1
|
Zhang C, Tian Y, Liu X, Yang X, Jiang S, Zhang G, Yang C, Liu W, Guo W, Zhao W, Yin D. MiR-495 reverses in the mechanical unloading, random rotating and aging induced muscle atrophy via targeting MyoD and inactivating the Myostatin/TGF-β/Smad3 axis. Arch Biochem Biophys 2025; 764:110273. [PMID: 39701202 DOI: 10.1016/j.abb.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Mechanical unloading can lead to homeostasis imbalance and severe muscle disease, in which muscle atrophy was one of the disused diseases. However, there were limited therapeutic targets for such diseases. In this study, miR-495 was found dramatically reduced in atrophic skeletal muscle induced by mechanical unloading models both in vitro and in vivo, including the random positioning model (RPM), tail-suspension (TS) model, and aged mice model. Enforced miR-495 expression by its mimic could enormously facilitate the differentiation and regeneration of both mouse myoblast C2C12 cells and muscle satellite cells. Furthermore, MyoD was proved as the directly interacted gene of miR-495, and their interaction was crucial for myotube formation. Enforced miR-495 expression could intensively strengthen the muscle mass, in situ muscular electrophysiological indexes, including peak tetanic tension (Po) and peak twitch tension (Pt), and the cross-sectional areas (CSA) of muscle fibers via targeting MyoD and inactivating the Myostatin/TGF-β/Smad3 signaling pathway, indicating that miR-495 can be proposed as an effective target for muscle atrophy treatment induced by in the mechanical unloading, random rotating and aging.
Collapse
Affiliation(s)
- Chenyan Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China; Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| | - Yile Tian
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China; Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Xinli Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Xuezhou Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Shanfeng Jiang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Ge Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China; Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Changqing Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wenjing Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Weihong Guo
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, China; Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Wenzhe Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Dachuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| |
Collapse
|
2
|
He D, Jiao Y, Xu J, Luo J, Cui Y, Han X, Zhao H. mmu-miR-185 regulates osteoclasts differentiation and migration by targeting Btk. J Gene Med 2024; 26:e3687. [PMID: 38690623 DOI: 10.1002/jgm.3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Bones undergo a constant remodeling, a process involving osteoclast-mediated bone resorption and osteoblast-mediated bone formation, crucial for maintaining healthy bone mass. We previously observed that miR-185 depletion may promote bone formation by regulating Bgn expression and the BMP/Smad signaling pathway. However, the effects of miR-185-5p on the osteoclasts and bone remodeling have not been elucidated, warranting further exploration. METHODS Tartrate-resistant acid phosphatase staining was utilized to assess the differentiation ability of bone marrow mononuclear macrophages (BMMs) from mmu-miR-185 gene knockout (KO) mice and wild-type (WT) mice. A reverse transcriptase-quantitative PCR was conducted to compare differences in miR-185-5p and osteoclast marker molecules, including Trap, Dcstamp, Ctsk and Nfatc1, between the KO group and WT group BMMs. Western blot analysis was employed to observe the expression of osteoclast marker molecules. A cell-counting kit-8 was used to analyze cell proliferation ability. Transwell experiments were conducted to detect cell migration. Dual-luciferase reporter assays were employed to confirm whether Btk is a downstream target gene of miR-185-5p. RESULTS miR-185 depletion promoted osteoclast differentiation in bone marrow-derived monocytes/macrophages. Overexpression of miR-185-5p in RAW264.7 cells inhibited differentiation and migration of osteoclasts. Furthermore, Btk was identified as a downstream target gene of miR-185-5p, suggesting that miR-185-5p may inhibit osteoclast differentiation and migration by targeting Btk. CONCLUSIONS miR-185 regulates osteoclasts differentiation, with overexpression of miR-185-5p inhibiting osteoclast differentiation and migration in vitro. Additionally, miR-185-5p may modulate osteoclastic differentiation and migration by regulating Btk expression.
Collapse
Affiliation(s)
- Dan He
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Yueying Jiao
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Jian Xu
- Department of Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing, China
| | - Junjie Luo
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Yaqi Cui
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Xiabing Han
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| | - Hongshan Zhao
- Department of Medical Genetics, Peking University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Chen Y, Wang X, Na X, Zhang Y, Li Z, Chen X, Cai L, Song J, Xu R, Yang C. Highly Multiplexed, Efficient, and Automated Single-Cell MicroRNA Sequencing with Digital Microfluidics. SMALL METHODS 2024; 8:e2301250. [PMID: 38016072 DOI: 10.1002/smtd.202301250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Single-cell microRNA (miRNA) sequencing has allowed for comprehensively studying the abundance and complex networks of miRNAs, which provides insights beyond single-cell heterogeneity into the dynamic regulation of cellular events. Current benchtop-based technologies for single-cell miRNA sequencing are low throughput, limited reaction efficiency, tedious manual operations, and high reagent costs. Here, a highly multiplexed, efficient, integrated, and automated sample preparation platform is introduced for single-cell miRNA sequencing based on digital microfluidics (DMF), named Hiper-seq. The platform integrates major steps and automates the iterative operations of miRNA sequencing library construction by digital control of addressable droplets on the DMF chip. Based on the design of hydrophilic micro-structures and the capability of handling droplets of DMF, multiple single cells can be selectively isolated and subject to sample processing in a highly parallel way, thus increasing the throughput and efficiency for single-cell miRNA measurement. The nanoliter reaction volume of this platform enables a much higher miRNA detection ability and lower reagent cost compared to benchtop methods. It is further applied Hiper-seq to explore miRNAs involved in the ossification of mouse skeletal stem cells after bone fracture and discovered unreported miRNAs that regulate bone repairing.
