normoxiain vitro. For thein vivostudy, adipose tissue with phosphate buffered saline, ADSCs, and HAPA (with or without ADSCs) were co-injected subcutaneously into nude mice. HAPA-ADSCs mixture (tissue engineering adipose tissue) was also grafted. Gross observation, volume measurement, and ultrasound observation were assessed. For histological assessment, hematoxylin and eosin, perilipin, cluster of differentiation 31 (CD31), Ki67, and transferase-mediated d-UTP nick end labelling (TUNEL) staining were performed. HAPA improved ADSCs proliferation, VEGF secretion, and adipogenic differentiation under normoxia and hypoxia conditionsin vitrostudy. For thein vivostudy, HAPA showed improved volume retention and angiogenesis, and reduced cell apoptosis when compared to ADSCs-assisted lipofilling and pure lipofilling. In conclusion, HAPA could maintain ADSCs viability and improve cell resistant to hypoxia and might be a promising biomaterial to assist lipofilling.
Collapse
Affiliation(s)
- Peng-Cheng Liu
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qiu-Wen Tan
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hua Wang
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Breast Surgery, Guizhou Provincial People's Hospital, Guiyang, People's Republic of China
| | - Li Zhou
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qian-Ru Yang
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Li Xu
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tao He
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qing Lv
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
22
|
Lee S, Lee HS, Chung JJ, Kim SH, Park JW, Lee K, Jung Y. Enhanced Regeneration of Vascularized Adipose Tissue with Dual 3D-Printed Elastic Polymer/dECM Hydrogel Complex. Int J Mol Sci 2021; 22:ijms22062886. [PMID: 33809175 PMCID: PMC7999751 DOI: 10.3390/ijms22062886] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
A flexible and bioactive scaffold for adipose tissue engineering was fabricated and evaluated by dual nozzle three-dimensional printing. A highly elastic poly (L-lactide-co-ε-caprolactone) (PLCL) copolymer, which acted as the main scaffolding, and human adipose tissue derived decellularized extracellular matrix (dECM) hydrogels were used as the printing inks to form the scaffolds. To prepare the three-dimensional (3D) scaffolds, the PLCL co-polymer was printed with a hot melting extruder system while retaining its physical character, similar to adipose tissue, which is beneficial for regeneration. Moreover, to promote adipogenic differentiation and angiogenesis, adipose tissue-derived dECM was used. To optimize the printability of the hydrogel inks, a mixture of collagen type I and dECM hydrogels was used. Furthermore, we examined the adipose tissue formation and angiogenesis of the PLCL/dECM complex scaffold. From in vivo experiments, it was observed that the matured adipose-like tissue structures were abundant, and the number of matured capillaries was remarkably higher in the hydrogel–PLCL group than in the PLCL-only group. Moreover, a higher expression of M2 macrophages, which are known to be involved in the remodeling and regeneration of tissues, was detected in the hydrogel–PLCL group by immunofluorescence analysis. Based on these results, we suggest that our PLCL/dECM fabricated by a dual 3D printing system will be useful for the treatment of large volume fat tissue regeneration.
Collapse
Affiliation(s)
- Soojin Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
| | - Hyun Su Lee
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea;
| | - Justin J. Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
- NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul 02841, Korea;
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Correspondence: (K.L.); (Y.J.)
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (S.L.); (J.J.C.); (S.H.K.)
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Korea
- Correspondence: (K.L.); (Y.J.)
| |
Collapse
|
23
|
Yang J, Zhou C, Fu J, Yang Q, He T, Tan Q, Lv Q. In situ Adipogenesis in Biomaterials Without Cell Seeds: Current Status and Perspectives. Front Cell Dev Biol 2021; 9:647149. [PMID: 33763426 PMCID: PMC7982583 DOI: 10.3389/fcell.2021.647149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
For cosmetic and reconstructive purposes in the setting of small-volume adipose tissue damage due to aging, traumatic defects, oncological resections, and degenerative diseases, the current strategies for soft tissue replacement involve autologous fat grafts and tissue fillers with synthetic, bioactive, or tissue-engineered materials. However, they all have drawbacks such as volume shrinkage and foreign-body responses. Aiming to regenerate bioactive vascularized adipose tissue on biomaterial scaffolds, adipose tissue engineering (ATE) has emerged as a suitable substitute for soft tissue repair. The essential components of ATE include scaffolds as support, cells as raw materials for fat formation, and a tolerant local environment to allow regeneration to occur. The commonly loaded seeding cells are adipose-derived stem cells (ASCs), which are expected to induce stable and predictable adipose tissue formation. However, defects in stem cell enrichment, such as donor-site sacrifice, limit their wide application. As a promising alternative approach, cell-free bioactive scaffolds recruit endogenous cells for adipogenesis. In biomaterials without cell seeds, the key to sufficient adipogenesis relies on the recruitment of endogenous host cells and continuous induction of cell homing to scaffolds. Regeneration, rather than repair, is the fundamental dominance of an optimal mature product. To induce in situ adipogenesis, many researchers have focused on the mechanical and biochemical properties of scaffolds. In addition, efforts to regulate an angiogenic and adipogenic microenvironment in cell-free settings involve integrating growth factors or extracellular matrix (ECM) proteins onto bioactive scaffolds. Despite the theoretical feasibility and encouraging results in animal models, few of the reported cell-free biomaterials have been tested in humans, and failures of decellularized adipose tissues in adipogenesis have also been reported. In these cases, the most likely reason was the lack of supporting vasculature. This review summarizes the current status of biomaterials without cell seeds. Related mechanisms and influencing factors of in situ adipogenesis in cell-free biomaterials, dilemma in the development of biomaterials, and future perspectives are also addressed.
