1
|
Almansoori A, Balázsi K, Balázsi C. Advances, Challenges, and Applications of Graphene and Carbon Nanotube-Reinforced Engineering Ceramics. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1881. [PMID: 39683269 DOI: 10.3390/nano14231881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Engineering ceramics and their composites are widely used owing to their excellent properties, including high wear, corrosion and heat resistance, low friction coefficient, and low thermal conductivity; thus, the current paper presents a comprehensive review of the most common types of engineering ceramics, demonstrating their key properties, advantages, potential applications, and challenges. This paper also provides prevailing methods for tackling the engineering ceramic challenges and maximizing their applicability. This review paper focuses on alumina (Al2O3), silicon carbide (SiC), zirconia (ZrO2), aluminum nitride (AlN), and silicon nitride (Si3N4), and explores their usability in automotive, aerospace, and tribological applications. Additionally, the incorporation of reinforcing nanomaterials, i.e., graphene and carbon nanotubes or their combination with second-phase reinforcing nanomaterials in these types of ceramics to improve their physico-mechanical properties is also discussed. By strategically adding these reinforcing materials, the brittleness of ceramics can be mitigated, leading to materials that are more suitable for demanding applications in various high-performance industries.
Collapse
Affiliation(s)
- Alaa Almansoori
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary
- Technical Institute of Basra, Southern Technical University, AlZubair Str., Basra 42001, Iraq
| | - Katalin Balázsi
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary
| | - Csaba Balázsi
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary
| |
Collapse
|
2
|
Tajti P, Solyom E, Czumbel LM, Szabó B, Fazekas R, Németh O, Hermann P, Gerber G, Hegyi P, Mikulás K. Monolithic zirconia as a valid alternative to metal-ceramic for implant-supported single crowns in the posterior region: A systematic review and meta-analysis of randomized controlled trials. J Prosthet Dent 2024; 132:881-889. [PMID: 37349158 DOI: 10.1016/j.prosdent.2023.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
STATEMENT OF PROBLEM Technical complication rates of standard metal-ceramic implant-supported posterior restorations are relatively high. Whether monolithic zirconia crowns represent a more successful alternative is unclear. PURPOSE The purpose of this systematic review and meta-analysis was to compare the clinical outcomes of posterior monolithic zirconia and metal-ceramic implant-supported single crowns. MATERIAL AND METHODS A search was conducted in MEDLINE, Scopus, Embase, Web of Science, and CENTRAL databases for randomized controlled trials up to April 2023 with a follow-up time of at least 1 year. Restoration and implant survival and failure rates, marginal bone loss (MBL), bleeding on probing (BOP), and technical complications were analyzed by 2 reviewers. Statistical analyses were conducted using the R-statistics software program. The risk of bias was assessed by the Cochrane Risk of Bias Tool 2 (RoB 2), and the certainty of evidence by the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. RESULTS A total of 11 out of 2030 records were identified by title and abstract, and 4 records were included after full-text analysis. The statistical analysis revealed no significant difference in MBL (MD -0.11, 95% CI: [-0.25; 0.03]), BOP (OR 0.66, 95% CI: [0.25; 1.77]), or implant failure (OR 1.30, 95% CI: [0.24; 7.08]). Monolithic zirconia presented significantly less chipping over 1 year (OR 0.17, 95% CI: [0.03; 0.99]). The chipping rate was 0% for monolithic zirconia and 7.61% for metal-ceramic. Based on a narrative review, the restoration survival rate was 97.5% in the monolithic zirconia group and 99.1% in the metal-ceramic group. CONCLUSIONS Monolithic zirconia showed favorable short-term survival rates and had significantly less chipping over 1 year. Regarding MBL, BOP, and failure rates, both restoration types presented similar results at the 1-year follow-up.
Collapse
Affiliation(s)
- Péter Tajti
- Resident, Department of Prosthodontics, Semmelweis University, Budapest, Hungary; PhD student, Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Eleonora Solyom
- Clinical Specialist, Department of Periodontology, Semmelweis University, Budapest, Hungary; PhD student, Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - László Márk Czumbel
- Resident, Department of Periodontology, Semmelweis University, Budapest, Hungary; Scientific Methodology Supervisor, Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Bence Szabó
- Biostatistician, Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Réka Fazekas
- Assistant Professor, Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary; Supervisor, Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Orsolya Németh
- Director, Associate Professor, Department of Community Dentistry, Semmelweis University, Budapest, Hungary; Supervisor, Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hermann
- Director, Full Professor, Department of Prosthodontics, Semmelweis University, Budapest, Hungary; Supervisor, Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Gerber
- Associate Professor, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Supervisor, Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Strategic Director, Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Strategic Director, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Krisztina Mikulás
- Assistant Professor, Department of Prosthodontics, Semmelweis University, Budapest, Hungary; Supervisor, Centre for Translational Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Kahm SH, Lee SH, Lim Y, Jeon HJ, Yun KI. Osseointegration of Dental Implants after Vacuum Plasma Surface Treatment In Vivo. J Funct Biomater 2024; 15:278. [PMID: 39452577 PMCID: PMC11508880 DOI: 10.3390/jfb15100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Previous studies have highlighted the need for post-treatment of implants due to surface aging. This study investigated the effect of vacuum plasma (VP) treatment on the osseointegration of sandblasted, large grit, acid-etched (SLA) implant surfaces. The hypothesis was that VP might enhance implant stability, measured by implant stability quotient (ISQ) and histological osseointegration through bone-to-implant contact (BIC) and bone area ratio (BA) in rabbit models. Eighteen implants were either untreated or treated with VP and installed into the femurs of six rabbits, which were sacrificed after four weeks. Histological analyses of BIC and BA, along with micro-CT analysis of bone volume and ISQ, were performed. The VP-treated group showed higher levels of BA, bone volume, and ISQ, but no statistically significant differences were observed between the control and experimental groups. Despite limitations, both groups achieved better osseointegration and regeneration, warranting further studies on plasma treatment effects over varying implantation periods.
Collapse
Affiliation(s)
- Se Hoon Kahm
- Department of Dentistry, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 1021, Tongil-ro, Eunpyeong-gu, Seoul 03312, Republic of Korea; (S.H.K.); (S.H.L.)
| | - Sang Hwa Lee
- Department of Dentistry, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 1021, Tongil-ro, Eunpyeong-gu, Seoul 03312, Republic of Korea; (S.H.K.); (S.H.L.)
| | - Youbong Lim
- Plasmapp Co., Ltd., 9, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.L.); (H.J.J.)
| | - Hyun Jeong Jeon
- Plasmapp Co., Ltd., 9, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (Y.L.); (H.J.J.)
| | - Kyoung-In Yun
- Department of Dentistry (Oral and Maxillofacial Surgery), Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| |
Collapse
|
4
|
Lam WYH, Lim TW, Yu Yon MJ, Chau JMH, Lai GCH, Wang DCP, Botelho MG. Posterior two-unit cantilevered zirconia resin-bonded fixed partial dentures: A 3-year prospective single-arm clinical trial. J Dent 2024; 147:105140. [PMID: 38901823 DOI: 10.1016/j.jdent.2024.105140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVES To evaluate the longevity of cantilevered zirconia-based resin-bonded fixed partial dentures (RBFPDs) in replacing missing posterior teeth, as well as the quality of life and patient satisfaction experienced by those receiving zirconia RBFPDs. METHODS A prospective single-arm uncontrolled clinical trial was conducted to replace one or more missing premolars or molars with a span of 5 to 8 mm using cantilevered zirconia RBFPDs. Thirty-six participants with 40 prostheses were recruited and underwent a 3-year clinical evaluation. The retainer designs included a minimum thickness of 0.8 mm, a minimum of 200° circumferential wraparound with an occlusal bar, and a connector dimension of 3 × 3 mm. Patient-reported outcomes, including patient satisfaction and Oral Health Impact Profile (OHIP), were assessed. RESULTS The average age of participants was 45.8 years, and 72.5 % were women. The success rate of the posterior zirconia RBFPDs was 76.2 %, with an estimated mean success duration of 46.1 months. The survival rate was 88.1 %, with an estimated mean survival duration of 49.4 months. Participants were highly satisfied with the treatment, achieving an average satisfaction score of 80.8 ± 11.9. Participants' total OHIP scores decreased from 52.3 to 39.6 after 3 years, indicating a significant improvement in oral health-related quality of life (P = 0.009). CONCLUSIONS After 3 years, a moderately high survival rate and favourable patient-reported outcomes of posterior cantilevered zirconia RBFPDs were achieved. Therefore, it can be recommended as a conservative treatment option to replace missing posterior teeth, provided that retainer design considerations are taken into account. CLINICAL SIGNIFICANCE Cantilevered zirconia RBFPDs for posterior teeth can serve as a conservative treatment option that is both aesthetically pleasing and biocompatible. It offers a more cost-effective alternative compared to dental implants, which are often prohibitively expensive for the majority of patients. This approach has the potential to greatly improve patient-reported outcomes.
Collapse
Affiliation(s)
- Walter Yu Hang Lam
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR
| | - Tong Wah Lim
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR
| | - Madeline Jun Yu Yon
- Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary, University of London, United Kingdom
| | - Jimmy Man Ho Chau
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR
| | - Gentle Chin Hung Lai
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR
| | - Denny Chon Pei Wang
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR
| | - Michael G Botelho
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong SAR.
| |
Collapse
|
5
|
Elsayed A, Chaar MS, Kern M, Libecki W, Yazigi C. Wear resistance of CAD/CAM one-piece screw-retained hybrid-abutment-crowns made from different restorative materials. Clin Implant Dent Relat Res 2024; 26:281-288. [PMID: 37408517 DOI: 10.1111/cid.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/09/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION The aim of this study was to measure the wear progress of three high performance polymers (HPP) materials as well as that of zirconia after artificial aging (simulated 2.5- and 5-year of clinical service with thermo-mechanical loading) and compare it with the well-documented wear of lithium disilicate. METHODS Forty implants were used to restore a maxillary first premolar, where the abutment and the crown were manufactured as hybrid-abutment-crown and connected to the implant using a titanium insert. The implants were randomly divided, according to the restorative materials used, into five groups: 3Y-TZP zirconia (Z), lithium disilicate (L), ceramic-reinforced polyetheretherketon (P), nano-hybrid composite resin (C) and polymer-infiltrated ceramic-network (E). All hybrid-abutment-crowns were produced using CAD/CAM technology. A design of a maxillary first premolar was created with an angle of 120° between the buccal and palatal cusps, which were designed as planes. The restorations were adhesively luted onto the titanium inserts, according to the manufacturers' recommendations for each material individually, by means of dual-curing luting resin with the exception of group P, where the blocks were pre-fitted (heat-pressed) with an integrated titanium insert. The suprastructures were assembled onto the implants through titanium screws. The screw channels were sealed with Teflon tape and composite resin filling material that was polished to high-gloss. All specimens underwent 1 200 000 thermo-dynamic loading cycles with 49 N in a dual-axis chewing simulator. Elastomeric impressions were made for all specimens after 600 000 and after 1 200 000 cycles. The corresponding impressions were imaged using a laser scanning microscope and then 3D-analyzed using the software (Geomagic Wrap) to measure the volume loss of the wear area for all specimens. Statistical analysis was performed using Wilcoxon-Test regarding the two different time measurements for each material. For the analysis of the material variable, Kruskal-Wallis test was conducted followed by Mann-Whitney test. RESULTS Group Z showed statistically the lowest volume loss compared to the other test materials, both after 600 000 and 1 200 000 cycles of artificial aging, with a median value of 0.002 mm3 volume loss after 1 200 000 cycles. In contrast, group E showed the highest volume loss with median values of 0.18 and 0.3 mm3 after 600 000 and 1 200 000 cycles, respectively. Artificial aging had significantly negative effect on the volume loss for all test materials. In addition, the choice of material had statistical influence on the outcome. CONCLUSION Monolithic zirconia ceramic demonstrated lower wear than that reported for enamel after simulated 5-year of clinical service, whereas all other test materials showed higher volume loss after artificial aging.
