1
|
Morath L, Rahim SA, Baker C, Anderson DEJ, Hinds MT, Sikora-Jasinska M, Oujiri L, Leyssens L, Kerckhofs G, Pyka G, Oliver AA, Drelich JW, Goldman J. The biological effects of copper alloying in Zn-based biodegradable arterial implants. BIOMATERIALS ADVANCES 2025; 167:214112. [PMID: 39561579 PMCID: PMC11634653 DOI: 10.1016/j.bioadv.2024.214112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Biodegradable metals based on zinc are being developed to serve as temporary arterial scaffolding. Although the inclusion of copper is becoming more prevalent for grain refinement in zinc alloys, the biological activity of the copper component has not been well investigated. Here, two ZnCu alloys (0.8 and 1.5 wt% Cu) with and without thermal treatment were investigated for their hemocompatibility and biocompatibility. The microstructure was examined using scanning electron microscopy and X-ray diffraction. Zn-1.5Cu was found to contain nearly double the amount of second phase (CuZn5) precipitates as compared to Zn-0.8Cu. Thermal treatment dissolved a portion of the precipitates into the matrix. Since copper is a well-known catalyst for NO generation, the metals were tested both for their ability to generate NO release and for their thrombogenicity. Cellular responses and in vivo corrosion were characterized by a 6 months in vivo implantation of metal wires into rat arteries. The as-received Zn-1.5Cu displayed the least neointimal growth and smooth muscle cell presence, although inflammation was slightly increased. Thermal treatment was found to worsen the biological response, as determined by an increased neointimal size, increased smooth muscle cell presence and small regions of necrotic tissue. There were no trends in NO release between the alloys and thermal treatments. Corrosion progressed predominately through a pitting mechanism in vivo, which was more pronounced for the thermally treated alloys, with a more uniform corrosion seen for as-received Zn-1.5Cu. Differences in biological response are speculated to be due to changes in microstructure and pitting corrosion behavior.
Collapse
Affiliation(s)
- Lea Morath
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Shebeer A Rahim
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Cole Baker
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Malgorzata Sikora-Jasinska
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Lindy Oujiri
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Lisa Leyssens
- Biomechanics lab (MEED), Institute of Mechanics, Materials and Civil Engineering (iMMC), UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology (MORF), Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Department of Materials Engineering, KU Leuven, Heverlee, Belgium; Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Biomechanics lab (MEED), Institute of Mechanics, Materials and Civil Engineering (iMMC), UCLouvain, Louvain-la-Neuve, Belgium; Pole Materials and Processes Engineering (IMAP), iMMC, UCLouvain, Louvain-la-Neuve, Belgium
| | - Grzegorz Pyka
- Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, B-3001 Leuven, Belgium
| | - Alexander A Oliver
- Department of Biomedical Engineering and Physiology, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Jaroslaw W Drelich
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
2
|
Leyssens L, El Aazmani W, Balcaen T, Jacques PJ, Horman S, Goldman J, Kerckhofs G. MicroCT and contrast-enhanced microCT to study the in vivo degradation behavior and biocompatibility of candidate metallic intravascular stent materials. Acta Biomater 2025; 191:53-65. [PMID: 39561850 DOI: 10.1016/j.actbio.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
Biodegradable intravascular stents offer a promising alternative to permanent stents for treating atherosclerosis-related artery narrowing by potentially avoiding long-term complications. Identifying materials that degrade harmlessly and uniformly at a suitable rate is crucial. This study evaluated an advanced zinc alloy (Zn-Ag-Cu-Mn-Zr) alongside pure iron and pure zinc, using a simplified stent model of metallic wires implanted in the rat aorta. Assessments were made at 7, 24, and 84 days post-implantation using X-ray microfocus computed tomography (microCT) and contrast-enhanced microCT (CECT). For CECT, a contrast agent was chosen to provide optimal soft tissue contrast and minimal interaction with the wires. This combination of imaging techniques allowed us to evaluate degradation behavior, compare volume loss in various locations (outside the arterial lumen, inside the lumen, and encapsulated by neointima), compute degradation rates, and evaluate neointima tissue formation. Results showed that zinc and its alloy degrade less uniformly than iron, which demonstrates uniform surface degradation. The zinc alloy had a higher initial volume loss than the other materials but showed little increase over time. Neointima formation was similar for zinc and the zinc alloy, while iron provoked less tissue formation than both zinc and the reference cobalt-chromium alloy. Additionally, unlike cobalt-chromium and zinc, iron wires did not achieve consistent tissue encapsulation along their entire length, which may impair their performance. Mild inflammation was noted around zinc-based implants. Combining microCT and CECT provided 3D information on degradation uniformity, degradation products, and neointima morphometrics, highlighting the power of these imaging techniques to evaluate implant materials in a highly accurate way compared to previous 2D methods. STATEMENT OF SIGNIFICANCE: Biodegradable intravascular stents offer a promising solution to long-term complications associated with permanent stents by gradually dissolving in the body. To evaluate a novel zinc alloy (Zn-Ag-Cu-Mn-Zr) with improved mechanical properties, microstructure, and biocompatibility, we compared it to pure iron and zinc. We used advanced 3D imaging techniques, i.e., microCT and contrast-enhanced microCT, to assess the degradation behavior and the tissue response in a rat aorta model. The zinc alloy demonstrated promising properties despite less uniform degradation and mild inflammation compared to iron. Our findings highlight the superiority of 3D imaging over previously used 2D techniques in evaluating stent materials, offering critical insights into degradation processes and biocompatibility. These highly accurate measurements provide crucial information for developing improved biodegradable implants.
Collapse
Affiliation(s)
- Lisa Leyssens
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium.
| | - Walid El Aazmani
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium.
| | - Tim Balcaen
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium; MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium.
| | - Pascal J Jacques
- Materials and Process Engineering, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium.
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium.
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Greet Kerckhofs
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium; Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Liu J, Linsley CS, Su Y, Abd-Elaziem W, Pan S, Sokoluk M, Griebel A, Chen G, Zeng Y, Murali N, Bialo S, Jiang A, Wu BM, Zhu D, Li X. Nanoparticle-Enabled Zn-0.1Mg Alloy with Long-Term Stability, Refined Degradation, and Favorable Biocompatibility for Biodegradable Implant Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50125-50138. [PMID: 39284011 DOI: 10.1021/acsami.4c04714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Zinc-based alloys, specifically Zn-Mg, have garnered considerable attention as promising materials for biodegradable implants due to their favorable mechanical strength, appropriate corrosion rate, and biocompatibility. Nevertheless, the alloy's lack of mechanical stability and integrity, resulting from ductility loss induced by age hardening at room temperature, hampers its practical bioapplication. In this study, ceramic nanoparticles have been successfully incorporated into the Zn-Mg alloy system, leading to a significant improvement in long-term stability as well as mechanical strength and ductility. In addition, this study represents the first investigation of Zn-based nanocomposites both in vitro and in vivo to comprehend the influence of nanoparticles on the degradation behavior and biocompatibility of the Zn system. The findings indicate that the incorporation of WC nanoparticles effectively refines and stabilizes the degradation behavior of Zn-Mg without negatively impacting the cytocompatibility of the alloy. The subcutaneous implantation and femoral implantation further prove the benefits of nanoparticle incorporation and found no negative effects. Collectively, Zn-Mg-WC nanocomposites yield great potential for implant usage.
Collapse
Affiliation(s)
- Jingke Liu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
- ZanoMed Inc, Los Angeles, California 90731, United States
| | - Chase S Linsley
- Department of Bioengineering, University of California, Los Angeles, California 90024, United States
| | - Yingchao Su
- Department of Biomedical Engineering, the State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Walaa Abd-Elaziem
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Shuaihang Pan
- Department of Mechanical and Aerospace Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Maximilian Sokoluk
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
- ZanoMed Inc, Los Angeles, California 90731, United States
| | - Adam Griebel
- Fort Wayne Metals, Fort Wayne, Indiana 46809, United States
| | - Guancheng Chen
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
| | - Yuxin Zeng
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
| | - Narayanan Murali
- Department of Material Science and Engineering, University of California, Los Angeles, California 90024, United States
| | - Sarah Bialo
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
| | - Andrew Jiang
- Department of Bioengineering, University of California, Los Angeles, California 90024, United States
| | - Benjamin M Wu
- Department of Bioengineering, University of California, Los Angeles, California 90024, United States
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90024, United States
- Department of Orthopedic Surgery, University of California, Los Angeles, California 90024, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, the State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Xiaochun Li
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
- Department of Material Science and Engineering, University of California, Los Angeles, California 90024, United States
| |
Collapse
|
4
|
Leyssens L, Lapraille N, Pyka G, Jacques PJ, Horman S, Goldman J, Kerckhofs G. Exploring the biodegradability of candidate metallic intravascular stent materials using X-ray microfocus computed tomography: An in vitro study. J Biomed Mater Res B Appl Biomater 2024; 112:e35452. [PMID: 39042645 DOI: 10.1002/jbm.b.35452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/07/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
In vitro testing for evaluating degradation mode and rate of candidate biodegradable metals to be used as intravascular stents is crucial before going to in vivo animal models. In this study, we show that X-ray microfocus computed tomography (microCT) presents a key added value to visualize degradation mode and to evaluate degradation rate and material surface properties in 3D and at high resolution of large regions of interest. The in vitro degradation behavior of three candidate biodegradable stent materials was evaluated: pure iron (Fe), pure zinc (Zn), and a quinary Zn alloy (ZnAgCuMnZr). These metals were compared to a reference biostable cobaltchromium (CoCr) alloy. To compare the degradation mode and degradation rate evaluated with microCT, scanning electron microscopy (SEM) and inductively-coupled plasma (ICP) were included. We confirmed that Fe degrades very slowly but with desirable uniform surface corrosion. Zn degrades faster but exhibits localized deep pitting corrosion. The Zn alloy degrades at a similar rate as the pure Zn, but more homogeneously. However, the formation of deep internal dendrites was observed. Our study provides a detailed microCT-based comparison of essential surface and corrosion properties, with a structural characterization of the corrosion behavior, of different candidate stent materials in 3D in a non-destructive way.
Collapse
Affiliation(s)
- Lisa Leyssens
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Woluwe-Saint-Lambert, Belgium
| | - Noémie Lapraille
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Grzegorz Pyka
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Woluwe-Saint-Lambert, Belgium
| | - Pascal J Jacques
- Materials and Process Engineering, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, Woluwe-Saint-Lambert, Belgium
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Greet Kerckhofs
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Woluwe-Saint-Lambert, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Anderson D, Le H, Vu H, Johnson J, Aslan J, Goldman J, Hinds M. Thrombogenicity of biodegradable metals. Bioact Mater 2024; 38:411-421. [PMID: 38774458 PMCID: PMC11107095 DOI: 10.1016/j.bioactmat.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Biodegradable metals offer a promising means to ameliorate many of the long-term risks associated with vascular devices made of conventional biostable stent metals. While numerous biodegradable metal alloys have been developed and characterized in animal models, knowledge of their blood reactivity and thrombogenicity remains unknown. Metal hemocompatibility is particularly valuable because current generation drug-eluting stents pose a significant long-term thrombosis risk. In this study, four pure metals, widely used as degradable base materials (Fe, Zn, Mg, and Mo), and three alloys commonly used in cardiovascular devices [NiTi, CoCr, and stainless steel (SS)] were evaluated. This work examined how each of these metals activate platelets, coagulation factors, and inflammation using in vitro hemocompatibility assays and a clinically relevant ex vivo non-human primate arteriovenous shunt model. Testing found that while all metals promoted a downstream activation of platelets and coagulation in flowing whole blood, platelet and fibrin attachment to Mg was markedly reduced. Additionally, Fe and Mo trended toward higher platelet attachment and contact pathway activation. Overall, the results suggest that Mg may delay clot initiation, but not eliminate clot formation, indicating the importance of understanding thrombosis in Mg alloys that are currently being developed for clinical use as biodegradable stents.