Collapse
Affiliation(s)
- Jiqiao Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Zhou
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyang Fu
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Qianru Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tao He
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuwen Tan
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
He T, Yang J, Liu P, Xu L, Lü Q, Tan Q. [Research progress of adipose-derived stem cells in skin scar prevention and treatment]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:234-240. [PMID: 33624480 DOI: 10.7507/1002-1892.202007083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the research progress of adipose-derived stem cells (ADSCs) in skin scar prevention and treatment. Methods The related literature was extensively reviewed and analyzed. The recent in vitroand in vivo experiments and clinical studies on the role of ADSCs in skin scar prevention and treatment, and the possible mechanisms and biomaterials to optimize the effect of ADSCs were summarized. Results As demonstrated by in vitro and in vivo experiments and clinical studies, ADSCs participate in the whole process of skin wound healing and may prevent and treat skin scars by reducing inflammation, promoting angiogenesis, or inhibiting (muscle) fibroblasts activity to reduce collagen deposition through the p38/mitogen-activated protein kinase, peroxisome proliferator activated receptor γ, transforming growth factor β 1/Smads pathways. Moreover, bioengineered materials such as hydrogel from acellular porcine adipose tissue, porcine small-intestine submucosa, and poly (3-hydroxybutyrate-co-hydroxyvalerate) scaffold may further enhance the efficacy of ADSCs in preventing and treating skin scars. Conclusion Remarkable progress has been made in the application of ADSCs in skin scar prevention and treatment. While, further studies are still needed to explore the application methods of ADSCs in the clinic.
Collapse
Affiliation(s)
- Tao He
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jiqiao Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Pengcheng Liu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Li Xu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Qing Lü
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Qiuwen Tan
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
25
|
Liao J, Xu B, Zhang R, Fan Y, Xie H, Li X. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives. J Mater Chem B 2020; 8:10023-10049. [PMID: 33053004 DOI: 10.1039/d0tb01534b] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Decellularized materials (DMs) are attracting more and more attention because of their native structures, comparatively high bioactivity, low immunogenicity and good biodegradability, which are difficult to be imitated by synthetic materials. Recently, DMs have been demonstrated to possess great potential to overcome the disadvantages of autografts and have become a kind of promising material for tissue engineering. In this systematic review, we aimed to not only provide a quick access for understanding DMs, but also bring new ideas to utilize them more appropriately in tissue engineering. Firstly, the preparation of DMs was introduced. Then, the updated applications of DMs derived from different tissues and organs in tissue engineering were comprehensively summarized. In particular, their advantages, drawbacks and current improvements were emphasized. Moreover, we analyzed and proposed future perspectives.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | | | | | | | | | | |
Collapse
|
26
|
刘 鹏, 谭 秋, 张 忆, 王 红, 吕 青. [Preliminary exploration on the application of hydrogel from acellular porcine adipose tissue to assist lipofilling]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:1322-1331. [PMID: 33063500 PMCID: PMC8171868 DOI: 10.7507/1002-1892.202002126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/07/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the effect of hydrogel from acellular porcine adipose tissue (HAPA) on the survival of transplanted adipose tissue. METHODS For in vitro study, adipose tissue and HAPA-adipose tissue complex were cultured in normoxia and hypoxia atmospheres for 24 and 72 hours. TUNEL and Perilipin immunofluorescence staining were performed to observe the effect of HAPA on apoptosis and survival of adipocities. For in vivo study, 42 healthy male nude mice (4-6 weeks old) weighing 15-18 g were randomly divided into adipose group (group A), 10%HAPA group (group B), 20%HAPA group (group C), 30%HAPA group (group D), 40%HAPA group (group E), and 50%HAPA group (group F) according to different HAPA/adipose tissue volume ratio ( n=7). For each group, 1 mL adipose tissue or HAPA-adipose tissue complex was injected subcutaneously into the dorsum of the nude mice. At 4 weeks after transplantation, 7 nude mice in each group were sacrificed and grafts were harvested, gross observation, volume measurement, ultrasound examination, and histologic staining (HE staining, CD31 and Perilipin immunofluorescence stainings) were applied. RESULTS Hypoxia showed a tendency of promoting adipose tissue necrosis and apoptosis, while HAPA exhibited an obvious effect of inhibiting cell apoptosis in vitro study ( P<0.05). For in vivo study, grafts of all groups had intact fibrocapsule. No obvious signs of infection and necrosis were observed at 4 weeks. Volume shrinkage was observed in all groups, however, the groups A-D had significantly higher volume retention rate than groups E and F ( P<0.05). Ultrasound examination showed that there were no significant difference in the number and volume of liquify area of the grafts in each group ( P>0.05). With the increase of HAPA's volume ratio, HE staining proved an improved fat integrity while a gradually decreased vacuoles and fibrosis. CD31 immunohistochemical staining showed that the number of neo-vascularisation in groups E and F were significantly higher than those in groups A-D ( P<0.05). Perilipin immunofluorescence staining showed that with the increase of HAPA volume ratio, the number of living adipocytes increased gradually, and more new adipocytes could be seen in the field of vision. CONCLUSION As the volume ratio of HAPA gradually increased, the survival of transplanted adipose tissue also increased, but the volume retention rate decreased gradually. 30%HAPA was considered the relative optimal volume ratio for its superior adipose tissue survival and volume retation rate.
