1
|
Sanati M, Pieterman I, Levy N, Akbari T, Tavakoli M, Hassani Najafabadi A, Amin Yavari S. Osteoimmunomodulation by bone implant materials: harnessing physicochemical properties and chemical composition. Biomater Sci 2025. [PMID: 40289736 DOI: 10.1039/d5bm00357a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Chronic inflammation at bone defect sites can impede regenerative processes, but local immune responses can be adjusted to promote healing. Regulating the osteoimmune microenvironment, particularly through macrophage polarization, has become a key focus in bone regeneration research. While bone implants are crucial for addressing significant bone defects, they are often recognized by the immune system as foreign, triggering inflammation that leads to bone resorption and implant issues like fibrous encapsulation and aseptic loosening. Developing osteoimmunomodulatory implants offers a promising approach to transforming destructive inflammation into healing processes, enhancing implant integration and bone regeneration. This review explores strategies based on tuning the physicochemical attributes and chemical composition of materials in engineering osteoimmunomodulatory and pro-regenerative bone implants.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ines Pieterman
- Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Natacha Levy
- Metabolic Diseases Pediatrics Division, University Medical Centre Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohamadreza Tavakoli
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
- Regenerative Medicine Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Kurtz MA, Alaniz K, Kurtz PW, Wessinger AC, Moreno-Reyes A, Gilbert JL. Oxide degradation precedes additively manufactured Ti-6Al-4V selective dissolution: An unsupervised machine learning correlation of impedance and dissolution compared to Ti-29Nb-21Zr. J Biomed Mater Res A 2024; 112:1250-1264. [PMID: 37877770 DOI: 10.1002/jbm.a.37632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
Additively manufactured (AM) Ti-6Al-4V devices are implanted with increasing frequency. While registry data report short-term success, a gap persists in our understanding of long-term AM Ti-6Al-4V corrosion behavior. Retrieval studies document β phase selective dissolution on conventionally manufactured Ti-6Al-4V devices. Researchers reproduce this damage in vitro by combining negative potentials (cathodic activation) and inflammatory simulating solutions (H2O2-phosphate buffered saline). In this study, we investigate the effects of these adverse electrochemical conditions on AM Ti-6Al-4V impedance and selective dissolution. We hypothesize that cathodic activation and H2O2 solution will degrade the oxide, promoting corrosion. First, we characterized AM Ti-6Al-4V samples before and after a 48 h -0.4 V hold in 0.1 M H2O2/phosphate buffered saline. Next, we acquired nearfield electrochemical impedance spectroscopy (EIS) data. Finally, we captured micrographs and EIS during dissolution. Throughout, we used AM Ti-29Nb-21Zr as a comparison. After 48 h, AM Ti-6Al-4V selectively dissolved. Ti-29Nb-21Zr visually corroded less. Structural changes at the AM Ti-6Al-4V oxide interface manifested as property changes to the impedance. After dissolution, the log-adjusted constant phase element (CPE) parameter, Q, significantly increased from -4.75 to -3.84 (Scm-2(s)α) (p = .000). The CPE exponent, α, significantly decreased from .90 to .84 (p = .000). Next, we documented a systematic decrease in oxide polarization resistance before pit nucleation and growth. Last, using k-means clustering, we established a structure-property relationship between impedance and the surface's dissolution state. These results suggest that AM Ti-6Al-4V may be susceptible to in vivo crevice corrosion within modular taper junctions.
Collapse
Affiliation(s)
- Michael A Kurtz
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Kazzandra Alaniz
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Peter W Kurtz
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Audrey C Wessinger
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Aldo Moreno-Reyes
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| | - Jeremy L Gilbert
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, South Carolina, USA
| |
Collapse
|
3
|
Kurtz MA, Alaniz K, Taylor LM, Moreno-Reyes A, Gilbert JL. Increasing temperature accelerates Ti-6Al-4V oxide degradation and selective dissolution: An Arrhenius-based analysis. Acta Biomater 2024; 178:352-365. [PMID: 38417644 DOI: 10.1016/j.actbio.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