Collapse
Affiliation(s)
- Adham Elsayed
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Kiel, Germany
| | - Mohamed Sad Chaar
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Kiel, Germany
| | - Matthias Kern
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Kiel, Germany
| | - Wojtek Libecki
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Kiel, Germany
| | - Christine Yazigi
- Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Kiel, Germany
| |
Collapse
|
6
|
Wittneben JG, Abou-Ayash S, Gashi A, Buser D, Belser U, Brägger U, Sailer I, Gavric J. Implant-supported single all-ceramic crowns made from prefabricated (stock) or individualized CAD/CAM zirconia abutments: A 5 year randomized clinical trial. J ESTHET RESTOR DENT 2024; 36:164-173. [PMID: 38173277 DOI: 10.1111/jerd.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
AIM The aim of this randomized, prospective, and clinical multicenter study was to compare the overall clinical performance of two restorative options over a 5-year period: individualized CAD/CAM abutments veneered with a hand-layered ceramic, and prefabricated zirconium dioxide abutments veneered with press ceramic and inserted into a single edentulous gap in the anterior maxilla. MATERIALS AND METHODS Forty subjects were recruited from two universities: 20 from the University of XX and 20 from the University of XY. Each subject received an implant to restore a single edentulous gap in the maxillary anterior region (14-24 FDI). 20 patients were randomized into each Group. Group A received a one-piece single crown produced from a prefabricated zirconia abutment with pressed ceramic and Group B received an individualized CAD/CAM zirconia abutment with a hand-layered technique. After 5 years, the aesthetic and radiographic parameters were assessed. RESULTS Group A had four dropouts and one failure, resulting in a 95% survival rate and 95% success rate. Group B had two dropouts and two failures which resulted in a 90% survival rate and 90% success rate. No crestal bone level changes were observed, with a mean DIB of 0.06 mm in Group A and 0.09 mm in Group B. No statistically significant differences were present at baseline, 6 months, 1 year, 3 years, or 5 years for DIB values between time points and groups. Pink aesthetic score/white aesthetic score, Peri-Implant and Crown Index, and Implant Crown Aesthetic Index values were stable over time at all five points for both groups. CONCLUSION Both implant-supported restorative options represent a valuable treatment option for the restoration of implant crowns in the anterior maxilla. CLINICAL SIGNIFICANCE In general, the use of ceramic abutments in the anterior zone represents a valuable treatment procedure with both standardized and CAD/CAM individualized abutments and following the recommendations from the respective manufacturer(s).
Collapse
Affiliation(s)
- Julia-Gabriela Wittneben
- Private Practice, Zürich, Switzerland
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Samir Abou-Ayash
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | | | - Daniel Buser
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Urs Belser
- Department of Reconstructive Dentistry, School of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Urs Brägger
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Irena Sailer
- Department of Reconstructive Dentistry, School of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Jelena Gavric
- Department of Reconstructive Dentistry, School of Dental Medicine, University of Geneva, Geneva, Switzerland
- Private Practice, Geneva, Switzerland
| |
Collapse
|
7
|
Ferro VM, Silva BC, Macedo DF, Fernandes NF, Silva AP. TCP Doped with Metal Ions Reinforced with Tetragonal and Cubic Zirconia. Biomimetics (Basel) 2023; 8:599. [PMID: 38132538 PMCID: PMC10742230 DOI: 10.3390/biomimetics8080599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Ceramic biocomposites based on bioactive tricalcium phosphate doped with metal ions are a strategy for obtaining good biomimetics for human bone composition. Manufacturing with PMMA porogen also induces bone-like porosity morphology. The poor strength of tricalcium phosphate can be overcomed by designing ceramic composites reinforced with tetragonal and cubic zirconia. In this work, five different bioceramic composites were manufactured without and with induced porosity and their physical, mechanical, microstructural, and biological properties were studied. With the addition of tetragonal and cubic zirconia, an improvement in strength of 22% and 55%, respectively, was obtained, corresponding to up to 20.7 MPa. PMMA was suitable for adding porosity, up to 30%, with interconnectivity while an excellent hOB cellular viability was achieved for all biocomposites.
Collapse
Affiliation(s)
- Vanessa M. Ferro
- C-MAST—Centre for Mechanical and Aerospace Science and Technologies, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal; (V.M.F.)
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Beatriz C. Silva
- C-MAST—Centre for Mechanical and Aerospace Science and Technologies, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal; (V.M.F.)
| | - Duarte F. Macedo
- C-MAST—Centre for Mechanical and Aerospace Science and Technologies, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal; (V.M.F.)
| | - Natanael F. Fernandes
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Abílio P. Silva
- C-MAST—Centre for Mechanical and Aerospace Science and Technologies, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal; (V.M.F.)
| |
Collapse
|
8
|
Nematov DD, Burhonzoda AS, Kholmurodov KT, Lyubchyk AI, Lyubchyk SI. A Detailed Comparative Analysis of the Structural Stability and Electron-Phonon Properties of ZrO 2: Mechanisms of Water Adsorption on t-ZrO 2 (101) and t-YSZ (101) Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2657. [PMID: 37836297 PMCID: PMC10574635 DOI: 10.3390/nano13192657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
In this study, we considered the structural stability, electronic properties, and phonon dispersion of the cubic (c-ZrO2), tetragonal (t-ZrO2), and monoclinic (m-ZrO2) phases of ZrO2. We found that the monoclinic phase of zirconium dioxide is the most stable among the three phases in terms of total energy, lowest enthalpy, highest entropy, and other thermodynamic properties. The smallest negative modes were found for m-ZrO2. Our analysis of the electronic properties showed that during the m-t phase transformation of ZrO2, the Fermi level first shifts by 0.125 eV toward higher energies, and then decreases by 0.08 eV in the t-c cross-section. The band gaps for c-ZrO2, t-ZrO2, and m-ZrO2 are 5.140 eV, 5.898 eV, and 5.288 eV, respectively. Calculations based on the analysis of the influence of doping 3.23, 6.67, 10.35, and 16.15 mol. %Y2O3 onto the m-ZrO2 structure showed that the enthalpy of m-YSZ decreases linearly, which accompanies the further stabilization of monoclinic ZrO2 and an increase in its defectiveness. A doping-induced and concentration-dependent phase transition in ZrO2 under the influence of Y2O3 was discovered, due to which the position of the Fermi level changes and the energy gap decreases. It has been established that the main contribution to the formation of the conduction band is made by the p-states of electrons, not only for pure systems, but also those doped with Y2O3. The t-ZrO2 (101) and t-YSZ (101) surface models were selected as optimal surfaces for water adsorption based on a comparison of their surface energies. An analysis of the mechanism of water adsorption on the surface of t-ZrO2 (101) and t-YSZ (101) showed that H2O on unstabilized t-ZrO2 (101) is adsorbed dissociatively with an energy of -1.22 eV, as well as by the method of molecular chemisorption with an energy of -0.69 eV and the formation of a hydrogen bond with a bond length of 1.01 Å. In the case of t-YSZ (101), water is molecularly adsorbed onto the surface with an energy of -1.84 eV. Dissociative adsorption of water occurs at an energy of -1.23 eV, near the yttrium atom. The results show that ab initio approaches are able to describe the mechanism of doping-induced phase transitions in (ZrO2+Y2O3)-like systems, based on which it can be assumed that DFT calculations can also flawlessly evaluate other physical and chemical properties of YSZ, which have not yet been studied quantum chemical research. The obtained results complement the database of research works carried out in the field of the application of biocompatible zirconium dioxide crystals and ceramics in green energy generation, and can be used in designing humidity-to-electricity converters and in creating solid oxide fuel cells based on ZrO2.
Collapse
Affiliation(s)
- Dilshod D. Nematov
- Osimi Tajik Technical University, Dushanbe 734042, Tajikistan
- S.U. Umarov Physical-Technical Institute of NAST, Dushanbe 734042, Tajikistan
| | - Amondulloi S. Burhonzoda
- Osimi Tajik Technical University, Dushanbe 734042, Tajikistan
- S.U. Umarov Physical-Technical Institute of NAST, Dushanbe 734042, Tajikistan
| | - Kholmirzo T. Kholmurodov
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
- Dubna State University, 141980 Dubna, Russia
| | | | | |
Collapse
|
9
|
Ayash G, Rayyan MM, Segaan L, Sayed M. In vivo Evaluation of Shade Replication of Different Generations of Zirconia to Natural Teeth Using Digital Color Determinations. J Contemp Dent Pract 2023; 24:545-550. [PMID: 38193175 DOI: 10.5005/jp-journals-10024-3554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
AIM The color difference between the final shade of restorations milled from different zirconia blocks, and the control teeth in the esthetic zone is yet uncertain. MATERIALS AND METHODS For eight patients who required a singular maxillary central incisor restoration, twenty-four crowns made of zirconia were created. These were grouped into three categories based on the shade and nature of zirconia (Zr) utilized (white core, colored core, and monolithic high-translucency (ht) Zr crowns). The difference in color (ΔE) between the three zirconia crowns and the neighboring teeth was calculated by the use of Easyshade spectrophotometer. Two shades of resin luting cement were used. The measured ΔE values were evaluated based on a clinically acceptable color difference of 1.6ΔE, which is not visible to the human eye. RESULTS Among the three groups, no differences of statistical significance were observed in terms of ΔE with different Zr types and resin cement color. CONCLUSION Within the limits of this study, the usage of different shades of zirconia blanks and resin cements did not display a statistically significant effect on the final color of the crown. CLINICAL SIGNIFICANCE Changing the shade of resin cements does not appear to add value to the final shade of crown. In addition, the generation of zirconia does not influence the shade of the crown. Crowns made of zirconia can be cemented with opaque or transparent cement with no effect on the final color.
Collapse
Affiliation(s)
- Ghada Ayash
- Department of Oral Rehabilitation Sciences, Faculty of Dentistry, Beirut Arab University, Beirut, Lebanon
| | | | - Lucette Segaan
- Department of Removable Prosthodontics, Faculty of Dentistry, Alexandria University, Egypt
| | - Mohamed Sayed
- Department of Fixed Prosthodontics, Faculty of Dentistry, Ahram Canadian University, Egypt, Phone: +20 1288670943, e-mail:
| |
Collapse
|
10
|
Kanoh S, Shiraki K, Wada M, Tanaka T, Kitamura M, Kato K, Hirano A. Chromatographic purification of histidine-tagged proteins using zirconia particles modified with phosphate groups. J Chromatogr A 2023; 1703:464112. [PMID: 37285623 DOI: 10.1016/j.chroma.2023.464112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Immobilized metal ion affinity chromatography (IMAC) is one of the most common purification techniques for histidine-tagged proteins (His-tagged proteins). IMAC enables the purification of His-tagged proteins at high purity on the basis of coordination bonds between His-tags and metal ions (such as Ni2+, Co2+, and Cu2+) immobilized on the matrices in columns. However, IMAC requires low-pH solutions or high-concentration imidazole solutions for eluting His-tagged proteins, which can affect protein conformation and activity. The present study provides a His-tagged protein purification method using zirconia particles modified with phosphate groups. This method is based on the electrostatic attractions between a His-tag moiety of proteins and phosphate groups on the zirconia particles; this method requires only high-concentration salt solutions at pH 7.0 for eluting the proteins. A column packed with phosphate-modified zirconia particles was demonstrated to enable the purification of two model His-tagged proteins-His-tagged green fluorescent protein and His-tagged alkaline phosphatase fused with maltose binding protein. Thus, this chromatography method is useful for purifying His-tagged proteins without any pH stress or additives. Additionally, because of the mechanical properties of the zirconia particles, this technique enables high-performance purification at a high flow rate.