Collapse
Affiliation(s)
- 鹏程 刘
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 秋雯 谭
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
- 四川大学华西医院干细胞与组织工程实验室(成都 610041)Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 忆 张
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 红 王
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - 青 吕
- 四川大学华西医院乳腺疾病研究中心 乳腺外科(成都 610041)Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
27
|
Mohiuddin OA, Motherwell JM, Rogers E, Bratton MR, Zhang Q, Wang G, Bunnell B, Hayes DJ, Gimble JM. Characterization and Proteomic Analysis of Decellularized Adipose Tissue Hydrogels Derived from Lean and Overweight/Obese Human Donors. ACTA ACUST UNITED AC 2020; 4:e2000124. [PMID: 32914579 DOI: 10.1002/adbi.202000124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/28/2020] [Indexed: 12/19/2022]
Abstract
While decellularized adipose tissue (DAT) has potential as an "off-the-shelf" biomaterial product for regenerative medicine, it remains to be determined if donor-source body mass index (BMI) impacts the functionality of DAT. This study set out to comparatively characterize lean versus overweight/obese-donor derived DAT hydrogel based on proteome and to analyze their respective effects on adipose stromal/stem cell (ASC) viability, and differentiation in vitro. Decellularized adipose tissue from lean (lDAT) and overweight/obese (oDAT) donors is produced and characterized. Variability in the fibril microstructures is found, with dense fibrotic fiber clusters and large pore area uniquely present in the oDAT samples. Proteomic analysis reveals that lDAT contains a greater proportion of enriched extracellular proteins and a smaller proportion of enriched intracellular proteins relative to oDAT. Biocompatibility studies show that ASCs cultured in lDAT and oDAT hydrogels remain viable. The adipogenic and osteogenic differentiation capability of ASCs seeded in lDAT and oDAT hydrogels is confirmed by an upregulation in marker gene expression and phenotypic analysis. In conclusion, this study establishes that DAT hydrogels derived from lean and overweight/obese adipose donors present similar physicochemical profiles with some distinctive features while comparably supporting the viability and adipogenic differentiation of ASCs in vitro.
Collapse
Affiliation(s)
- Omair A Mohiuddin
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jessica M Motherwell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Emma Rogers
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70112, USA
| | | | - Qiang Zhang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| | - Bruce Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA, 16802, USA
| | - Jeffrey M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- LaCell LLC and Obatala Sciences Inc., New Orleans, LA, 70148, USA
| |
Collapse
|
28
|
Xing H, Lee H, Luo L, Kyriakides TR. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv 2020; 42:107421. [PMID: 31381963 PMCID: PMC6995418 DOI: 10.1016/j.biotechadv.2019.107421] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) derived components are emerging sources for the engineering of biomaterials that are capable of inducing desirable cell-specific responses. This review explores the use of biomaterials derived from naturally occurring ECM proteins and their derivatives in approaches that aim to regulate cell function. Biomaterials addressed are grouped into six categories: purified single ECM proteins, combinations of purified ECM proteins, cell-derived ECM, tissue-derived ECM, diseased and modified ECM, and ECM-polymer coupled biomaterials. Purified ECM proteins serve as a material coating for enhanced cell adhesion and biocompatibility. Cell-derived and tissue-derived ECM, generated by cell isolation and decellularization technologies, can capture the native state of the ECM environment and guide cell migration and alignment patterns as well as stem cell differentiation. We focus primarily on recent advances in the fields of soft tissue, cardiac, and dermal repair, and explore the utilization of ECM proteins as biomaterials to engineer cell responses.
Collapse
Affiliation(s)
- Hao Xing
- Department of Biomedical Engineering, Yale University, United States of America
| | - Hudson Lee
- Department of Molecular Biophysics and Biochemistry, Yale University, United States of America
| | - Lijing Luo
- Department of Pathology, Yale University, United States of America
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, United States of America; Department of Pathology, Yale University, United States of America.
| |
Collapse
|
29
|
Yu L, Sun ZJ, Tan QC, Wang S, Wang WH, Yang XQ, Ye XJ. Thermosensitive injectable decellularized nucleus pulposus hydrogel as an ideal biomaterial for nucleus pulposus regeneration. J Biomater Appl 2020; 35:182-192. [PMID: 32338168 DOI: 10.1177/0885328220921328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Extracellular matrix loss is one of the early manifestations of intervertebral disc degeneration. Stem cell-based tissue engineering creates an appropriate microenvironment for long term cell survival, promising for NP regeneration. We created a decellularized nucleus pulposus hydrogel (DNPH) from fresh bovine nucleus pulposus. Decellularization removed NP cells effectively, while highly preserving their structures and major biochemical components, such as glycosaminoglycan and collagen II. DNPH could be gelled as a uniform grid structure in situ at 37°C for 30 min. Adding adipose marrow-derived mesenchymal stem cells into the hydrogel for three-dimensional culture resulted in good bioactivity and biocompatibility in vitro. Meanwhile, NP-related gene expression significantly increased without the addition of exogenous biological factors. In summary, the thermosensitive and injectable hydrogel, which has low toxicity and inducible differentiation, could serve as a bio-scaffold, bio-carrier, and three-dimensional culture system. Therefore, DNPH has an outstanding potential for intervertebral disc regeneration.