Ti-6Al-4V selective dissolution occurs in vivo on orthopedic implants as the leading edge of a pitting corrosion attack. A gap persists in our fundamental understanding of selective dissolution and pre-clinical tests fail to reproduce this damage. While CoCrMo clinical use decreases, Ti-6Al-4V and the crevice geometries where corrosion can occur remain ubiquitous in implant design. Additionally, most additively manufactured devices cleared by the FDA use Ti-6Al-4V. Accelerated preclinical testing, therefore, would aid in the evaluation of new titanium devices and biomaterials. In this study, using temperature, we (1) developed an accelerated pre-clinical methodology to rapidly induce dissolution and (2) investigated the structure-property relationship between the dissolving surface and the oxide layer. We hypothesized that solution temperature and H2O2 concentration would accelerate oxide degradation, increase corrosion kinetics and decrease experimental times. To assess this effect, we selected temperatures above (45 °C), below (24 °C), and at (37 °C) physiological levels. Then, we acquired electrochemical impedance spectra during active β dissolution, showing significant decreases in oxide polarization resistance (Rp) both over time (p = 0.000) and as temperature increased (p = 0.000). Next, using the impedance response as a guide, we quantified the extent of selective dissolution in scanning electron micrographs. As the temperature increased, the corrosion rate increased in an Arrhenius-dependent manner. Last, we identified three surface classes as the oxide properties changed: undissolved, transition and dissolved. These results indicate a concentration and temperature dependent structure-property relationship between the solution, the protective oxide film, and the substrate alloy. Additionally, we show how supraphysiological temperatures induce structurally similar dissolution to tests run at 37 °C in less experimental time. STATEMENT OF SIGNIFICANCE: Within modular taper junctions of total hip replacement systems, retrieval studies document severe corrosion including Ti-6AL-4V selective dissolution. Current pre-clinical tests and ASTM standards fail to reproduce this damage, preventing accurate screening of titanium-based biomaterials and implant designs. In this study, we induce selective dissolution using accelerated temperatures. Building off previous work, we use electrochemical impedance spectroscopy to rapidly monitor the oxide film during dissolution. We elucidate components of the dissolution mechanism, where oxide degradation precedes pit nucleation within the β phase. Using an Arrhenius approach, we relate these accelerated testing conditions to more physiologically relevant solution concentrations. In total, this study shows the importance of including adverse electrochemical events like cathodic activation and inflammatory species in pre-clinical testing.
Collapse
Affiliation(s)
- Michael A Kurtz
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, SC, USA
| | - Kazzandra Alaniz
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, SC, USA
| | - Lilliana M Taylor
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, SC, USA
| | - Aldo Moreno-Reyes
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, SC, USA
| | - Jeremy L Gilbert
- Department of Bioengineering, Clemson University, Clemson, SC, USA; The Clemson University-Medical University of South Carolina Bioengineering Program, Charleston, SC, USA.
| |
Collapse
|
4
|
Sotniczuk A, Kalita D, Chromiński W, Matczuk M, Pisarek M, Garbacz H. Albumin suppresses oxidation of TiNb alloy in the simulated inflammatory environment. J Biomed Mater Res B Appl Biomater 2024; 112:e35404. [PMID: 38533765 DOI: 10.1002/jbm.b.35404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Literature data has shown that reactive oxygen species (ROS), generated by immune cells during post-operative inflammation, could induce corrosion of standard Ti-based biomaterials. For Ti6Al4V alloy, this process can be further accelerated by the presence of albumin. However, this phenomenon remains unexplored for Ti β-phase materials, such as TiNb alloys. These alloys are attractive due to their relatively low elastic modulus value. This study aims to address the question of how albumin influences the corrosion resistance of TiNb alloy under simulated inflammation. Electrochemical and ion release tests have revealed that albumin significantly enhances corrosion resistance over both short (2 and 24 h) and long (2 weeks) exposure periods. Furthermore, post-immersion XPS and cross-section TEM analysis have demonstrated that prolonged exposure to an albumin-rich inflammatory solution results in the complete coverage of the TiNb surface by a protein layer. Moreover, TEM studies revealed that H2O2-induced oxidation and further formation of a defective oxide film were suppressed in the solution enriched with albumin. Overall results indicate that contrary to Ti6Al4V, the addition of albumin to the PBS + H2O2 solution is not necessary to simulate the harsh inflammatory conditions as could possibly be found in the vicinity of a TiNb implant.