Collapse
Affiliation(s)
- Shogo Kanoh
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan; Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Momoyo Wada
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Takeshi Tanaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Masahiro Kitamura
- NGK Spark Plug-AIST Healthcare Materials Cooperative Research Laboratory, Nagoya, Aichi 463-8560, Japan
| | - Katsuya Kato
- NGK Spark Plug-AIST Healthcare Materials Cooperative Research Laboratory, Nagoya, Aichi 463-8560, Japan
| | - Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
11
|
Hossain N, Mobarak MH, Hossain A, Khan F, Mim JJ, Chowdhury MA. Advances of plant and biomass extracted zirconium nanoparticles in dental implant application. Heliyon 2023; 9:e15973. [PMID: 37215906 PMCID: PMC10192772 DOI: 10.1016/j.heliyon.2023.e15973] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Nanoparticles are minimal materials with unique physicochemical features that set them apart from bulk materials of the same composition. These properties make nanoparticles highly desirable for use in commercial and medical research. The primary intention for the development of nanotechnology is to achieve overarching social objectives like bettering our understanding of nature, boosting productivity, improving healthcare, and extending the bounds of sustainable development and human potential. Keeping this as a motivation, Zirconia nanoparticles are becoming the preferred nanostructure for modern biomedical applications. This nanotechnology is exceptionally versatile and has several potential uses in dental research. This review paper concentrated on the various benefits of zirconium nanoparticles in dentistry and how they provide superior strength and flexibility compared to their counterparts. Moreover, the popularity of zirconium nanoparticles is also growing as it has strong biocompatibility potency. Zirconium nanoparticles can be used to develop or address the major difficulty in dentistry. Therefore, this review paper aims to provide a summary of the fundamental research and applications of zirconium nanoparticles in dental implants.
Collapse
Affiliation(s)
- Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Amran Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fardin Khan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mohammad Asaduzzaman Chowdhury
- Department of Mechanical Engineering, Dhaka University of Engineering and Technology (DUET), Gazipur, Gazipur, 1707, Bangladesh
| |
Collapse
|
12
|
Tonin BSH, Fu J, He Y, Ye N, Chew HP, Fok A. The effect of abutment material stiffness on the mechanical behavior of dental implant assemblies: A 3D finite element study. J Mech Behav Biomed Mater 2023; 142:105847. [PMID: 37127010 DOI: 10.1016/j.jmbbm.2023.105847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE This study aimed to evaluate the stress distribution and microgap formation in implant assemblies with conical abutments made of different materials under an oblique load. MATERIALS AND METHODS The mechanical behavior of an implant assembly with a titanium abutment was analyzed and compared with that of an assembly with a Y-TZP abutment using finite element analysis (FEA). A torque of 20 Ncm was first applied to the abutment screw, followed by oblique loads of 10 N-280 N applied to the prosthesis placed on the implant. The maximum stress in the abutment screw, the microgap formation process, and the critical load for bridging the internal implant space were evaluated. RESULTS No significant difference in stress distribution between the two cases was observed, with the stresses being mainly concentrated at the top half of the screw (the predicted maximum von Mises stress was approximately 1200 MPa at 280 N). The area in contact at the implant-to-abutment interface decreased with increasing load for both abutments, with the critical load for bridging the internal implant space being roughly 140 N. The maximum gap size being was approximately 470 μm with either abutment. CONCLUSION There was no significant difference in the stress distribution or microgap formed between implant assemblies with titanium and Y-TZP abutments having an internal conical connection.
Collapse
Affiliation(s)
- Bruna S H Tonin
- Department of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Jing Fu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, School of Stomatology of Qingdao University, China
| | - Yiting He
- Department of Prosthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Ning Ye
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Hooi Pin Chew
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Alex Fok
- Minnesota Dental Research Center for Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Xu Y, Wang H, Lin Q, Miao Q, Liu M, Ni H, Zhang L, Lyu M, Wang S. Immobilization of Dextranase Obtained from the Marine Cellulosimicrobium sp. Y1 on Nanoparticles: Nano-TiO 2 Improving Hydrolysate Properties and Enhancing Reuse. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1065. [PMID: 36985959 PMCID: PMC10056431 DOI: 10.3390/nano13061065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Dextranase is widely used in sugar production, drug synthesis, material preparation, and biotechnology, among other fields. The immobilization of dextranase using nanomaterials in order to make it reusable, is a hot research topic. In this study, the immobilization of purified dextranase was performed using different nanomaterials. The best results were obtained when dextranase was immobilized on titanium dioxide (TiO2), and a particle size of 30 nm was achieved. The optimum immobilization conditions were pH 7.0, temperature 25 °C, time 1 h, and immobilization agent TiO2. The immobilized materials were characterized using Fourier-transform infrared spectroscopy, X-ray diffractometry, and field emission gun scanning electron microscopy. The optimum temperature and pH of the immobilized dextranase were 30 °C and 7.5, respectively. The activity of the immobilized dextranase was >50% even after 7 times of reuse, and 58% of the enzyme was active even after 7 days of storage at 25 °C, indicating the reproducibility of the immobilized enzyme. The adsorption of dextranase by TiO2 nanoparticles exhibited secondary reaction kinetics. Compared with free dextranase, the hydrolysates of the immobilized dextranase were significantly different, and consisted mainly of isomaltotriose and isomaltotetraose. The highly polymerized isomaltotetraose levels could reach >78.69% of the product after 30 min of enzymatic digestion.
Collapse
Affiliation(s)
- Yingying Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huanyu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qianru Lin
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qingzhen Miao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingwang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hao Ni
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
14
|
Wiessner A, Wassmann T, Wiessner JM, Schubert A, Wiechens B, Hampe T, Bürgers R. In Vivo Biofilm Formation on Novel PEEK, Titanium, and Zirconia Implant Abutment Materials. Int J Mol Sci 2023; 24:ijms24021779. [PMID: 36675292 PMCID: PMC9865206 DOI: 10.3390/ijms24021779] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The formation of biofilms on the surface of dental implants and abutment materials may lead to peri-implantitis and subsequent implant failure. Recently, innovative materials such as polyether-ether-ketone (PEEK) and its modifications have been used as abutment materials. However, there is limited knowledge on microbial adhesion to PEEK materials. The aim of this in vivo study was to investigate biofilm formation on the surface of conventional (titanium and zirconia) and PEEK implant abutment materials. Split specimens of titanium, zirconia, PEEK, and modified PEEK (PEEK-BioHPP) were manufactured, mounted in individual removable acrylic upper jaw splints, and worn by 20 healthy volunteers for 24 h. The surface roughness was determined using widefield confocal microscopy. Biofilm accumulation was investigated by fluorescence microscopy and quantified by imaging software. The surface roughness of the investigated materials was <0.2 µm and showed no significant differences between the materials. Zirconia showed the lowest biofilm formation, followed by titanium, PEEK, and PEEK-BioHPP. Differences were significant (p < 0.001) between the investigated materials, except for the polyether-ether-ketones. Generally, biofilm formation was significantly higher (p < 0.05) in the posterior region of the oral cavity than in the anterior region. The results of the present study show a material-dependent susceptibility to biofilm formation. The risk of developing peri-implantitis may be reduced by a specific choice of abutment material.
Collapse
Affiliation(s)
- Andreas Wiessner
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Torsten Wassmann
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany
- Correspondence:
| | - Johanna Maria Wiessner
- Department of Orthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Andrea Schubert
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Bernhard Wiechens
- Department of Orthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Tristan Hampe
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ralf Bürgers
- Department of Prosthodontics, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
15
|
Jing X, Zhai Q, Zhang D, Zheng S, Jaffery SHI, Wang F. Wettability and frictional properties on zirconia surfaces irradiated by femtosecond laser. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Hodásová Ľ, Morena AG, Tzanov T, Fargas G, Llanes L, Alemán C, Armelin E. 3D-Printed Polymer-Infiltrated Ceramic Network with Antibacterial Biobased Silver Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:4803-4813. [PMID: 36166595 PMCID: PMC9923783 DOI: 10.1021/acsabm.2c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work aimed at the antimicrobial functionalization of 3D-printed polymer-infiltrated biomimetic ceramic networks (PICN). The antimicrobial properties of the polymer-ceramic composites were achieved by coating them with human- and environmentally safe silver nanoparticles trapped in a phenolated lignin matrix (Ag@PL NPs). Lignin was enzymatically phenolated and used as a biobased reducing agent to obtain stable Ag@PL NPs, which were then formulated in a silane (γ-MPS) solution and deposited to the PICN surface. The presence of the NPs and their proper attachment to the surface were analyzed with spectroscopic methods (FTIR and Raman) and X-ray photoelectron spectroscopy (XPS). Homogeneous distribution of 13.4 ± 3.2 nm NPs was observed in the transmission electron microscopy (TEM) images. The functionalized samples were tested against Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria, validating their antimicrobial efficiency in 24 h. The bacterial reduction of S. aureus was 90% in comparison with the pristine surface of PICN. To confirm that the Ag-functionalized PICN scaffold is a safe material to be used in the biomedical field, its biocompatibility was demonstrated with human fibroblast (BJ-5ta) and keratinocyte (HaCaT) cells, which was higher than 80% in both cell lines.
Collapse
Affiliation(s)
- Ľudmila Hodásová
- Departament
d’Enginyeria Química, IMEM-BRT, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I,
2nd Floor, 08019 Barcelona, Spain,Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Basement
S-1, 08019 Barcelona, Spain,Departament
de Ciéncia i Enginyeria de Materials, CIEFMA, EEBE, Universitat Politécnica de Catalunya, Campus Diagonal Besòs, C/Eduard
Maristany, 10-14, Building I, 1st Floor, 08019 Barcelona, Spain
| | - A. Gala Morena
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politécnica de Catalunya, Terrassa 08222, Spain
| | - Tzanko Tzanov
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politécnica de Catalunya, Terrassa 08222, Spain
| | - Gemma Fargas
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Basement
S-1, 08019 Barcelona, Spain,Departament
de Ciéncia i Enginyeria de Materials, CIEFMA, EEBE, Universitat Politécnica de Catalunya, Campus Diagonal Besòs, C/Eduard
Maristany, 10-14, Building I, 1st Floor, 08019 Barcelona, Spain
| | - Luis Llanes
- Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Basement
S-1, 08019 Barcelona, Spain,Departament
de Ciéncia i Enginyeria de Materials, CIEFMA, EEBE, Universitat Politécnica de Catalunya, Campus Diagonal Besòs, C/Eduard
Maristany, 10-14, Building I, 1st Floor, 08019 Barcelona, Spain
| | - Carlos Alemán
- Departament
d’Enginyeria Química, IMEM-BRT, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I,
2nd Floor, 08019 Barcelona, Spain,Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Basement
S-1, 08019 Barcelona, Spain,Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Elaine Armelin
- Departament
d’Enginyeria Química, IMEM-BRT, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I,
2nd Floor, 08019 Barcelona, Spain,Barcelona
Research Center in Multiscale Science and Engineering, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, Basement
S-1, 08019 Barcelona, Spain,
| |
Collapse
|
17
|
Arshad HM, Shahzad A, Shahid S, Ali S, Rauf A, Sharif S, Ullah ME, Ullah MI, Ali M, Ahmad HI. Synthesis and Biomedical Applications of Zirconium Nanoparticles: Advanced Leaps and Bounds in the Recent Past. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4910777. [PMID: 36147638 PMCID: PMC9489350 DOI: 10.1155/2022/4910777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
Many synthetic routes manufacture zirconium nanoparticles in metal oxide, nitride, and other combination forms. Coupled with other variables such as concentration, pH, and form of precursor used, the various synthetic methods support synthesizing the zirconium metal oxide nanoparticles with changed features. Various synthetic methods were studied, such as sol-gel, hydrothermal, laser ablation, and precipitation. All have different synthetic routes, different precursors and solvents were sued, and the product was characterized by SEM, TEM, photo luminance spectroscopy, UV-absorption spectroscopy, and powder X-ray diffraction. X-ray diffraction determined the crystal structure by identifying the crystal shape, arrangement of atoms, and spacing between them. SEM and TEM studied the particle size and morphology of nanoparticles. UV-visible absorption spectroscopy and PL spectroscopy were used for the determination of optical properties of nanoparticles. Zirconium oxide nanoparticles have many applications in the medical field. The review study primarily focuses on the efficient combination of zirconium dioxide with other additive materials and functionalization techniques used to improve the material's properties, assisting the use of the material in hip arthroplasty and bone tissue applications. The development of sophisticated near-infrared (NIR) absorbing small molecules for useful phototheranostic applications was discussed in this paper.
