1
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
2
|
Thongrom B, Tang P, Arora S, Haag R. Polyglycerol-Based Hydrogel as Versatile Support Matrix for 3D Multicellular Tumor Spheroid Formation. Gels 2023; 9:938. [PMID: 38131924 PMCID: PMC10742718 DOI: 10.3390/gels9120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrogel-based artificial scaffolds are essential for advancing cell culture models from 2D to 3D, enabling a more realistic representation of physiological conditions. These hydrogels can be customized through crosslinking to mimic the extracellular matrix. While the impact of extracellular matrix scaffolds on cell behavior is widely acknowledged, mechanosensing has become a crucial factor in regulating various cellular functions. cancer cells' malignant properties depend on mechanical cues from their microenvironment, including factors like stiffness, shear stress, and pressure. Developing hydrogels capable of modulating stiffness holds great promise for better understanding cell behavior under distinct mechanical stress stimuli. In this study, we aim to 3D culture various cancer cell lines, including MCF-7, HT-29, HeLa, A549, BT-474, and SK-BR-3. We utilize a non-degradable hydrogel formed from alpha acrylate-functionalized dendritic polyglycerol (dPG) and thiol-functionalized 4-arm polyethylene glycol (PEG) via the thiol-Michael click reaction. Due to its high multivalent hydroxy groups and bioinert ether backbone, dPG polymer was an excellent alternative as a crosslinking hub and is highly compatible with living microorganisms. The rheological viscoelasticity of the hydrogels is tailored to achieve a mechanical stiffness of approximately 1 kPa, suitable for cell growth. Cancer cells are in situ encapsulated within these 3D network hydrogels and cultured with cell media. The grown tumor spheroids were characterized by fluorescence and confocal microscopies. The average grown size of all tumoroid types was ca. 150 µm after 25 days of incubation. Besides, the stability of a swollen gel remains constant after 2 months at physiological conditions, highlighting the nondegradable potential. The successful formation of multicellular tumor spheroids (MCTSs) for all cancer cell types demonstrates the versatility of our hydrogel platform in 3D cell growth.
Collapse
Affiliation(s)
| | | | - Smriti Arora
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany (P.T.)
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany (P.T.)
| |
Collapse
|
3
|
Morrison N, Vogel BM. Factors That Influence Base-Catalyzed Thiol-Ene Hydrogel Synthesis. Gels 2023; 9:917. [PMID: 37999007 PMCID: PMC10671550 DOI: 10.3390/gels9110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
Injectable, localized drug delivery using hydrogels made from ethoxylated trimethylolpropane tri-3-mercaptopropionate (ETTMP) and poly(ethylene glycol) diacrylate (PEGDA) has shown great potential due to these hydrogels' ability to exhibit non-swelling behavior and tunable drug release properties. However, current synthesis methods in the literature suffer from poor ETTMP solubility in water, slow gelation times exceeding 20 min, and a lack of reproducibility. To address these limitations, we have developed a reliable synthesis procedure and conducted a sensitivity analysis of key variables. This has enabled us to synthesize ETTMP-PEGDA hydrogels in a polymer concentration range of 15 to 90 wt% with gelation times of less than 2 min and moduli ranging from 3.5 to 190 kPa. We overcame two synthesis limitations by identifying the impact of residual mercaptopropionic acid and alumina purification column height on gelation time and by premixing ETTMP and PEGDA to overcome low ETTMP solubility in water. Our ETTMP-PEGDA mixture can be stored at -20 °C for up to 2 months without crosslinking, allowing easy storage and shipment. These and previous results demonstrate the potential of ETTMP-PEGDA hydrogels as promising candidates for injectable, localized drug delivery with tunable drug release properties.