Collapse
Affiliation(s)
- Yingwen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuanqun Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xing Na
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yingkun Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaohui Chen
- State Key Laboratory of Cellular Stress Biology, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361100, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Linfeng Cai
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, School of Medicine, Xiamen University, Xiamen, 361100, China
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Chaoyong Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
4
|
Akshaya RL, Saranya I, Selvamurugan N. MicroRNAs mediated interaction of tumor microenvironment cells with breast cancer cells during bone metastasis. Breast Cancer 2023; 30:910-925. [PMID: 37578597 DOI: 10.1007/s12282-023-01491-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Breast cancer (BC) bone metastasis is primarily osteolytic and has limited therapeutic options. Metastasized BC cells prime the secondary environment in bone by forming a tumor niche, which favors their homing and colonization. The tumor microenvironment (TME) is primarily generated by the cancer cells. Bone TME is an intricate network of multiple cells, including altered bone, tumor, stromal, and immune cells. Recent findings highlight the significance of small non-coding microRNAs (miRNAs) in influencing TME during tumor metastasis. MiRNAs from TME-resident cells facilitate the interaction between the tumor and its microenvironment, thereby regulating the biological processes of tumors. These miRNAs can serve as oncogenes or tumor suppressors. Hence, both miRNA inhibitors and mimics are extensively utilized in pre-clinical trials for modulating the phenotypes of tumor cells and associated stromal cells. This review briefly summarizes the recent developments on the functional role of miRNAs secreted directly or indirectly from the TME-resident cells in facilitating tumor growth, progression, and metastasis. This information would be beneficial in developing novel targeted therapies for BC.
Collapse
Affiliation(s)
- R L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - I Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India.
| |
Collapse
|
5
|
Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. From Cells to Environment: Exploring the Interplay between Factors Shaping Bone Health and Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1546. [PMID: 37763665 PMCID: PMC10532995 DOI: 10.3390/medicina59091546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
The skeletal system is an extraordinary structure that serves multiple purposes within the body, including providing support, facilitating movement, and safeguarding vital organs. Moreover, it acts as a reservoir for essential minerals crucial for overall bodily function. The intricate interplay of bone cells plays a critical role in maintaining bone homeostasis, ensuring a delicate balance. However, various factors, both intrinsic and extrinsic, can disrupt this vital physiological process. These factors encompass genetics, aging, dietary and lifestyle choices, the gut microbiome, environmental toxins, and more. They can interfere with bone health through several mechanisms, such as hormonal imbalances, disruptions in bone turnover, direct toxicity to osteoblasts, increased osteoclast activity, immune system aging, impaired inflammatory responses, and disturbances in the gut-bone axis. As a consequence, these disturbances can give rise to a range of bone disorders. The regulation of bone's physiological functions involves an intricate network of continuous processes known as bone remodeling, which is influenced by various intrinsic and extrinsic factors within the organism. However, our understanding of the precise cellular and molecular mechanisms governing the complex interactions between environmental factors and the host elements that affect bone health is still in its nascent stages. In light of this, this comprehensive review aims to explore emerging evidence surrounding bone homeostasis, potential risk factors influencing it, and prospective therapeutic interventions for future management of bone-related disorders.
Collapse
Affiliation(s)
- Samradhi Singh
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA;
| | - Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| |
Collapse
|
6
|
Felekkis K, Pieri M, Papaneophytou C. Exploring the Feasibility of Circulating miRNAs as Diagnostic and Prognostic Biomarkers in Osteoarthritis: Challenges and Opportunities. Int J Mol Sci 2023; 24:13144. [PMID: 37685951 PMCID: PMC10487837 DOI: 10.3390/ijms241713144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by progressive cartilage degradation and joint inflammation. As the most common aging-related joint disease, OA is marked by inadequate extracellular matrix synthesis and the breakdown of articular cartilage. However, traditional diagnostic methods for OA, relying on clinical assessments and radiographic imaging, often need to catch up in detecting early-stage disease or i accurately predicting its progression. Consequently, there is a growing interest in identifying reliable biomarkers that can facilitate early diagnosis and prognosis of OA. MicroRNAs (miRNAs) have emerged as potential candidates due to their involvement in various cellular processes, including cartilage homeostasis and inflammation. This review explores the feasibility of circulating miRNAs as diagnostic and prognostic biomarkers in OA, focusing on knee OA while shedding light on the challenges and opportunities associated with their implementation in clinical practice.