Collapse
Affiliation(s)
- Hafiz Muhammad Arshad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Amir Shahzad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Sammia Shahid
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Sadaqat Ali
- Department of Zoology, Ghazi University, D G Khan, Pakistan
| | - Abdul Rauf
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Shahzad Sharif
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Muhammad Ehsan Ullah
- Department of Physics, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Muhammad Inam Ullah
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Chemistry, University of Education, Lahore, Sub-Campus, D G Khan, Pakistan
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
18
|
Fan Y, Xie D, You D, Wei L, Wang X, Leng Y. Mechanical properties and electronic structure of Cu-doped tin: a first-principle study. J Mol Model 2022; 28:221. [PMID: 35836028 DOI: 10.1007/s00894-022-05215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
Metal doping is an effective method for improving the toughness of ceramic materials and reducing coating fractures. In this study, first-principle calculations based on density functional theory were performed to study the formation energy, elastic constant, and electronic structure of Cu-doped TiN. The results reveal that Cu tends to replace the Ti sites in TiN crystal cells; with an increase in Cu concentration, the formation energy of the Cu-doped TiN system decreases. This indicates that the structural stability of Cu-doped TiN decreases. From the calculated elastic constant and the Voigt-Reuss-Hill approximation, it is evident that the bulk modulus B and shear modulus G decrease as the Cu concentration increases. However, G decreases more rapidly, thus increasing the B/G ratio. According to Paugh's ratio, the increase in B/G indicates an increase in the ductility of TiN. The results of the band structure, density of states, charge density, and Mulliken bond population analysis reveal that Cu doping reduces the covalent bond strength of TiN, enhances metallicity, and reduces the structural stability of the system, enhancing the toughness of TiN. The results of this study will provide theoretical and experimental guidance for improving the toughness of TiN coatings.
Collapse
Affiliation(s)
- Yuyuan Fan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, China
| | - Dong Xie
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Duo You
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, China
| | - Longjun Wei
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiaoting Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yongxiang Leng
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
19
|
Chopra D, Jayasree A, Guo T, Gulati K, Ivanovski S. Advancing dental implants: Bioactive and therapeutic modifications of zirconia. Bioact Mater 2022; 13:161-178. [PMID: 35224299 PMCID: PMC8843948 DOI: 10.1016/j.bioactmat.2021.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/22/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
Zirconium-based implants have gained popularity in the dental implant field owing to their corrosion resistance and biocompatibility, attributed to the formation of a native zirconia (ZrO2) film. However, enhanced bioactivity and local therapy from such implants are desirable to enable the earlier establishment and improved long-term maintenance of implant integration, especially in compromised patient conditions. As a result, surface modification of zirconium-based implants have been performed using various physical, chemical and biological techniques at the macro-, micro-, and nano-scales. In this extensive review, we discuss and detail the development of Zr implants covering the spectrum from past and present advancements to future perspectives, arriving at the next generation of highly bioactive and therapeutic nano-engineered Zr-based implants. The review provides in-depth knowledge of the bioactive/therapeutic value of surface modification of Zr implants in dental implant applications focusing on clinical translation.
Collapse
Affiliation(s)
| | | | | | - Karan Gulati
- Corresponding authors. School of Dentistry, University of Queensland, 288 Herston Road, Herston QLD, 4006, Australia.
| | - Sašo Ivanovski
- Corresponding authors. School of Dentistry, University of Queensland, 288 Herston Road, Herston QLD, 4006, Australia.
| |
Collapse
|
20
|
Relevant Aspects of Titanium and Zirconia Dental Implants for Their Fatigue and Osseointegration Behaviors. MATERIALS 2022; 15:ma15114036. [PMID: 35683331 PMCID: PMC9182570 DOI: 10.3390/ma15114036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023]
Abstract
Osseointegration capacity and good mechanical behavior are key to the success of the dental implant. In many investigations, comparisons of properties are made using different dental implant designs and therefore the results can be influenced by the macrodesign of the dental implant. In this work, studies were carried out with the same dental implant model using different roughness and different materials—commercially pure titanium (grade 4) and zirconia. For this purpose, 80 smooth passivated titanium (Ti), 80 smooth zirconia (ZrO2), and 80 rough passivated titanium (Ti-R) dental implants were used. The samples were characterized by their roughness, wettability, surface energy, residual stresses, and fatigue behavior. The implants were implanted in minipigs for 4 and 12 weeks. The animals were sacrificed, and histological studies were carried out to determine the osseointegration parameters for each of the implantation times. Ti and ZrO2 dental implants have very similar wettability and surface energy properties. However, the roughness causes a decrease in the hydrophilic character and a decrease of the total surface energy and especially the dispersive component, while the polar component is higher. Due to the compressive residual stresses of alumina sandblasting, the rough dental implant has the best fatigue behavior, followed by Ti and due to the lack of toughness and rapid crack propagation the ZrO2 implants have the worst fatigue behavior. The bone index contact (BIC) values for 4 weeks were around 25% for Ti, 32% for ZrO2, and 45% for Ti-R. After 12 weeks the Ti dental implants increased to 42%, for Ti, 43% for ZrO2, and an important increase to 76% was observed for Ti-R implants. In vivo results showed that the key factor that improves osseointegration is roughness. There was no significant difference between ZrO2 and Ti implants without sandblasting.
Collapse
|
21
|
Kroczek K, Turek P, Mazur D, Szczygielski J, Filip D, Brodowski R, Balawender K, Przeszłowski Ł, Lewandowski B, Orkisz S, Mazur A, Budzik G, Cebulski J, Oleksy M. Characterisation of Selected Materials in Medical Applications. Polymers (Basel) 2022; 14:1526. [PMID: 35458276 PMCID: PMC9027145 DOI: 10.3390/polym14081526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
Tissue engineering is an interdisciplinary field of science that has developed very intensively in recent years. The first part of this review describes materials with medical and dental applications from the following groups: metals, polymers, ceramics, and composites. Both positive and negative sides of their application are presented from the point of view of medical application and mechanical properties. A variety of techniques for the manufacture of biomedical components are presented in this review. The main focus of this work is on additive manufacturing and 3D printing, as these modern techniques have been evaluated to be the best methods for the manufacture of medical and dental devices. The second part presents devices for skull bone reconstruction. The materials from which they are made and the possibilities offered by 3D printing in this field are also described. The last part concerns dental transitional implants (scaffolds) for guided bone regeneration, focusing on polylactide-hydroxyapatite nanocomposite due to its unique properties. This section summarises the current knowledge of scaffolds, focusing on the material, mechanical and biological requirements, the effects of these devices on the human body, and their great potential for applications.
Collapse
Affiliation(s)
- Kacper Kroczek
- Doctoral School of Engineering and Technical Sciences, Rzeszow University of Technology, 35-959 Rzeszow, Poland;
| | - Paweł Turek
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (Ł.P.); (G.B.)
| | - Damian Mazur
- Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland
| | - Jacek Szczygielski
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
- Department of Neurosurgery, Faculty of Medicine, Saarland University, 66123 Saarbrücken, Germany
| | - Damian Filip
- Institute of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland;
| | - Robert Brodowski
- Department of Maxillofacial Surgery, Fryderyk Chopin Clinical Voivodeship Hospital No.1 in Rzeszow, 35-055 Rzeszow, Poland;
| | - Krzysztof Balawender
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
| | - Łukasz Przeszłowski
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (Ł.P.); (G.B.)
| | - Bogumił Lewandowski
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
- Department of Maxillofacial Surgery, Fryderyk Chopin Clinical Voivodeship Hospital No.1 in Rzeszow, 35-055 Rzeszow, Poland;
| | - Stanisław Orkisz
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
| | - Artur Mazur
- Faculty of Medicine, University of Rzeszow, 35-959 Rzeszow, Poland; (J.S.); (K.B.); (B.L.); (S.O.); (A.M.)
| | - Grzegorz Budzik
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (Ł.P.); (G.B.)
| | - Józef Cebulski
- Institute of Physics, University of Rzeszow, 35-959 Rzeszow, Poland;
| | - Mariusz Oleksy
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland;
| |
Collapse
|
22
|
Krautwald L, Smeets R, Stolzer C, Rutkowski R, Guo L, Reitmeier A, Gosau M, Henningsen A. Osseointegration of Zirconia Implants after UV-Light or Cold Atmospheric Plasma Surface Treatment In Vivo. MATERIALS 2022; 15:ma15020496. [PMID: 35057216 PMCID: PMC8781961 DOI: 10.3390/ma15020496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022]
Abstract
The influence of UV light and non-thermal plasma on the osseointegration of yttria-stabilized zirconia implants (Y-TZP) comparing the two methods is unclear. The aim of this study was to show the influence of these methods on the osseointegration of dental zirconia implants in an animal model. A total of 54 implants were either untreated, treated with UV light (UV), or non-thermal oxygen plasma for 12 min and inserted into the parietal bones of six domestic pigs. The animals were sacrificed after a healing interval of two, four, and nine weeks. The degree of osseointegration was determined using histomorphometric determination of bone-to-implant contact values (BIC) and the bone-to-implant contact values within the retentive parts of the implants (BAFO). BIC values decreased in all groups after four weeks of healing and re-increased after nine weeks in all groups. BAFO increased significantly over time in all groups. However, there were no statistically significant differences in BIC and BAFO values between the control group and the test groups and over time. Clinical studies may follow to confirm the influence of cold plasma and UV light on the healing and survival of zirconia implants.
Collapse
Affiliation(s)
- Lisa Krautwald
- Division “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (L.K.); (R.S.); (L.G.); (M.G.)
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (C.S.); (R.R.)
| | - Ralf Smeets
- Division “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (L.K.); (R.S.); (L.G.); (M.G.)
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (C.S.); (R.R.)
| | - Carolin Stolzer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (C.S.); (R.R.)
| | - Rico Rutkowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (C.S.); (R.R.)
| | - Linna Guo
- Division “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (L.K.); (R.S.); (L.G.); (M.G.)
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Aline Reitmeier
- Department of Laboratory Animal Science, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Martin Gosau
- Division “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (L.K.); (R.S.); (L.G.); (M.G.)
| | - Anders Henningsen
- Division “Regenerative Orofacial Medicine”, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; (L.K.); (R.S.); (L.G.); (M.G.)
- Private Practice ELBE MKG, Suelldorfer Kirchenweg 1A, 22587 Hamburg, Germany
- Correspondence:
| |
Collapse
|
23
|
Zupancic Cepic L, Frank M, Reisinger AG, Sagl B, Pahr DH, Zechner W, Schedle A. Experimental validation of a micro-CT finite element model of a human cadaveric mandible rehabilitated with short-implant-supported partial dentures. J Mech Behav Biomed Mater 2021; 126:105033. [PMID: 34933158 DOI: 10.1016/j.jmbbm.2021.105033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aimed to address the predictive value of a micro-computed tomography (μCT)-based finite element (μFE) model of a human cadaveric edentulous posterior mandible, rehabilitated by short dental implants. Hereby, three different prosthetic/implant configurations of fixed partial dentures ("Sp"-3 splinted crowns on 3 implants, "Br" - Bridge: 3 splinted crowns on 2 implants, and "Si"- 3 single crowns) were analysed by comparing the computational predictions of the global stiffness with experimental data. METHODS Experimental displacement of the bone/implant/prosthesis system was measured under axial and oblique loads of 100 N using an optical deformation system (GOM Aramis) and the overall movement of the testing machine (Zwick Z030). Together with the measured machine force, an "Aramis" (optical markers) and "Zwick" (test machine) stiffness were calculated. FE models were created based on μCT-scans of the cadaveric mandible sample (n = 1) before and after implantation and using stl-files of the crowns. The same load tests and boundary conditions were simulated on the models and the μFE-results were compared to experimental data using linear regression analysis. RESULTS The regression line through a plot of pooled stiffness values (N/mm) for the optical displacement recording (true local displacement) and the test machine (machine compliance included) had a slope of 0.57 and a correlation coefficient R2 of 0.82. The average pooled correlation of global stiffness between the experiment and FE-analysis (FEA) showed a R2 of 0.80, but the FEA-stiffness was 7.2 times higher. The factor was highly dependent on the test configuration. Sp-configuration showed the largest stiffness followed by Br-configuration (17% difference in experiment and 21% in FEA). CONCLUSIONS The current study showed good qualitative agreement between the experimental and predicted global stiffness of different short implant configurations. It could be deduced that 1:1 splinting of the short implants by the crowns is most favorable for the stiffness of the implant/prosthesis system. However, in the clinical context, the absolute in silico readings must be interpreted cautiously, as the FEA showed a considerable overestimation of the values.