Collapse
Affiliation(s)
| | - Brandon M. Vogel
- Department of Chemical Engineering, Bucknell University, Lewisburg, PA 17837, USA;
| |
Collapse
|
4
|
Negut I, Bita B. Exploring the Potential of Artificial Intelligence for Hydrogel Development-A Short Review. Gels 2023; 9:845. [PMID: 37998936 PMCID: PMC10670215 DOI: 10.3390/gels9110845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
AI and ML have emerged as transformative tools in various scientific domains, including hydrogel design. This work explores the integration of AI and ML techniques in the realm of hydrogel development, highlighting their significance in enhancing the design, characterisation, and optimisation of hydrogels for diverse applications. We introduced the concept of AI train hydrogel design, underscoring its potential to decode intricate relationships between hydrogel compositions, structures, and properties from complex data sets. In this work, we outlined classical physical and chemical techniques in hydrogel design, setting the stage for AI/ML advancements. These methods provide a foundational understanding for the subsequent AI-driven innovations. Numerical and analytical methods empowered by AI/ML were also included. These computational tools enable predictive simulations of hydrogel behaviour under varying conditions, aiding in property customisation. We also emphasised AI's impact, elucidating its role in rapid material discovery, precise property predictions, and optimal design. ML techniques like neural networks and support vector machines that expedite pattern recognition and predictive modelling using vast datasets, advancing hydrogel formulation discovery are also presented. AI and ML's have a transformative influence on hydrogel design. AI and ML have revolutionised hydrogel design by expediting material discovery, optimising properties, reducing costs, and enabling precise customisation. These technologies have the potential to address pressing healthcare and biomedical challenges, offering innovative solutions for drug delivery, tissue engineering, wound healing, and more. By harmonising computational insights with classical techniques, researchers can unlock unprecedented hydrogel potentials, tailoring solutions for diverse applications.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
| | - Bogdan Bita
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania;
- Faculty of Physics, University of Bucharest, 077125 Magurele, Romania
| |
Collapse
|
5
|
Suwannakot P, Nemec S, Peres NG, Du EY, Kilian KA, Gaus K, Kavallaris M, Gooding JJ. Electrostatic Assembly of Multiarm PEG-Based Hydrogels as Extracellular Matrix Mimics: Cell Response in the Presence and Absence of RGD Cell Adhesive Ligands. ACS Biomater Sci Eng 2023; 9:1362-1376. [PMID: 36826383 DOI: 10.1021/acsbiomaterials.2c01252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Synthetic hydrogels have been used widely as extracellular matrix (ECM) mimics due to the ability to control and mimic physical and biochemical cues observed in natural ECM proteins such as collagen, laminin, and fibronectin. Most synthetic hydrogels are formed via covalent bonding resulting in slow gelation which is incompatible with drop-on-demand 3D bioprinting of cells and injectable hydrogels for therapeutic delivery. Herein, we developed an electrostatically crosslinked PEG-based hydrogel system for creating high-throughput 3D in vitro models using synthetic hydrogels to mimic the ECM cancer environment. A 3-arm PEG-based polymer backbone was first modified with either permanent cationic charged moieties (2-(methacryloyloxy)ethyl trimethylammonium) or permanent anionic charged moieties (3-sulfopropyl methacrylate potassium salt). The resulting charged polymers can be conjugated further with various amounts of cell adhesive RGD motifs (0, 25, 75, and 98%) to study the influences of RGD motifs on breast cancer (MCF-7) spheroid formation. Formation, stability, and mechanical properties of hydrogels were tested with, and without, RGD to evaluate the cellular response to material parameters in a 3D environment. The hydrogels can be degraded in the presence of salts at room temperature by breaking the interaction of oppositely charged polymer chains. MCF-7 cells could be released with high viability through brief exposure to NaCl solution. Flow cytometry characterization demonstrated that embedded MCF-7 cells proliferate better in a softer (60 Pa) 3D hydrogel environment compared to those that are stiffer (1160 Pa). As the stiffness increases, the RGD motif plays a role in promoting cell proliferation in the stiffer hydrogel. Flow cytometry characterization demonstrated that embedded MCF-7 cells proliferate better in a softer (60 Pa) 3D hydrogel environment compared to those that are stiffer (1160 Pa). As the stiffness increases, the RGD motif plays a role in promoting cell proliferation in the stiffer hydrogel. Additionally, cell viability was not impacted by the tested hydrogel stiffness range between 60 to 1160 Pa. Taken together, this PEG-based tuneable hydrogel system shows great promise as a 3D ECM mimic of cancer extracellular environments with controllable biophysical and biochemical properties. The ease of gelation and dissolution through salt concentration provides a way to quickly harvest cells for further analysis at any given time of interest without compromising cell viability.
