1
|
Mroueh J, Weber L, Endo Y, Mroueh V, Sinha I. Acellular Scaffolds for Muscle Regeneration: Advances and Challenges. Adv Wound Care (New Rochelle) 2025. [PMID: 40340574 DOI: 10.1089/wound.2024.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
Significance: Volumetric muscle loss is defined as composite loss of muscle mass. Severe injuries result in permanent functional impairment. Treatment options are limited. Tissue engineering techniques utilizing scaffolds offer promise as a potential therapy. Recent Advances: Emerging strategies, including bioactive molecules and growth factors in biocompatible scaffolds, may promote muscle regeneration following severe injury. In this context, scaffolds can act as a drug-delivery device, provide guidance to cells as a supporting matrix, and slowly release growth factors to promote healing. Critical Issues: Scaffolds engraftment and ability to promote tissue regeneration in injured beds remain limited. Tuning and optimizing scaffold fiber diameter, alignment, cellular cues, growth factor delivery, and porosity will be important in reconstituting functional skeletal muscle following loss. Future Directions: Our mechanistic understanding of interactions between biomimetic scaffolds and host tissue is still evolving, and future research can identify factors to promote tissue regeneration.
Collapse
Affiliation(s)
- Jessica Mroueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Luisa Weber
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Yori Endo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vanessa Mroueh
- Department of Plastic and Reconstructive Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Indranil Sinha
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Rodriguez Ayala A, Christ G, Griffin D. Cell-scale porosity minimizes foreign body reaction and promotes innervated myofiber formation after volumetric muscle loss. NPJ Regen Med 2025; 10:12. [PMID: 40025057 PMCID: PMC11873130 DOI: 10.1038/s41536-025-00395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/29/2025] [Indexed: 03/04/2025] Open
Abstract
Volumetric muscle loss (VML) from severe traumatic injuries results in irreversible loss of contractile tissue and permanent functional deficits. These injuries resist endogenous healing and clinical treatment due to excessive inflammation, leading to fibrosis, muscle fiber denervation, and impaired regeneration. Using a rodent tibialis anterior VML model, this study demonstrates microporous annealed particle (MAP) hydrogel scaffolds as a biomaterial platform for improved muscle regeneration. Unlike bulk (nanoporous) hydrogel scaffolds, MAP scaffolds enhance integration by preventing a foreign body reaction, slowing implant degradation, and promoting regenerative macrophage polarization. Cell migration and angiogenesis occur throughout the implant before MAP scaffold degradation, with muscle fibers and neuromuscular junctions forming within the scaffolds. These structures continue developing as the implant degrades, suggesting MAP hydrogel scaffolds offer a promising therapeutic approach for VML injuries.
Collapse
Affiliation(s)
- Areli Rodriguez Ayala
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - George Christ
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA.
| | - Donald Griffin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Tan Y, Ye Y, Huang C, Li J, Huang L, Wei X, Liang T, Qin E, Xiong G, Bin Y. Cigarette Smoking Induces Skeletal Muscle Atrophy in Mice by Activated Macrophage-Mediated Pyroptosis. J Inflamm Res 2025; 18:2447-2464. [PMID: 39991657 PMCID: PMC11847447 DOI: 10.2147/jir.s497631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/07/2025] [Indexed: 02/25/2025] Open
Abstract
Objective Skeletal muscle atrophy is a major comorbidity associated with chronic obstructive pulmonary disease caused by exposure to cigarette smoke (CS). CS-activated macrophages and pyroptosis play an important role in skeletal muscle atrophy, but its specific molecular mechanism remains unclear. This study investigated the role and mechanisms of pyroptosis and activated macrophages in CS-induced skeletal muscle atrophy. Methods In the in vivo model, mice were exposed to either CS or air for 24 weeks, and in the in vitro model, C2C12 murine skeletal muscle cells were co-cultured with macrophages in Transwell chambers. Western blotting, real-time PCR, ELISA, and other methods were used to detect pyroptosis-related markers to investigate the mechanism of CSE-activated macrophages on skeletal muscle atrophy and pyroptosis. Results In vivo, CS-induced atrophy of the mouse gastrocnemius muscle was accompanied by increased expression of pyroptosis-related markers, including NLRP3 inflammasome, cleaved Caspase-1, the GSDMD N-terminal domain, and interleukin (IL)-18. In vitro, CS extract (CSE)-activated macrophages mediates pyroptosis of skeletal muscle cells and induces myotube atrophy. Further studies demonstrated that macrophage-derived TNF-α is the initiating factor of skeletal muscle pyroptosis, and this process appears to be mediated through TNF-α activating the TNFR1/NLRP3/caspase-1/GSDMD signaling pathway. Conclusion TNF-α released by CSE-activated macrophages can promote skeletal muscle pyroptosis by activating the TNFR1/NLRP3/Caspase-1/GSDMD signaling pathway, which likely contributes to skeletal muscle atrophy. These findings provide more insight into the mechanisms underlying skeletal muscle atrophy in COPD.