Collapse
Affiliation(s)
- Agata Sotniczuk
- NOMATEN Centre of Excellence, National Centre for Nuclear Research, Otwock, Poland
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Damian Kalita
- NOMATEN Centre of Excellence, National Centre for Nuclear Research, Otwock, Poland
| | - Witold Chromiński
- NOMATEN Centre of Excellence, National Centre for Nuclear Research, Otwock, Poland
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Pisarek
- Laboratory of Surface Analysis, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Halina Garbacz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
5
|
Mace AO, Kurtz MA, Gilbert JL. Fretting and Fretting Corrosion Behavior of Additively Manufactured Ti-6Al-4V and Ti-Nb-Zr Alloys in Air and Physiological Solutions. J Funct Biomater 2024; 15:38. [PMID: 38391891 PMCID: PMC10889821 DOI: 10.3390/jfb15020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Additive manufacturing (AM) of orthopedic implants has increased in recent years, providing benefits to surgeons, patients, and implant companies. Both traditional and new titanium alloys are under consideration for AM-manufactured implants. However, concerns remain about their wear and corrosion (tribocorrosion) performance. In this study, the effects of fretting corrosion were investigated on AM Ti-29Nb-21Zr (pre-alloyed and admixed) and AM Ti-6Al-4V with 1% nano yttria-stabilized zirconia (nYSZ). Low cycle (100 cycles, 3 Hz, 100 mN) fretting and fretting corrosion (potentiostatic, 0 V vs. Ag/AgCl) methods were used to compare these AM alloys to traditionally manufactured AM Ti-6Al-4V. Alloy and admixture surfaces were subjected to (1) fretting in the air (i.e., small-scale reciprocal sliding) and (2) fretting corrosion in phosphate-buffered saline (PBS) using a single diamond asperity (17 µm radius). Wear track depth measurements, fretting currents and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis of oxide debris revealed that pre-alloyed AM Ti-29Nb-21Zr generally had greater wear depths after 100 cycles (4.67 +/- 0.55 µm dry and 5.78 +/- 0.83 µm in solution) and higher fretting currents (0.58 +/- 0.07 µA). A correlation (R2 = 0.67) was found between wear depth and the average fretting currents with different alloys located in different regions of the relationship. No statistically significant differences were observed in wear depth between in-air and in-PBS tests. However, significantly higher amounts of oxygen (measured by oxygen weight % by EDS analysis of the debris) were embedded within the wear track for tests performed in PBS compared to air for all samples except the ad-mixed Ti-29Nb-21Zr (p = 0.21). For traditional and AM Ti-6Al-4V, the wear track depths (dry fretting: 2.90 +/- 0.32 µm vs. 2.51 +/- 0.51 μm, respectively; fretting corrosion: 2.09 +/- 0.59 μm vs. 1.16 +/- 0.79 μm, respectively) and fretting current measurements (0.37 +/- 0.05 μA vs. 0.34 +/- 0.05 μA, respectively) showed no significant differences. The dominant wear deformation process was plastic deformation followed by cyclic extrusion of plate-like wear debris at the end of the stroke, resulting in ribbon-like extruded material for all alloys. While previous work documented improved corrosion resistance of Ti-29Nb-21Zr in simulated inflammatory solutions over Ti-6Al-4V, this work does not show similar improvements in the relative fretting corrosion resistance of these alloys compared to Ti-6Al-4V.
Collapse
Affiliation(s)
- Annsley O Mace
- Clemson-Medical University of South Carolina Bioengineering Program, Department of Bioengineering, Clemson University, Charleston, SC 29464, USA
| | - Michael A Kurtz
- Clemson-Medical University of South Carolina Bioengineering Program, Department of Bioengineering, Clemson University, Charleston, SC 29464, USA
| | - Jeremy L Gilbert
- Clemson-Medical University of South Carolina Bioengineering Program, Department of Bioengineering, Clemson University, Charleston, SC 29464, USA
| |
Collapse
|
6
|
Sherif ESM, Bahri YA, Alharbi HF, Ijaz MF. Corrosion Passivation in Simulated Body Fluid of Ti-Zr-Ta-xSn Alloys as Biomedical Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4603. [PMID: 37444917 DOI: 10.3390/ma16134603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
The powder metallurgy method was used to manufacture three Ti-based alloys: Ti-15%Zr-2%Ta-4%Sn (Ti-Zr-Ta-4Sn), Ti-15%Zr-2%Ta-6%Sn (Ti-Zr-Ta-6Sn), and Ti-15%Zr-2%Ta-8%Sn (Ti-Zr-Ta-8Sn). Electrochemical measurements and surface analyses were used to determine the effect of Sn concentration on the corrosion of these alloys after exposure to a simulated body fluid (SBF) solution for 1 h and 72 h. It was found that the passivation of the alloy surface significantly increased when the Sn content increased from 4% to 6% and then to 8%, which led to a significant reduction in corrosion. The impedance spectra derived from the Nyquist graphs also explained how the addition of Sn significantly improved the alloys' polarization resistances. According to the change in the chronoamperometric current at an applied anodic potential over time, the increase in Sn content within the alloy significantly reduced the currents over time, indicating that the uniform and pitting corrosion were greatly decreased. The formation of an oxide layer (TiO2), which was demonstrated by the surface morphology of the alloys after exposure to SBF solution for 72 h and corrosion at 400 mV (Ag/AgCl) for 60 min, was supported by the profile analysis obtained by an X-ray spectroscopy analyzer. It was clear from all of the findings that the tested alloys have a remarkable improvement in resistance to corrosivity when the Sn content was increased to 8%.
Collapse
Affiliation(s)
- El-Sayed M Sherif
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, King Saud University, Riyadh 11421, Saudi Arabia
| | - Yassir A Bahri
- Mechanical Engineering Department, Collage of Engineering, King Saud University, Al-Riyadh 11421, Saudi Arabia
| | - Hamad F Alharbi
- Mechanical Engineering Department, Collage of Engineering, King Saud University, Al-Riyadh 11421, Saudi Arabia
| | - Muhammad Farzik Ijaz
- Mechanical Engineering Department, Collage of Engineering, King Saud University, Al-Riyadh 11421, Saudi Arabia
| |
Collapse
|