Collapse
Affiliation(s)
- Panthipa Suwannakot
- School of Chemistry, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Stephanie Nemec
- School of Materials Science and Engineering, UNSW, Sydney, New South Wales 2052, Australia
| | - Newton Gil Peres
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, UNSW, Sydney, New South Wales 2052, Australia
| | - Eric Y Du
- School of Chemistry, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Kristopher A Kilian
- School of Chemistry, UNSW, Sydney, New South Wales 2052, Australia
- School of Materials Science and Engineering, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Katharina Gaus
- School of Medical Sciences, EMBL Australia Node in Single Molecule Science, UNSW, Sydney, New South Wales 2052, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, UNSW, Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
6
|
Huang C, Yuan W, Chen J, Wu LP, You T. Construction of Smart Biomaterials for Promoting Diabetic Wound Healing. Molecules 2023; 28:molecules28031110. [PMID: 36770776 PMCID: PMC9920261 DOI: 10.3390/molecules28031110] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Diabetes mellitus is a complicated metabolic disease that has become one of the fastest-growing health crises in modern society. Diabetic patients may suffer from various complications, and diabetic foot is one of them. It can lead to increased rates of lower-extremity amputation and mortality, even seriously threatening the life and health of patients. Because its healing process is affected by various factors, its management and treatment are very challenging. To address these problems, smart biomaterials have been developed to expedite diabetic wound closure and improve treatment outcomes. This review begins with a discussion of the basic mechanisms of wound recovery and the limitations of current dressings used for diabetic wound healing. Then, the categories and characteristics of the smart biomaterial scaffolds, which can be utilized as a delivery system for drugs with anti-inflammatory activity, bioactive agency, and antibacterial nanoparticles for diabetic wound treatment were described. In addition, it can act as a responsive system to the stimulus of the pH, reactive oxygen species, and glucose concentration from the wound microenvironment. These results show that smart biomaterials have an enormous perspective for the treatment of diabetic wounds in all stages of healing. Finally, the advantages of the construction of smart biomaterials are summarized, and possible new strategies for the clinical management of diabetic wounds are proposed.
Collapse
Affiliation(s)
- Chan Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiyan Yuan
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jun Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lin-Ping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Correspondence: (L.-P.W.); (T.Y.)
| | - Tianhui You
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (L.-P.W.); (T.Y.)
| |
Collapse
|
7
|
He W, Zhou D, Gu H, Qu R, Cui C, Zhou Y, Wang Y, Zhang X, Wang Q, Wang T, Zhang Y. A Biocompatible 4D Printing Shape Memory Polymer as Emerging Strategy for Fabrication of Deployable Medical Devices. Macromol Rapid Commun 2023; 44:e2200553. [PMID: 36029168 DOI: 10.1002/marc.202200553] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/18/2022] [Indexed: 01/26/2023]
Abstract
The rapid development of 4D printing provides a potential strategy for the fabrication of deployable medical devices (DMD). The minimally invasive surgery to implant the DMD into the body is critical, 4D printing DMD allows the well-defined device to be implanted with a high-compacted shape and transformed into their designed shape to meet the requirement. Herein, a 4D printing tissue engineering material is developed with excellent biocompatibility and shape memory effect based on the photocrosslinked polycaprolactone (PCL). The fast thiol-acrylate click reaction is applied for photocrosslinking of the acrylates capped star polymer (s-PCL-MA) with poly-thiols, that enable the 3D printing for the DMD fabrication. The cell viability, erythrocyte hemolysis, and platelet adhesion results indicate the excellent biocompatibility of the 4D printing polymer, especially the biological subcutaneous implantation results confirm the promote tissue growth and good histocompatibility. A 4D printing stent with deformable shape and recovery at a temperature close to human body temperature demonstrated the potential application as DMD. In addition, the everolimus is loaded to the polymer (ps1-PCL) through host-guest coordination with β-cyclodextrin as the core of the star polymer, which shows sustained drug release and improved body's inflammatory response.