Collapse
Affiliation(s)
- Lei Yu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zi-Jie Sun
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Quan-Chang Tan
- Air Force Hospital of PLA Eastern Theater Command, Nanjing, Jiangsu, China
| | - Shuang Wang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Heng Wang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiang-Qun Yang
- Department of Anatomy, Institute of Biomedical Engineering, Second Military Medical University, Shanghai, China
| | - Xiao-Jian Ye
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
30
|
Yang JZ, Qiu LH, Xiong SH, Dang JL, Rong XK, Hou MM, Wang K, Yu Z, Yi CG. Decellularized adipose matrix provides an inductive microenvironment for stem cells in tissue regeneration. World J Stem Cells 2020; 12:585-603. [PMID: 32843915 PMCID: PMC7415251 DOI: 10.4252/wjsc.v12.i7.585] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Stem cells play a key role in tissue regeneration due to their self-renewal and multidirectional differentiation, which are continuously regulated by signals from the extracellular matrix (ECM) microenvironment. Therefore, the unique biological and physical characteristics of the ECM are important determinants of stem cell behavior. Although the acellular ECM of specific tissues and organs (such as the skin, heart, cartilage, and lung) can mimic the natural microenvironment required for stem cell differentiation, the lack of donor sources restricts their development. With the rapid development of adipose tissue engineering, decellularized adipose matrix (DAM) has attracted much attention due to its wide range of sources and good regeneration capacity. Protocols for DAM preparation involve various physical, chemical, and biological methods. Different combinations of these methods may have different impacts on the structure and composition of DAM, which in turn interfere with the growth and differentiation of stem cells. This is a narrative review about DAM. We summarize the methods for decellularizing and sterilizing adipose tissue, and the impact of these methods on the biological and physical properties of DAM. In addition, we also analyze the application of different forms of DAM with or without stem cells in tissue regeneration (such as adipose tissue), repair (such as wounds, cartilage, bone, and nerves), in vitro bionic systems, clinical trials, and other disease research.
Collapse
Affiliation(s)
- Ji-Zhong Yang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Li-Hong Qiu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Shao-Heng Xiong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Juan-Li Dang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiang-Ke Rong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Meng-Meng Hou
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Kai Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Cheng-Gang Yi
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
31
|
Advances in biomaterials for adipose tissue reconstruction in plastic surgery. NANOTECHNOLOGY REVIEWS 2020. [DOI: 10.1515/ntrev-2020-0028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Adipose tissue reconstruction is an important technique for soft tissue defects caused by facial plastic surgery and trauma. Adipose tissue reconstruction can be repaired by fat transplantation and biomaterial filling, but there are some problems in fat transplantation, such as second operation and limited resources. The application of advanced artificial biomaterials is a promising strategy. In this paper, injectable biomaterials and three-dimensional (3D) tissue-engineered scaffold materials for adipose tissue reconstruction in plastic surgery are reviewed. Injectable biomaterials include natural biomaterials and artificial biomaterials, which generally have problems such as high absorptivity of fillers, repeated injection, and rejection. In recent years, the technology of new 3D tissue-engineering scaffold materials with adipose-derived stem cells (ADSCs) and porous scaffold as the core has made good progress in fat reconstruction, which is expected to solve the current problem of clinical adipose tissue reconstruction, and various biomaterials preparation technology and transformation research also provide the basis for clinical transformation of fat tissue reconstruction.
Collapse
|
32
|
Zhou Y, Xie S, Tang Y, Li X, Cao Y, Hu J, Lu H. Effect of book-shaped acellular tendon scaffold with bone marrow mesenchymal stem cells sheets on bone-tendon interface healing. J Orthop Translat 2020; 26:162-170. [PMID: 33437635 PMCID: PMC7773951 DOI: 10.1016/j.jot.2020.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background Tissue engineering has exhibited great effect on treatment for bone-tendon interface (BTI) injury. The aim of this study was to evaluate the effect of a book-shaped acellular tendon scaffold (ATS) with bone marrow mesenchymal stem cells sheets (MSCS) for BTI injury repair. Methods ATS was designed based on the shape of "book", decellularization effect was evaluated by Hematoxylin and eosin (H&E), 4', 6-diamidino-2-phenylindole (DAPI) and scanning electron microscopy (SEM), then bone marrow mesenchymal stem cells (MSCs) were cultured on ATS to assess the differentiation inductivity of ATS. A rabbit right partial patellotomy model was established, and MSCS seeded on ATS were implanted into the lesion site. The patella-patellar tendon (PPT) at 2, 4, 8 or 16 weeks post-operation were obtained for histological, biomechanical and immunofluorescence analysis. Results H&E, DAPI and SEM results confirmed the efficiency of decellularization of ATS, and their in vitro tenogenic and chondrogenic ability were successfully identified. In vivo results showed increased macrophage polarization toward the M2 phenotype, IL-10 expression, regenerated bone and fibrocartilage at the patella-patellar tendon interface of animals received MSCS modified ATS implantation. In addition, the level of tensile strength was also the highest in MSCS modified ATS implantation group. Conclusion This study suggests that ATS combined with MSCS performed therapeutic effects on promoting the regeneration of cartilage layer and enhancing the healing quality of patella-patellar tendon interface. The translational potential of this article This study showed the good biocompatibility of the ATS, as well as the great efficacy of ATS with MSCS on tendon to bone healing. The results meant that the novel book-shaped ATS with MSCS may have a great potential for clinical application.