Collapse
Affiliation(s)
- D.E.J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - H.H. Le
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - H. Vu
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - J. Johnson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - J.E. Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - J. Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA
| | - M.T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Hussain M, Khan SM, Shafiq M, Abbas N, Sajjad U, Hamid K. Advances in biodegradable materials: Degradation mechanisms, mechanical properties, and biocompatibility for orthopedic applications. Heliyon 2024; 10:e32713. [PMID: 39027458 PMCID: PMC11254538 DOI: 10.1016/j.heliyon.2024.e32713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Mg-based and Zn-based biodegradable materials have the potential to become the next-generation implant materials to treat bone diseases, because of their desired degradation and mechanical properties. This article reviews the status of these implant materials. The required properties of biodegradable materials such as biodegradability, mechanical properties, and biocompatibility for performance evaluation were briefly discussed. The influence of fabrication techniques, microstructure, alloying elements, and post-processing techniques on the properties of Mg and Zn-based materials was addressed. The degradation mechanism by dissolution, oxidation, and interaction with human body cells was discussed. The biocompatibility of Mg and Zn-based biodegradable materials was analyzed. The significance of in vitro and in vivo biocompatibility testing was highlighted, emphasizing the superiority of in vivo results over cell line studies. This article identifies the many Mg and Zn-based biodegradable materials and summarizes the key findings.
Collapse
Affiliation(s)
- Muzamil Hussain
- Institute of Polymer & Textile Engineering, University of the Punjab, Lahore, 54000, Pakistan
| | - Shahzad Maqsood Khan
- Institute of Polymer & Textile Engineering, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Shafiq
- Institute of Polymer & Textile Engineering, University of the Punjab, Lahore, 54000, Pakistan
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Uzair Sajjad
- Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Khalid Hamid
- Process and Power Research Group, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
7
|
Zeng Y, Murali N, See CW, Liu J, Chi Y, Zhu D, Linsley CS, Wu BM, Li X. Effect of TiC Nanoparticles on a Zn-Al-Cu System for Biodegradable Cardiovascular Stent Applications. ACS Biomater Sci Eng 2024; 10:3438-3453. [PMID: 38564666 DOI: 10.1021/acsbiomaterials.3c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite being a weaker metal, zinc has become an increasingly popular candidate for biodegradable implant applications due to its suitable corrosion rate and biocompatibility. Previous studies have experimented with various alloy elements to improve the overall mechanical performance of pure Zn without compromising the corrosion performance and biocompatibility; however, the thermal stability of biodegradable Zn alloys has not been widely studied. In this study, TiC nanoparticles were introduced for the first time to a Zn-Al-Cu system. After hot rolling, TiC nanoparticles were uniformly distributed in the Zn matrix and effectively enabled phase control during solidification. The Zn-Cu phase, which was elongated and sharp in the reference alloy, became globular in the nanocomposite. The strength of the alloy, after introducing TiC nanoparticles, increased by 31% from 259.7 to 340.3 MPa, while its ductility remained high at 49.2% elongation to failure. Fatigue performance also improved greatly by adding TiC nanoparticles, increasing the fatigue limit by 47.6% from 44.7 to 66 MPa. Furthermore, TiC nanoparticles displayed excellent phase control capability during body-temperature aging. Without TiC restriction, Zn-Cu phases evolved into dendritic morphologies, and the Al-rich eutectic grew thicker at grain boundaries. However, both Zn-Cu and Al-rich eutectic phases remained relatively unchanged in shape and size in the nanocomposite. A combination of exceptional tensile properties, improved fatigue performance, better long-term stability with a suitable corrosion rate, and excellent biocompatibility makes this new Zn-Al-Cu-TiC material a promising candidate for biodegradable stents and other biodegradable applications.
Collapse
Affiliation(s)
- Yuxin Zeng
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Narayanan Murali
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Carmine Wang See
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jingke Liu
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Yitian Chi
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Chase S Linsley
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Benjamin M Wu
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- The ADA Forsyth Institute, Cambridge, Massachusetts 02140, United States
| | - Xiaochun Li
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
8
|
Chen S, Du T, Zhang H, Qi J, Zhang Y, Mu Y, Qiao A. Methods for improving the properties of zinc for the application of biodegradable vascular stents. BIOMATERIALS ADVANCES 2024; 156:213693. [PMID: 37992478 DOI: 10.1016/j.bioadv.2023.213693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Biodegradable stents can support vessels for an extended period, maintain vascular patency, and progressively degrade once vascular remodeling is completed, thereby reducing the constraints of traditional metal stents. An ideal degradable stent must have good mechanical properties, degradation behavior, and biocompatibility. Zinc has become a new type of biodegradable metal after magnesium and iron, owing to its suitable degradation rate and good biocompatibility. However, zinc's poor strength and ductility make it unsuitable as a vascular stent material. Therefore, this paper reviewed the primary methods for improving the overall properties of zinc. By discussing the mechanical properties, degradation behavior, and biocompatibility of various improvement strategies, we found that alloying is the most common, simple, and effective method to improve mechanical properties. Deformation processing can further improve the mechanical properties by changing the microstructures of zinc alloys. Surface modification is an important means to improve the biological activity, blood compatibility and corrosion resistance of zinc alloys. Meanwhile, structural design can not only improve the mechanical properties of the vascular stents, but also endow the stents with special properties such as negative Poisson 's ratio. Manufacturing zinc alloys with excellent degradation properties, improved mechanical properties and strong biocompatibility and exploring their mechanism of interaction with the human body remain areas for future research.
Collapse
Affiliation(s)
- Shiliang Chen
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| | - Hanbing Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jing Qi
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yanping Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yongliang Mu
- School of Metallurgy, Northeastern University, Shenyang, China
| | - Aike Qiao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| |
Collapse
|
9
|
Ron T, Leon A, Kafri A, Ashraf A, Na J, Babu A, Banerjee R, Brookbank H, Muddaluri SR, Little KJ, Aghion E, Pixley S. Nerve Regeneration with a Scaffold Incorporating an Absorbable Zinc-2% Iron Alloy Filament to Improve Axonal Guidance. Pharmaceutics 2023; 15:2595. [PMID: 38004574 PMCID: PMC10674795 DOI: 10.3390/pharmaceutics15112595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Peripheral nerve damage that results in lost segments requires surgery, but currently available hollow scaffolds have limitations that could be overcome by adding internal guidance support. A novel solution is to use filaments of absorbable metals to supply physical support and guidance for nerve regeneration that then safely disappear from the body. Previously, we showed that thin filaments of magnesium metal (Mg) would support nerve regeneration. Here, we tested another absorbable metal, zinc (Zn), using a proprietary zinc alloy with 2% iron (Zn-2%Fe) that was designed to overcome the limitations of both Mg and pure Zn metal. Non-critical-sized gaps in adult rat sciatic nerves were repaired with silicone conduits plus single filaments of Zn-2%Fe, Mg, or no metal, with autografts as controls. After seventeen weeks, all groups showed equal recovery of function and axonal density at the distal end of the conduit. The Zn alloy group showed some improvements in early rat health and recovery of function. The alloy had a greater local accumulation of degradation products and inflammatory cells than Mg; however, both metals had an equally thin capsule (no difference in tissue irritation) and no toxicity or inflammation in neighboring nerve tissues. Therefore, Zn-2%Fe, like Mg, is biocompatible and has great potential for use in nervous tissue regeneration and repair.
Collapse
Affiliation(s)
- Tomer Ron
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Avi Leon
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alon Kafri
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Nuclear Research Centre-Negev, Beer-Sheva 84190, Israel
| | - Ahmed Ashraf
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - John Na
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ashvin Babu
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Runima Banerjee
- College of Engineering & Applied Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hunter Brookbank
- College of Arts & Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | | | - Kevin J. Little
- Department of Orthopedic Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Pediatric Hand & Upper Extremity Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Eli Aghion
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sarah Pixley
- Department of Pharmacology & Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
10
|
Hassan N, Krieg T, Zinser M, Schröder K, Kröger N. An Overview of Scaffolds and Biomaterials for Skin Expansion and Soft Tissue Regeneration: Insights on Zinc and Magnesium as New Potential Key Elements. Polymers (Basel) 2023; 15:3854. [PMID: 37835903 PMCID: PMC10575381 DOI: 10.3390/polym15193854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The utilization of materials in medical implants, serving as substitutes for non-functional biological structures, supporting damaged tissues, or reinforcing active organs, holds significant importance in modern healthcare, positively impacting the quality of life for millions of individuals worldwide. However, certain implants may only be required temporarily to aid in the healing process of diseased or injured tissues and tissue expansion. Biodegradable metals, including zinc (Zn), magnesium (Mg), iron, and others, present a new paradigm in the realm of implant materials. Ongoing research focuses on developing optimized materials that meet medical standards, encompassing controllable corrosion rates, sustained mechanical stability, and favorable biocompatibility. Achieving these objectives involves refining alloy compositions and tailoring processing techniques to carefully control microstructures and mechanical properties. Among the materials under investigation, Mg- and Zn-based biodegradable materials and their alloys demonstrate the ability to provide necessary support during tissue regeneration while gradually degrading over time. Furthermore, as essential elements in the human body, Mg and Zn offer additional benefits, including promoting wound healing, facilitating cell growth, and participating in gene generation while interacting with various vital biological functions. This review provides an overview of the physiological function and significance for human health of Mg and Zn and their usage as implants in tissue regeneration using tissue scaffolds. The scaffold qualities, such as biodegradation, mechanical characteristics, and biocompatibility, are also discussed.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50923 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50923 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50923 Cologne, Germany
| | - Max Zinser
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Department for Oral and Craniomaxillofacial and Plastic Surgery, University of Cologne, Kerpener Strasse 62, 50931 Cologne, Germany
| | - Kai Schröder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
11
|
Fu J, Zhu Q, Chen Z, Zhao J, Wu S, Zhao M, Xu S, Lai D, Fu G, Zhang W. Polydopamine (PDA) coatings with endothelial vascular growth factor (VEGF) immobilization inhibiting neointimal formation post zinc (zn) wire implantation in rat aortas. Biomater Res 2023; 27:84. [PMID: 37667399 PMCID: PMC10478185 DOI: 10.1186/s40824-023-00423-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Bioresorbable stents are designed to provide temporary mechanical support to the coronary arteries and then slowly degrade in vivo to avoid chronic inflammation. Zinc (Zn) is a promising material for bioresorbable stents; However, it can cause inflammation and neointimal formation after being implanted into blood vessels. METHODS To improve biocompatibility of Zn, we first coated it with polydopamine (PDA), followed by immobilization of endothelial vascular growth factor (VEGF) onto the PDA coatings. Adhesion, proliferation, and phenotype maintenance of endothelial cells (ECs) on the coated Zn were evaluated in vitro. Then, a wire aortic implantation model in rats mimicking endovascular stent implantation in humans was used to assess vascular responses to the coated Zn wires in vivo. Thrombosis in aortas post Zn wire implantation, degradation of Zn wires in vivo, neointimal formation surrounding Zn wires, and macrophage infiltration and extracellular matrix (ECM) remodeling in the neointimas were examined. RESULTS In vitro data showed that the PDA-coated Zn encouraged EC adhesion, spreading, proliferation, and phenotype maintenance on its surfaces. VEGF functionalization on PDA coatings further enhanced the biocompatibility of Zn to ECs. Implantation of PDA-coated Zn wires into rat aortas didn't cause thrombosis and showed a faster blood flow than pure Zn or the Zn wires coated with VEGF alone. In addition, the PDA coating didn't affect the degradation of Zn wires in vivo. Besides, the PDA-coated Zn wires reduced neointimal formation, increased EC coverage, decreased macrophage infiltration, and declined aggrecan accumulation in ECM. VEGF immobilization onto PDA coatings didn't cause thrombosis and affect Zn degradation in vivo as well, and further increased the endothelization percentage as compared to PDA coating alone, thus resulting in thinner neointimas. CONCLUSION These results indicate that PDA coatings with VEGF immobilization would be a promising approach to functionalize Zn surfaces to increase biocompatibility, reduce inflammation, and inhibit neointimal formation after Zn implantation in vivo.