Collapse
Affiliation(s)
- Yufen Tan
- Department of Respiratory and Critical Care Medicine, the second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yuanyuan Ye
- Department of Respiratory and Critical Care Medicine, the second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Cuibi Huang
- Department of Respiratory and Critical Care Medicine, the second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jie Li
- Department of Respiratory and Critical Care Medicine, the second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Lihua Huang
- Department of Respiratory and Critical Care Medicine, the second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Xinyan Wei
- Department of Respiratory and Critical Care Medicine, the second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Tong Liang
- Department of Respiratory and Critical Care Medicine, the second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Enyuan Qin
- Department of Respiratory and Critical Care Medicine, the second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Guolin Xiong
- Guangxi University of Chinese Medicine, Nanning, People’s Republic of China
| | - Yanfei Bin
- Department of Respiratory and Critical Care Medicine, the second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
4
|
Sicherer ST, Haque N, Parikh Y, Grasman JM. Current Methodologies for Inducing Aligned Myofibers in Tissue Constructs for Skeletal Muscle Tissue Regeneration. Adv Wound Care (New Rochelle) 2025; 14:114-131. [PMID: 39126403 DOI: 10.1089/wound.2024.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024] Open
Abstract
Significance: Volumetric muscle loss (VML) results in the loss of large amounts of tissue that inhibits muscle regeneration. Existing therapies, such as autologous muscle transfer and physical therapy, are incapable of returning full function and force production to injured muscle. Recent Advances: Skeletal muscle tissue constructs may provide an alternative to existing therapies currently used to treat VML. Unlike autologous muscle transplants, muscle constructs can be cultured in vitro and are not reliant on intact muscle tissue. Skeletal muscle constructs can be generated from small muscle biopsies and could be used to generate skeletal muscle tissue constructs to replace injured tissues. Critical Issues: To serve as effective therapies, muscle constructs must be capable of generating contractile forces that can assist the function of host skeletal muscle. The contractile force of native muscle arises in part as a consequence of the highly aligned, bundled architecture of myofibers. Attempts to induce similar alignment include applications of tension/strain across hydrogels, inducing aligned architectures within scaffolds, casting tissues in straited molds, and 3D printing. While all these methods have demonstrated efficacy toward inducing myofiber alignment, the extent of myofiber alignment, tissue formation, and force production varies. This manusript critically reviews the advantages and limitations of these methods and specifically discusses their ability to impart mechanical and architectural cues to induce alignment within tissue constructs. Future Directions: As tissue-synthesizing techniques continue to improve, muscle constructs must include more cell types than simply myoblasts, such as the addition of neuronal and endothelial cells. Higher-level tissue organization is critical to the success of these constructs. Many of these technologies have yet to be implanted into host tissue to understand engraftment and how they can contribute to traumatic injury, and as such continued collaboration between surgeons and tissue engineers is necessary to ultimately result in clinical translation.
Collapse
Affiliation(s)
- Sydnee T Sicherer
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Noor Haque
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Yash Parikh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jonathan M Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
5
|
Johnson D, Ridolfo A, Mueller R, Chermack M, Brockhouse J, Tadiwala J, Jain A, Bertram K, Garg K. Biosponge-Encased Placental Stem Cells for Volumetric Muscle Loss Repair. Adv Wound Care (New Rochelle) 2025; 14:83-100. [PMID: 39171894 DOI: 10.1089/wound.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
Objective: Volumetric muscle loss (VML) leads to permanent muscle mass and functional impairments. While mesenchymal stromal cells (MSCs) and their secreted factors can aid muscle regeneration, MSCs exhibit limited persistence in injured tissue post-transplantation. Human placental-derived stem cells (hPDSCs), sharing surface markers with MSCs, demonstrate superior regenerative potential due to their fetal origin. Previously, a biosponge (BS) scaffold was shown to augment muscle regeneration post-VML. This study aims to coapply BS therapy and hPDSCs to further enhance muscle recovery following VML. Approach: A VML defect was created by removing ∼20% of the tibialis anterior muscle mass in male Lewis rats. Injured muscles were either left untreated or treated with BS or BS-encapsulated hPDSCs cultured under normoxic or hypoxic conditions. On day 28 postinjury, peak isometric torque was measured, and the muscle was harvested for analysis. Results: BS encapsulated hPDSCs subjected to hypoxic preconditioning persisted in larger quantities and enhanced muscle mass at day 28 postinjury. BS encapsulated hPDSCs cultured under normoxic or hypoxic conditions increased small myofibers (<500 µm2) percentage, MyoD protein expression, and both pro- and anti-inflammatory macrophage marker expression. BS encapsulated hPDSCs also reduced fibrosis and BS remodeling rate. Innovation: This study is the first to examine the therapeutic effects of hPDSCs in a rat VML model. A BS carrier and hypoxic preconditioning were investigated to mitigate low cell survival postimplantation. Conclusion: hPDSCs augment the regenerative effect of BS. Combining hPDSCs and BS emerges as a promising strategy worthy of further investigation.