Collapse
Affiliation(s)
- Yongchun Zhou
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Department of Orthopedic, Shaanxi Provincial People's Hospital, Xi'an, 710000, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, People's Republic of China
| | - Shanshan Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, People's Republic of China
| | - Yifu Tang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, People's Republic of China
| | - Xiaoning Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, People's Republic of China
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, People's Republic of China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, People's Republic of China
| |
Collapse
|
33
|
Human Adipose-Derived Hydrogel Characterization Based on In Vitro ASC Biocompatibility and Differentiation. Stem Cells Int 2019; 2019:9276398. [PMID: 32082388 PMCID: PMC7012213 DOI: 10.1155/2019/9276398] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/12/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
Hydrogels serve as three-dimensional scaffolds whose composition can be customized to allow attachment and proliferation of several different cell types. Extracellular matrix-derived hydrogels are considered close replicates of the tissue microenvironment. They can serve as scaffolds for in vitro tissue engineering and are a useful tool to study cell-scaffold interaction. The aim of the present study was to analyze the effect of adipose-derived stromal/stem cells (ASCs) and decellularized adipose tissue-derived (DAT) hydrogel interaction on ASC morphology, proliferation, differentiation, and DAT hydrogel microstructure. First, the ASCs were characterized using flow cytometry, adipogenic/osteogenic differentiation, colony-forming unit fibroblast assay and doubling time. The viability and proliferation assays showed that ASCs seeded in DAT hydrogel at different concentrations and cultured for 21 days remained viable and displayed proliferation. ASCs were seeded on DAT hydrogel and cultured in stromal, adipogenic, or osteogenic media for 14 or 28 days. The analysis of adipogenic differentiation demonstrated the upregulation of adipogenic marker genes and accumulation of oil droplets in the cells. Osteogenic differentiation demonstrated the upregulation of osteogenic marker genes and mineral deposition in the DAT hydrogel. The analysis of DAT hydrogel fiber metrics revealed that ASC seeding, and differentiation altered both the diameter and arrangement of fibers in the matrix. Matrix metalloproteinase-2 (MMP-2) activity was assessed to determine the possible mechanism for DAT hydrogel remodeling. MMP-2 activity was observed in all ASC seeded samples, with the osteogenic samples displaying the highest MMP-2 activity. These findings indicate that DAT hydrogel is a cytocompatible scaffold that supports the adipogenic and osteogenic differentiation of ASCs. Furthermore, the attachment of ASCs and differentiation along adipogenic and osteogenic lineages remodels the microstructure of DAT hydrogel.
Collapse
|
34
|
Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules 2019; 9:E750. [PMID: 31752393 PMCID: PMC6920773 DOI: 10.3390/biom9110750] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
Affiliation(s)
- Saba Abdulghani
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-080 Marinha Grande, Portugal;
| | | |
Collapse
|
35
|
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
|
36
|
Thomas-Porch C, Li J, Zanata F, Martin EC, Pashos N, Genemaras K, Poche JN, Totaro NP, Bratton MR, Gaupp D, Frazier T, Wu X, Ferreira LM, Tian W, Wang G, Bunnell BA, Flynn L, Hayes D, Gimble JM. Comparative proteomic analyses of human adipose extracellular matrices decellularized using alternative procedures. J Biomed Mater Res A 2019; 106:2481-2493. [PMID: 29693792 DOI: 10.1002/jbm.a.36444] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/25/2022]
Abstract
Decellularized human adipose tissue has potential clinical utility as a processed biological scaffold for soft tissue cosmesis, grafting, and reconstruction. Adipose tissue decellularization has been accomplished using enzymatic-, detergent-, and/or solvent-based methods. To examine the hypothesis that distinct decellularization processes may yield scaffolds with differing compositions, the current study employed mass spectrometry to compare the proteomes of human adipose-derived matrices generated through three independent methods combining enzymatic-, detergent-, and/or solvent-based steps. In addition to protein content, bioscaffolds were evaluated for deoxyribose nucleic acid depletion, extracellular matrix composition, and physical structure using optical density, histochemical staining, and scanning electron microscopy. Mass spectrometry based proteomic analyses identified 25 proteins (having at least two peptide sequences detected) in the scaffolds generated with an enzymatic approach, 143 with the detergent approach, and 102 with the solvent approach, as compared to 155 detected in unprocessed native human fat. Immunohistochemical detection confirmed the presence of the structural proteins actin, collagen type VI, fibrillin, laminin, and vimentin. Subsequent in vivo analysis of the predominantly enzymatic- and detergent-based decellularized scaffolds following subcutaneous implantation in GFP+ transgenic mice demonstrated that the matrices generated with both approaches supported the ingrowth of host-derived adipocyte progenitors and vasculature in a time dependent manner. Together, these results determine that decellularization methods influence the protein composition of adipose tissue-derived bioscaffolds. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2481-2493, 2018.
Collapse
Affiliation(s)
- Caasy Thomas-Porch
- Biomedical Science Program, Tulane University School of Medicine, New Orleans, Louisiana.,Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Jie Li
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Fabiana Zanata
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Nicholas Pashos
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kaylynn Genemaras
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - J Nicholas Poche
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Nicholas P Totaro
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana
| | - Melyssa R Bratton
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana
| | - Dina Gaupp
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Trivia Frazier
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,LaCell LLC, New Orleans, Louisiana.,Department of Structural and Cell Biology, , Tulane University School of Medicine, New Orleans, Louisiana
| | | | | | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana
| | - Bruce A Bunnell
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Lauren Flynn
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Daniel Hayes
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania
| | - Jeffrey M Gimble
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,LaCell LLC, New Orleans, Louisiana.,Department of Structural and Cell Biology, , Tulane University School of Medicine, New Orleans, Louisiana.,Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
37
|
Mohiuddin OA, Campbell B, Poche JN, Ma M, Rogers E, Gaupp D, Harrison MAA, Bunnell BA, Hayes DJ, Gimble JM. Decellularized Adipose Tissue Hydrogel Promotes Bone Regeneration in Critical-Sized Mouse Femoral Defect Model. Front Bioeng Biotechnol 2019; 7:211. [PMID: 31552237 PMCID: PMC6743019 DOI: 10.3389/fbioe.2019.00211] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Critical-sized bone defects fail to heal and often cause non-union. Standard treatments employ autologous bone grafting, which can cause donor tissue loss/pain. Although several scaffold types can enhance bone regeneration, multiple factors limit their level of success. To address this issue, this study evaluated a novel decellularized human adipose tissue (DAT) hydrogel as an alternative. In this study, DAT hydrogel alone, or in combination with adipose-derived stromal/stem cells (ASC), osteo-induced ASCs (OIASC), and hydroxyapatite were tested for their ability to mediate repair of a critical-sized (3 mm) femoral defect created in C57BL/6 mice. Micro-computed tomography results showed that all DAT hydrogel treated groups significantly enhanced bone regeneration, with OIASC + hydroxyapatite treated group displaying the most robust bone regeneration. Histological analyses revealed that all treatments resulted in significantly higher tissue areas with the relative mineralized tissue area significantly increased at 12 weeks; however, cartilaginous content was lowest among treatment groups with OIASC. Immunohistochemical analyses showed that DAT hydrogel enhanced collagen I and osteopontin expression, while the addition of OIASCs to the hydrogel reduced collagen II levels. Thus, DAT hydrogel promotes bone regeneration in a critical-sized femoral defect model that is further enhanced in the presence of OIASCs and hydroxyapatite.