Collapse
Affiliation(s)
| | | | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, Nicosia 2417, Cyprus; (K.F.); (M.P.)
| |
Collapse
|
7
|
Prigol AN, Rode MP, da Luz Efe F, Saleh NA, Creczynski-Pasa TB. The Bone Microenvironment Soil in Prostate Cancer Metastasis: An miRNA Approach. Cancers (Basel) 2023; 15:4027. [PMID: 37627055 PMCID: PMC10452124 DOI: 10.3390/cancers15164027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bone metastatic prostate cancer (PCa) is associated with a high risk of mortality. Changes in the expression pattern of miRNAs seem to be related to early aspects of prostate cancer, as well as its establishment and proliferation, including the necessary steps for metastasis. Here we compiled, for the first time, the important roles of miRNAs in the development, diagnosis, and treatment of bone metastasis, focusing on recent in vivo and in vitro studies. PCa exosomes are proven to promote metastasis-related events, such as osteoblast and osteoclast differentiation and proliferation. Aberrant miRNA expression in PCa may induce abnormal bone remodeling and support tumor development. Furthermore, miRNAs are capable of binding to multiple mRNA targets, a dynamic property that can be harnessed for the development of treatment tools, such as antagomiRs and miRNA mimics, which have emerged as promising candidates in PCa treatment. Finally, miRNAs may serve as noninvasive biomarkers, as they can be detected in tissue and bodily fluids, are highly stable, and show differential expression between nonmetastatic PCa and bone metastatic samples. Taken together, the findings underscore the importance of miRNA expression profiles and miRNA-based tools as rational technologies to increase the quality of life and longevity of patients.
Collapse
Affiliation(s)
| | | | | | | | - Tânia Beatriz Creczynski-Pasa
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis 88040-900, Santa Catarina State, Brazil; (A.N.P.); (M.P.R.); (F.d.L.E.); (N.A.S.)
| |
Collapse
|
8
|
Fazeli N, Arefian E, Irani S, Ardeshirylajimi A, Seyedjafari E. Accelerated reconstruction of rat calvaria bone defect using 3D-printed scaffolds coated with hydroxyapatite/bioglass. Sci Rep 2023; 13:12145. [PMID: 37500679 PMCID: PMC10374909 DOI: 10.1038/s41598-023-38146-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Self-healing and autologous bone graft of calvaraial defects can be challenging. Therefore, the fabrication of scaffolds for its rapid and effective repair is a promising field of research. This paper provided a comparative study on the ability of Three-dimensional (3D) printed polycaprolactone (PCL) scaffolds and PCL-modified with the hydroxyapatite (HA) and bioglasses (BG) bioceramics scaffolds in newly bone formed in calvaria defect area. The studied 3D-printed PCL scaffolds were fabricated by fused deposition layer-by-layer modeling. After the evaluation of cell adhesion on the surface of the scaffolds, they were implanted into a rat calvarial defect model. The rats were divided into four groups with scaffold graft including PCL, PCL/HA, PCL/BG, and PCL/HA/BG and a non-explant control group. The capacity of the 3D-printed scaffolds in calvarial bone regeneration was investigated using micro computed tomography scan, histological and immunohistochemistry analyses. Lastly, the expression levels of several bone related genes as well as the expression of miR-20a and miR-17-5p as positive regulators and miR-125a as a negative regulator in osteogenesis pathways were also investigated. The results of this comparative study have showed that PCL scaffolds with HA and BG bioceramics have a great range of potential applications in the field of calvaria defect treatment.
Collapse
Affiliation(s)
- Nasrin Fazeli
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, P.O.Box: 141556455, Tehran, Iran.
| |
Collapse
|
9
|
Oxidative Stress and Inflammation in Osteoporosis: Molecular Mechanisms Involved and the Relationship with microRNAs. Int J Mol Sci 2023; 24:ijms24043772. [PMID: 36835184 PMCID: PMC9963528 DOI: 10.3390/ijms24043772] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Osteoporosis is characterized by the alteration of bone homeostasis due to an imbalance between osteoclastic bone resorption and osteoblastic bone formation. Estrogen deficiency causes bone loss and postmenopausal osteoporosis, the pathogenesis of which also involves oxidative stress, inflammatory processes, and the dysregulation of the expression of microRNAs (miRNAs) that control gene expression at post-transcriptional levels. Oxidative stress, due to an increase in reactive oxygen species (ROS), proinflammatory mediators and altered levels of miRNAs enhance osteoclastogenesis and reduce osteoblastogenesis through mechanisms involving the activation of MAPK and transcription factors. The present review summarizes the principal molecular mechanisms involved in the role of ROS and proinflammatory cytokines on osteoporosis. Moreover, it highlights the interplay among altered miRNA levels, oxidative stress, and an inflammatory state. In fact, ROS, by activating the transcriptional factors, can affect miRNA expression, and miRNAs can regulate ROS production and inflammatory processes. Therefore, the present review should help in identifying targets for the development of new therapeutic approaches to osteoporotic treatment and improve the quality of life of patients.