Collapse
Affiliation(s)
- David Johnson
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Amelia Ridolfo
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Ryan Mueller
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Megan Chermack
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Julia Brockhouse
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Jamshid Tadiwala
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
| | - Avantika Jain
- Department of Pharmacology and Physiology, School of Medicine, St. Louis, Saint Louis, Missouri, USA
| | - Kenneth Bertram
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Koyal Garg
- Department of Biomedical Engineering, School of Sciences and Engineering, St. Louis, Saint Louis, Missouri, USA
- Department of Pharmacology and Physiology, School of Medicine, St. Louis, Saint Louis, Missouri, USA
| |
Collapse
|
6
|
Gahlawat S, Oruc D, Paul N, Ragheb M, Patel S, Fasasi O, Sharma P, Shreiber DI, Freeman JW. Tissue Engineered 3D Constructs for Volumetric Muscle Loss. Ann Biomed Eng 2024; 52:2325-2347. [PMID: 39085677 PMCID: PMC11329418 DOI: 10.1007/s10439-024-03541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/08/2024] [Indexed: 08/02/2024]
Abstract
Severe injuries to skeletal muscles, including cases of volumetric muscle loss (VML), are linked to substantial tissue damage, resulting in functional impairment and lasting disability. While skeletal muscle can regenerate following minor damage, extensive tissue loss in VML disrupts the natural regenerative capacity of the affected muscle tissue. Existing clinical approaches for VML, such as soft-tissue reconstruction and advanced bracing methods, need to be revised to restore tissue function and are associated with limitations in tissue availability and donor-site complications. Advancements in tissue engineering (TE), particularly in scaffold design and the delivery of cells and growth factors, show promising potential for regenerating damaged skeletal muscle tissue and restoring function. This article provides a brief overview of the pathophysiology of VML and critiques the shortcomings of current treatments. The subsequent section focuses on the criteria for designing TE scaffolds, offering insights into various natural and synthetic biomaterials and cell types for effectively regenerating skeletal muscle. We also review multiple TE strategies involving both acellular and cellular scaffolds to encourage the development and maturation of muscle tissue and facilitate integration, vascularization, and innervation. Finally, the article explores technical challenges hindering successful translation into clinical applications.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Doga Oruc
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Nikhil Paul
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Mark Ragheb
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Swati Patel
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Oyinkansola Fasasi
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Peeyush Sharma
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Joseph W Freeman
- Department of Biomedical Engineering, Rutgers University-New Brunswick, Piscataway, NJ, USA.
| |
Collapse
|
7
|
McCartan AJS, Mrsny RJ. In vitro modelling of intramuscular injection site events. Expert Opin Drug Deliv 2024; 21:1155-1173. [PMID: 39126130 DOI: 10.1080/17425247.2024.2388841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Intramuscular (IM) injections deliver a plethora of drugs. The majority of IM-related literature details dissolution and/or pharmacokinetic (PK) studies, using methods with limited assessments of post-injection events that can impact drug fate, and absorption parameters. Food and Drug Association guidelines no longer require preclinical in vivo modeling in the U.S.A. Preclinical animal models fail to correlate with clinical outcomes, highlighting the need to study, and understand, IM drug fate in vitro using bespoke models emulating human IM sites. Post-IM injection events, i.e. underlying processes that influence PK outcomes, remain unacknowledged, complicating the application of in vitro methods in preclinical drug development. Understanding such events could guide approaches to predict and modulate IM drug fate in humans. AREAS COVERED This article reviews challenges in biorelevant IM site modeling (i.e. modeling drug fate outcomes), the value of technologies available for developing IM injectables, methods for studying drug fate, and technologies for training in performing IM administrations. PubMed, Web-of-Science, and Lens databases provided papers published between 2014 and 2024. EXPERT OPINION IM drug research is expanding what injectable therapeutics can achieve. However, post-injection events that influence PK outcomes remain poorly understood. Until addressed, advances in IM drug development will not realize their full potential.