Collapse
Affiliation(s)
- Omair A Mohiuddin
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Brett Campbell
- School of Medicine, Tulane University, New Orleans, LA, United States
| | - J Nick Poche
- School of Medicine, Louisiana State University, New Orleans, LA, United States
| | - Michelle Ma
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,Obatala Sciences, New Orleans, LA, United States
| | - Emma Rogers
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | - Dina Gaupp
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mark A A Harrison
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Daniel J Hayes
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA, United States
| | - Jeffrey M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States.,LaCell LLC, New Orleans, LA, United States
| |
Collapse
|
38
|
In vivo articular cartilage regeneration through infrapatellar adipose tissue derived stem cell in nanofiber polycaprolactone scaffold. Tissue Cell 2019; 57:49-56. [PMID: 30947963 DOI: 10.1016/j.tice.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/21/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Abstract
In this study, we report the development of a nanofiber polycaprolactone scaffold that can act as a stem cell carrier to induce chondrogenesis and promote cartilage repair in vivo. Infrapatellar fat pads were obtained from sheep knee and the stem cells were isolated and characterized by flow cytometry. Defects were created in sheep knee, two defects received adipose tissue derived stem cells (ASCs)-polycaprolactone construct, second group received polycaprolactone (PCL), the third group was chosen as the ASCs group and the fourth group was control group. Morphological evaluation showed that defects treated with ASCs-scaffold constructs were completely filled with cartilage-like tissue, while other groups revealed the formation of a thin layer of cartilage-like tissue in the defects. Real-Time RT-PCR showed the increase in collagen type 2 mRNA levels, aggrecan and Sox9 in ASCs/PCL groups in comparison with the other groups. Immunofluorescence and toluidine blue staining results showed the protein expression of collagen type 2 and formation of round and polygonal clusters of chondrocytes in ASCS/PCL group. According to our results nanofiber polycaprolactone promoted the chondrogenesis of infrapatellar adipose tissue derived stem cells in vivo and could offer significant promise in the biological functionality of stem cell tissue engineering in clinical practice.
Collapse
|
39
|
Zhang Y, Liang Y, Da L, Xie H. [A rapid pathological preparation method for composite material observation]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:80-84. [PMID: 30644266 DOI: 10.7507/1002-1892.201806094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To explore a simple and rapid pathological slices method to observe the porous structure and the composition distribution of composite materials. Methods Taking polyurethane/small intestinal submucosa (PU/SIS) composite as an example, PU/SIS was OCT-embedded and sliced into sections by frozen section technology, after which general observation of the section integrity was carried out. After dyed with water-soluble eosin in alcoholic solution, the staining effect and the porous structure of the composite were observed under light field microscope. Sections were sealed with five different sealing methods. Group A: sealing piece using glycerogelatin method; group B: anhydrous alcohol dehydration→transparency using TO transparent reagent→sealing piece using neutral quick drying glue; group C: color separation using deionized water→air-drying→sealing piece using neutral quick drying glue; group D: air-drying→transparency using TO transparent reagent→sealing piece using neutral quick drying glue; group E: air-drying→sealing piece using neutral quick drying glue. Then, the morphology and the components distribution of the composite were observed under light field microscope, and the simple and feasible method was selected as optimum method. Results From general observation, the frozen section of the PU/SIS composite, which was 6 μm in thickness, was complete and continuous. Although the outline of the material and the porous structure in the sections could be observed clearly under light field microscope, the two components still could not be identified by using eosin staining method. After sealing piece, the material components in groups A, B, and C still could not be identified or be dissolved and deformed; the morphology of the material in groups D and E were preserved and the two components in the composite were clearly visible. Conclusion The morphology and the components distribution of PU/SIS frozen sections can be characterized after soluble eosin staining and neutral quick drying glue sealing.
Collapse
Affiliation(s)
- Yi Zhang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yan Liang
- Research Core Facility of West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Lincui Da
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
40
|
Decellularized Adipose Tissue: Biochemical Composition, in vivo Analysis and Potential Clinical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:57-70. [PMID: 30989589 DOI: 10.1007/5584_2019_371] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decellularized tissues are gaining popularity as scaffolds for tissue engineering; they allow cell attachment, proliferation, differentiation, and are non-immunogenic. Adipose tissue is an abundant resource that can be decellularized and converted in to a bio-scaffold. Several methods have been developed for adipose tissue decellularization, typically starting with freeze thaw cycles, followed by washes with hypotonic/hypertonic sodium chloride solution, isopropanol, detergent (SDS, SDC and Triton X-100) and trypsin digestion. After decellularization, decellularized adipose tissue (DAT) can be converted into a powder, solution, foam, or sheet to allow for convenient subcutaneous implantation or to repair external injuries. Additionally, DAT bio-ink can be used to 3D print structures that closely resemble physiological tissues and organs. Proteomic analysis of DAT reveals that it is composed of collagens (I, III, IV, VI and VII), glycosaminoglycans, laminin, elastin, and fibronectin. It has also been found to retain growth factors like VEGF and bFGF after decellularization. DAT inherently promotes adipogenesis when seeded with adipose stem cells in vitro, and when DAT is implanted subcutaneously it is capable of recruiting host stem cells and forming adipose tissue in rodents. Furthermore, DAT has promoted healing in rat models of full-thickness skin wounds and peripheral nerve injury. These findings suggest that DAT is a promising candidate for repair of soft tissue defects, and is suitable for breast reconstruction post-mastectomy, wound healing, and adipose tissue regeneration. Moreover, since DAT's form and stiffness can be altered by physicochemical manipulation, it may prove suitable for engineering of additional soft and hard tissues.