Collapse
Affiliation(s)
- Jiayin Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Qiongjun Zhu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Zhezhe Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Jing Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Shaofei Wu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Meng Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Shihui Xu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Dongwu Lai
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| | - Wenbin Zhang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
12
|
Singh Raman RK, Wen C, Löffler JF. Human Body-Fluid-Assisted Fracture of Zinc Alloys as Biodegradable Temporary Implants: Challenges, Research Needs and Way Forward. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4984. [PMID: 37512259 PMCID: PMC10383560 DOI: 10.3390/ma16144984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Alloys of magnesium, zinc or iron that do not contain toxic elements are attractive as construction material for biodegradable implants, i.e., the type of implants that harmlessly dissolve away within the human body after they have completed their intended task. The synergistic influence of mechanical stress and corrosive human body fluid can cause sudden and catastrophic fracture of bioimplants due to phenomena such as stress corrosion cracking (SCC) and corrosion fatigue (CF). To date, SCC and CF of implants based on Zn have scarcely been investigated. This article is an overview of the challenges, research needs and way forward in understanding human body-fluid-assisted fractures (i.e., SCC and CF) of Zn alloys in human body fluid.
Collapse
Affiliation(s)
- R K Singh Raman
- Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Chemical & Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne VIC 3001, Australia
| | - Jörg F Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Kong L, Heydari Z, Lami GH, Saberi A, Baltatu MS, Vizureanu P. A Comprehensive Review of the Current Research Status of Biodegradable Zinc Alloys and Composites for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4797. [PMID: 37445111 DOI: 10.3390/ma16134797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Zinc (Zn)-based biodegradable materials show moderate degradation rates in comparison with other biodegradable materials (Fe and Mg). Biocompatibility and non-toxicity also make them a viable option for implant applications. Furthermore, Pure Zn has poor mechanical behavior, with a tensile strength of around 100-150 MPa and an elongation of 0.3-2%, which is far from reaching the strength required as an orthopedic implant material (tensile strength is more than 300 MPa, elongation more than 15%). Alloy and composite fabrication have proven to be excellent ways to improve the mechanical performance of Zn. Therefore, their alloys and composites have emerged as an innovative category of biodegradable materials. This paper summarizes the most important recent research results on the mechanical and biological characteristics of biodegradable Zn-based implants for orthopedic applications and the most commonly added components in Zn alloys and composites.
Collapse
Affiliation(s)
- Lingyun Kong
- School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Zahra Heydari
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
| | - Ghadeer Hazim Lami
- Department of Material Engineering, South Tehran Branch, Islamic Azad University, Tehran 1777613651, Iran
| | - Abbas Saberi
- Department of Material Engineering, South Tehran Branch, Islamic Azad University, Tehran 1777613651, Iran
- Department of Biomedical Engineering, Islamic Azad University, South Tehran Branch, Tehran 1777613651, Iran
| | - Madalina Simona Baltatu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania
| | - Petrica Vizureanu
- Department of Technologies and Equipments for Materials Processing, Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd. Mangeron, No. 51, 700050 Iasi, Romania
| |
Collapse
|
14
|
Kabir H, Munir K, Wen C, Li Y. Microstructures, mechanical and corrosion properties of graphene nanoplatelet-reinforced zinc matrix composites for implant applications. Acta Biomater 2023; 157:701-719. [PMID: 36476647 DOI: 10.1016/j.actbio.2022.11.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Zinc (Zn)-based alloys and composites are gaining increasing interest as promising biodegradable implant materials due to their appropriate biodegradation rates and biological functionalities. However, the inadequate mechanical strength and ductility of pure Zn have restricted its application. In this study, Zn matrix composites (ZMCs) reinforced with 0.1-0.4 wt.% graphene nanoplatelets (GNP) fabricated via powder metallurgy were investigated as potential biodegradable implant materials. The microstructures, mechanical properties, and corrosion behaviors of the GNP-reinforced ZMCs were characterized using optical microscopy, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, Raman spectroscopy, compression testing, and electrochemical and immersion testing in Hanks' balanced salt solution (HBSS). The microstructural study revealed that the GNP was uniformly dispersed in the ZMCs after ball milling and sintering at 420°C for 6 h. The microhardness, compressive yield strength, ultimate compressive strength, and compressive strain of the ZMC-0.2GNP were 69 HV, 123 MPa, 247 MPa, and 23 %, respectively, improvements of ∼ 18 %, 50%, ∼ 28%, and ∼ 15% compared to pure Zn. The corrosion rate of the ZMCs were lower than that of the pure Zn in HBSS, and the ZMC-0.2GNP composite exhibited the lowest corrosion rate of 0.09 mm/y as measured by electrochemical testing. Biocompatibility assessment indicated that the diluted extracts of pure Zn and GNP-reinforced ZMCs with concentrations of 12.5% and 6.25% exhibited no cytotoxicity after cell culturing for up to 5 days, and the diluted extracts of ZMC-0.2 GNP composite revealed more than 90% cell viability after cell culturing of 3 days, showing the satisfying cytocompatibility. STATEMENT OF SIGNIFICANCE: Biodegradable Zn is a promising candidate material for orthopedic implant applications. Nonetheless, the inadequate mechanical strength and ductility of pure Zn limited its clinical application. In this study, Zn matrix composites (ZMCs) reinforced with 0.1-0.4 wt.% graphene nanoplatelets (GNP) were developed via powder metallurgy, and the reinforcing efficacy of GNP on their mechanical properties was investigated. The addition of GNP significantly improved the compressive properties of ZMCs, with the Zn-0.2GNP composite exhibiting the best compressive properties, including 123 MPa compressive yield strength, 247 MPa ultimate compressive strength, and 22.9% compressive strain. Further, the 12.5% concentration extract of the ZMCs exhibited no cytotoxicity after cell culturing for 5 d toward SaOS2 cells.
Collapse
Affiliation(s)
- Humayun Kabir
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Khurram Munir
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
15
|
Hussain M, Ullah S, Raza MR, Abbas N, Ali A. Recent Developments in Zn-Based Biodegradable Materials for Biomedical Applications. J Funct Biomater 2022; 14:1. [PMID: 36662048 PMCID: PMC9865652 DOI: 10.3390/jfb14010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Zn-based biodegradable alloys or composites have the potential to be developed to next-generation orthopedic implants as alternatives to conventional implants to avoid revision surgeries and to reduce biocompatibility issues. This review summarizes the current research status on Zn-based biodegradable materials. The biological function of Zn, design criteria for orthopedic implants, and corrosion behavior of biodegradable materials are briefly discussed. The performance of many novel zinc-based biodegradable materials is evaluated in terms of biodegradation, biocompatibility, and mechanical properties. Zn-based materials perform a significant role in bone metabolism and the growth of new cells and show medium degradation without the release of excessive hydrogen. The addition of alloying elements such as Mg, Zr, Mn, Ca, and Li into pure Zn enhances the mechanical properties of Zn alloys. Grain refinement by the application of post-processing techniques is effective for the development of many suitable Zn-based biodegradable materials.
Collapse
Affiliation(s)
- Muzamil Hussain
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Punjab 57000, Pakistan
| | - Sami Ullah
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Muhammad Rafi Raza
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Punjab 57000, Pakistan
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Ahsan Ali
- Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
16
|
Khodaei T, Schmitzer E, Suresh AP, Acharya AP. Immune response differences in degradable and non-degradable alloy implants. Bioact Mater 2022; 24:153-170. [PMID: 36606252 PMCID: PMC9793227 DOI: 10.1016/j.bioactmat.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Alloy based implants have made a great impact in the clinic and in preclinical research. Immune responses are one of the major causes of failure of these implants in the clinic. Although the immune responses toward non-degradable alloy implants are well documented, there is a poor understanding of the immune responses against degradable alloy implants. Recently, there have been several reports suggesting that degradable implants may develop substantial immune responses. This phenomenon needs to be further studied in detail to make the case for the degradable implants to be utilized in clinics. Herein, we review these new recent reports suggesting the role of innate and potentially adaptive immune cells in inducing immune responses against degradable implants. First, we discussed immune responses to allergen components of non-degradable implants to give a better overview on differences in the immune response between non-degradable and degradable implants. Furthermore, we also provide potential areas of research that can be undertaken that may shed light on the local and global immune responses that are generated in response to degradable implants.
Collapse
Affiliation(s)
- Taravat Khodaei
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA
| | - Elizabeth Schmitzer
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA
| | | | - Abhinav P. Acharya
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA,Biological Design, Arizona State University, Tempe, AZ, 85281, USA,Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State, University, Tempe, AZ, 85281, USA,Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA,Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA,Corresponding author. Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA.
| |
Collapse
|
17
|
Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater Today Bio 2022; 16:100368. [PMID: 35937578 PMCID: PMC9352968 DOI: 10.1016/j.mtbio.2022.100368] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases. Bioresorbable stents can overcome the limitations of non-degradable stents. 3D printing of shape-memory polymeric stents can lead to better clinical outcomes. Advances in Mg-, Fe- and Zn-based stents from a translational perspective. Electronic stents integrated with biosensors can covey stent status in real time. Development in the assessment of stent performance in vivo.