Collapse
Affiliation(s)
- Adam J S McCartan
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath, UK
| | - Randall J Mrsny
- Department of Life Sciences, Centre for Therapeutic Innovation, University of Bath, Bath, UK
| |
Collapse
|
8
|
Johnson D, Tobo C, Au J, Nagarapu A, Ziemkiewicz N, Chauvin H, Robinson J, Shringarpure S, Tadiwala J, Brockhouse J, Flaveny CA, Garg K. Combined regenerative rehabilitation improves recovery following volumetric muscle loss injury in a rat model. J Biomed Mater Res B Appl Biomater 2024; 112:e35438. [PMID: 38923755 PMCID: PMC11210688 DOI: 10.1002/jbm.b.35438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Volumetric muscle loss (VML) injury causes irreversible deficits in muscle mass and function, often resulting in permanent disability. The current standard of care is physical therapy, but it is limited in mitigating functional deficits. We have previously optimized a rehabilitation technique using electrically stimulated eccentric contraction training (EST) that improved muscle mass, strength, and size in VML-injured rats. A biosponge scaffold composed of extracellular matrix proteins has previously enhanced muscle function postVML. This study aimed to determine whether combining a regenerative therapy (i.e., biosponge) with a novel rehabilitation technique (i.e., EST) could enhance recovery in a rat model of VML. A VML defect was created by removing ~20% of muscle mass from the tibialis anterior muscle in adult male Lewis rats. Experimental groups included VML-injured rats treated with biosponge with EST or biosponge alone (n = 6/group). EST was implemented 2 weeks postinjury at 150 Hz and was continued for 4 weeks. A linear increase in eccentric torque over 4 weeks showed the adaptability of the VML-injured muscle to EST. Combining biosponge with EST improved peak isometric torque by ~52% compared with biosponge treatment alone at 6 weeks postinjury. Application of EST increased MyoD gene expression and the percentage of large (>2000 μm2) type 2B myofibers but reduced fibrotic tissue deposition in VML-injured muscles. Together, these changes may provide the basis for improved torque production. This study demonstrates the potential for combined regenerative and rehabilitative therapy to improve muscle recovery following VML.
Collapse
Affiliation(s)
- David Johnson
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Connor Tobo
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Jeffrey Au
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Aakash Nagarapu
- Department of Biomedical Engineering, School of Sciences and Engineering
| | | | - Hannah Chauvin
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Jessica Robinson
- Department of Biomedical Engineering, School of Sciences and Engineering
| | | | - Jamshid Tadiwala
- Department of Biomedical Engineering, School of Sciences and Engineering
| | - Julia Brockhouse
- Department of Biomedical Engineering, School of Sciences and Engineering
| | | | - Koyal Garg
- Department of Biomedical Engineering, School of Sciences and Engineering
| |
Collapse
|
9
|
Sabetkish S, Currie P, Meagher L. Recent trends in 3D bioprinting technology for skeletal muscle regeneration. Acta Biomater 2024; 181:46-66. [PMID: 38697381 DOI: 10.1016/j.actbio.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Skeletal muscle is a pro-regenerative tissue, that utilizes a tissue-resident stem cell system to effect repair upon injury. Despite the demonstrated efficiency of this system in restoring muscle mass after many acute injuries, in conditions of severe trauma such as those evident in volumetric muscle loss (VML) (>20 % by mass), this self-repair capability is unable to restore tissue architecture, requiring interventions which currently are largely surgical. As a possible alternative, the generation of artificial muscle using tissue engineering approaches may also be of importance in the treatment of VML and muscle diseases such as dystrophies. Three-dimensional (3D) bioprinting has been identified as a promising technique for regeneration of the complex architecture of skeletal muscle. This review discusses existing treatment strategies following muscle damage, recent progress in bioprinting techniques, the bioinks used for muscle regeneration, the immunogenicity of scaffold materials, and in vitro and in vivo maturation techniques for 3D bio-printed muscle constructs. The pros and cons of these bioink formulations are also highlighted. Finally, we present the current limitations and challenges in the field and critical factors to consider for bioprinting approaches to become more translationa and to produce clinically relevant engineered muscle. STATEMENT OF SIGNIFICANCE: This review discusses the physiopathology of muscle injuries and existing clinical treatment strategies for muscle damage, the types of bioprinting techniques that have been applied to bioprinting of muscle, and the bioinks commonly used for muscle regeneration. The pros and cons of these bioinks are highlighted. We present a discussion of existing gaps in the literature and critical factors to consider for the translation of bioprinting approaches and to produce clinically relevant engineered muscle. Finally, we provide insights into what we believe will be the next steps required before the realization of the application of tissue-engineered muscle in humans. We believe this manuscript is an insightful, timely, and instructive review that will guide future muscle bioprinting research from a fundamental construct creation approach, down a translational pathway to achieve the desired impact in the clinic.