Collapse
Affiliation(s)
- Wenyang He
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Dong Zhou
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Hao Gu
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Ruisheng Qu
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Chaoqiang Cui
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Yanyi Zhou
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Yu Wang
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Xinrui Zhang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
8
|
Injectable carboxymethyl chitosan-genipin hydrogels encapsulating tea tree oil for wound healing. Carbohydr Polym 2022; 301:120348. [DOI: 10.1016/j.carbpol.2022.120348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
9
|
Khan AH, Zhou SP, Moe M, Ortega Quesada BA, Bajgiran KR, Lassiter HR, Dorman JA, Martin EC, Pojman JA, Melvin AT. Generation of 3D Spheroids Using a Thiol-Acrylate Hydrogel Scaffold to Study Endocrine Response in ER + Breast Cancer. ACS Biomater Sci Eng 2022; 8:3977-3985. [PMID: 36001134 PMCID: PMC9472224 DOI: 10.1021/acsbiomaterials.2c00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Culturing cancer cells in a three-dimensional (3D) environment
better recapitulates in vivo conditions by mimicking
cell-to-cell interactions and mass transfer limitations of metabolites,
oxygen, and drugs. Recent drug studies have suggested that a high
rate of preclinical and clinical failures results from mass transfer
limitations associated with drug entry into solid tumors that 2D model
systems cannot predict. Droplet microfluidic devices offer a promising
alternative to grow 3D spheroids from a small number of cells to reduce
intratumor heterogeneity, which is lacking in other approaches. Spheroids
were generated by encapsulating cells in novel thiol–acrylate
(TA) hydrogel scaffold droplets followed by on-chip isolation of single
droplets in a 990- or 450-member trapping array. The TA hydrogel rapidly
(∼35 min) polymerized on-chip to provide an initial scaffold
to support spheroid development followed by a time-dependent degradation.
Two trapping arrays were fabricated with 150 or 300 μm diameter
traps to investigate the effect of droplet size and cell seeding density
on spheroid formation and growth. Both trapping arrays were capable
of ∼99% droplet trapping efficiency with ∼90% and 55%
cellular encapsulation in trapping arrays containing 300 and 150 μm
traps, respectively. The oil phase was replaced with media ∼1
h after droplet trapping to initiate long-term spheroid culturing.
The growth and viability of MCF-7 3D spheroids were confirmed for
7 days under continuous media flow using a customized gravity-driven
system to eliminate the need for syringe pumps. It was found that
a minimum of 10 or more encapsulated cells are needed to generate
a growing spheroid while fewer than 10 parent cells produced stagnant
3D spheroids. As a proof of concept, a drug susceptibility study was
performed treating the spheroids with fulvestrant followed by interrogating
the spheroids for proliferation in the presence of estrogen. Following
fulvestrant exposure, the spheroids showed significantly less proliferation
in the presence of estrogen, confirming drug efficacy.
Collapse
Affiliation(s)
- Anowar H Khan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sophia P Zhou
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Margaret Moe
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Braulio A Ortega Quesada
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Khashayar R Bajgiran
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Haley R Lassiter
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - James A Dorman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Elizabeth C Martin
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
10
|
Cortesi M, Giordano E. Non-destructive monitoring of 3D cell cultures: new technologies and applications. PeerJ 2022; 10:e13338. [PMID: 35582620 PMCID: PMC9107788 DOI: 10.7717/peerj.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
3D cell cultures are becoming the new standard for cell-based in vitro research, due to their higher transferrability toward in vivo biology. The lack of established techniques for the non-destructive quantification of relevant variables, however, constitutes a major barrier to the adoption of these technologies, as it increases the resources needed for the experimentation and reduces its accuracy. In this review, we aim at addressing this limitation by providing an overview of different non-destructive approaches for the evaluation of biological features commonly quantified in a number of studies and applications. In this regard, we will cover cell viability, gene expression, population distribution, cell morphology and interactions between the cells and the environment. This analysis is expected to promote the use of the showcased technologies, together with the further development of these and other monitoring methods for 3D cell cultures. Overall, an extensive technology shift is required, in order for monolayer cultures to be superseded, but the potential benefit derived from an increased accuracy of in vitro studies, justifies the effort and the investment.