Collapse
Affiliation(s)
- Jiabin Zong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxiao Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Qiu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiehong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Corresponding author.
| |
Collapse
|
18
|
Zeng Y, Guan Z, Linsley CS, Pan S, Liu J, Wu BM, Li X. Experimental study on novel biodegradable Zn-Fe-Si alloys. J Biomed Mater Res B Appl Biomater 2022; 110:2266-2275. [PMID: 35522226 PMCID: PMC9378461 DOI: 10.1002/jbm.b.35075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
Bioabsorbable metals are increasingly attracting attention for their potential use as materials for degradable implant devices. Zinc (Zn) alloys have shown great promises due to their good biocompatibility and favorable degradation rate. However, it has been difficult to maintain an appropriate balance among strength, ductility, biocompatibility, and corrosion rate for Zn alloys historically. In this study, the microstructure, chemical composition, mechanical properties, biocompatibility, and corrosion rate of a new ternary zinc-iron-silicon (Zn-Fe-Si) alloy system was studied as a novel material for potential biodegradable implant applications. The results demonstrated that the in situ formed Fe-Si intermetallic phases enhanced the mechanical strength of the material while maintaining a favorable ductility. With Fe-Si reinforcements, the microhardness of the Zn alloys was enhanced by up to 43%. The tensile strength was increased by up to 76% while elongation to failure remained above 30%. Indirect cytotoxicity testing showed the Zn-Fe-Si system had good biocompatibility. Immersion testing revealed the corrosion rate of Zn-Fe-Si system was not statistically different from pure Zn. To understand the underlying phase formation mechanism, the reaction process in this ternary system during the processing was also studied via phase evolution and Gibbs free energy analysis. The results suggest the Zn-Fe-Si ternary system is a promising new material for bioabsorbable metallic medical devices.
Collapse
Affiliation(s)
- Yuxin Zeng
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Zeyi Guan
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Chase S. Linsley
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Shuaihang Pan
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Jingke Liu
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Benjamin M. Wu
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xiaochun Li
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
Liu Y, Du T, Qiao A, Mu Y, Yang H. Zinc-Based Biodegradable Materials for Orthopaedic Internal Fixation. J Funct Biomater 2022; 13:jfb13040164. [PMID: 36278633 PMCID: PMC9589944 DOI: 10.3390/jfb13040164] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional inert materials used in internal fixation have caused many complications and generally require removal with secondary surgeries. Biodegradable materials, such as magnesium (Mg)-, iron (Fe)- and zinc (Zn)-based alloys, open up a new pathway to address those issues. During the last decades, Mg-based alloys have attracted much attention by researchers. However, the issues with an over-fast degradation rate and release of hydrogen still need to be overcome. Zn alloys have comparable mechanical properties with traditional metal materials, e.g., titanium (Ti), and have a moderate degradation rate, potentially serving as a good candidate for internal fixation materials, especially at load-bearing sites of the skeleton. Emerging Zn-based alloys and composites have been developed in recent years and in vitro and in vivo studies have been performed to explore their biodegradability, mechanical property, and biocompatibility in order to move towards the ultimate goal of clinical application in fracture fixation. This article seeks to offer a review of related research progress on Zn-based biodegradable materials, which may provide a useful reference for future studies on Zn-based biodegradable materials targeting applications in orthopedic internal fixation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Aike Qiao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yongliang Mu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Correspondence: ; Tel.: +86-(010)-6739-6657
| |
Collapse
|
20
|
Nečas D, Marek I, Pinc J, Vojtěch D, Kubásek J. Advanced Zinc–Magnesium Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering. MATERIALS 2022; 15:ma15155272. [PMID: 35955207 PMCID: PMC9369638 DOI: 10.3390/ma15155272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Zinc and its alloys are considered as promising materials for the preparation of biodegradable medical devices (stents and bone fixation screws) due to their enhanced biocompatibility. These materials must achieve an ideal combination of mechanical and corrosion properties that can be influenced by alloying or thermomechanical processes. This paper presents the effects of different mechanical alloying (MA) parameters on the composition of Zn-1Mg powder. At the same time, this study describes the influence of preparation by MA on Zn-6Mg and Zn-16Mg alloys. The selected powders were compacted by the spark plasma sintering (SPS) method. Subsequently, their microstructures were studied and their mechanical properties were tested. The overall process led to a significant grain refinement (629 ± 274 nm for Zn-1Mg) and the formation of new intermetallic phases (Mg2Zn11, MgZn2). The compressive properties of the sintered samples were mainly related to the concentration of the alloying elements, where an increase in concentration led to an improvement in strength but a deterioration in ductility. According to the obtained results, the best properties were obtained for the Zn-1Mg alloy.
Collapse
Affiliation(s)
- David Nečas
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (I.M.); (D.V.)
- Correspondence: (D.N.); (J.K.)
| | - Ivo Marek
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (I.M.); (D.V.)
| | - Jan Pinc
- Department of Functional Materials, Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic;
| | - Dalibor Vojtěch
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (I.M.); (D.V.)
| | - Jiří Kubásek
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (I.M.); (D.V.)
- Correspondence: (D.N.); (J.K.)
| |
Collapse
|
21
|
Fabrication and Processing of Bioabsorbable Hybrid Zn/(Ag + Fe + Mg)-MMC on Developed Ultrasonic Vibration-Assisted Argon Atmosphere Stir Casting Set-up. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Current Status and Outlook of Temporary Implants (Magnesium/Zinc) in Cardiovascular Applications. METALS 2022. [DOI: 10.3390/met12060999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medical application materials must meet multiple requirements, and the designed material must mimic the structure, shape. and support the formation of the replacing tissue. Magnesium (Mg) and Zinc alloys (Zn), as a “smart” biodegradable material and as “the green engineering material in the 21st century”, have become an outstanding implant material due to their natural degradability, smart biocompatibility, and desirable mechanical properties. Magnesium and Zinc are recognized as the next generation of cardiovascular stents and bioresorbable scaffolds. At the same time, improving the properties and corrosion resistance of these alloys is an urgent challenge. particularly to promote the application of magnesium alloys. A relatively fast deterioration rate of magnesium-based materials generally results in premature mechanical integrity compromise and local hydrogen build-up, resulting in restricted applicability. This review article aims to give a comprehensive comparison between Zn-based alloys and Mg-based alloys, focusing primarily on degradation and biocompatibility for cardiovascular applications. The recent clinical trials using these biodegradable metals have also been addressed.
Collapse
|
23
|
Improved biocompatibility of Zn-Ag-based stent materials by microstructure refinement. Acta Biomater 2022; 145:416-426. [PMID: 35367631 DOI: 10.1016/j.actbio.2022.03.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022]
Abstract
The metallurgical engineering of bioresorbable zinc (Zn)-based medical alloys would greatly benefit from clarification of the relationships between material properties and biological responses. Here we investigate the biocompatibility of three Zn-based silver (Ag)-containing alloys, ranging from binary to quinary alloy systems. Selected binary and quinary Zn-Ag-based alloys underwent solution treatment (ST) to increase the solubility of Ag-rich phases within the Zn bulk matrix, yielding two different microstructures (one without ST and a different one with ST) with the same elemental composition. This experimental design was intended to clarify the relationship between elemental profile/microstructure and biocompatibility for the Zn-Ag system. We found that the quinary alloy system (Zn-4Ag-0.8Cu-0.6Mn-0.15Zr) performed significantly better, in terms of histomorphometry, than any alloy system we have evaluated to date. Furthermore, when solution treated to increase strength and ductility and reduce the fraction of Ag-rich phases, the quinary alloy's biocompatibility further improved. In vitro corrosion testing and metallographic analysis of in vivo implants demonstrated a more uniform mode of corrosion for the solution treated alloy. We conclude that Zn-Ag alloys can be engineered through alloying to substantially reduce neointimal growth. The positive effect on neointimal growth can be further enhanced by dissolving the AgZn3 precipitates in the Zn matrix to improve the corrosion uniformity. These findings demonstrate that neointimal-forming cells can be regulated by elemental additions and microstructural changes in degradable Zn-based implant materials. STATEMENT OF SIGNIFICANCE: The metallurgical engineering of bioresorbable zinc (Zn)-based medical alloys would greatly benefit from clarification of the relationships between material properties and biological responses. Here, selected binary and quinary Zn-Ag-based alloys underwent solution treatment (ST) to increase the solubility of Ag-rich phases within the Zn bulk matrix, yielding two different microstructures (one without ST and a different one with ST) with the same elemental composition. We found that applying a thermal treatment restores mechanical strength and mitigates the strain rate sensitivity of Zn-Ag alloys by dissolving AgZn3 precipitates. Ag-rich nano-precipitates in Zn decrease biocompatibility, a phenomenon that can be counteracted by dissolving the AgZn3 precipitates in the bulk Zn matrix.
Collapse
|
24
|
Chang CJ, Chang CH, Hung TK. A Computational Pitting Corrosion Model of Magnesium Alloys. Front Bioeng Biotechnol 2022; 10:887444. [PMID: 35646850 PMCID: PMC9136027 DOI: 10.3389/fbioe.2022.887444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Controlling the corrosion rate of implants to maintain mechanical properties during tissue healing is significant in developing magnesium alloy implants. In addition to surface treatment and material properties, the study of geometric alteration and mechanical strength are also vital for implant development. In this study, we developed a three-dimensional model for semi-autonomous computational pitting corrosion. It is based on the Monte Carlo method, modeling magnesium alloy implants toward clinical application. The corrosion probability is based on the number of exposed surfaces to saline and the oxidation characteristics of the elements. The computational results are well compared with the experimental measurement using micro-computed tomography (micro-CT) in 500 h. Subsequently, the computational analysis is extended to 3,000 h of corrosion analysis. The 3D model appears promising to assist the development of biodegradable implants.
Collapse
Affiliation(s)
- Chia-Jung Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Han Chang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tin-Kan Hung
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Tin-Kan Hung,
| |
Collapse
|
25
|
Effects of Extrusion and Rolling Processes on the Microstructure and Mechanical Properties of Zn-Li-Ag Alloys. METALS 2022. [DOI: 10.3390/met12030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
In this work, a novel Zn-0.5%Li-0.1%Ag alloy was cast and extruded into rods, which were rolled into a plate, and the effects of extrusion and rolling on the microstructure and mechanical properties of the Zn-0.5%Li-0.1%Ag alloy were evaluated. The results show that grain strengthening occurs in all of the alloys because of the presence of nano-LiZn4 precipitates. The extrusion and rolling processes promote grain size refinement and orientation order, and the microstructure and mechanical properties of the Zn-0.5%Li-0.1%Ag alloy can be significantly improved by secondary processing. The elastic modulus and tensile strength of the processed alloy increased to 83.1 GPa and 251.6 MPa, respectively, compared to 75.6 GPa and 185.8 MPa, respectively, for the as-cast Zn-0.5%Li-0.1%Ag alloy. More importantly, elongation was greatly improved, from 16.9% to 92.6%, which is an increase of up to 448%, and there were transgranular cleavage planes and intergranular cleavage planes in the fracture surfaces. The intergranular cleavage planes were dominant, and they showed ductile fracture characteristics.
Collapse
|
26
|
Aggarwal D, Kumar V, Sharma S. Drug-loaded biomaterials for orthopedic applications: A review. J Control Release 2022; 344:113-133. [DOI: 10.1016/j.jconrel.2022.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
|
27
|
Yuan W, Xia D, Wu S, Zheng Y, Guan Z, Rau JV. A review on current research status of the surface modification of Zn-based biodegradable metals. Bioact Mater 2022; 7:192-216. [PMID: 34466727 PMCID: PMC8379348 DOI: 10.1016/j.bioactmat.2021.05.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, zinc and its alloys have been proposed as promising candidates for biodegradable metals (BMs), owning to their preferable corrosion behavior and acceptable biocompatibility in cardiovascular, bone and gastrointestinal environments, together with Mg-based and Fe-based BMs. However, there is the desire for surface treatment for Zn-based BMs to better control their biodegradation behavior. Firstly, the implantation of some Zn-based BMs in cardiovascular environment exhibited intimal activation with mild inflammation. Secondly, for orthopedic applications, the biodegradation rates of Zn-based BMs are relatively slow, resulting in a long-term retention after fulfilling their mission. Meanwhile, excessive Zn2+ release during degradation will cause in vitro cytotoxicity and in vivo delayed osseointegration. In this review, we firstly summarized the current surface modification methods of Zn-based alloys for the industrial applications. Then we comprehensively summarized the recent progress of biomedical bulk Zn-based BMs as well as the corresponding surface modification strategies. Last but not least, the future perspectives towards the design of surface bio-functionalized coatings on Zn-based BMs for orthopedic and cardiovascular applications were also briefly proposed.