Collapse
Affiliation(s)
- Shabnam Sabetkish
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Peter Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
10
|
Schiltz L, Grivetti E, Tanner GI, Qazi TH. Recent Advances in Implantable Biomaterials for the Treatment of Volumetric Muscle Loss. Cells Tissues Organs 2024; 213:486-502. [PMID: 38219727 DOI: 10.1159/000536262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Volumetric muscle loss (VML) causes pain and disability in patients who sustain traumatic injury from invasive surgical procedures, vehicle accidents, and battlefield wounds. Clinical treatment of VML injuries is challenging, and although options such as free-flap autologous grafting exist, patients inevitably develop excessive scarring and fatty infiltration, leading to muscle weakness and reduced quality of life. SUMMARY New bioengineering approaches, including cell therapy, drug delivery, and biomaterial implantation, have emerged as therapies to restore muscle function and structure to pre-injury levels. Of these, acellular biomaterial implants have attracted wide interest owing to their broad potential design space and high translational potential as medical devices. Implantable biomaterials fill the VML defect and create a conduit that permits the migration of regenerative cells from the intact muscle tissue to the injury site. Invading cells and regenerating myofibers are sensitive to the biomaterial's structural and biochemical properties, which can play instructive roles in guiding cell fate and organization into functional tissue. KEY MESSAGES Many diverse biomaterials have been developed for skeletal muscle regeneration with variations in biophysical and biochemical properties, and while many have been tested in vitro, few have proven their regenerative potential in clinically relevant in vivo models. Here, we provide an overview of recent advances in the design, fabrication, and application of acellular biomaterials made from synthetic or natural materials for the repair of VML defects. We specifically focus on biomaterials with rationally designed structural (i.e., porosity, topography, alignment) and biochemical (i.e., proteins, peptides, growth factors) components, highlighting their regenerative effects in clinically relevant VML models.
Collapse
Affiliation(s)
- Leia Schiltz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Elizabeth Grivetti
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Gabrielle I Tanner
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Taimoor H Qazi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
11
|
Kozan NG, Joshi M, Sicherer ST, Grasman JM. Porous biomaterial scaffolds for skeletal muscle tissue engineering. Front Bioeng Biotechnol 2023; 11:1245897. [PMID: 37854885 PMCID: PMC10579822 DOI: 10.3389/fbioe.2023.1245897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Volumetric muscle loss is a traumatic injury which overwhelms the innate repair mechanisms of skeletal muscle and results in significant loss of muscle functionality. Tissue engineering seeks to regenerate these injuries through implantation of biomaterial scaffolds to encourage endogenous tissue formation and to restore mechanical function. Many types of scaffolds are currently being researched for this purpose. Scaffolds are typically made from either natural, synthetic, or conductive polymers, or any combination therein. A major criterion for the use of scaffolds for skeletal muscle is their porosity, which is essential for myoblast infiltration and myofiber ingrowth. In this review, we summarize the various methods of fabricating porous biomaterial scaffolds for skeletal muscle regeneration, as well as the various types of materials used to make these scaffolds. We provide guidelines for the fabrication of scaffolds based on functional requirements of skeletal muscle tissue, and discuss the general state of the field for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jonathan M. Grasman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
12
|
Scalable macroporous hydrogels enhance stem cell treatment of volumetric muscle loss. Biomaterials 2022; 290:121818. [PMID: 36209578 DOI: 10.1016/j.biomaterials.2022.121818] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/15/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Volumetric muscle loss (VML), characterized by an irreversible loss of skeletal muscle due to trauma or surgery, is accompanied by severe functional impairment and long-term disability. Tissue engineering strategies combining stem cells and biomaterials hold great promise for skeletal muscle regeneration. However, scaffolds, including decellularized extracellular matrix (dECM), hydrogels, and electrospun fibers, used for VML applications generally lack macroporosity. As a result, the scaffolds used typically delay host cell infiltration, transplanted cell proliferation, and new tissue formation. To overcome these limitations, we engineered a macroporous dECM-methacrylate (dECM-MA) hydrogel, which we will refer to as a dECM-MA sponge, and investigated its therapeutic potential in vivo. Our results demonstrate that dECM-MA sponges promoted early cellularization, endothelialization, and establishment of a pro-regenerative immune microenvironment in a mouse VML model. In addition, dECM-MA sponges enhanced the proliferation of transplanted primary muscle stem cells, muscle tissue regeneration, and functional recovery four weeks after implantation. Finally, we investigated the scale-up potential of our scaffolds using a rat VML model and found that dECM-MA sponges significantly improved transplanted cell proliferation and muscle regeneration compared to conventional dECM scaffolds. Together, these results validate macroporous hydrogels as novel scaffolds for VML treatment and skeletal muscle regeneration.