Collapse
|
10
|
Pepe J, Rossi M, Battafarano G, Vernocchi P, Conte F, Marzano V, Mariani E, Mortera SL, Cipriani C, Rana I, Buonuomo PS, Bartuli A, De Martino V, Pelle S, Pascucci L, Toniolo RM, Putignani L, Minisola S, Del Fattore A. Characterization of Extracellular Vesicles in Osteoporotic Patients Compared to Osteopenic and Healthy Controls. J Bone Miner Res 2022; 37:2186-2200. [PMID: 36053959 PMCID: PMC10086946 DOI: 10.1002/jbmr.4688] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022]
Abstract
Extracellular vesicles (EVs) are mediators of a range of pathological conditions. However, their role in bone loss disease has not been well understood. In this study we characterized plasma EVs of 54 osteoporotic (OP) postmenopausal women compared to 48 osteopenic (OPN) and 44 healthy controls (CN), and we investigated their effects on osteoclasts and osteoblasts. We found no differences between the three groups in terms of anthropometric measurements and biochemical evaluation of serum calcium, phosphate, creatinine, PTH, 25-hydroxy vitamin D and bone biomarkers, except for an increase of CTX level in OP group. FACS analysis revealed that OP patients presented a significantly increased number of EVs and RANKL+ EVs compared with both CN and OPN subjects. Total EVs are negatively associated with the lumbar spine T-score and femoral neck T-score. Only in the OPN patients we observed a positive association between the total number of EVs and RANKL+ EVs with the serum RANKL. In vitro studies revealed that OP EVs supported osteoclastogenesis of healthy donor peripheral blood mononuclear cells at the same level observed following RANKL and M-CSF treatment, reduced the ability of mesenchymal stem cells to differentiate into osteoblasts, while inducing an increase of OSTERIX and RANKL expression in mature osteoblasts. The analysis of miRNome revealed that miR-1246 and miR-1224-5p were the most upregulated and downregulated in OP EVs; the modulated EV-miRNAs in OP and OPN compared to CN are related to osteoclast differentiation, interleukin-13 production and regulation of canonical WNT pathway. A proteomic comparison between OPN and CN EVs evidenced a decrease in fibrinogen, vitronectin, and clusterin and an increase in coagulation factors and apolipoprotein, which was also upregulated in OP EVs. Interestingly, an increase in RANKL+ EVs and exosomal miR-1246 was also observed in samples from patients affected by Gorham-Stout disease, suggesting that EVs could be good candidate as bone loss disease biomarkers. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jessica Pepe
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Michela Rossi
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Battafarano
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Pamela Vernocchi
- Unit of Human Microbiome, Multimodal Laboratory Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federica Conte
- Institute for System Analysis and Computer Science "A.Ruberti", National Research Council (CNR), Rome, Italy
| | - Valeria Marzano
- Unit of Human Microbiome, Multimodal Laboratory Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eda Mariani
- Research Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Levi Mortera
- Unit of Human Microbiome, Multimodal Laboratory Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristiana Cipriani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Ippolita Rana
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Sabrina Buonuomo
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viviana De Martino
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Simone Pelle
- "Polo Sanitario San Feliciano - Villa Aurora" Clinic, Rome, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Renato Maria Toniolo
- Department of Orthopaedics and Traumatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostics and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Salvatore Minisola
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
11
|
Smout D, Van Craenenbroeck AH, Jørgensen HS, Evenepoel P. MicroRNAs: emerging biomarkers and therapeutic targets of bone fragility in chronic kidney disease. Clin Kidney J 2022; 16:408-421. [PMID: 36865016 PMCID: PMC9972833 DOI: 10.1093/ckj/sfac219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/12/2022] Open
Abstract
Bone fragility is highly prevalent, yet underdiagnosed in patients with chronic kidney disease. Incomplete understanding of the pathophysiology and limitations of current diagnostics contribute to therapeutic hesitation, if not nihilism. This narrative review addresses the question of whether microRNAs (miRNAs) may improve therapeutic decision making in osteoporosis and renal osteodystrophy. miRNAs are key epigenetic regulators of bone homeostasis and show promise as both therapeutic targets and as biomarkers, primarily of bone turnover. Experimental studies show that miRNAs are involved in several osteogenic pathways. Clinical studies exploring the usefulness of circulating miRNAs for fracture risk stratification and for guiding and monitoring therapy are few and, so far, provide inconclusive results. Likely, (pre)analytical heterogeneity contributes to these equivocal results. In conclusion, miRNAs are promising in metabolic bone disease, both as a diagnostic tool and as therapeutic targets, but not yet ready for clinical prime time.