Collapse
Affiliation(s)
- Wei Yuan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Dandan Xia
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, 100081, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, National Medical Products Administration Key Laboratory for Dental Materials, Research Center of Engineering and Technology for Digital Dentistry, Ministry of Health, Beijing, 100081, China
| | - Zhenpeng Guan
- Orthopedics Department, Peking University Shougang Hospital, No. 9 Jinyuanzhuang Rd, Shijingshan District, Beijing, 100144, China
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133, Rome, Italy
- Sechenov First Moscow State Medical University, Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, Trubetskaya 8, build. 2, 119991, Moscow, Russia
| |
Collapse
|
28
|
Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects. Biomaterials 2021; 280:121301. [PMID: 34922270 DOI: 10.1016/j.biomaterials.2021.121301] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023]
Abstract
The need for the development of load-bearing, absorbable wound closure devices is driving the research for novel materials that possess both good biodegradability and superior mechanical characteristics. Biodegradable metals (BMs), namely: magnesium (Mg), zinc (Zn) and iron (Fe), which are currently being investigated for absorbable vascular stent and orthopaedic implant applications, are slowly gaining research interest for the fabrication of wound closure devices. The current review presents an overview of the traditional and novel BM-based intracutaneous and transcutaneous wound closure devices, and identifies Zn as a promising substitute for the traditional materials used in the fabrication of absorbable load-bearing sutures, internal staples, and subcuticular staples. In order to further strengthen Zn to be used in highly stressed situations, nutrient elements (NEs), including calcium (Ca), Mg, Fe, and copper (Cu), are identified as promising alloying elements for the strengthening of Zn-based wound closure device material that simultaneously provide potential therapeutic benefit to the wound healing process during implant biodegradation process. The influence of NEs on the fundamental characteristics of biodegradable Zn are reviewed and critically assessed with regard to the mechanical properties and biodegradability requirements of different wound closure devices. The opportunities and challenges in the development of Zn-based wound closure device materials are presented to inspire future research on this rapidly growing field.
Collapse
|
29
|
Farabi E, Sharp J, Vahid A, Wang J, Fabijanic DM, Barnett MR, Corujeira Gallo S. Novel Biodegradable Zn Alloy with Exceptional Mechanical and In Vitro Corrosion Properties for Biomedical Applications. ACS Biomater Sci Eng 2021; 7:5555-5572. [PMID: 34719916 DOI: 10.1021/acsbiomaterials.1c00763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of quaternary Zn-Al-Cu-Li alloys with different weight fractions of Cu, Al, and Li were developed and investigated for potential application in high load bearing bioresorbable implants. The developed alloys provided various fractions of binary and ternary intermetallic structures, which resulted in formation of multiphase microstructures containing a zinc-rich η-phase and LiZn4 and CuZn4 phases. The intermetallic phases promoted grain refinement and a good combination of mechanical properties. The developed Zn-2Al-4Cu-0.6Li alloy showed strength and ductility close to commercially pure Ti alloys with a UTS value of ∼535 MPa and elongation of 37%. The examination of in vitro corrosion behavior of the developed alloys in the modified Hanks' solution revealed suitable corrosion rates (∼38.5 μm/year). The moderate corrosion rate was controlled by the formation of a homogeneous layer of stable corrosion products that protected the alloys from the corrosive environment, particularly in the late stages of immersion. The developed alloys with the most promising mechanical and corrosion properties appeared to be biocompatible to mouse fibroblast cells and human umbilical mesenchymal stem cells, making them suitable candidates for implant applications.
Collapse
Affiliation(s)
- Ehsan Farabi
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Julie Sharp
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Alireza Vahid
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Jiangting Wang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Daniel M Fabijanic
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Matthew R Barnett
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | | |
Collapse
|
30
|
Li P, Zhang W, Spintzyk S, Schweizer E, Krajewski S, Alexander D, Dai J, Xu S, Wan G, Rupp F. Impact of sterilization treatments on biodegradability and cytocompatibility of zinc-based implant materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112430. [PMID: 34702515 DOI: 10.1016/j.msec.2021.112430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/29/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022]
Abstract
Biodegradable zinc (Zn) and Zn-based alloys have been recognized as promising biomaterials for biomedical implants. Sterilization is an essential step in handling Zn-based implants before their use in clinical practice and there are various sterilization methods are available. However, how these treatments influence the Zn-based biomaterials remains unknown and is of critical relevance. In this study, three commonly-applied standard sterilization methods, namely gamma irradiation, hydrogen peroxide gas plasma and steam autoclave, were used on pure Zn and Zn3Cu (wt%) alloy. The treated Zn and ZnCu alloy were investigated to compare the different influences of sterilizations on surface characteristics, transient and long-term degradation behavior and cytotoxicity of Zn and Zn alloy. Our results indicate that autoclaving brought about apparently a formation of inhomogeneous zinc oxide film whereas the other two methods produced no apparent alterations on the material surfaces. Consequently, the samples after autoclaving showed significantly faster degradation rates and more severe localized corrosion, especially for the ZnCu alloy, owing to the incomplete covering and unstable zinc oxide layer. Moreover, the autoclave-treated Zn and ZnCu alloy exhibited apparent cytotoxic effects towards fibroblasts, which may be due to the excessive Zn ion releasing and its local concentration exceeds the cellular tolerance capacity. In contrast, gamma irradiation and hydrogen peroxide gas plasma had no apparent adverse effects on the biodegradability and cytocompatibility of Zn and ZnCu alloy. Our findings may have significant implications regarding the selection of suitable sterilization methods for Zn-based implant materials among others.
Collapse
Affiliation(s)
- Ping Li
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Wentai Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Sebastian Spintzyk
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Ernst Schweizer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Stefanie Krajewski
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Jingtao Dai
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany.
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Frank Rupp
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| |
Collapse
|
31
|
Bui HT, Khair N, Yeats B, Gooden S, James SP, Dasi LP. Transcatheter Heart Valves: A Biomaterials Perspective. Adv Healthc Mater 2021; 10:e2100115. [PMID: 34038627 DOI: 10.1002/adhm.202100115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/23/2021] [Indexed: 11/11/2022]
Abstract
Heart valve disease is prevalent throughout the world, and the number of heart valve replacements is expected to increase rapidly in the coming years. Transcatheter heart valve replacement (THVR) provides a safe and minimally invasive means for heart valve replacement in high-risk patients. The latest clinical data demonstrates that THVR is a practical solution for low-risk patients. Despite these promising results, there is no long-term (>20 years) durability data on transcatheter heart valves (THVs), raising concerns about material degeneration and long-term performance. This review presents a detailed account of the materials development for THVRs. It provides a brief overview of THVR, the native valve properties, the criteria for an ideal THV, and how these devices are tested. A comprehensive review of materials and their applications in THVR, including how these materials are fabricated, prepared, and assembled into THVs is presented, followed by a discussion of current and future THVR biomaterial trends. The field of THVR is proliferating, and this review serves as a guide for understanding the development of THVs from a materials science and engineering perspective.
Collapse
Affiliation(s)
- Hieu T. Bui
- Department of Biomedical Engineering Georgia Institute of Technology 387 Technology Cir NW Atlanta GA 30313 USA
| | - Nipa Khair
- School of Advanced Materials Discovery Colorado State University 700 Meridian Ave Fort Collins CO 80523 USA
| | - Breandan Yeats
- Department of Biomedical Engineering Georgia Institute of Technology 387 Technology Cir NW Atlanta GA 30313 USA
| | - Shelley Gooden
- Department of Biomedical Engineering Georgia Institute of Technology 387 Technology Cir NW Atlanta GA 30313 USA
| | - Susan P. James
- School of Advanced Materials Discovery Colorado State University 700 Meridian Ave Fort Collins CO 80523 USA
| | - Lakshmi Prasad Dasi
- Department of Biomedical Engineering Georgia Institute of Technology 387 Technology Cir NW Atlanta GA 30313 USA
| |
Collapse
|
32
|
Recent advances and directions in the development of bioresorbable metallic cardiovascular stents: Insights from recent human and in vivo studies. Acta Biomater 2021; 127:1-23. [PMID: 33823325 DOI: 10.1016/j.actbio.2021.03.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Over the past two decades, significant advancements have been made regarding the material formulation, iterative design, and clinical translation of metallic bioresorbable stents. Currently, magnesium-based (Mg) stent devices have remained at the forefront of bioresorbable stent material development and use. Despite substantial advances, the process of developing novel absorbable stents and their clinical translation is time-consuming, expensive, and challenging. These challenges, coupled with the continuous refinement of alternative bioresorbable metallic bulk materials such as iron (Fe) and zinc (Zn), have intensified the search for an ideal absorbable metallic stent material. Here, we discuss the most recent pre-clinical and clinical evidence for the efficacy of bioresorbable metallic stents and material candidates. From this perspective, strategies to improve the clinical performance of bioresorbable metallic stents are considered and critically discussed, spanning material alloy development, surface manipulations, material processing techniques, and preclinical/biological testing considerations. STATEMENT OF SIGNIFICANCE: Recent efforts in using Mg, Fe, and Zn based materials for bioresorbable stents include elemental profile changes as well as surface modifications to improve each of the three classes of materials. Although a variety of alloys for absorbable metallic stents have been developed, the ideal absorbable stent material has not yet been discovered. This review focuses on the state of the art for bioresorbable metallic stent development. It covers the three bulk materials used for degradable stents (Mg, Fe, and Zn), and discusses their advances from a translational perspective. Strategies to improve the clinical performance of bioresorbable metallic stents are considered and critically discussed, spanning material alloy development, surface manipulations, material processing techniques, and preclinical/biological testing considerations.
Collapse
|
33
|
Farabi E, Sharp JA, Vahid A, Fabijanic DM, Barnett MR, Gallo SC. Development of high strength and ductile Zn-Al-Li alloys for potential use in bioresorbable medical devices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111897. [PMID: 33641900 DOI: 10.1016/j.msec.2021.111897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/23/2020] [Accepted: 01/17/2021] [Indexed: 01/23/2023]
Abstract
A series of Zn-Al-Li alloys with potential application in bioresorbable implants were cast, thermomechanically processed and tested. The formation of secondary phases, such as LiZn4, LiZn3Al and Al3Li, contributed to both dynamic recrystallization and grain refinement of the matrix (η-phase) during the hot-extrusion process, leading to grain sizes as small as 1.75 μm for Zn-4Al-0.6Li alloy (wt%). This alloy exhibited an ultimate tensile strength (UTS) of 451 MPa, a total elongation of 46% and a corrosion rate of 60 μm/year in simulated body fluid. The grain refinement played a major role in increasing the strength, but it also weakened the basal texture and promoted non-basal slip and grain boundary sliding, thus contributing to the increased plastic deformation of the alloy. The corrosion rate was affected by a layer of zinc oxide and phosphate formed in the early stages of the immersion tests. The corrosion products protected the substrate and tended to reduce the corrosion rate over time. The developed Zn-4Al-0.6Li and Zn-6Al-0.4Li alloys which showed promising mechanical and corrosion properties appeared to be cytocompatible in the mouse fibroblast cell line and human umbilical mesenchymal stem cells making them promising candidates for bioresorbable stent and implant applications.