Collapse
|
13
|
Dunn A, Haas G, Madsen J, Ziemkiewicz N, Au J, Johnson D, West C, Chauvin H, Gagyi SM, Garg K. Biomimetic sponges improve functional muscle recovery following composite trauma. J Orthop Res 2022; 40:1039-1052. [PMID: 34289186 PMCID: PMC8776909 DOI: 10.1002/jor.25143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 02/04/2023]
Abstract
There is a dearth of therapies that are safe and effective for the treatment of volumetric muscle loss (VML), defined as the surgical or traumatic loss of muscle tissue, resulting in functional impairment. To address this gap in orthopedic care, we developed a porous sponge-like scaffold composed of extracellular matrix (ECM) proteins (e.g., gelatin, collagen, and laminin-111) and an immunosuppressant drug, FK-506. While the majority of VML injuries occur in orthopedic trauma cases, preclinical models typically study muscle injuries in isolation without a concomitant bone fracture. The goal of this study was to investigate the extent to which FK506 loaded biomimetic sponges support functional muscle regeneration and fracture healing in a composite trauma model involving VML injury to the tibialis anterior muscle and osteotomy (OST) to the tibia. In this model, implantation of the FK-506 loaded biomimetic sponges limited the extent of inflammation while increasing the total number of myofibers, mean myofiber cross-sectional area, myosin-to-collagen ratio, and peak isometric torque compared to untreated VML+OST muscles on Day 28. Although all tibia fractures were bridged by Day 28 post-injury, fracture healing was impaired in response to an adjacent VML injury. Sponge treatment increased bone callus volume, yet the bridged mineralized bone volume was not significantly different. Taken together, these results suggest that biomimetic sponges primarily benefitted muscle repair and may provide a promising therapy for traumatized muscle.
Collapse
Affiliation(s)
- Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University
| | - Gabriel Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University
| | - Joshua Madsen
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University
| | - Natalia Ziemkiewicz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University
| | - Jeffrey Au
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University
| | - David Johnson
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University
| | - Charles West
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University
| | - Hannah Chauvin
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University
| | | | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University,Address correspondence to: Koyal Garg, PhD, Assistant Professor, Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, 3507 Lindell Blvd, St. Louis, MO 63103, Phone: 314.977.1434,
| |
Collapse
|
14
|
Haas G, Dunn A, Madsen J, Genovese P, Chauvin H, Au J, Ziemkiewicz N, Johnson D, Paoli A, Lin A, Pullen N, Garg K. Biomimetic sponges improve muscle structure and function following volumetric muscle loss. J Biomed Mater Res A 2021; 109:2280-2293. [PMID: 33960118 PMCID: PMC9838030 DOI: 10.1002/jbm.a.37212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 01/17/2023]
Abstract
Skeletal muscle is inept in regenerating after traumatic injuries such as volumetric muscle loss (VML) due to significant loss of various cellular and acellular components. Currently, there are no approved therapies for the treatment of muscle tissue following trauma. In this study, biomimetic sponges composed of gelatin, collagen, laminin-111, and FK-506 were used for the treatment of VML in a rodent model. We observed that biomimetic sponge treatment improved muscle structure and function while modulating inflammation and limiting the extent of fibrotic tissue deposition. Specifically, sponge treatment increased the total number of myofibers, type 2B fiber cross-sectional area, myosin: collagen ratio, myofibers with central nuclei, and peak isometric torque compared to untreated VML injured muscles. As an acellular scaffold, biomimetic sponges may provide a promising clinical therapy for VML.
Collapse
Affiliation(s)
- Gabriel Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Josh Madsen
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Peter Genovese
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Hannah Chauvin
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Jeffrey Au
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Natalia Ziemkiewicz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - David Johnson
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Allison Paoli
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Andrew Lin
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Nicholas Pullen
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, Colorado
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
15
|
Eugenis I, Wu D, Rando TA. Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials 2021; 278:121173. [PMID: 34619561 PMCID: PMC8556323 DOI: 10.1016/j.biomaterials.2021.121173] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/01/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022]
Abstract
Severe traumatic skeletal muscle injuries, such as volumetric muscle loss (VML), result in the obliteration of large amounts of skeletal muscle and lead to permanent functional impairment. Current clinical treatments are limited in their capacity to regenerate damaged muscle and restore tissue function, promoting the need for novel muscle regeneration strategies. Advances in tissue engineering, including cell therapy, scaffold design, and bioactive factor delivery, are promising solutions for VML therapy. Herein, we review tissue engineering strategies for regeneration of skeletal muscle, development of vasculature and nerve within the damaged muscle, and achievements in immunomodulation following VML. In addition, we discuss the limitations of current state of the art technologies and perspectives of tissue-engineered bioconstructs for muscle regeneration and functional recovery following VML.
Collapse
Affiliation(s)
- Ioannis Eugenis
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Di Wu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
16
|
Kiran S, Dwivedi P, Kumar V, Price RL, Singh UP. Immunomodulation and Biomaterials: Key Players to Repair Volumetric Muscle Loss. Cells 2021; 10:cells10082016. [PMID: 34440785 PMCID: PMC8394423 DOI: 10.3390/cells10082016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
Volumetric muscle loss (VML) is defined as a condition in which a large volume of skeletal muscle is lost due to physical insult. VML often results in a heightened immune response, resulting in significant long-term functional impairment. Estimates indicate that ~250,000 fractures occur in the US alone that involve VML. Currently, there is no active treatment to fully recover or repair muscle loss in VML patients. The health economics burden due to VML is rapidly increasing around the world. Immunologists, developmental biologists, and muscle pathophysiologists are exploring both immune responses and biomaterials to meet this challenging situation. The inflammatory response in muscle injury involves a non-specific inflammatory response at the injured site that is coordination between the immune system, especially macrophages and muscle. The potential role of biomaterials in the regenerative process of skeletal muscle injury is currently an important topic. To this end, cell therapy holds great promise for the regeneration of damaged muscle following VML. However, the delivery of cells into the injured muscle site poses a major challenge as it might cause an adverse immune response or inflammation. To overcome this obstacle, in recent years various biomaterials with diverse physical and chemical nature have been developed and verified for the treatment of various muscle injuries. These biomaterials, with desired tunable physicochemical properties, can be used in combination with stem cells and growth factors to repair VML. In the current review, we focus on how various immune cells, in conjunction with biomaterials, can be used to promote muscle regeneration and, most importantly, suppress VML pathology.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
| | - Pankaj Dwivedi
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy, St. Louis, MO 63110, USA;
| | - Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
| | - Robert L. Price
- Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208, USA;
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.); (V.K.)