Collapse
Affiliation(s)
- Lana Zupancic Cepic
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Martin Frank
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1090, Vienna, Austria
| | - Andreas G Reisinger
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, 1090, Vienna, Austria; Department of Anatomy und Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Benedikt Sagl
- Center of Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Dieter H Pahr
- Department of Anatomy und Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria.
| | - Werner Zechner
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Andreas Schedle
- Competence Center for Dental Materials, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
24
|
Surface Effect of Nano-Roughened Yttria-Doped Zirconia on Salivary Protein Adhesion. MATERIALS 2021; 14:ma14216412. [PMID: 34771939 PMCID: PMC8585120 DOI: 10.3390/ma14216412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Biocompatibility of yttria (3 mol%) stabilized zirconia ceramics, 3Y-TZP, was affected to a large degree as a result of protein adsorption from human saliva that in turn depends on materials surface properties. Variable nano-roughness levels in 3Y-TZP discs were characterized and tested for specificity and selectivity with respect to size and uptake for human salivary protein.
Collapse
|
25
|
Gil J, Delgado-García-Menocal JA, Velasco-Ortega E, Bosch B, Delgado L, Pérez-Antoñanzas R, Fernández-Fairén M. Comparison of zirconia degradation in dental implants and femoral balls: an X-ray diffraction and nanoindentation study. Int J Implant Dent 2021; 7:103. [PMID: 34657990 PMCID: PMC8520857 DOI: 10.1186/s40729-021-00383-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022] Open
Abstract
Background New tetragonal zirconia polycrystal dental implants stabilized with yttria (Y-TZP) have appeared in the implantology market in the form of single piece or two-piece zircona implant system. These new type of implants improve the aesthetical properties compared to conventional commercially pure (c.p.) titanium used for implants, although the long term mechanical behavior of these new implants is not yet well known. In orthopaedics, the application of zirconia as femoral balls presented an important controversial use due to the premature fracture once implanted. Y-TZP dental implants can be affected by hydrothermal degradation and its behavior should be analysed to avoid a premature fracture. The scientific question behind the study is to analyse if the degradation mechanism observed in orthopaedics applications of Y-TZP is similar to that of Y-TZP for dental applications. Materials and methods For this purpose, 30 original Y-TZP dental implants and 42 Y-TZP femoral balls fractured in vivo have been studied. Dental implants were submitted to an accelerated hydrothermal degradation to compare with the femoral balls fractured in vivo. Phase transformation as well as the mechanical behaviour of the degraded samples was studied by X ray diffraction and nanoindentation tests, respectively. Results Results have shown that the fracture mechanism of dental implants does not resemble the mechanism observed in orthopaedic samples, presenting a good long-term behaviour. Conclusion The results ensure the good performance of zirconia dental implants, because the degradation of the ceramic is very limited and does not affect the mechanical properties.
Collapse
Affiliation(s)
- Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, c/Josep Trueta s/n. 08195-Sant Cugat del Vallés, Barcelona, Spain. .,School of Dentistry, Universitat Internacional de Catalunya, c/Josep Trueta s/n. 08195-Sant Cugat del Vallés, Barcelona, Spain.
| | - José Angel Delgado-García-Menocal
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, c/Josep Trueta s/n. 08195-Sant Cugat del Vallés, Barcelona, Spain.,School of Dentistry, Universitat Internacional de Catalunya, c/Josep Trueta s/n. 08195-Sant Cugat del Vallés, Barcelona, Spain
| | | | - Begoña Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, c/Josep Trueta s/n. 08195-Sant Cugat del Vallés, Barcelona, Spain
| | - Luis Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, c/Josep Trueta s/n. 08195-Sant Cugat del Vallés, Barcelona, Spain
| | - Román Pérez-Antoñanzas
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, c/Josep Trueta s/n. 08195-Sant Cugat del Vallés, Barcelona, Spain
| | - Mariano Fernández-Fairén
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, c/Josep Trueta s/n. 08195-Sant Cugat del Vallés, Barcelona, Spain
| |
Collapse
|
26
|
Minkiewicz-Zochniak A, Strom K, Jarzynka S, Iwańczyk B, Koryszewska-Bagińska A, Olędzka G. Effect of Low Amperage Electric Current on Staphylococcus Aureus-Strategy for Combating Bacterial Biofilms Formation on Dental Implants in Cystic Fibrosis Patients, In Vitro Study. MATERIALS 2021; 14:ma14206117. [PMID: 34683710 PMCID: PMC8537792 DOI: 10.3390/ma14206117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Cystic fibrosis is an inherited disease that affects multiple organs and systems. The oral cavity can serve as a substantial source of bacteria, causing respiratory infections and diseases which continue to dictate the clinical course of the disease and prognosis in patients with CF. Low voltage and electric current could effectively kill bacteria and biofilms, and the activity of milliampere currents could be used as an effective method of fighting bacteria. This study evaluated the effect of low amperage electric current on the formation of Staphylococcus aureus biofilms on dental implants such as titanium and zirconium in patients with cystic fibrosis. Our studies suggest that a constant electric current at a low intensity of 1 mA and 10 mA is inhibiting bacterial adhesion, detaching biofilm-forming bacteria on biomaterials used in dental implants such as titanium and zirconium, and destroying bacterial cells of Staphylococcus aureus strains. In addition, we observed the selection of an appropriate biomaterial for implants in people affected by chronic diseases, such as CF, should be carefully planned.
Collapse
Affiliation(s)
- Anna Minkiewicz-Zochniak
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (K.S.); (S.J.); (A.K.-B.)
| | - Kamila Strom
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (K.S.); (S.J.); (A.K.-B.)
| | - Sylwia Jarzynka
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (K.S.); (S.J.); (A.K.-B.)
| | - Bartłomiej Iwańczyk
- Department of Oral Surgery, Medical University of Lublin, Karmelicka 7, 20-081 Lublin, Poland;
| | - Anna Koryszewska-Bagińska
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (K.S.); (S.J.); (A.K.-B.)
| | - Gabriela Olędzka
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (K.S.); (S.J.); (A.K.-B.)
- Correspondence:
| |
Collapse
|
27
|
Hodásová Ľ, Alemán C, del Valle LJ, Llanes L, Fargas G, Armelin E. 3D-Printed Polymer-Infiltrated Ceramic Network with Biocompatible Adhesive to Potentiate Dental Implant Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5513. [PMID: 34639905 PMCID: PMC8509517 DOI: 10.3390/ma14195513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
The aim of this work was to prepare and characterize polymer-ceramic composite material for dental applications, which must resist fracture and wear under extreme forces. It must also be compatible with the hostile environment of the oral cavity. The most common restorative and biocompatible copolymer, 2,2-bis(p-(2'-2-hydroxy-3'-methacryloxypropoxy)phenyl)propane and triethyleneglycol dimethacrylate, was combined with 3D-printed yttria-stabilized tetragonal zirconia scaffolds with a 50% infill. The proper scaffold deposition and morphology of samples with 50% zirconia infill were studied by means of X-ray computed microtomography and scanning electron microscopy. Samples that were infiltrated with copolymer were observed under compression stress, and the structure's failure was recorded using an Infrared Vic 2DTM camera, in comparison with empty scaffolds. The biocompatibility of the composite material was ascertained with an MG-63 cell viability assay. The microtomography proves the homogeneous distribution of pores throughout the whole sample, whereas the presence of the biocompatible copolymer among the ceramic filaments, referred to as a polymer-infiltrated ceramic network (PICN), results in a safety "damper", preventing crack propagation and securing the desired material flexibility, as observed by an infrared camera in real time. The study represents a challenge for future dental implant applications, demonstrating that it is possible to combine the fast robocasting of ceramic paste and covalent bonding of polymer adhesive for hybrid material stabilization.
Collapse
Affiliation(s)
- Ľudmila Hodásová
- Departament d’Enginyeria Química, IMEM Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 2nd Floor, 08019 Barcelona, Spain; (Ľ.H.); (C.A.); (L.J.d.V.)
- Departament de Ciència i Enginyeria de Materials, CIEFMA Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 1st Floor, 08019 Barcelona, Spain;
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, Basement Floor, 08019 Barcelona, Spain
| | - Carlos Alemán
- Departament d’Enginyeria Química, IMEM Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 2nd Floor, 08019 Barcelona, Spain; (Ľ.H.); (C.A.); (L.J.d.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, Basement Floor, 08019 Barcelona, Spain
| | - Luís J. del Valle
- Departament d’Enginyeria Química, IMEM Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 2nd Floor, 08019 Barcelona, Spain; (Ľ.H.); (C.A.); (L.J.d.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, Basement Floor, 08019 Barcelona, Spain
| | - Luis Llanes
- Departament de Ciència i Enginyeria de Materials, CIEFMA Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 1st Floor, 08019 Barcelona, Spain;
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, Basement Floor, 08019 Barcelona, Spain
| | - Gemma Fargas
- Departament de Ciència i Enginyeria de Materials, CIEFMA Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 1st Floor, 08019 Barcelona, Spain;
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, Basement Floor, 08019 Barcelona, Spain
| | - Elaine Armelin
- Departament d’Enginyeria Química, IMEM Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 2nd Floor, 08019 Barcelona, Spain; (Ľ.H.); (C.A.); (L.J.d.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, Basement Floor, 08019 Barcelona, Spain
| |
Collapse
|
28
|
Totou D, Naka O, Mehta SB, Banerji S. Esthetic, mechanical, and biological outcomes of various implant abutments for single-tooth replacement in the anterior region: a systematic review of the literature. Int J Implant Dent 2021; 7:85. [PMID: 34494174 PMCID: PMC8423965 DOI: 10.1186/s40729-021-00370-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background The choice of the appropriate implant abutment is a critical step for a successful outcome. Titanium abutments have demonstrated high survival rates, due to their excellent biocompatibility and high mechanical strength, although they often result in a grayish discoloration of the peri-implant mucosa. This esthetic concern culminated in the introduction of ceramic abutments. The aim of this review was to assess the esthetic, mechanical, and biological outcomes as well as the survival of the different types of abutments used for single-implant restorations in the anterior area. Material and methods An electronic search was conducted in Medline, Embase, and Cochrane Central databases using the appropriate Mesh terms and predetermined eligibility criteria. The quality of the studies was assessed using the ROB 2 tool. The last search was conducted on 18th of March 2020. Results From the 2074 records initially identified, 23 randomized controlled trials (32 publications) were included for qualitative analysis. Data were classified based on study information, specific characteristics of the intervention and comparator, and information related to the outcome measures. Seven studies exhibited an overall low risk of bias, while twelve studies raised some concerns. Conclusions The rate of abutment failure was low and was associated with the ceramic abutments, especially those with internal connection. Limited correlation was noted between soft tissue thickness and color difference. Titanium abutments caused significantly more discoloration to the soft tissues than ceramic abutments, while hueing (gold or pink) slightly improved their color performance. Zirconia allowed a better color match than titanium or gold abutments, still discolored slightly the soft tissues. The submucosally modified zirconia abutments exhibited encouraging results. No significant difference was reported between materials or different types of retention on recession, papillary fill, and biological outcomes.