Collapse
Affiliation(s)
- Ehsan Farabi
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.
| | - Julie A Sharp
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Alireza Vahid
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Daniel M Fabijanic
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Matthew R Barnett
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | | |
Collapse
|
34
|
Kabir H, Munir K, Wen C, Li Y. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives. Bioact Mater 2021; 6:836-879. [PMID: 33024903 PMCID: PMC7530311 DOI: 10.1016/j.bioactmat.2020.09.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Biodegradable metals (BMs) gradually degrade in vivo by releasing corrosion products once exposed to the physiological environment in the body. Complete dissolution of biodegradable implants assists tissue healing, with no implant residues in the surrounding tissues. In recent years, three classes of BMs have been extensively investigated, including magnesium (Mg)-based, iron (Fe)-based, and zinc (Zn)-based BMs. Among these three BMs, Mg-based materials have undergone the most clinical trials. However, Mg-based BMs generally exhibit faster degradation rates, which may not match the healing periods for bone tissue, whereas Fe-based BMs exhibit slower and less complete in vivo degradation. Zn-based BMs are now considered a new class of BMs due to their intermediate degradation rates, which fall between those of Mg-based BMs and Fe-based BMs, thus requiring extensive research to validate their suitability for biomedical applications. In the present study, recent research and development on Zn-based BMs are reviewed in conjunction with discussion of their advantages and limitations in relation to existing BMs. The underlying roles of alloy composition, microstructure, and processing technique on the mechanical and corrosion properties of Zn-based BMs are also discussed.
Collapse
Affiliation(s)
- Humayun Kabir
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Khurram Munir
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
35
|
Development of a high-strength Zn-Mn-Mg alloy for ligament reconstruction fixation. Acta Biomater 2021; 119:485-498. [PMID: 33130305 DOI: 10.1016/j.actbio.2020.10.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022]
Abstract
Although various biodegradable materials have been investigated for ligament reconstruction fixation in the past decades, only few of them possess a combination of high mechanical properties, appropriate degradation rate, good biocompatibility, and osteogenic effect, thus limiting their clinical applications. A high-strength Zn-0.8Mn-0.4Mg alloy (i.e., Zn08Mn04Mg) with yield strength of 317 MPa was developed to address this issue. The alloy showed good biocompatibility and promising osteogenic effect in vitro. The degradation effects of Zn08Mn04Mg interference screws on the interface between soft tissue and bone were investigated in anterior cruciate ligament (ACL) reconstruction in rabbits. Compared to Ti6Al4V, the Zn alloy screws significantly accelerated the formation of new bone and further induced partial tendon mineralization, which promoted tendon-bone integration. The newly developed screws are believed to facilitate early joint function recovery and rehabilitation training and also avoid screw breakage during insertion, thereby contributing to an extensive clinical prospect.
Collapse
|
36
|
Oliver AA, Guillory RJ, Flom KL, Morath LM, Kolesar TM, Mostaed E, Sikora-Jasinska M, Drelich JW, Goldman J. Analysis of vascular inflammation against bioresorbable Zn-Ag based alloys. ACS APPLIED BIO MATERIALS 2020; 3:6779-6789. [PMID: 33644704 PMCID: PMC7905847 DOI: 10.1021/acsabm.0c00740] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zinc (Zn) has emerged as a promising bioresorbable stent material due to its satisfactory corrosion behavior and excellent biocompatibility. However, for load bearing implant applications, alloying is required to boost its mechanical properties as pure Zn exhibits poor strength. Unfortunately, an increase in inflammation relative to pure Zn is a commonly observed side-effect of Zn alloys. Consequently, the development of a Zn-based alloy that can simultaneously feature improved mechanical properties and suppress inflammatory responses is a big challenge. Here, a bioresorbable, biocompatible Zn-Ag-based quinary alloy was comprehensively evaluated in vivo, in comparison to reference materials. The inflammatory and smooth muscle cellular response was characterized and correlated to metrics of neointimal growth. We found that implantation of the quinary alloy was associated with significantly improved inflammatory activities relative to the reference materials. Additionally, we found that inflammation, but not smooth muscle cell hyperplasia, significantly correlates to neointimal growth for Zn alloys. The results suggest that inflammation is the main driver of neointimal growth for Zn-based alloys and that the quinary Zn-Ag-Mn-Zr-Cu alloy may impart inflammation-resistance properties to arterial implants.
Collapse
Affiliation(s)
- Alexander A. Oliver
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Roger J. Guillory
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Katie L. Flom
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Lea M. Morath
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Timothy M. Kolesar
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Ehsan Mostaed
- Department of Materials Science and Engineering, Michigan Technological University, USA
| | | | - Jaroslaw W. Drelich
- Department of Materials Science and Engineering, Michigan Technological University, USA
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, USA
| |
Collapse
|
37
|
Li Y, Jahr H, Zhou J, Zadpoor AA. Additively manufactured biodegradable porous metals. Acta Biomater 2020; 115:29-50. [PMID: 32853809 DOI: 10.1016/j.actbio.2020.08.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/27/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022]
Abstract
Partially due to the unavailability of ideal bone substitutes, the treatment of large bony defects remains one of the most important challenges of orthopedic surgery. Additively manufactured (AM) biodegradable porous metals that have emerged since 2018 provide unprecedented opportunities for fulfilling the requirements of an ideal bone implant. First, the multi-scale geometry of these implants can be customized to mimic the human bone in terms of both micro-architecture and mechanical properties. Second, a porous structure with interconnected pores possesses a large surface area, which is favorable for the adhesion and proliferation of cells and, thus, bony ingrowth. Finally, the freeform geometrical design of such biomaterials could be exploited to adjust their biodegradation behavior so as to maintain the structural integrity of the implant during the healing process while ensuring that the implant disappears afterwards, paving the way for full bone regeneration. While the AM biodegradable porous metals that have been studied so far have shown many unique properties as compared to their solid counterparts, the unprecedented degree of flexibility in their geometrical design has not yet been fully exploited to optimize their properties and performance. In order to develop the ideal bone implants, it is important to take advantage of the full potential of AM biodegradable porous metals through detailed and systematic study on their biodegradation behavior, mechanical properties, biocompatibility, and bone regeneration performance. This review paper presents the state of the art in AM biodegradable porous metals and is focused on the effects of material type, processing, geometrical design, and post-AM treatments on the mechanical properties, biodegradation behavior, in vitro biocompatibility, and in vivo bone regeneration performance of AM porous Mg, Fe, and Zn as well as their alloys. We also identify a number of knowledge gaps and the challenges encountered in adopting AM biodegradable porous metals for orthopedic applications and suggest some promising areas for future research.
Collapse
Affiliation(s)
- Yageng Li
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, Netherlands.
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, Aachen 52074, Germany; Department of Orthopedic Surgery, Maastricht UMC+, Maastricht 6202 AZ, Netherlands
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, Netherlands
| | - Amir Abbas Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, Netherlands
| |
Collapse
|
38
|
Lin J, Tong X, Sun Q, Luan Y, Zhang D, Shi Z, Wang K, Lin J, Li Y, Dargusch M, Wen C. Biodegradable ternary Zn-3Ge-0.5X (X=Cu, Mg, and Fe) alloys for orthopedic applications. Acta Biomater 2020; 115:432-446. [PMID: 32853807 DOI: 10.1016/j.actbio.2020.08.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022]
Abstract
Biodegradable zinc (Zn) and its alloys have great potential to be used for orthopedic applications due to their suitable degradation rate and good biocompatibility. However, pure Zn has insufficient mechanical properties, such as low strength and hardness, and poor plasticity, which limits its clinical applications. Here, we report on a new series of ternary Zn-3Ge-0.5X (X=Cu, Mg, and Fe) alloys aiming to achieve good corrosion resistance and biocompatibility, and enhanced mechanical properties via micro-alloying with copper (Cu), magnesium (Mg), and iron (Fe). Hot-rolling has also been applied to the new ternary alloys to further enhance their mechanical properties. Mechanical testing results indicate that both the strength and hardness of hot-rolled Zn-3Ge are significantly improved with micro-alloying of Cu, Mg, and Fe; of which the hot-rolled Zn-3Ge-0.5Mg exhibits the highest ultimate tensile strength of 253.4 MPa and yield strength of 208.5 MPa among all the alloys, 25.9% and 44.7% higher than those of the hot-rolled Zn-3Ge. The degradation rate of the as-cast alloys is lower than that of the hot-rolled alloys in Hanks' solution for 1 month and the hot-rolled Zn-3Ge-0.5Mg alloy exhibits the highest degradation rate of 0.075 mm/y. CCK-8 assay using MG-63 cells indicates that the diluted extracts of Zn-3Ge-0.5X (X=Cu, Mg, and Fe) alloys with concentrations of 12.5% and 25% exhibit no or slight cytotoxicity, and the diluted extracts of Zn-3Ge-0.5Cu alloys show high cell viability of over 100%, showing the best cytocompatibility.
Collapse
|
39
|
He J, Li DW, He FL, Liu YY, Liu YL, Zhang CY, Ren F, Ye YJ, Deng XD, Yin DC. A study of degradation behaviour and biocompatibility of Zn-Fe alloy prepared by electrodeposition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111295. [PMID: 32919656 DOI: 10.1016/j.msec.2020.111295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/17/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
Zinc is a biodegradable metal, which exhibits more moderate biodegradability than magnesium and iron, so that it has great application potential in the field of biomedical materials. Alloying of zinc and iron may lead to producing a new type of implant material Zn-Fe alloy, which might be able to meet the requirements for a moderate degradation rate. However, due to the huge difference in the melting point between zinc and iron, the preparation of Zn-Fe alloy is quite challenging and hence rarely reported. In this study, we show that Zn-Fe alloys can be successfully prepared by electrodeposition technology. The microstructures, composition, degradation properties and biocompatibility of the Zn-Fe alloys were systematically studied. The results showed that the content of iron in the alloys ranged from 0 to 8 wt%, depending on the concentration of Fe ions and the current density. In the alloys, the major's phases were η, δ and Г1, and they were mainly affected by the ion concentration in the electrolyte. In the in vitro immersion tests, the Zn-Fe alloy ZF2-1 showed the highest immersion corrosion rate, while ZF3-1 showed the highest electrochemical corrosion rate. Moreover, we found that the corrosion rates of the alloys were significantly higher than that of the pure Fe. In the in vivo experiments, we confirmed that the Zn-Fe alloy possessed good biocompatibility. These results demonstrate that the electrodeposition technology is a good method to prepare Zn-Fe alloys, and the Zn-Fe alloys prepared by this method are potentially promising materials for biomedical applications.