- Correspondence:
| |
Collapse
|
17
|
Carleton MM, Sefton MV. Promoting endogenous repair of skeletal muscle using regenerative biomaterials. J Biomed Mater Res A 2021; 109:2720-2739. [PMID: 34041836 DOI: 10.1002/jbm.a.37239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Skeletal muscles normally have a remarkable ability to repair themselves; however, large muscle injuries and several myopathies diminish this ability leading to permanent loss of function. No clinical therapy yet exists that reliably restores muscle integrity and function following severe injury. Consequently, numerous tissue engineering techniques, both acellular and with cells, are being investigated to enhance muscle regeneration. Biomaterials are an essential part of these techniques as they can present physical and biochemical signals that augment the repair process. Successful tissue engineering strategies require regenerative biomaterials that either actively promote endogenous muscle repair or create an environment supportive of regeneration. This review will discuss several acellular biomaterial strategies for skeletal muscle regeneration with a focus on those under investigation in vivo. This includes materials that release bioactive molecules, biomimetic materials and immunomodulatory materials.
Collapse
Affiliation(s)
- Miranda M Carleton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Michael V Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Shortridge C, Akbari Fakhrabadi E, Wuescher LM, Worth RG, Liberatore MW, Yildirim-Ayan E. Impact of Digestive Inflammatory Environment and Genipin Crosslinking on Immunomodulatory Capacity of Injectable Musculoskeletal Tissue Scaffold. Int J Mol Sci 2021; 22:1134. [PMID: 33498864 PMCID: PMC7866115 DOI: 10.3390/ijms22031134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
The paracrine and autocrine processes of the host response play an integral role in the success of scaffold-based tissue regeneration. Recently, the immunomodulatory scaffolds have received huge attention for modulating inflammation around the host tissue through releasing anti-inflammatory cytokine. However, controlling the inflammation and providing a sustained release of anti-inflammatory cytokine from the scaffold in the digestive inflammatory environment are predicated upon a comprehensive understanding of three fundamental questions. (1) How does the release rate of cytokine from the scaffold change in the digestive inflammatory environment? (2) Can we prevent the premature scaffold degradation and burst release of the loaded cytokine in the digestive inflammatory environment? (3) How does the scaffold degradation prevention technique affect the immunomodulatory capacity of the scaffold? This study investigated the impacts of the digestive inflammatory environment on scaffold degradation and how pre-mature degradation can be prevented using genipin crosslinking and how genipin crosslinking affects the interleukin-4 (IL-4) release from the scaffold and differentiation of naïve macrophages (M0). Our results demonstrated that the digestive inflammatory environment (DIE) attenuates protein retention within the scaffold. Over 14 days, the encapsulated protein released 46% more in DIE than in phosphate buffer saline (PBS), which was improved through genipin crosslinking. We have identified the 0.5 (w/v) genipin concentration as an optimal concentration for improved IL-4 released from the scaffold, cell viability, mechanical strength, and scaffold porosity, and immunomodulation studies. The IL-4 released from the injectable scaffold could differentiate naïve macrophages to an anti-inflammatory (M2) lineage; however, upon genipin crosslinking, the immunomodulatory capacity of the scaffold diminished significantly, and pro-inflammatory markers were expressed dominantly.
Collapse
Affiliation(s)
- Colin Shortridge
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA;
| | - Ehsan Akbari Fakhrabadi
- Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (E.A.F.); (M.W.L.)
| | - Leah M. Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (L.M.W.); (R.G.W.)
| | - Randall G. Worth
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (L.M.W.); (R.G.W.)
| | - Matthew W. Liberatore
- Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (E.A.F.); (M.W.L.)