Collapse
Affiliation(s)
- Dieter Smout
- Department of Microbiology, Immunology and Transplantation; Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Department of Medicine, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Amaryllis H Van Craenenbroeck
- Department of Microbiology, Immunology and Transplantation; Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Department of Medicine, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Hanne Skou Jørgensen
- Department of Microbiology, Immunology and Transplantation; Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
12
|
Quillen EE, Foster J, Sheldrake A, Stainback M, Glenn J, Cox LA, Bredbenner TL. Circulating miRNAs associated with bone mineral density in healthy adult baboons. J Orthop Res 2022; 40:1827-1833. [PMID: 34799865 PMCID: PMC9117570 DOI: 10.1002/jor.25215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/04/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and circulate in the blood, making them attractive biomarkers of disease state for tissues like bone that are challenging to interrogate directly. Here, we report on five miRNAs-miR-197-3p, miR-320a, miR-320b, miR-331-5p, and miR-423-5p-associated with bone mineral density (BMD) in 147 healthy adult baboons. These baboons ranged in age from 15 to 25 years (45-75 human equivalent years) and 65% were female with a broad range of BMD values including a minority of osteopenic animals. miRNAs were generated via RNA sequencing from buffy coats collected at necropsy and areal BMD (aBMD) measured postmortem via dual-energy X-ray absorptiometry (DXA) of the lumbar vertebrae. Differential expression analysis controlled for the underlying pedigree structure of these animals to account for genetic variation which may drive miRNA abundance and aBMD values. While many of these miRNAs have been associated with the risk of osteoporosis in humans, this finding is of interest because the cohort represents a model of normal aging and bone metabolism rather than a disease cohort. The replication of miRNA associations with osteoporosis or other bone metabolic disorders in animals with healthy aBMD suggests an overlap in normal variation and disease states. We suggest that these miRNAs are involved in the regulation of cellular proliferation, apoptosis, and protein composition in the extracellular matrix throughout life; and age-related dysregulation of these systems may lead to disease. These miRNAs may be early indicators of progression to disease in advance of clinically detectible osteoporosis.
Collapse
Affiliation(s)
- Ellen. E. Quillen
- Center for Precision Medicine and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine
| | | | | | - Maggie Stainback
- Center for Precision Medicine and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine
| | | | - Laura A. Cox
- Center for Precision Medicine and Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine
| | - Todd L. Bredbenner
- Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs
| |
Collapse
|
13
|
Smout D, Jørgensen HS, Cavalier E, Evenepoel P. Clinical utility of bone turnover markers in patients with chronic kidney disease. Curr Opin Nephrol Hypertens 2022; 31:332-338. [PMID: 35703216 DOI: 10.1097/mnh.0000000000000798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW The burden of fractures is very high in patients with chronic kidney disease (CKD). It is increasingly recognized that knowledge of bone turnover is of paramount importance in guiding mineral metabolism and osteoporosis therapy in CKD. Bone histomorphometry is the gold standard to assess bone turnover, but is seldomly performed in clinical practice. Bone turnover markers (BTMs) may be the long awaited noninvasive diagnostic that may help to close the therapeutic gap in patients with advanced CKD presenting with bone fragility. RECENT FINDINGS Mounting evidence indicates that BTMs may be useful in skeletal and nonskeletal risk stratification, in guiding mineral metabolism and osteoporosis therapy, and in monitoring the therapeutic response. SUMMARY BTMs provide information that is complementary to other clinical tests. It may be envisioned that in the near future, the assessment of nonkidney cleared BTMs may become part of routine clinical evaluation and monitoring of bone health in CKD patients, integrated with clinical risk factors, imaging data and, eventually, bone histomorphometry. Panels of BTMs will likely be more informative than single markers, and the same might hold true for trends as opposed to single time point data.
Collapse
Affiliation(s)
- Dieter Smout
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Hanne S Jørgensen
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven
- Department of Kidney Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Etienne Cavalier
- Department of Clinical Chemistry, University of Liege, CHU de Liege, Liege, Belgium
| | - Pieter Evenepoel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Lanzillotti C, De Mattei M, Mazziotta C, Taraballi F, Rotondo JC, Tognon M, Martini F. Long Non-coding RNAs and MicroRNAs Interplay in Osteogenic Differentiation of Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:646032. [PMID: 33898434 PMCID: PMC8063120 DOI: 10.3389/fcell.2021.646032] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have gained great attention as epigenetic regulators of gene expression in many tissues. Increasing evidence indicates that lncRNAs, together with microRNAs (miRNAs), play a pivotal role in osteogenesis. While miRNA action mechanism relies mainly on miRNA-mRNA interaction, resulting in suppressed expression, lncRNAs affect mRNA functionality through different activities, including interaction with miRNAs. Recent advances in RNA sequencing technology have improved knowledge into the molecular pathways regulated by the interaction of lncRNAs and miRNAs. This review reports on the recent knowledge of lncRNAs and miRNAs roles as key regulators of osteogenic differentiation. Specifically, we described herein the recent discoveries on lncRNA-miRNA crosstalk during the osteogenic differentiation of mesenchymal stem cells (MSCs) derived from bone marrow (BM), as well as from different other anatomical regions. The deep understanding of the connection between miRNAs and lncRNAs during the osteogenic differentiation will strongly improve knowledge into the molecular mechanisms of bone growth and development, ultimately leading to discover innovative diagnostic and therapeutic tools for osteogenic disorders and bone diseases.