Collapse
Affiliation(s)
- Jin He
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an 710072, PR China; Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, PR China
| | - Da-Wei Li
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Feng-Li He
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an 710072, PR China; School of Material Engineering, Xi'an Aeronautical University, Xi'an 710077, PR China
| | - Yang-Yang Liu
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ya-Li Liu
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Chen-Yan Zhang
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Ya-Jing Ye
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xu-Dong Deng
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Da-Chuan Yin
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
40
|
Shuai C, Xue L, Gao C, Peng S, Zhao Z. Rod-like Eutectic Structure in Biodegradable Zn-Al-Sn Alloy Exhibiting Enhanced Mechanical Strength. ACS Biomater Sci Eng 2020; 6:3821-3831. [PMID: 33463313 DOI: 10.1021/acsbiomaterials.0c00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Zn alloy is recognized as a promising biodegradable metal for bone implant applications because of its good biocompatibility and moderate degradation rate. Nevertheless, the insufficient strength limits its applications. In this study, a rod-like eutectic structure was fabricated in Zn-Al-Sn alloy with the addition of Sn via selective laser melting. It was found that the Al-enriched phase nucleated primarily during cooling and caused the rapid precipitation of Zn. This inevitably consumed the liquid Zn and increased the ratio of Sn to Zn in the liquid phase, resulting in the formation of the eutectic, which was composed of the Sn-enriched phase and the Zn-enriched phase. More importantly, the coupled growth of the Sn-enriched and Zn-enriched phases and their volume differences together led to a rod-like morphology of the eutectic according to the volume fraction theory. Consequently, the yield and ultimate compressive strengths were enhanced to 180 ± 18.8 and 325 ± 29.6 MPa for the Zn-Al-2Sn alloy, respectively. This could be attributed to the pinning effect of the rod-like eutectic, which could block dislocation motion and result in dislocation pile-up, thereby conducing to the mechanical reinforcement. In addition, the Zn-Al-Sn alloy also exhibited good biocompatibility and increased degradation rate because of the enhanced galvanic corrosion. This study showed the potential of rod-like eutectic for the mechanical enhancement of the biodegradable Zn alloy.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.,Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China.,Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Lianfeng Xue
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shuping Peng
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Zhenyu Zhao
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| |
Collapse
|
41
|
Beshchasna N, Saqib M, Kraskiewicz H, Wasyluk Ł, Kuzmin O, Duta OC, Ficai D, Ghizdavet Z, Marin A, Ficai A, Sun Z, Pichugin VF, Opitz J, Andronescu E. Recent Advances in Manufacturing Innovative Stents. Pharmaceutics 2020; 12:E349. [PMID: 32294908 PMCID: PMC7238261 DOI: 10.3390/pharmaceutics12040349] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases are the most distributed cause of death worldwide. Stenting of arteries as a percutaneous transluminal angioplasty procedure became a promising minimally invasive therapy based on re-opening narrowed arteries by stent insertion. In order to improve and optimize this method, many research groups are focusing on designing new or improving existent stents. Since the beginning of the stent development in 1986, starting with bare-metal stents (BMS), these devices have been continuously enhanced by applying new materials, developing stent coatings based on inorganic and organic compounds including drugs, nanoparticles or biological components such as genes and cells, as well as adapting stent designs with different fabrication technologies. Drug eluting stents (DES) have been developed to overcome the main shortcomings of BMS or coated stents. Coatings are mainly applied to control biocompatibility, degradation rate, protein adsorption, and allow adequate endothelialization in order to ensure better clinical outcome of BMS, reducing restenosis and thrombosis. As coating materials (i) organic polymers: polyurethanes, poly(ε-caprolactone), styrene-b-isobutylene-b-styrene, polyhydroxybutyrates, poly(lactide-co-glycolide), and phosphoryl choline; (ii) biological components: vascular endothelial growth factor (VEGF) and anti-CD34 antibody and (iii) inorganic coatings: noble metals, wide class of oxides, nitrides, silicide and carbide, hydroxyapatite, diamond-like carbon, and others are used. DES were developed to reduce the tissue hyperplasia and in-stent restenosis utilizing antiproliferative substances like paclitaxel, limus (siro-, zotaro-, evero-, bio-, amphi-, tacro-limus), ABT-578, tyrphostin AGL-2043, genes, etc. The innovative solutions aim at overcoming the main limitations of the stent technology, such as in-stent restenosis and stent thrombosis, while maintaining the prime requirements on biocompatibility, biodegradability, and mechanical behavior. This paper provides an overview of the existing stent types, their functionality, materials, and manufacturing conditions demonstrating the still huge potential for the development of promising stent solutions.
Collapse
Affiliation(s)
- Natalia Beshchasna
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, Germany; (M.S.); (J.O.)
| | - Muhammad Saqib
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, Germany; (M.S.); (J.O.)
| | | | - Łukasz Wasyluk
- Balton Sp. z o.o. Modlińska 294, 03-152 Warsaw, Poland; (H.K.); (Ł.W.)
| | - Oleg Kuzmin
- VIP Technologies, Prospect Academicheskiy 8/2, 634055 Tomsk, Russia;
| | - Oana Cristina Duta
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
| | - Zeno Ghizdavet
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
| | - Alexandru Marin
- Department of Hydraulics, Hydraulic Machinery and Environmental Engineering, Faculty of Power Engineering, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
- Academy of Romanian Scientists, Spl. Independentei 54, 050094 Bucharest, Romania
| | - Zhilei Sun
- Research School of High-Energy Physics, Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia;
| | - Vladimir F. Pichugin
- Research School of High-Energy Physics, Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia;
| | - Joerg Opitz
- Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Maria-Reiche-Str. 2, 01109 Dresden, Germany; (M.S.); (J.O.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania; (O.C.D.); (D.F.); (Z.G.); (E.A.)
- Academy of Romanian Scientists, Spl. Independentei 54, 050094 Bucharest, Romania
| |
Collapse
|
42
|
Lachowicz MM, Jasionowski R. Effect of Cooling Rate at the Eutectoid Transformation Temperature on the Corrosion Resistance of Zn-4Al Alloy. MATERIALS (BASEL, SWITZERLAND) 2020; 13:ma13071703. [PMID: 32260551 PMCID: PMC7178647 DOI: 10.3390/ma13071703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The main purpose of this work was to experimentally determine the effect of the cooling rate during the eutectoid transformation on the corrosion resistance of a hypoeutectic Zn-4Al cast alloy in 5% NaCl solution. This was considered in relation to the alloy microstructure. For this purpose, metallographic and electrochemical studies were performed. It was found that the faster cooling promoted the formation of finer (α + η) eutectoid structures, which translated into a higher hardness and lower corrosion current density. In the initial stage of corrosion processes the eutectoid structure in the eutectic areas were attacked. At the further stages of corrosion development, the phase η was dissolved, and the α phase appears to be protected by the formation of corrosion products.
Collapse
Affiliation(s)
- Marzena M. Lachowicz
- Faculty of Mechanical Engineering, Wroclaw University of Technology and Science, 50-370 Wrocław, Poland
| | - Robert Jasionowski
- Faculty of Marine Engineering, Maritime University of Szczecin, 70-500 Szczecin, Poland;
| |
Collapse
|
43
|
Mostaed E, Sikora-Jasinska M, Ardakani MS, Mostaed A, Reaney IM, Goldman J, Drelich JW. Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting. Acta Biomater 2020; 105:319-335. [PMID: 31982587 PMCID: PMC7294534 DOI: 10.1016/j.actbio.2020.01.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/22/2022]
Abstract
Zn-based alloys are recognized as promising bioabsorbable materials for cardiovascular stents, due to their biocompatibility and favorable degradability as compared to Mg. However, both low strength and intrinsic mechanical instability arising from a strong strain rate sensitivity and strain softening behavior make development of Zn alloys challenging for stent applications. In this study, we developed binary Zn-4.0Ag and ternary Zn-4.0Ag-xMn (where x = 0.2-0.6wt%) alloys. An experimental methodology was designed by cold working followed by a thermal treatment on extruded alloys, through which the effects of the grain size and precipitates could be thoroughly investigated. Microstructural observations revealed a significant grain refinement during wire drawing, leading to an ultrafine-grained (UFG) structure with a size of 700 nm and 200 nm for the Zn-4.0Ag and Zn-4.0Ag-0.6Mn, respectively. Mn showed a powerful grain refining effect, as it promoted the dynamic recrystallization. Furthermore, cold working resulted in dynamic precipitation of AgZn3 particles, distributing throughout the Zn matrix. Such precipitates triggered mechanical degradation through an activation of Zn/AgZn3 boundary sliding, reducing the tensile strength by 74% and 57% for Zn-4.0Ag and Zn-4.0Ag-0.6Mn, respectively. The observed precipitation softening caused a strong strain rate sensitivity in cold drawn alloys. Short-time annealing significantly mitigated the mechanical instability by reducing the AgZn3 fraction. The ternary alloy wire showed superior microstructural stability relative to its Mn-free counterpart due to the pinning effect of Mn-rich particles on the grain boundaries. Eventually, a shift of the corrosion regime from localized to more uniform was observed after the heat treatment, mainly due to the dissolution of AgZn3 precipitates. STATEMENT OF SIGNIFICANCE: Owing to its promising biodegradability, zinc has been recognized as a potential biodegradable material for stenting applications. However, Zn's poor strength alongside intrinsic mechanical instability have propelled researchers to search for Zn alloys with improved mechanical properties. Although extensive researches have been conducted to satisfy the mentioned concerns, no Zn-based alloys with stabilized mechanical properties have yet been reported. In this work, the mechanical properties and stability of the Zn-Ag-based alloys were systematically evaluated as a function of microstructural features. We found that the microstructure design in Zn alloys can be used to find an effective strategy to not only improve the strength and suppress the mechanical instability but also to minimize any damage by augmenting the corrosion uniformity.
Collapse
Affiliation(s)
- Ehsan Mostaed
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| | - Malgorzata Sikora-Jasinska
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Morteza Shaker Ardakani
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Ali Mostaed
- Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, UK; Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH, UK
| | - Ian M Reaney
- Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, UK
| | - Jeremy Goldman
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Jaroslaw W Drelich
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
44
|
Guan Z, Linsley CS, Hwang I, Yao G, Wu BM, Li X. Novel Zinc / Tungsten Carbide Nanocomposite as Bioabsorbable Implant. MATERIALS LETTERS 2020; 263:127282. [PMID: 32647402 PMCID: PMC7346885 DOI: 10.1016/j.matlet.2019.127282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is a lack of bioabsorbable materials with adequate mechanical strength suitable for implant applications that provide temporary support while tissue integrity is restored, especially for pediatric applications. Bioabsorbable metals have emerged as an attractive choice due to their combination of strength, ductility, and biocompatibility in vivo. Zinc has shown great promise as a bioabsorbable metal, but the weak mechanical properties of pure zinc limit its application as an implant material. This study investigates zinc-tungsten carbide (Zn-WC) nanocomposite as a novel material for bioabsorbable metallic implants. Ultrasound-assisted powder compaction was used to fabricate Zn-WC nanocomposites. This study includes the material characterization of microstructure, microhardness, and degradability. Results showed that tungsten carbide nanoparticles enhanced the mechanical properties of Zn, and maintained the favorable corrosion rate of pure Zn. These results encourage further investigation of Zn-WC nanocomposites for biomedical applications with the ultimate goal of creating safe and efficacious bioabsorbable metallic implants for many clinical applications.