Collapse
Affiliation(s)
- Marilisa Cortesi
- Department of Electrical, Electronic and Information Engineering ”G.Marconi”, University of Bologna, Bologna, Italy
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, Australia
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering ”G.Marconi”, University of Bologna, Bologna, Italy
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Characterization and structure-property relationships of an injectable thiol-Michael addition hydrogel toward compatibility with glioblastoma therapy. Acta Biomater 2022; 144:266-278. [PMID: 35296443 DOI: 10.1016/j.actbio.2022.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive primary brain cancer and although patients undergo surgery and chemoradiotherapy, residual cancer cells still migrate to healthy brain tissue and lead to tumor relapse after treatment. New therapeutic strategies are therefore urgently needed to better mitigate this tumor recurrence. To address this need, we envision after surgical removal of the tumor, implantable biomaterials in the resection cavity can treat or collect residual GBM cells for their subsequent eradication. To this end, we systematically characterized a poly(ethylene glycol)-based injectable hydrogel crosslinked via a thiol-Michael addition reaction by tuning its hydration level and aqueous NaHCO3 concentration. The physical and chemical properties of the different formulations were investigated by assessing the strength and stability of the polymer networks and their swelling behavior. The hydrogel biocompatibility was assessed by performing in vitro cytotoxicity assays, immunoassays, and immunocytochemistry to monitor the reactivity of astrocytes cultured on the hydrogel surface over time. These characterization studies revealed key structure-property relationships. Furthermore, the results indicated hydrogels synthesized with 0.175 M NaHCO3 and 50 wt% water content swelled the least, possessed a storage modulus that can withstand high intracranial pressures while avoiding a mechanical mismatch, had a sufficiently crosslinked polymer network, and did not degrade rapidly. This formulation was not cytotoxic to astrocytes and produced minimal immunogenic responses in vitro. These properties suggest this hydrogel formulation is the most optimal for implantation in the resection cavity and compatible toward GBM therapy. STATEMENT OF SIGNIFICANCE: Survival times for glioblastoma patients have not improved significantly over the last several decades, as cancer cells remain after conventional therapies and form secondary tumors. We characterized a biodegradable, injectable hydrogel to reveal structure-property relationships that can be tuned to conform the hydrogel toward glioblastoma therapy. Nine formulations were systematically characterized to optimize the hydrogel based on physical, chemical, and biological compatibility with the glioblastoma microenvironment. This hydrogel can potentially be used for adjuvant therapy to glioblastoma treatment, such as by providing a source of molecular release for therapeutic agents, which will be investigated in future work. The optimized formulation will be developed further to capture and eradicate glioblastoma cells with chemical and physical stimuli in future research.
Collapse
|
12
|
Hobiger V, Zahoranova A, Baudis S, Liska R, Krajnc P. Thiol-Ene Cross-linking of Poly(ethylene glycol) within High Internal Phase Emulsions: Degradable Hydrophilic PolyHIPEs for Controlled Drug Release. Macromolecules 2021; 54:10370-10380. [PMID: 34840351 PMCID: PMC8619294 DOI: 10.1021/acs.macromol.1c01240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/18/2021] [Indexed: 12/16/2022]
Abstract
![]()
Macroporous polymer
monoliths prepared from high internal phase
emulsions (HIPEs) can be found in various biomedical applications.
While typically water-in-oil HIPEs are applied for polyHIPE preparation,
they are not suitable for hydrophilic polyHIPE preparation. Herein,
direct oil-in-water emulsions based on water-soluble poly(ethylene
glycol)diacrylate or poly(ethylene glycol)dimethacrylate were developed.
Furthermore, the incorporation of a hydrophilic water-miscible thiol,
ethoxylated trimethylolpropane tris(3-mercaptopropionate) (ETTMP)
was reported for the first time within thiol–ene polyHIPEs.