Collapse
|
41
|
O'Halloran NA, Dolan EB, Kerin MJ, Lowery AJ, Duffy GP. Hydrogels in adipose tissue engineering-Potential application in post-mastectomy breast regeneration. J Tissue Eng Regen Med 2018; 12:2234-2247. [PMID: 30334613 DOI: 10.1002/term.2753] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
Current methods of breast reconstruction are associated with significant shortcomings, including capsular contracture, infection, rupture, the need for reoperation in implant-based reconstruction, and donor site morbidity in autologous reconstruction. These limitations result in severe physical and psychological issues for breast cancer patients. Recently, research has moved into the field of adipose tissue engineering to overcome these limitations. A wide range of regenerative strategies has been devised utilising various scaffold designs and biomaterials. A scaffold capable of providing appropriate biochemical and biomechanical cues for adipogenesis is required. Hydrogels have been widely studied for their suitability for adipose tissue regeneration and are advantageous secondary to their ability to accurately imitate the native extracellular matrix. The aim of this review was to analyse the use of hydrogel scaffolds in the field of adipose tissue engineering.
Collapse
Affiliation(s)
- Niamh A O'Halloran
- Discipline of Surgery, The Lambe Institute, National University of Ireland Galway, Galway, Ireland
| | - Eimear B Dolan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2, Ireland.,Discipline of Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Michael J Kerin
- Discipline of Surgery, The Lambe Institute, National University of Ireland Galway, Galway, Ireland
| | - Aoife J Lowery
- Discipline of Surgery, The Lambe Institute, National University of Ireland Galway, Galway, Ireland
| | - Garry P Duffy
- Discipline of Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
42
|
Giatsidis G, Succar J, Haddad A, Lago G, Schaffer C, Wang X, Schilling B, Chnari E, Matsumine H, Orgill DP. Preclinical Optimization of a Shelf-Ready, Injectable, Human-Derived, Decellularized Allograft Adipose Matrix. Tissue Eng Part A 2018; 25:271-287. [PMID: 30084731 DOI: 10.1089/ten.tea.2018.0052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
IMPACT STATEMENT Trauma, disease, surgery, or congentital defects can cause soft tissue losses in patients, leading to disfigurement, functional impairment, and a low quality of life. In the lack of available effective methods to reconstruct these defects, acellular adipose matrices could provide a novel therapeutic solution to such challenge.
Collapse
Affiliation(s)
- Giorgio Giatsidis
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julien Succar
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anthony Haddad
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gianluigi Lago
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clara Schaffer
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xingang Wang
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,2 Department of Burns and Wound Care Center, Second Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Benjamin Schilling
- 3 Department of Bioengineering, School of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Hajime Matsumine
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis Paul Orgill
- 1 Tissue Engineering and Wound Healing Laboratory, Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
Trivanović D, Drvenica I, Kukolj T, Obradović H, Okić Djordjević I, Mojsilović S, Krstić J, Bugarski B, Jauković A, Bugarski D. Adipoinductive effect of extracellular matrix involves cytoskeleton changes and SIRT1 activity in adipose tissue stem/stromal cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S370-S382. [PMID: 30198336 DOI: 10.1080/21691401.2018.1494183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adipose tissue (AT) homeostasis and expansion are dependent on complex crosstalk between resident adipose stromal/stem cells (ASCs) and AT extracellular matrix (ECM). Although adipose tissue ECM (atECM) is one of the key players in the stem cell niche, data on bidirectional interaction of ASCs and atECM are still scarce. Here, we investigated how atECM guides ASCs' differentiation. atECM altered shape and cytoskeleton organization of ASCs without changing their proliferation, β-galactosidase activity and adhesion. Cytoskeleton modifications occurred due to fostered parallel organization of F-actin and elevated expression of Vimentin in ASCs. After seven-day cultivation, atECM impaired osteogenesis of ASCs, simultaneously decreasing expression of Runx2. In addition, atECM accelerated early adipogenesis concomitantly with altered Vimentin organization in ASCs, slightly increasing PPARγ, while elevated Adiponectin and Vimentin mRNA expression. Early adipogenesis triggered by atECM was followed by upregulated mitochondrial activity and Sirtuin 1 (SIRT1) expression in ASCs. Proadipogenic events induced by atECM were mediated by SIRT1, indicating the supportive role of atECM in adipogenesis-related metabolic state of ASCs. These results provide a closer look at the effects of atECM on ASC physiology and may support the advancement of engineering design in soft tissue reconstruction and fundamental research of AT.