Collapse
Affiliation(s)
- Carmen Lanzillotti
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Monica De Mattei
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - John Charles Rotondo
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Pignolo RJ, Law SF, Chandra A. Bone Aging, Cellular Senescence, and Osteoporosis. JBMR Plus 2021; 5:e10488. [PMID: 33869998 PMCID: PMC8046105 DOI: 10.1002/jbm4.10488] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in aging bone that lead to osteoporosis are mediated at multiple levels, including hormonal alterations, skeletal unloading, and accumulation of senescent cells. This pathological interplay is superimposed upon medical conditions, potentially bone-wasting medications, modifiable and unmodifiable personal risk factors, and genetic predisposition that accelerate bone loss with aging. In this study, the focus is on bone hemostasis and its dysregulation with aging. The major physiological changes with aging in bone and the role of cellular senescence in contributing to age-related osteoporosis are summarized. The aspects of bone aging are reviewed including remodeling deficits, uncoupling phenomena, inducers of cellular senescence related to bone aging, roles of the senescence-associated secretory phenotype, radiation-induced bone loss as a model for bone aging, and the accumulation of senescent cells in the bone microenvironment as a predominant mechanism for age-related osteoporosis. The study also addresses the rationale and potential for therapeutic interventions based on the clearance of senescent cells or suppression of the senescence-associated secretory phenotype. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Susan F Law
- Department of MedicineMayo ClinicRochesterMNUSA
| | - Abhishek Chandra
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
16
|
Mazziotta C, Lanzillotti C, Iaquinta MR, Taraballi F, Torreggiani E, Rotondo JC, Otòn-Gonzalez L, Mazzoni E, Frontini F, Bononi I, De Mattei M, Tognon M, Martini F. MicroRNAs Modulate Signaling Pathways in Osteogenic Differentiation of Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:2362. [PMID: 33673409 PMCID: PMC7956574 DOI: 10.3390/ijms22052362] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been identified in many adult tissues and they have been closely studied in recent years, especially in view of their potential use for treating diseases and damaged tissues and organs. MSCs are capable of self-replication and differentiation into osteoblasts and are considered an important source of cells in tissue engineering for bone regeneration. Several epigenetic factors are believed to play a role in the osteogenic differentiation of MSCs, including microRNAs (miRNAs). MiRNAs are small, single-stranded, non-coding RNAs of approximately 22 nucleotides that are able to regulate cell proliferation, differentiation and apoptosis by binding the 3' untranslated region (3'-UTR) of target mRNAs, which can be subsequently degraded or translationally silenced. MiRNAs control gene expression in osteogenic differentiation by regulating two crucial signaling cascades in osteogenesis: the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1(Wnt)/β-catenin signaling pathways. This review provides an overview of the miRNAs involved in osteogenic differentiation and how these miRNAs could regulate the expression of target genes.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Carmen Lanzillotti
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX 77030, USA;
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA
| | - Elena Torreggiani
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - John Charles Rotondo
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Lucia Otòn-Gonzalez
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Elisa Mazzoni
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Francesca Frontini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Ilaria Bononi
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Monica De Mattei
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Mauro Tognon
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
| | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, 64b Fossato di Mortara Street, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.R.I.); (E.T.); (J.C.R.); (L.O.-G.); (E.M.); (F.F.); (I.B.); (F.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 70, Eliporto Street, 44121 Ferrara, Italy
| |
Collapse
|
17
|
Hensley AP, McAlinden A. The role of microRNAs in bone development. Bone 2021; 143:115760. [PMID: 33220505 PMCID: PMC8019264 DOI: 10.1016/j.bone.2020.115760] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation is critical for proper bone development. Evidence from a large body of published literature informs us that microRNAs (miRNAs) are important epigenetic factors that control many aspects of bone development, homeostasis, and repair processes. These small non-coding RNAs function at the post-transcriptional level to suppress expression of specific target genes. Many target genes may be affected by one miRNA resulting in alteration in cellular pathways and networks. Therefore, changes in levels or activity of a specific miRNA (e.g. via genetic mutations, disease scenarios, or by over-expression or inhibition strategies in vitro or in vivo) can lead to substantial changes in cell processes including proliferation, metabolism, apoptosis and differentiation. In this review, Section 1 briefly covers general background information on processes that control bone development as well as the biogenesis and function of miRNAs. In Section 2, we discuss the importance of miRNAs in skeletal development based on findings from in vivo mouse models and human clinical reports. Section 3 focuses on describing more recent data from the last three years related to miRNA regulation of osteoblast differentiation in vitro. Some of these studies also involve utilization of an in vivo rodent model to study the effects of miRNA modulation in scenarios of osteoporosis, bone repair or ectopic bone formation. In Section 4, we provide some recent information from studies analyzing the potential of miRNA-mediated crosstalk in bone and how exosomes containing miRNAs from one bone cell may affect the differentiation or function of another bone cell type. We then conclude by summarizing where the field currently stands with respect to miRNA-mediated regulation of osteogenesis and how information gained from developmental processes can be instructive in identifying potential therapeutic miRNA targets for the treatment of certain bone conditions.