Due to the transparency of the emulsions, rapid curing via photopolymerization
was feasible. The average pore diameters of the resulting polyHIPEs
ranged between 1.2 and 3.6 μm, and porosity of up to 90% was
achieved. The water uptake of the materials reached up to 1000% by
weight. Drug loading and release were demonstrated, employing salicylic
acid as a model drug. Porous profile and biodegradability add to the
usefulness of the material for biomedical applications.
Collapse
Affiliation(s)
- Viola Hobiger
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor 2000, Slovenia
| | - Anna Zahoranova
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Stefan Baudis
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Peter Krajnc
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor 2000, Slovenia
| |
Collapse
|
13
|
Bone Regeneration Using MMP-Cleavable Peptides-Based Hydrogels. Gels 2021; 7:gels7040199. [PMID: 34842679 PMCID: PMC8628702 DOI: 10.3390/gels7040199] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence has suggested the significant potential of chemically modified hydrogels in bone regeneration. Despite the progress of bioactive hydrogels with different materials, structures and loading cargoes, the desires from clinical applications have not been fully validated. Multiple biological behaviors are orchestrated precisely during the bone regeneration process, including bone marrow mesenchymal stem cells (BMSCs) recruitment, osteogenic differentiation, matrix calcification and well-organized remodeling. Since matrix metalloproteinases play critical roles in such bone metabolism processes as BMSC commitment, osteoblast survival, osteoclast activation matrix calcification and microstructure remodeling, matrix metalloproteinase (MMP) cleavable peptides-based hydrogels could respond to various MMP levels and, thus, accelerate bone regeneration. In this review, we focused on the MMP-cleavable peptides, polymers, functional modification and crosslinked reactions. Applications, perspectives and limitations of MMP-cleavable peptides-based hydrogels for bone regeneration were then discussed.
Collapse
|
14
|
Parisi C, Qin K, Fernandes FM. Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200344. [PMID: 34334019 DOI: 10.1098/rsta.2020.0344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2021] [Indexed: 06/13/2023]
Abstract
Seeding materials with living cells has been-and still is-one of the most promising approaches to reproduce the complexity and the functionality of living matter. The strategies to associate living cells with materials are limited to cell encapsulation and colonization, however, the requirements for these two approaches have been seldom discussed systematically. Here we propose a simple two-dimensional map based on materials' pore size and the cytocompatibility of their fabrication process to draw, for the first time, a guide to building cellularized materials. We believe this approach may serve as a straightforward guideline to design new, more relevant materials, able to seize the complexity and the function of biological materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Cleo Parisi
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Kankan Qin
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
15
|
Khan A, Smith NM, Tullier MP, Roberts BS, Englert D, Pojman JA, Melvin AT. Development of a Flow-free Gradient Generator Using a Self-Adhesive Thiol-acrylate Microfluidic Resin/Hydrogel (TAMR/H) Hybrid System. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26735-26747. [PMID: 34081856 PMCID: PMC8289190 DOI: 10.1021/acsami.1c04771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Microfluidic gradient generators have been used to study cellular migration, growth, and drug response in numerous biological systems. One type of device combines a hydrogel and polydimethylsiloxane (PDMS) to generate "flow-free" gradients; however, their requirements for either negative flow or external clamps to maintain fluid-tight seals between the two layers have restricted their utility among broader applications. In this work, a two-layer, flow-free microfluidic gradient generator was developed using thiol-ene chemistry. Both rigid thiol-acrylate microfluidic resin (TAMR) and diffusive thiol-acrylate hydrogel (H) layers were synthesized from commercially available monomers at room temperature and pressure using a base-catalyzed Michael addition. The device consisted of three parallel microfluidic channels negatively imprinted in TAMR layered on top of the thiol-acrylate hydrogel to facilitate orthogonal diffusion of chemicals to the direction of flow. Upon contact, these two layers formed fluid-tight channels without any external pressure due to a strong adhesive interaction between the two layers. The diffusion of molecules through the TAMR/H system was confirmed both experimentally (using fluorescent microscopy) and computationally (using COMSOL). The performance of the TAMR/H system was compared to a conventional PDMS/agarose device with a similar geometry by studying the chemorepulsive response of a motile strain of GFP-expressing Escherichia coli. Population-based analysis confirmed a similar migratory response of both wild-type and mutant E. coli in both of the microfluidic devices. This confirmed that the TAMR/H hybrid system is a viable alternative to traditional PDMS-based microfluidic gradient generators and can be used for several different applications.