Collapse
Affiliation(s)
- Dimitra Totou
- Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, London, UK
| | - Olga Naka
- Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, London, UK. .,School of Dentistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Shamir B Mehta
- Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, London, UK
| | - Subir Banerji
- Faculty of Dentistry Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
29
|
Nanoscale physico-mechanical properties of an aging resistant ZTA composite. J Mech Behav Biomed Mater 2021; 123:104690. [PMID: 34385065 DOI: 10.1016/j.jmbbm.2021.104690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To characterize the effects of aging on the nanomechanical properties and 3D surface topographical parameters of an experimental Zirconia Toughened Alumina (ZTA) composite compared to its respective individual counterpart materials. METHODS Disk-shaped specimens comprised of three material groups were processed: 1) ZTA 70/30 (70% alumina reinforced with 30% second-generation 3Y-TZP); 2) Zpex (Second-generation 3Y-TZP), and; 3) Al2O3 (High purity Alumina) (n = 10/material, 12 × 1 mm). After synthesis, ceramic powders were pressed, the green-body samples were sintered and polished. Nanoindentation testing was performed to record elastic modulus (E) and hardness (H). Interferometry was utilized to assess 3D surface roughness parameters (Sa, Sq), while X-ray diffraction (XRD) and scanning electron microscope (SEM) assessed the crystalline content and microstructure. All tests were performed before and after simulated aging (134°C, 2.2 bar, 20 h). Statistical analyses were performed using linear mixed-model and least square difference pos-hoc tests (α = 5%). RESULTS XRD spectra indicated increase of monoclinic peaks for Zpex (~18%) relative to ZTA 70/30 (~2.5%) after aging. Additionally, aging did not affect the surface roughness parameters of ZTA 70/30 and Al2O3, although a significant increase in Sa was recorded for Zpex following aging (~90 nm) (p < 0.001). Al2O3 yielded the highest H and E values (H:21 GPa, E: 254 GPa), followed by ZTA 70/30 (H: 13 GPa, E: 214 GPa) and Zpex (H:11 GPa, E: 167 GPa), all significantly different (p < 0.03). CONCLUSION ZTA 70/30 and Al2O3 presented high hydrothermal stability with respect to all evaluated variables, where artificial aging significantly increased the monoclinic content and surface roughness of Zpex.
Collapse
|
30
|
Rathee G, Bartwal G, Rathee J, Mishra YK, Kaushik A, Solanki PR. Emerging Multimodel Zirconia Nanosystems for High‐Performance Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Garima Rathee
- Special Centre for Nano science Jawaharlal Nehru University New Delhi India
| | - Gaurav Bartwal
- Hemwati Nandan Bahuguna Garhwal University Birla Campus, Pauri Garhwal Srinagar Uttarakhand 246174 India
| | - Jyotsna Rathee
- CSE Department Deenbandhu Chhoturam University of Science and Technology Murthal Haryana 131039 India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute NanoSYD University of Southern Denmark Alison 2 6400 Sønderborg Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory Department of Natural Sciences, Division of Sciences, Art, and Mathematics Florida Polytechnic University Lakeland FL 33805 USA
| | - Pratima R. Solanki
- Special Centre for Nano science Jawaharlal Nehru University New Delhi India
| |
Collapse
|
31
|
Freifrau von Maltzahn N, Holstermann J, Stiesch M, Kohorst P. In vitro evaluation of the influence of titanium nitride coating on the retention force between components of two-part abutments. BMC Oral Health 2021; 21:285. [PMID: 34078345 PMCID: PMC8173788 DOI: 10.1186/s12903-021-01636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background Two-part abutments are typically made up of a base composed of titanium and a ceramic build-up. The long-term outcomes are affected by the mechanical durability. The purpose of the present investigation was to evaluate and compare the retention force of two-part abutment systems with titanium or titanium nitride bases—as fixed with zirconia components and with various surface treatments. Methods A total of 60 two-part abutments were investigated—with a titanium base (n = 30) or titanium nitride coated bases (n = 30) and bonded with zirconia ceramic build-ups. The bonding surfaces were treated with aluminium oxide blasting, with an average particle size of 110 µm. The titanium bases were then pretreated with Alloy Primer or Clearfil Ceramic Primer. The ceramic build-ups were only treated with Clearfil Ceramic Primer. For twenty test specimens, no chemical pretreatment was performed. Test specimens were classified into six groups in accordance with the pretreatment (A–F; n = 10). A resin-based luting agent was employed to attach the two parts. Specimens were then subjected to artificial thermal aging (104 cycles with 5 °C/55 °C). The retention force between the two parts was then investigated with a pull-off test. The findings were analyzed by ANOVA statistics. Fracture patterns were examined by electron microscopy. Results In the absence of primer, titanium nitride coated bases gave significantly greater retention forces than other samples (p < 0.05). Chemical preconditioning with silane coupling agents did not effect on the retention force of coated bases. Conclusions The results of the current study suggested that modifying metal surfaces by coating the base with titanium nitride not only has esthetic and biological advantages, but also enhances the mechanical properties of the adhesive bond of two-part abutments.
Collapse
Affiliation(s)
- Nadine Freifrau von Maltzahn
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | | | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | |
Collapse
|
32
|
Kunrath MF, Gupta S, Lorusso F, Scarano A, Noumbissi S. Oral Tissue Interactions and Cellular Response to Zirconia Implant-Prosthetic Components: A Critical Review. MATERIALS 2021; 14:ma14112825. [PMID: 34070589 PMCID: PMC8198172 DOI: 10.3390/ma14112825] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022]
Abstract
Background: Dental components manufactured with zirconia (ZrO2) represent a significant percentage of the implant prosthetic market in dentistry. However, during the last few years, we have observed robust clinical and pre-clinical scientific investigations on zirconia both as a prosthetic and an implantable material. At the same time, we have witnessed consistent technical and manufacturing updates with regards to the applications of zirconia which appear to gradually clarify points which until recently were not well understood. Methods: This critical review evaluated the “state of the art” in relation to applications of this biomaterial in dental components and its interactions with oral tissues. Results: The physico-chemical and structural properties as well as the current surface treatment methodologies for ZrO2 were explored. A critical investigation of the cellular response to this biomaterial was completed and the clinical implications discussed. Finally, surface treatments of ZrO2 demonstrate that excellent osseointegration is possible and provide encouraging prospects for rapid bone adhesion. Furthermore, sophisticated surface treatment techniques and technologies are providing impressive oral soft tissue cell responses thus leading to superior biological seal. Conclusions: Dental devices manufactured from ZrO2 are structurally and chemically stable with biocompatibility levels allowing for safe and long-term function in the oral environment.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Dentistry Department, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 6681, Porto Alegre 90619-900, RS, Brazil;
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 6681, Porto Alegre 90619-900, RS, Brazil
| | - Saurabh Gupta
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20901, USA; (S.G.); (S.N.)
- Master Dental Science, Universitat Jaume I, 12071 Castellón de la Plana, Spain
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, CH, Italy;
| | - Antonio Scarano
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20901, USA; (S.G.); (S.N.)
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, CH, Italy;
- Correspondence: ; Tel.: +08713554084
| | - Sammy Noumbissi
- Zirconia Implant Research Group (Z.I.R.G), International Academy of Ceramic Implantology, Silver Spring, MD 20901, USA; (S.G.); (S.N.)
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, CH, Italy;
| |
Collapse
|
33
|
Minkiewicz-Zochniak A, Jarzynka S, Iwańska A, Strom K, Iwańczyk B, Bartel M, Mazur M, Pietruczuk-Padzik A, Konieczna M, Augustynowicz-Kopeć E, Olędzka G. Biofilm Formation on Dental Implant Biomaterials by Staphylococcus aureus Strains Isolated from Patients with Cystic Fibrosis. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2030. [PMID: 33920743 PMCID: PMC8073800 DOI: 10.3390/ma14082030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Implants made of ceramic and metallic elements, which are used in dentistry, may either promote or hinder the colonization and adhesion of bacteria to the surface of the biomaterial to varying degrees. The increased interest in the use of dental implants, especially in patients with chronic systemic diseases such as cystic fibrosis (CF), is caused by an increase in disease complications. In this study, we evaluated the differences in the in vitro biofilm formation on the surface of biomaterials commonly used in dentistry (Ti-6Al-4V, cobalt-chromium alloy (CoCr), and zirconia) by Staphylococcus aureus isolated from patients with CF. We demonstrated that S. aureus adherence and growth depends on the type of material used and its surface topography. Weaker bacterial biofilm formation was observed on zirconia surfaces compared to titanium and cobalt-chromium alloy surfaces. Moreover, scanning electron microscopy showed clear differences in bacterial aggregation, depending on the type of biomaterial used. Over the past several decades, S. aureus strains have developed several mechanisms of resistance, especially in patients on chronic antibiotic treatment such as CF. Therefore, the selection of an appropriate implant biomaterial with limited microorganism adhesion characteristics can affect the occurrence and progression of oral cavity infections, particularly in patients with chronic systemic diseases.
Collapse
Affiliation(s)
- Anna Minkiewicz-Zochniak
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| | - Sylwia Jarzynka
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| | - Agnieszka Iwańska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland; (A.I.); (E.A.-K.)
| | - Kamila Strom
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| | - Bartłomiej Iwańczyk
- The Chair and Department of Oral Surgery, Medical University of Lublin, Karmelicka 7, 20-081 Lublin, Poland;
| | - Marta Bartel
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.B.); (M.M.)
| | - Maciej Mazur
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.B.); (M.M.)
| | - Anna Pietruczuk-Padzik
- Department of Pharmaceutical Microbiology, Centre for Preclinical Research and Technology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Małgorzata Konieczna
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland; (A.I.); (E.A.-K.)
| | - Gabriela Olędzka
- Department of Medical Biology, Medical University of Warsaw, Litewska 14/16, 00-575 Warsaw, Poland; (A.M.-Z.); (S.J.); (K.S.); (M.K.)
| |
Collapse
|
34
|
Khorsandi D, Fahimipour A, Abasian P, Saber SS, Seyedi M, Ghanavati S, Ahmad A, De Stephanis AA, Taghavinezhaddilami F, Leonova A, Mohammadinejad R, Shabani M, Mazzolai B, Mattoli V, Tay FR, Makvandi P. 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomater 2021; 122:26-49. [PMID: 33359299 DOI: 10.1016/j.actbio.2020.12.044] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
3D and 4D printing are cutting-edge technologies for precise and expedited manufacturing of objects ranging from plastic to metal. Recent advances in 3D and 4D printing technologies in dentistry and maxillofacial surgery enable dentists to custom design and print surgical drill guides, temporary and permanent crowns and bridges, orthodontic appliances and orthotics, implants, mouthguards for drug delivery. In the present review, different 3D printing technologies available for use in dentistry are highlighted together with a critique on the materials available for printing. Recent reports of the application of these printed platformed are highlighted to enable readers appreciate the progress in 3D/4D printing in dentistry.