Collapse
Affiliation(s)
- Austin P Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, MO, United States of America
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, United States of America; Shriners Hospital for Children - St Louis, St Louis, MO, United States of America.
| |
Collapse
|
18
|
Zhang Y, Wang X, Huang X, Shen L, Zhang L, Shou D, Fan X. Transcriptome sequencing profiling identifies miRNA-331-3p as an osteoblast-specific miRNA in infected bone nonunion. Bone 2021; 143:115619. [PMID: 32858253 DOI: 10.1016/j.bone.2020.115619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022]
Abstract
Bone nonunion caused by bacterial infection accounts for bone fractures, bone trauma and bone transplantation surgeries. Severe consequences include delayed unions and amputation and result in functional limitations, work disability, and poor quality of life. However, the mechanism of bone nonunion remains unknown. In this study, we aimed to screen the miRNA biomarkers of bacterial bone infection and investigated whether miRNAs regulate the osteoblasts and thus contribute to bone nonunion. We established a miRNA-mRNA network based on high-throughput RNA sequencing to compare the model rabbits infected with Staphylococcus aureus with the control rabbits. After validation experiments, miRNA-331-3p and fibroblast growth factor 23 (FGF23) were found to be inversely correlated with the pathways of osteoblast mineralization and pathology of infected bone nonunion. In in vitro experiments, miRNA-331-3p was downregulated and FGF23 was upregulated in lipopolysaccharide (LPS)-induced mouse calvarial osteoblasts. Further studies of the mechanism showed that mutated of putative miRNA-331-3p can bind to FGF23 3'-untranslated region sites. MiRNA-331-3p acted as an osteoblast mineralization promoter by directly targeting FGF23. Downregulation of miRNA-331-3p led to inhibition of osteoblast mineralization by regulating the DKK1/β-catenin mediated signaling. Thus, we established an improved animal model and identified new bone-related biomarkers in the infected bone nonunion. The miRNA-331-3p biomarker was demonstrated to regulate osteoblast mineralization by targeting FGF23. The novel mechanism can be used as potential diagnostic biomarkers and therapeutic targets in the infected bone nonunion and other inflammatory bone disorders.
Collapse
Affiliation(s)
- Yang Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Xuping Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Xiaowen Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Lifeng Shen
- Department of Orthopaedic Surgery, Zhejiang Provincial Tongde Hospital, Hangzhou 310012, China
| | - Li Zhang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Dan Shou
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Shao JL, Li H, Zhang XR, Zhang X, Li ZZ, Jiao GL, Sun GD. Identification of Serum Exosomal MicroRNA Expression Profiling in Menopausal Females with Osteoporosis by High-throughput Sequencing. Curr Med Sci 2021; 40:1161-1169. [PMID: 33428145 DOI: 10.1007/s11596-020-2306-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
Estrogen deficiency, which mainly occurs in postmenopausal women, is a primary reason for osteoporosis in clinical diagnosis. However, the molecular regulation of osteoporosis in menopausal females is still not adequately explained in the literature, with the diagnosis and treatment for osteoporosis being limited. Herein, exosomal microRNAs (miRNAs) were used to evaluate their diagnosis and prediction effects in menopausal females with osteoporosis. In this study, 6 menopausal females without osteoporosis and 12 menopausal females with osteoporosis were enrolled. The serum exosomes were isolated, and the miRNA expression was detected by miRNA high-throughput sequencing. Exosomal miRNA effects were analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The miRNA-targeted genes were evaluated by Targetscan 7.2 and the protein-protein interactions (PPI) by STRING. Hub genes were analyzed by the CytoHubba app of Cytoscape. The results showed that 191 aberrant miRNAs were found in the group of menopausal females with osteoporosis, including 72 upregulated miRNAs and 121 downregulated miRNAs. Aberrant miRNAs were involved in many signaling pathways, such as the Wnt, MAPK, and Hippo pathways. Based on PPI network analysis, FBXL3, FBXL13, COPS2, UBE2D3, DCUN1D1, DCUN1D4, CUL3, FBXO22, ASB6, and COMMD2 were the 10 most notable genes in the PPI network. In conclusion, aberrant serum exosomal miRNAs were associated with an altered risk of osteoporosis in menopausal females and may act as potential biomarkers for the prediction of risk of osteoporosis in menopausal females.