Collapse
Affiliation(s)
- Drenka Trivanović
- a Laboratory for Experimental Hematology and Stem Cells , Institute for Medical Research, University of Belgrade , Belgrade , Serbia
| | - Ivana Drvenica
- b Laboratory for Immunology , Institute for Medical Research, University of Belgrade , Belgrade , Serbia
| | - Tamara Kukolj
- a Laboratory for Experimental Hematology and Stem Cells , Institute for Medical Research, University of Belgrade , Belgrade , Serbia
| | - Hristina Obradović
- a Laboratory for Experimental Hematology and Stem Cells , Institute for Medical Research, University of Belgrade , Belgrade , Serbia
| | - Ivana Okić Djordjević
- a Laboratory for Experimental Hematology and Stem Cells , Institute for Medical Research, University of Belgrade , Belgrade , Serbia
| | - Slavko Mojsilović
- a Laboratory for Experimental Hematology and Stem Cells , Institute for Medical Research, University of Belgrade , Belgrade , Serbia
| | - Jelena Krstić
- a Laboratory for Experimental Hematology and Stem Cells , Institute for Medical Research, University of Belgrade , Belgrade , Serbia
| | - Branko Bugarski
- c Department of Chemical Engineering, Faculty of Technology and Metallurgy , University of Belgrade , Belgrade , Serbia
| | - Aleksandra Jauković
- a Laboratory for Experimental Hematology and Stem Cells , Institute for Medical Research, University of Belgrade , Belgrade , Serbia
| | - Diana Bugarski
- a Laboratory for Experimental Hematology and Stem Cells , Institute for Medical Research, University of Belgrade , Belgrade , Serbia
| |
Collapse
|
44
|
Tan QW, Tang SL, Zhang Y, Yang JQ, Wang ZL, Xie HQ, Lv Q. Hydrogel from Acellular Porcine Adipose Tissue Accelerates Wound Healing by Inducing Intradermal Adipocyte Regeneration. J Invest Dermatol 2018; 139:455-463. [PMID: 30195900 DOI: 10.1016/j.jid.2018.08.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 02/09/2023]
Abstract
As an important component of the skin, intradermal adipocytes are closely associated with skin homeostasis and wound healing. Although studies have focused on the role of fibroblasts, keratinocytes, and inflammatory cells in wound healing, the role of adipocytes has not been fully investigated. Here, we verified whether the induction of adipocyte regeneration in a wound bed can effectively promote wound healing, finding that the hydrogel from acellular porcine adipose tissue in combination with adipose-derived stem cells can induce in situ adipogenesis in the wound microenvironment. The newly regenerated adipocytes enhanced fibroblast migration, accelerated wound closing, and enhanced wound epithelialization. More importantly, newly formed intact skin structure was observed after treating the wound with adipose-derived stem cell-loaded hydrogel from acellular porcine adipose tissue. These results show that hydrogel from acellular porcine adipose tissue might substantially improve re-epithelialization, angiogenesis, and skin-appendage regeneration, making it a promising therapeutic biomaterial for skin wound healing.
Collapse
Affiliation(s)
- Qiu-Wen Tan
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Sichuan, China; Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Shen-Li Tang
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Sichuan, China
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Ji-Qiao Yang
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Sichuan, China
| | - Zhu-Le Wang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China.
| | - Qing Lv
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Sichuan, China.
| |
Collapse
|
45
|
Recent Advances and Future Directions in Postmastectomy Breast Reconstruction. Clin Breast Cancer 2018; 18:e571-e585. [DOI: 10.1016/j.clbc.2018.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 11/20/2022]
|
46
|
Van Nieuwenhove I, Tytgat L, Ryx M, Blondeel P, Stillaert F, Thienpont H, Ottevaere H, Dubruel P, Van Vlierberghe S. Soft tissue fillers for adipose tissue regeneration: From hydrogel development toward clinical applications. Acta Biomater 2017; 63:37-49. [PMID: 28941654 DOI: 10.1016/j.actbio.2017.09.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/05/2017] [Accepted: 09/19/2017] [Indexed: 02/08/2023]
Abstract
There is a clear and urgent clinical need to develop soft tissue fillers that outperform the materials currently used for adipose tissue reconstruction. Recently, extensive research has been performed within this field of adipose tissue engineering as the commercially available products and the currently existing techniques are concomitant with several disadvantages. Commercial products are highly expensive and associated with an imposing need for repeated injections. Lipofilling or free fat transfer has an unpredictable outcome with respect to cell survival and potential resorption of the fat grafts. Therefore, researchers are predominantly investigating two challenging adipose tissue engineering strategies: in situ injectable materials and porous 3D printed scaffolds. The present work provides an overview of current research encompassing synthetic, biopolymer-based and extracellular matrix-derived materials with a clear focus on emerging fabrication technologies and developments realized throughout the last decade. Moreover, clinical relevance of the most promising materials will be discussed, together with potential concerns associated with their application in the clinic.
Collapse
|
47
|
O’Halloran N, Courtney D, Kerin MJ, Lowery AJ. Adipose-Derived Stem Cells in Novel Approaches to Breast Reconstruction: Their Suitability for Tissue Engineering and Oncological Safety. Breast Cancer (Auckl) 2017; 11:1178223417726777. [PMID: 29104428 PMCID: PMC5562338 DOI: 10.1177/1178223417726777] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are rapidly becoming the gold standard cell source for tissue engineering strategies and hold great potential for novel breast reconstruction strategies. However, their use in patients with breast cancer is controversial and their oncological safety, particularly in relation to local disease recurrence, has been questioned. In vitro, in vivo, and clinical studies using ADSCs report conflicting data on their suitability for adipose tissue regeneration in patients with cancer. This review aims to provide an overview of the potential role for ADSCs in breast reconstruction and to examine the evidence relating to the oncologic safety of their use in patients with breast cancer.
Collapse
Affiliation(s)
- Niamh O’Halloran
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland, Galway, Galway, Ireland
| | - Donald Courtney
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland, Galway, Galway, Ireland
| | - Michael J Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland, Galway, Galway, Ireland
| | - Aoife J Lowery
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| |
Collapse
|