Collapse
|
35
|
Matta RE, Motel C, Kirchner E, Stelzer SP, Adler W, Wichmann M, Berger L. Wear of feldspathic-ceramic-veneered zirconia posterior FPDs after 10 years. BMC Oral Health 2020; 20:345. [PMID: 33256686 PMCID: PMC7708209 DOI: 10.1186/s12903-020-01336-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
Background The abrasion behavior of various ceramics is rarely investigated, though it is relevant for the clinical success of such restorations. The aim of this in vivo study was to evaluate the wear of feldspathic-ceramic-veneered zirconium oxide frameworks over a period of at least 10 years. Methods The abrasion behavior of 15 bridge constructions from 15 different participants was examined after a period of 3, 5, and 10 years using plaster models, which were then subjected to a scanning process on the Atos II industrial scanner and digitized for three-dimensional evaluation of the abrasion by the corresponding software (ATOS Professional 7.6). The individual post-examination models were compared to the baseline model and deviations calculated in the sense of the largest, punctual loss of material in millimeters (“minimal distance”), the average abrasion in millimeters (“mean distance”), and the volume decrease in cubic millimeters (“integrated distance”). Statistical analyses were performed using the Wilcoxon sign rank test or mixed regression models. Multiple testing was considered by Benjamini-Hochberg correction. The significance level was set at 0.05. Results We found steadily increasing wear of the ceramic. The average volume decrease was significant (P < 0.001) at 3 years and 10 years (− 3.25 mm3 and − 8.11 mm3, respectively). Conclusions The results of this study indicate that the rate of volume loss in feldspathic-ceramic-veneered zirconia frameworks in the posterior region increases significantly over time. An increasing frequency of parameters was observed, particularly in the second half of the study period. However, the use of this class of materials can be considered clinically acceptable. Trial registration This study is registered in DRKS - German Clinical Trials Register with the register number DRKS00021743. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00021743
Collapse
Affiliation(s)
- Ragai-Edward Matta
- Department of Prosthodontics, Erlangen University Hospital, Glueckstrasse 11, 91054, Erlangen, Germany.
| | - Constantin Motel
- Department of Prosthodontics, Erlangen University Hospital, Glueckstrasse 11, 91054, Erlangen, Germany
| | - Elena Kirchner
- Department of Prosthodontics, Erlangen University Hospital, Glueckstrasse 11, 91054, Erlangen, Germany
| | - Simon Paul Stelzer
- Zahnarztpraxis Haidhausen Dr. Hans-Rudolf Kurpiers und Christian Pollok, Weißenburger Platz 8, 81667, Munich, Germany
| | - Werner Adler
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-University of Erlangen Nuremberg, Waldstr. 6, 91054, Erlangen, Germany
| | - Manfred Wichmann
- Department of Prosthodontics, Erlangen University Hospital, Glueckstrasse 11, 91054, Erlangen, Germany
| | - Lara Berger
- Department of Prosthodontics, Erlangen University Hospital, Glueckstrasse 11, 91054, Erlangen, Germany
| |
Collapse
|
36
|
Li R, Wang C, Ma SQ, Liu ZH, Zang CC, Zhang WY, Sun YC. High bonding strength between zirconia and composite resin based on combined surface treatment for dental restorations. J Appl Biomater Funct Mater 2020; 18:2280800020928655. [PMID: 33147097 DOI: 10.1177/2280800020928655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Zirconia is the preferred material for dental restorations; however, dental restorations are usually affected by zirconia fractures due to chipping and delamination of the veneer ceramic. One effective solution for repairing chemically inert zirconia frameworks is to strongly chemically bond them with the composite resin via surface modification. Thus, the bonding strength between the zirconia and composite resin determines the performance of dental restoration. Herein, we investigate the shear bond strength between zirconia ceramic and two ceramic repair systems before and after thermal cycling based on different surface pretreatments, including air-abrasion and a novel silane coupling agent. When treated with combined sandblasting, novel silane and 10-methacryloyloxydecyl hydrogen phosphate act as a bonding agent for the zirconia surface, and the maximum shear bond strength achieves 27.5 MPa, as measured by a universal testing machine through the average of 16 separate measurements. The results show that the combined treatment resists the interface damage caused by expansion and contraction during thermal cycling. The long-term bond durability is due to the micro-mechanical bond force formed by resin and ceramic, and the chemical bonds of Zr-O-Si at the interface. Results indicate that selective pretreating the surface results in high bond strength between the zirconia and the composite resin, which is meaningful to optimize dental restoration.
Collapse
Affiliation(s)
- Rui Li
- Department of Prosthodontics, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Chen Wang
- Department of Prosthodontics, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Shi Qing Ma
- Department of Prosthodontics, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Zi Hao Liu
- Department of Prosthodontics, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Cheng Cheng Zang
- Department of Prosthodontics, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Wen Yi Zhang
- Department of Prosthodontics, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| | - Ying Chun Sun
- Department of Prosthodontics, Stomatological Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
37
|
The influence of the restorative material on the mechanical behavior of screw-retained hybrid-abutment-crowns. J Mech Behav Biomed Mater 2020; 111:103988. [DOI: 10.1016/j.jmbbm.2020.103988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 11/18/2022]
|
38
|
DEMİRALP E, DOĞRU G, YILMAZ H. ADDITIVE MANUFACTURING (3D PRINTING) METHODS AND APPLICATIONS IN DENTISTRY. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2020. [DOI: 10.33808/clinexphealthsci.786018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Matalon S, Safadi D, Meirowitz A, Ormianer Z. The Effect of Aging on the Roughness and Bacterial Adhesion of Lithium Disilicate and Zirconia Ceramics. J Prosthodont 2020; 30:440-446. [DOI: 10.1111/jopr.13257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Shlomo Matalon
- Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine Tel Aviv University Tel Aviv Israel
| | - Dana Safadi
- Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine Tel Aviv University Tel Aviv Israel
| | - Avi Meirowitz
- Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine Tel Aviv University Tel Aviv Israel
| | - Zeev Ormianer
- Department of Oral Rehabilitation, The Maurice and Gabriela Goldschleger School of Dental Medicine Tel Aviv University Tel Aviv Israel
| |
Collapse
|
40
|
Rajan ST, V V AT, Terada-Nakaishi M, Chen P, Hanawa T, Nandakumar AK, Subramanian B. Zirconium-based metallic glass and zirconia coatings to inhibit bone formation on titanium. Biomed Mater 2020; 15:065019. [DOI: 10.1088/1748-605x/aba23a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Microstructural, mechanical, and optical characterization of an experimental aging-resistant zirconia-toughened alumina (ZTA) composite. Dent Mater 2020; 36:e365-e374. [PMID: 32943230 DOI: 10.1016/j.dental.2020.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/05/2020] [Accepted: 08/29/2020] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To evaluate the effect of aging on the microstructural, mechanical, and optical properties of an experimental zirconia-toughened alumina composite with 80%Al2O3 and 20%ZrO2 (ZTA Zpex) compared to a translucent zirconia (Zpex) and Alumina. METHODS Disc-shaped specimens were obtained by uniaxial and isostatic pressing the synthesized powders (n = 70/material). After sintering and polishing, half of the specimens underwent aging (20 h, 134 °C, 2.2 bar). Crystalline content and microstructure were evaluated using X-ray diffraction and scanning electron microscopy, respectively. Specimens underwent biaxial flexural strength testing to determine the characteristic stress, Weibull modulus, and reliability. Translucency parameter (TP) and Contrast ratio (CR) were calculated to characterize optical properties. RESULTS ZTA Zpex demonstrated a compact surface with a uniform dispersion of zirconia particles within the alumina matrix, and typical alumina and zirconia crystalline content. ZTA Zpex and alumina exhibited higher CR and lower TP than Zpex. ZTA Zpex and Zpex showed significantly higher characteristic stress relative to alumina. While aging did not affect optical and mechanical properties of ZTA Zpex and alumina, Zpex demonstrated a significant increase in translucency, as well as a in characteristic stress. Alumina reliability was significantly lower than others at 300 MPa, ZTA Zpex and Zpex reliability decreased at 800 MPa, except for aged Zpex. SIGNIFICANCE While aging did not affect the mechanical nor the optical properties of ZTA Zpex and alumina, it did alter both properties of Zpex. The results encourage further investigations to engineer ZTA as a framework material for long span fixed dental prostheses specially where darkened substrates, such as titanium implant abutments or endodontically treated teeth, demand masking.
Collapse
|
42
|
Alagiriswamy G, Krishnan CS, Ramakrishnan H, Jayakrishnakumar SK, Mahadevan V, Azhagarasan NS. Surface Characteristics and Bioactivity of Zirconia (Y-TZP) with Different Surface Treatments. J Pharm Bioallied Sci 2020; 12:S114-S123. [PMID: 33149441 PMCID: PMC7595469 DOI: 10.4103/jpbs.jpbs_39_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/02/2020] [Indexed: 12/04/2022] Open
Abstract
Background: Zirconia being a bio-inert material needs to be surface treated to render it more bioactive and enhance its osseointegration potential. However, bioactivity studies focusing on the ability of sandblasting and ultraviolet photofunctionalization (UVP) surface treatments in inducing apatite precipitation using simulated body fluid (SBF) are lacking. Aim: The aim of the study was to comparatively evaluate the effect of two different surface treatments—sandblasting with 50 µm alumina and UVP with ultraviolet C (UVC) light on the bioactivity of zirconia. Materials and Methods: A total of 33 discs with dimensions 10 mm × 2 mm were obtained from zirconia blanks (Amann Girrbach, Koblach, Austria) and randomly divided into three groups (n = 11), namely Group I (untreated), Group II (sandblasted), and Group III (UVP). Surface characteristics of representative test samples were analyzed using X-ray diffraction (XRD), atomic force microscopy (AFM), contact angle goniometry, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX), to assess type of crystal phase of zirconia, surface roughness, wettability, surface topography, and elemental composition, respectively. SBF was prepared and calcium content in SBF (Ca-SBF) was determined using inductively coupled plasma mass spectrometry (ICP-MS). Results: Data were analyzed by one-way analysis of variance (ANOVA), post hoc Tukey honestly significant difference (HSD), and Student’s t test for statistical significance (P < 0.05, significant; P < 0.01, highly significant). Surface characteristics analyses revealed that XRD showed predominant tetragonal (t) zirconia crystal phase for all test groups. Mean surface roughness (Sa) of Group I was 41.83 nm, and it was significantly lesser than that of Group II (115.65 nm) and Group III (102.43 nm). Mean contact angles were 98.26°, 86.77°, and 68.03° for Groups I, II, and III, respectively, and these differences were highly significant. Mean pre-immersion Ca content in SBF was found to be 159 mg/L. Mean post-immersion Ca content was 70.10, 60.80, and 56.20 mg/L for Groups I, II, and III, respectively. Significant differences were found between Group I as compared to both Groups II and III. Bioactivity of Group III was marginally, but insignificantly higher with respect to Group II. Groups II and III were insignificant with respect to each other. Post-immersion XRD revealed predominant “t” phase, and SEM-EDX revealed well-formed, abundant calcium apatite layer on the treated samples as compared to that on untreated sample and an increasing Ca/P ratio from 1.15, 1.79 to 2.08, respectively from Group I to Group III. Conclusion: Within the limitations of this study, both sandblasting and UVP significantly and similarly improved bioactivity of zirconia as compared to the untreated samples, which was corroborated by the SEM-EDX results.
Collapse
Affiliation(s)
- Gayathree Alagiriswamy
- Department of Prosthodontics & Implantology, Ragas Dental College & Hospital, Chennai, Tamil Nadu, India
| | - Chitra Shankar Krishnan
- Department of Prosthodontics & Implantology, Ragas Dental College & Hospital, Chennai, Tamil Nadu, India
| | - Hariharan Ramakrishnan
- Department of Prosthodontics & Implantology, Ragas Dental College & Hospital, Chennai, Tamil Nadu, India
| | | | - Vallabh Mahadevan
- Department of Prosthodontics & Implantology, Ragas Dental College & Hospital, Chennai, Tamil Nadu, India
| | | |
Collapse
|
43
|
Jum'ah AA, Brunton PA, Li KC, Waddell JN. Simulated clinical adjustment and intra-oral polishing of two translucent, monolithic zirconia dental ceramics: An in vitro investigation of surface roughness. J Dent 2020; 101:103447. [PMID: 32763368 DOI: 10.1016/j.jdent.2020.103447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To assess the surface roughness and residual flaws in two translucent zirconia substrates following simulated clinical adjustment and intra-oral finishing/polishing. MATERIALS AND METHODS Specimens were prepared from two translucent (5Y-ZP/8Y-ZP) and one conventional (3Y-TZP) zirconia substrates (n = 84 p/g). Arithmetic mean roughness parameter (Ra) was determined for all experimental groups at four stages (n = 21 p/g): (1) as-sintered, (2) surface grinding using a zirconia cutting diamond bur, (3) polishing using 1-step, 2-step or 4-step intra-oral polishing kits, and (4) laboratory polishing/glazing. Scanning electron microscopy (SEM) was used to evaluate residual surface flaws. Data were statistically analysed using a two-way ANOVA test, multiple and pairwise comparisons were performed using a Bonferroni post hoc test. RESULTS Ra was significantly higher for as-sintered and ground 5Y-ZP/8Y-ZP compared to 3Y-TZP (p ≤ 0.001). Material type and polishing protocol had statistically significant effect on Ra (p < 0.001). The 4-step polishing resulted in the lowest Ra in 3Y-TZP/5Y-ZP (p ≤ 0.001). No significant differences were observed between different polishing protocols in 8Y-ZP (p≥0.655). Glazing significantly reduced Ra in all materials compared to other polishing protocols (p ≤ 0.001) except for the 4-step protocol in 3Y-TZP (p = 0.195). SEM revealed pronounced surface flaws in ground 5Y-ZP/8Y-ZP. Grinding of 3Y-TZP induced ductile material removal and thereby, minimal cohesive material loss. The 4-step polishing protocol resulted in the fewest and shallowest surface flaws in all groups. Glazing of 3Y-TZP resulted in the most homogenous surface contrary to 5Y-ZP/8Y-ZP. CONCLUSIONS The finest surface finish was achieved using the 4-step polishing protocol in all studied materials. This protocol might be inadequate however for polishing of ground 5Y-ZP/8Y-ZP as a result of the pronounced surface damage induced by the grinding process. The glazing of 5Y-ZP/8Y-ZP might not be as predictable as for 3Y-TZP. CLINICAL SIGNIFICANCE The higher susceptibility to surface damage, as a result of increasing dopant concentration, may render polishing of ground, translucent zirconia more complicated compared to the conventional 3Y-TZP counterparts.