Collapse
Affiliation(s)
- Anowar
H. Khan
- Department
of Chemistry, Louisiana State University, Baton Rouge 70803, Louisiana, United States
| | - Noah Mulherin Smith
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton Rouge 70803, Louisiana, United States
| | - Michael P. Tullier
- Department
of Chemistry, Louisiana State University, Baton Rouge 70803, Louisiana, United States
| | - B. Seth Roberts
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton Rouge 70803, Louisiana, United States
| | - Derek Englert
- Chemical
and Materials Engineering, University of
Kentucky, Paducah 42002, Kentucky, United States
| | - John A. Pojman
- Department
of Chemistry, Louisiana State University, Baton Rouge 70803, Louisiana, United States
| | - Adam T. Melvin
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton Rouge 70803, Louisiana, United States
| |
Collapse
|
16
|
Fattahi N, Nieves-Otero PA, Masigol M, van der Vlies AJ, Jensen RS, Hansen RR, Platt TG. Photodegradable Hydrogels for Rapid Screening, Isolation, and Genetic Characterization of Bacteria with Rare Phenotypes. Biomacromolecules 2020; 21:3140-3151. [PMID: 32559368 DOI: 10.1021/acs.biomac.0c00543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Screening mutant libraries (MLs) of bacteria for strains with specific phenotypes is often a slow and laborious process that requires assessment of tens of thousands of individual cell colonies after plating and culturing on solid media. In this report, we develop a three-dimensional, photodegradable hydrogel interface designed to dramatically improve the throughput of ML screening by combining high-density cell culture with precision extraction and the recovery of individual, microscale colonies for follow-up genetic and phenotypic characterization. ML populations are first added to a hydrogel precursor solution consisting of polyethylene glycol (PEG) o-nitrobenzyl diacrylate and PEG-tetrathiol macromers, where they become encapsulated into 13 μm thick hydrogel layers at a density of 90 cells/mm2, enabling parallel monitoring of 2.8 × 104 mutants per hydrogel. Encapsulated cells remain confined within the elastic matrix during culture, allowing one to track individual cells that grow into small, stable microcolonies (45 ± 4 μm in diameter) over the course of 72 h. Colonies with rare growth profiles can then be identified, extracted, and recovered from the hydrogel in a sequential manner and with minimal damage using a high-resolution, 365 nm patterned light source. The light pattern can be varied to release motile cells, cellular aggregates, or microcolonies encapsulated in protective PEG coatings. To access the benefits of this approach for ML screening, an Agrobacterium tumefaciens C58 transposon ML was screened for rare, resistant mutants able to grow in the presence of cell free culture media from Rhizobium rhizogenes K84, a well-known inhibitor of C58 cell growth. Subsequent genomic analysis of rare cells (9/28,000) that developed into microcolonies identified that seven of the resistant strains had mutations in the acc locus of the Ti plasmid. These observations are consistent with past research demonstrating that the disruption of this locus confers resistance to agrocin 84, an inhibitory molecule produced by K84. The high-throughput nature of the screen allows the A. tumefaciens genome (approximately 5.6 Mbps) to be screened to saturation in a single experimental trial, compared to hundreds of platings required by conventional plating approaches. As a miniaturized version of the gold-standard plating assay, this materials-based approach offers a simple, inexpensive, and highly translational screening technique that does not require microfluidic devices or complex liquid handling steps. The approach is readily adaptable to other applications that require isolation and study of rare or phenotypically pure cell populations.
Collapse
Affiliation(s)
- Niloufar Fattahi
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | | | - Mohammadali Masigol
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - André J van der Vlies
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Reilly S Jensen
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Ryan R Hansen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Thomas G Platt
- Division of Biology, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|