Collapse
Affiliation(s)
- Zeyi Guan
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Chase S. Linsley
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Injoo Hwang
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Gongcheng Yao
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Benjamin M. Wu
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xiaochun Li
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
45
|
Fu J, Su Y, Qin YX, Zheng Y, Wang Y, Zhu D. Evolution of metallic cardiovascular stent materials: A comparative study among stainless steel, magnesium and zinc. Biomaterials 2020; 230:119641. [PMID: 31806406 PMCID: PMC6934082 DOI: 10.1016/j.biomaterials.2019.119641] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
Abstract
A cardiovascular stent is a small mesh tube that expands a narrowed or blocked coronary artery. Unfortunately, current stents, regardless metallic or polymeric, still largely fall short to the ideal clinical needs due to late restenosis, thrombosis and other clinical complications. Nonetheless, metallic stents are preferred clinically thanks to their superior mechanical property and radiopacity to their polymeric counterparts. The emergence of bioresorbable metals opens a window for better stent materials as they may have the potential to reduce or eliminate late restenosis and thrombosis. In fact, some bioresorbable magnesium (Mg)-based stents have obtained regulatory approval or under trials with mixed clinical outcomes. Some major issues with Mg include the too rapid degradation rate and late restenosis. To mitigate these problems, bioresorbable zinc (Zn)-based stent materials are being developed lately with the more suitable degradation rate and better biocompatibility. The past decades have witnessed the unprecedented evolution of metallic stent materials from first generation represented by stainless steel (SS), to second generation represented by Mg, and to third generation represented by Zn. To further elucidate their pros and cons as metallic stent materials, we systematically evaluated their performances in vitro and in vivo through direct side-by-side comparisons. Our results demonstrated that tailored Zn-based material with proper configurations could be a promising candidate for a better stent material in the future.
Collapse
Affiliation(s)
- Jiayin Fu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Yingchao Su
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, China
| | - Yadong Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
46
|
Ardakani MS, Mostaed E, Sikora-Jasinska M, Kampe SL, Drelich JW. The effects of alloying with Cu and Mn and thermal treatments on the mechanical instability of Zn-0.05Mg alloy. MATERIALS SCIENCE & ENGINEERING. A, STRUCTURAL MATERIALS : PROPERTIES, MICROSTRUCTURE AND PROCESSING 2020; 770:138529. [PMID: 32863579 PMCID: PMC7450801 DOI: 10.1016/j.msea.2019.138529] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The detrimental effect of natural aging on mechanical properties of zinc alloys restricts their application as bioresorbable medical implants. In this study, aging of Zn-0.05Mg alloy and the effect of 0.5 Cu and 0.1 Mn (in weight percent) addition on the microstructure and tensile properties were studied. The alloys were cold rolled, aged and annealed; aiming to investigate the effects of precipitates and grain size on the mechanical properties and their stability. TEM analysis revealed that in ultrafine-grained binary Zn-0.05Mg alloy, the natural aging occurred due to the formation of nano-sized Mg2Zn11 precipitates. After 90 days of natural aging, the yield strength and ultimate tensile strength of Zn-0.05Mg alloy increased from 197±4 MPa and 227±5 MPa to 233±8 MPa and 305±7 MPa, respectively, while the elongation was drastically reduced from 34±3% to 3±1%. This natural aging was retarded by adding the third element at either 0.1Mn or 0.5Cu quantities, which interacted with Mg in Zn solid solution and impeded the formation of Mg2Zn11 precipitates. The addition of Cu and Mn elements increased alloy's strength, ductility, and its mechanical stability at a room temperature. The measured tensile strength and elongation were 274±5 MPa and 41±1% for Zn-0.1Mn-0.05Mg and 312±2 MPa and 44±2% for Zn-0.5Cu-0.05Mg, respectively. Annealing the alloys at elevated temperatures caused increase in both grain size and dissolution of secondary phases, and both affected alloy deformation mechanisms.
Collapse
|
47
|
Kubásek J, Dvorský D, Šedý J, Msallamová Š, Levorová J, Foltán R, Vojtěch D. The Fundamental Comparison of Zn-2Mg and Mg-4Y-3RE Alloys as a Perspective Biodegradable Materials. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3745. [PMID: 31766288 PMCID: PMC6888298 DOI: 10.3390/ma12223745] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 01/12/2023]
Abstract
Biodegradable materials are of interest for temporary medical implants like stents for restoring damaged blood vessels, plates, screws, nails for fixing fractured bones. In the present paper new biodegradable Zn-2Mg alloy prepared by conventional casting and hot extrusion was tested in in vitro and in vivo conditions. Structure characterization and mechanical properties in tension and compression have been evaluated. For in vivo tests, hemispherical implants were placed into a rat cranium. Visual observation of the living animals, an inspection of implant location and computed tomography CT imaging 12 weeks after implantation were performed. Extracted implants were studied using scanning electron microscopy (SEM) on perpendicular cuts through corrosion products. The behaviour of zinc alloy both in in vitro and in vivo conditions was compared with commercially used Mg-based alloy (Mg-4Y-3RE) prepared by conventional casting and hot extrusion. Both compressive and tensile yield strengths of Zn and Mg-based alloys were similar; however, the brittleness of Mg-4Y-3RE was lower. Zn and Mg-based implants have no adverse effects on the behaviour or physical condition of rats. Moreover, gas bubbles and the inflammatory reaction of the living tissue were not detected after the 12-week period.
Collapse
Affiliation(s)
- Jiří Kubásek
- Department of Metals and Corrosion Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic; (J.K.); (D.D.); (Š.M.)
| | - Drahomír Dvorský
- Department of Metals and Corrosion Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic; (J.K.); (D.D.); (Š.M.)
| | - Jiří Šedý
- Department of Normal Anatomy, Faculty of Medicine, Palacký University Olomouc, 775 15 Olomouc, Czech Republic;
| | - Šárka Msallamová
- Department of Metals and Corrosion Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic; (J.K.); (D.D.); (Š.M.)
| | - Jitka Levorová
- Department of Oral and Maxillofacial Surgery, First Faculty of Medicine, Charles University, 128 01 Prague, Czech Republic; (J.L.); (R.F.)
| | - René Foltán
- Department of Oral and Maxillofacial Surgery, First Faculty of Medicine, Charles University, 128 01 Prague, Czech Republic; (J.L.); (R.F.)
| | - Dalibor Vojtěch
- Department of Metals and Corrosion Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic; (J.K.); (D.D.); (Š.M.)
| |
Collapse
|
48
|
Li G, Yang H, Zheng Y, Chen XH, Yang JA, Zhu D, Ruan L, Takashima K. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility. Acta Biomater 2019; 97:23-45. [PMID: 31349057 DOI: 10.1016/j.actbio.2019.07.038] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/06/2019] [Accepted: 07/22/2019] [Indexed: 01/13/2023]
Abstract
To date, more than fifty articles have been published on the feasibility studies of zinc and its alloys as biodegradable metals. These preliminary in vitro and in vivo studies showed acceptable biodegradability and reasonable biocompatibility in bone and blood microenvironments for the experimental Zn-based biodegradable metals and, for some alloy systems, superior mechanical performance over Mg-based biodegradable metals. For instance, the Zn-Li alloys exhibited higher UTS (UTS), and the Zn-Mn alloys exhibited higher elongation (more than 100%). On the one hand, similar to Mg-based biodegradable metals, insufficient strength and ductility, as well as relatively low fatigue strength, may lead to premature failure of medical devices. On the other hand, owing to the low melting point of the element Zn, several new uncertainties with regard to the mechanical properties of biomedical zinc alloys, including low creep resistance, high susceptibility to natural aging, and static recrystallization (SRX), may lead to device failure during storage at room temperature and usage at body temperature. This paper comprehensively reviews studies on these mechanical aspects of industrial Zn and Zn alloys in the last century and biomedical Zn and Zn alloys in this century. The challenges for the future design of biomedical zinc alloys as biodegradable metals to guarantee 100% mechanical compatibility are pointed out, and this will guide the mechanical property design of Zn-based biodegradable metals. STATEMENT OF SIGNIFICANCE: Previous studies on mechanical properties of industrial Zn and Zn alloys in the last century and biomedical Zn and Zn alloys in this century are comprehensively reviewed herein. The challenges for the future design of zinc-based biodegradable materials considering mechanical compatibility are pointed out. Common considerations such as strength, ductility, and fatigue behaviors are covered together with special attention on several new uncertainties including low creep resistance, high susceptibility to natural aging, and static recrystallization (SRX). These new uncertainties, which are not significantly observed in Mg-based and Fe-based materials, are largely due to the low melting point of the element Zn and may lead to device failure during storage at room temperature and clinical usage at body temperature. Future studies are urgently needed on these topics.
Collapse
|
49
|
Venezuela JJD, Johnston S, Dargusch MS. The Prospects for Biodegradable Zinc in Wound Closure Applications. Adv Healthc Mater 2019; 8:e1900408. [PMID: 31267693 DOI: 10.1002/adhm.201900408] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/28/2019] [Indexed: 12/16/2022]
Abstract
Zinc is identified as a promising biodegradable metal along with magnesium and iron. In the last 5 years, considerable progress is made on understanding the mechanical properties, biodegradability, and biocompatibility of zinc and its alloys. A majority of these studies have focused on using zinc for absorbable cardiovascular and orthopedic device applications. However, it is likely that zinc is also suitable for other biomedical applications. In this work, the prospects for zinc in the fabrication of wound closure devices such as absorbable sutures, staples, and surgical tacks are critically assessed, with the aim of inspiring future research on biodegradable Zn for this medical application.
Collapse
Affiliation(s)
- Jeffrey Jones D. Venezuela
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering The University of Queensland St Lucia QLD 4072 Australia
| | - Sean Johnston
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering The University of Queensland St Lucia QLD 4072 Australia
| | - Matthew Simon Dargusch
- Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM) School of Mechanical and Mining Engineering The University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
50
|
Investigation of zinc‑copper alloys as potential materials for craniomaxillofacial osteosynthesis implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109826. [PMID: 31349503 DOI: 10.1016/j.msec.2019.109826] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/17/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022]
Abstract
In this study, zinc‑copper (ZnCu) alloys were investigated regarding their feasibility as absorbable metals for osteosynthesis implants, especially in the craniomaxillofacial area. Mechanical properties and in vitro corrosion behavior of as-rolled Zn-xCu (x = 1, 2 and 4 wt%) alloys were systematically evaluated and screened. The as-rolled Zn4Cu alloy had mechanical properties that were superior to the most absorbable craniomaxillofacial osteosynthesis materials recently reported. The addition of Cu to Zn showed to have no apparent effect on the corrosion rates of the samples. The rolling process on Zn and Zn1Cu resulted in more uniform corrosion than on as-cast counterparts after 28 days immersion. Furthermore, the Zn4Cu alloys exhibited no apparent cytotoxic effect towards L929, TAg or Saos-2 cells. Proliferation rates of TAg and Saos-2 cells were shown to be activated by specific Zn ion concentrations in the as-rolled Zn4Cu alloy extracts. Analysis of in vitro antibacterial properties revealed that the as-rolled Zn4Cu alloy possessed the potential to inhibit biofilm formation of mixed oral bacteria. We conclude that the as-rolled Zn4Cu alloy might be a promising material for fabrication of craniomaxillofacial osteosynthesis implants.
Collapse
|