Collapse
Affiliation(s)
- Ahmad A Jum'ah
- Jordan University of Science and Technology, Faculty of Dentistry, Department of Conservative Dentistry, Irbid 22110, Jordan.
| | - Paul A Brunton
- University of Otago, Faculty of Dentistry, 310 Great King Street, Dunedin 9016, New Zealand
| | - Kai Chun Li
- University of Otago, Faculty of Dentistry, 310 Great King Street, Dunedin 9016, New Zealand
| | - J Neil Waddell
- University of Otago, Faculty of Dentistry, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
44
|
Sun L, Hong G, Matsui H, Song YJ, Sasaki K. The Effects of Syndecan on Osteoblastic Cell Adhesion Onto Nano-Zirconia Surface. Int J Nanomedicine 2020; 15:5061-5072. [PMID: 32764936 PMCID: PMC7372001 DOI: 10.2147/ijn.s263053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/04/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose Zirconia is one of the most promising implant materials due to its favorable physical, mechanical and biological properties. However, until now, we know little about the mechanism of osseointegration on zirconia. The purpose of this study is to evaluate the effect of Syndecan (Sdc) on osteoblastic cell (MC3T3-E1) adhesion and proliferation onto zirconia materials. Materials and Methods The mirror-polished disks 15 mm in diameter and 1.5 mm in thick of commercial pure titanium (CpTi), 3mol% yttria-stabilized tetragonal zirconia polycrystalline (3Y-TZP) and nano-zirconia (NanoZr) are used in this study. MC3T3-E1 cells were seeded onto specimen surfaces and subjected to RNA interference (RNAi) for Syndecan-1, Syndecan-2, Syndecan-3, and Syndecan-4. At 48h post-transfection, the cell morphology, actin cytoskeleton, and focal adhesion were observed using scanning electron microscopy or laser scanning confocal fluorescence microscopy. At 24h and 48h post-transfection, cell counting kit-8 (CCK-8) assay was used to investigate cell proliferation. Results The cell morphology of MC3T3-E1 cells on CpTi, 3Y-TZP, and NanoZr changed into abnormal shape after gene silencing of Syndecan. Among the Syndecan family, Sdc-2 is responsible for NanoZr-specific morphology regulation, via maintenance of cytoskeletal conformation without affecting cellular attachment. According to CCK-8 assay, Sdc-2 affects the osteoblastic cell proliferation onto NanoZr. Conclusion Within the limitation of this study, we suggest that Syndecan affects osteoblastic cell adhesion on CpTi, 3Y-TZP, and NanoZr. Sdc-2 might be an important heparin-sensitive cell membrane regulator in osteoblastic cell adhesion, specifically on NanoZr, through the organization of actin cytoskeleton and affects osteoblastic cell proliferation.
Collapse
Affiliation(s)
- Lu Sun
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Guang Hong
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan.,Department of Prosthodontics, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Hiroyuki Matsui
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yun-Jia Song
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
45
|
|
46
|
Sivrikaya EC, Guler MS, Bekci ML. A comparative study between zirconia and titanium abutments on the stress distribution in parafunctional loading: A 3D finite element analysis. Technol Health Care 2020; 28:603-613. [PMID: 32568140 DOI: 10.3233/thc-202305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Zirconia has become a popular biomaterial in dental implant systems because of its biocompatible and aesthetic properties. However, this material is more fragile than titanium so its use is limited. OBJECTIVES The aim of this study was to compare the stresses on morse taper implant systems under parafunctional loading in different abutment materials using three-dimensional finite element analysis (3D FEA). METHODS Four different variations were modelled. The models were created according to abutment materials (zirconia or titanium) and loading (1000 MPa vertical or oblique on abutments). The placement of the implants (diameter, 5.0 × 15 mm) were mandibular right first molar. RESULTS In zirconia abutment models, von Mises stress (VMS) values of implants and abutments were decreased. Maximum and minimum principal stresses and VMS values increased in oblique loading. VMS values were highest in the connection level of the conical abutments in all models. CONCLUSIONS Using conical zirconia abutments decreases von Mises stress values in abutments and implants. However, these values may exceed the pathological limits in bruxism patients. Therefore, microfractures may be related to the level of the abutment.
Collapse
Affiliation(s)
- Efe Can Sivrikaya
- Department of Oral Maxillofacial Surgery, Faculty of Dentistry, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Sami Guler
- Department of Machinery and Metal Technologies, Vocational School of Technical Sciences, Ordu University, Ordu, Turkey
| | - Muhammed Latif Bekci
- Department of Mechanical Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
47
|
Ceramic Materials and Technologies Applied to Digital Works in Implant-Supported Restorative Dentistry. MATERIALS 2020; 13:ma13081964. [PMID: 32331379 PMCID: PMC7216107 DOI: 10.3390/ma13081964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
Abstract
Computer-aided design and manufacturing technology has been closely associated with implant-supported restoration. The digital system employed for prosthodontic restorations comprises data acquisition, processing, and manufacturing using subtractive or additive methods. As digital implantology has developed, optical scanning, computer-based digital algorithms, fabricating techniques, and numerical control skills have all rapidly improved in terms of their accuracy, which has resulted in the development of new ceramic materials with advanced esthetics and durability for clinical application. This study reviews the application of digital technology in implant-supported dental restoration and explores two globally utilized ceramic restorative materials: Yttria-stabilized tetragonal zirconia polycrystalline and lithium disilicate glass ceramics.
Collapse
|
48
|
Zupancic Cepic L, Dvorak G, Piehslinger E, Georgopoulos A. In vitro adherence of Candida albicans to zirconia surfaces. Oral Dis 2020; 26:1072-1080. [PMID: 32125751 DOI: 10.1111/odi.13319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/17/2020] [Accepted: 02/23/2020] [Indexed: 01/26/2023]
Abstract
OBJECTIVES This study aimed to characterize surface properties such as roughness (Ra) and surface-free energy (SFE) of glazed and polished yttria-stabilized zirconia and to evaluate in vitro adherence of fungus Candida albicans and salivary bacteria, Staphylococcus epidermidis, mixed with C. albicans to these substrata. Additionally, the influence of salivary proteins (albumin, mucin and α-amylase) on yeast adhesion was studied. MATERIAL AND METHODS Ra and SFE of glazed and polished zirconia discs were measured. Specimens were wetted with saliva and salivary proteins prior to incubation with C. albicans and mixed suspension of C. albicans and S. epidermidis for 24 hr, respectively. Microbial adhesion was quantified by counting colony-forming units (CFU). Differences in physicochemical properties were proved by t test. "Linear mixed model" with the factors "type of surface" and "wetting media" was applied to analyse the effects on fungal adhesion (p < .05). RESULTS SFE and Ra of glazed specimens were significantly higher than corresponding values of polished ones. The wetting media significantly changed the fungal binding (p = .0016). Significantly higher quantities of adhering fungi were found after mucin incubation compared to saliva (p = .004). For the factor "surface" as well as the interaction between "surface" and "wetting media," no statistically significant differences have been found. In mixed suspension, the growth of Candida was completely prevented. CONCLUSIONS Glazed and polished zirconia differs in terms of physicochemical surface properties. These differences appear to be modulated by pellicle coating affecting the biomass of adhered Candida. Mucin seems to be good binding sites for adhesion of C. albicans.
Collapse
Affiliation(s)
- Lana Zupancic Cepic
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Gabriella Dvorak
- Department for Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Eva Piehslinger
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Apostolos Georgopoulos
- Core Facility Oral Microbiology and Hygiene, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Branco A, Silva R, Santos T, Jorge H, Rodrigues A, Fernandes R, Bandarra S, Barahona I, Matos A, Lorenz K, Polido M, Colaço R, Serro A, Figueiredo-Pina C. Suitability of 3D printed pieces of nanocrystalline zirconia for dental applications. Dent Mater 2020; 36:442-455. [PMID: 32001023 DOI: 10.1016/j.dental.2020.01.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/05/2019] [Accepted: 01/14/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The main goal of this work is to evaluate the suitability of nanostructured zirconia pieces obtained by robocasting additive manufacturing (AM), for dental applications. METHODS The density, crystalline structure, morphology/porosity, surface roughness, hardness, toughness, wettability and biocompatibility of the produced samples were compared with those of samples obtained by conventional subtractive manufacturing (SM) of a similar commercial zirconia material. Chewing simulation studies were carried out against dental human cusps in artificial saliva. The wear of the material was quantified and the wear mechanisms investigated, as well as the influence of glaze coating. RESULTS AM samples, that revealed to be biocompatible, are slightly less dense and more porous than SM samples, showing lower hardness, toughness and wettability than SM samples. After chewing tests, no wear was found both on AM and SM samples. However, the dental wear was significantly lower when AM samples were used as counterbody. Concerning the glazed samples, both coated surfaces and dental cusps suffered wear, being the cusps' wear higher than that found for unglazed samples. More, cusps tested against AM coated samples suffered less wear comparatively to those opposed to SM coated samples. SIGNIFICANCE Overall, the results presented in this paper show that AM processed nanostructured zirconia can be used in dental restorations, with important advantages from the point of view of processing and tribological performance. Moreover, the option for glaze finishing should be carefully considered both in SM and AM processed specimens.
Collapse
|
50
|
Wittneben J, Gavric J, Sailer I, Buser D, Wismeijer D. Clinical and esthetic outcomes of two different prosthetic workflows for implant‐supported all‐ceramic single crowns—3 year results of a randomized multicenter clinical trail. Clin Oral Implants Res 2020; 31:495-505. [DOI: 10.1111/clr.13586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/13/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Julia‐Gabriela Wittneben
- Department of Reconstructive Dentistry & Gerodontology School of Dental Medicine University of Bern Bern Switzerland
- Department of Restorative Dentistry and Biomaterials Sciences Harvard School of Dental Medicine Boston MA USA
| | - Jelena Gavric
- Division of Fixed Prosthodontics and Biomaterials School of Dental Medicine University of Geneva Geneva Switzerland
| | - Irena Sailer
- Division of Fixed Prosthodontics and Biomaterials School of Dental Medicine University of Geneva Geneva Switzerland
| | - Daniel Buser
- Department of Oral Surgery and Stomatology School of Dental Medicine University of Bern Bern Switzerland
| | - Daniel Wismeijer
- Department of Oral Implantology and Prosthetic Dentistry ACTA University of Amsterdam and VU University Amsterdam The Netherlands
| |
Collapse
|