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA;
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, USA
| |
Collapse
|
19
|
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss. Bioengineering (Basel) 2020; 7:bioengineering7030085. [PMID: 32751847 PMCID: PMC7552659 DOI: 10.3390/bioengineering7030085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of Americans suffer from skeletal muscle injuries annually that can result in volumetric muscle loss (VML), where extensive musculoskeletal damage and tissue loss result in permanent functional deficits. In the case of small-scale injury skeletal muscle is capable of endogenous regeneration through activation of resident satellite cells (SCs). However, this is greatly reduced in VML injuries, which remove native biophysical and biochemical signaling cues and hinder the damaged tissue's ability to direct regeneration. The current clinical treatment for VML is autologous tissue transfer, but graft failure and scar tissue formation leave patients with limited functional recovery. Tissue engineering of instructive biomaterial scaffolds offers a promising approach for treating VML injuries. Herein, we review the strategic engineering of biophysical and biochemical cues in current scaffold designs that aid in restoring function to these preclinical VML injuries. We also discuss the successes and limitations of the three main biomaterial-based strategies to treat VML injuries: acellular scaffolds, cell-delivery scaffolds, and in vitro tissue engineered constructs. Finally, we examine several innovative approaches to enhancing the design of the next generation of engineered scaffolds to improve the functional regeneration of skeletal muscle following VML injuries.
Collapse
|
20
|
Zhang D, Cao L, Wang Z, Feng H, Cai X, Xu M, Li M, Yu N, Yin Y, Wang W, Kang J. Salidroside mitigates skeletal muscle atrophy in rats with cigarette smoke-induced COPD by up-regulating myogenin and down-regulating myostatin expression. Biosci Rep 2019; 39:BSR20190440. [PMID: 31702007 PMCID: PMC6879355 DOI: 10.1042/bsr20190440] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/17/2019] [Accepted: 11/06/2019] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES The present study aimed at investigating the therapeutic effect of Salidroside on skeletal muscle atrophy in a rat model of cigarette smoking-induced chronic obstructive pulmonary disease (COPD) and its potential mechanisms. METHODS Male Wistar rats were randomized, and treated intraperitoneally (IP) with vehicle (injectable water) or a low, medium or high dose of Salidroside, followed by exposure to cigarette smoking daily for 16 weeks. A healthy control received vehicle injection and air exposure. Their lung function, body weights and gastrocnemius (GN) weights, grip strength and cross-section area (CSA) of individual muscular fibers in the GN were measured. The levels of TNF-α, IL-6, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) in serum and GN tissues as well as myostatin and myogenin expression in GN tissues were measured. RESULTS In comparison with that in the healthy control, long-term cigarette smoking induced emphysema, significantly impaired lung function, reduced body and GN weights and CSA values in rats, accompanied by significantly increased levels of TNF-α, IL-6 and MDA, but decreased levels of SOD and GSH in serum and GN tissues. Furthermore, cigarette smoking significantly up-regulated myostatin expression, but down-regulated myogenin expression in GN tissues. Salidroside treatment decreased emphysema, significantly ameliorated lung function, increased antioxidant, but reduced MDA, IL-6 and TNF-α levels in serum and GN tissues of rats, accompanied by decreased myostain, but increased myogenin expression in GN tissues. CONCLUSION Salidroside mitigates the long-term cigarette smoking-induced emphysema and skeletal muscle atrophy in rats by inhibiting oxidative stress and inflammatory responses and regulating muscle-specific transcription factor expression.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116000, Liaoning, China
| | - Lihua Cao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116000, Liaoning, China
| | - Zhenshan Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116000, Liaoning, China
| | - Haoshen Feng
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xu Cai
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Mingtao Xu
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Menglu Li
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Na Yu
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yan Yin
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Wei Wang
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Jian Kang
- Department of Respiratory Medicine, Institute of Respiratory Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| |
Collapse
|
21
|
Mulbauer GD, Matthew HW. Biomimetic Scaffolds in Skeletal Muscle Regeneration. Discoveries (Craiova) 2019; 7:e90. [PMID: 32309608 PMCID: PMC7086065 DOI: 10.15190/d.2019.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 03/31/2019] [Accepted: 03/31/2019] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle tissue has inherent capacity for regeneration in response to minor injuries. However, in the case of severe trauma, tumor ablations, or in congenital muscle defects, these myopathies can cause irreversible loss of muscle mass and function, a condition referred to as volumetric muscle loss (VML). The natural muscle repair mechanisms are overwhelmed, prompting the search for new muscle regenerative strategies, such as using biomaterials that can provide regenerative signals to either transplanted or host muscle cells. Recent studies involve the use of suitable biomaterials which may be utilized as a template to guide tissue reorganization and ultimately provide optimum micro-environmental conditions to cells. These strategies range from approaches that utilize biomaterials alone to those that combine materials with exogenous growth factors, and ex vivo cultured cells. A number of scaffold materials have been used in the development of grafts to treat VML. In this brief review, we outline the natural skeletal regeneration process, available treatments used in the clinic for muscle injury and promising tissue bioengineering and regenerative approaches for muscle loss treatment.
Collapse
Affiliation(s)
- Greta D. Mulbauer
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Howard W.T. Matthew
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| |
Collapse
|