Collapse
Affiliation(s)
- Jian-Li Shao
- Department of Orthopedics and Traumatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| | - Heng Li
- Department of Orthopedics, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, China
| | - Xiao-Rong Zhang
- Department of Orthopedics and Traumatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Xia Zhang
- Department of Ultrasound, Mental Hospital of Civil Affairs Bureau, Guangzhou, 510632, China.
| | - Zhi-Zhong Li
- Department of Orthopedics and Traumatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Gen-Long Jiao
- Department of Orthopedics and Traumatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Guo-Dong Sun
- Department of Orthopedics and Traumatology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
20
|
Epsley S, Tadros S, Farid A, Kargilis D, Mehta S, Rajapakse CS. The Effect of Inflammation on Bone. Front Physiol 2021; 11:511799. [PMID: 33584321 PMCID: PMC7874051 DOI: 10.3389/fphys.2020.511799] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Bone remodeling is the continual process to renew the adult skeleton through the sequential action of osteoblasts and osteoclasts. Nuclear factor RANK, an osteoclast receptor, and its ligand RANKL, expressed on the surface of osteoblasts, result in coordinated control of bone remodeling. Inflammation, a feature of illness and injury, plays a distinct role in skewing this process toward resorption. It does so via the interaction of inflammatory mediators and their related peptides with osteoblasts and osteoclasts, as well as other immune cells, to alter the expression of RANK and RANKL. Such chemical mediators include TNFα, glucocorticoids, histamine, bradykinin, PGE2, systemic RANKL from immune cells, and interleukins 1 and 6. Conditions, such as periodontal disease and alveolar bone erosion, aseptic prosthetic loosening, rheumatoid arthritis, and some sports related injuries are characterized by the result of this process. A thorough understanding of bone response to injury and disease, and ability to detect such biomarkers, as well as imaging to identify early structural and mechanical property changes in bone architecture, is important in improving management and outcomes of bone related pathology. While gut health and vitamin and mineral availability appear vitally important, nutraceuticals also have an impact on bone health. To date most pharmaceutical intervention targets inflammatory cytokines, although strategies to favorably alter inflammation induced bone pathology are currently limited. Further research is required in this field to advance early detection and treatments.
Collapse
Affiliation(s)
- Scott Epsley
- Philadelphia 76ers, Philadelphia, PA, United States
| | - Samuel Tadros
- Department of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander Farid
- Department of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Kargilis
- Department of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Chamith S. Rajapakse
- Department of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Zhao H, Lu A, He X. Roles of MicroRNAs in Bone Destruction of Rheumatoid Arthritis. Front Cell Dev Biol 2020; 8:600867. [PMID: 33330493 PMCID: PMC7710907 DOI: 10.3389/fcell.2020.600867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
As an important pathological result of rheumatoid arthritis (RA), bone destruction will lead to joint injury and dysfunction. The imbalance of bone metabolism caused by increased osteoclast activities and decreased osteoblast activities is the main cause of bone destruction in RA. MicroRNAs (MiRNAs) play an important role in regulating bone metabolic network. Recent studies have shown that miRNAs play indispensable roles in the occurrence and development of bone-related diseases including RA. In this paper, the role of miRNAs in regulating bone destruction of RA in recent years, especially the differentiation and activities of osteoclast and osteoblast, is reviewed. Our results will not only help provide ideas for further studies on miRNAs’ roles in regulating bone destruction, but give candidate targets for miRNAs-based drugs research in bone destruction therapy of RA as well.
Collapse
Affiliation(s)
- Hanxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.,Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Saferding V, Hofmann M, Brunner JS, Niederreiter B, Timmen M, Magilnick N, Hayer S, Heller G, Steiner G, Stange R, Boldin M, Schabbauer G, Weigl M, Hackl M, Grillari J, Smolen JS, Blüml S. microRNA-146a controls age-related bone loss. Aging Cell 2020; 19:e13244. [PMID: 33085187 PMCID: PMC7681058 DOI: 10.1111/acel.13244] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/01/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Bone loss is one of the consequences of aging, leading to diseases such as osteoporosis and increased susceptibility to fragility fractures and therefore considerable morbidity and mortality in humans. Here, we identify microRNA‐146a (miR‐146a) as an essential epigenetic switch controlling bone loss with age. Mice deficient in miR‐146a show regular development of their skeleton. However, while WT mice start to lose bone with age, animals deficient in miR‐146a continue to accrue bone throughout their life span. Increased bone mass is due to increased generation and activity of osteoblasts in miR‐146a‐deficient mice as a result of sustained activation of bone anabolic Wnt signaling during aging. Deregulation of the miR‐146a target genes Wnt1 and Wnt5a parallels bone accrual and osteoblast generation, which is accompanied by reduced development of bone marrow adiposity. Furthermore, miR‐146a‐deficient mice are protected from ovariectomy‐induced bone loss. In humans, the levels of miR‐146a are increased in patients suffering fragility fractures in comparison with those who do not. These data identify miR‐146a as a crucial epigenetic temporal regulator which essentially controls bone homeostasis during aging by regulating bone anabolic Wnt signaling. Therefore, miR‐146a might be a powerful therapeutic target to prevent age‐related bone dysfunctions such as the development of bone marrow adiposity and osteoporosis.
Collapse
Affiliation(s)
- Victoria Saferding
- Department of Rheumatology Medical University of Vienna Vienna Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation Vienna Austria
| | - Melanie Hofmann
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation Vienna Austria
- Institute for Vascular Biology Centre for Physiology and Pharmacology Medical University of Vienna Vienna Austria
| | - Julia S. Brunner
- Institute for Vascular Biology Centre for Physiology and Pharmacology Medical University of Vienna Vienna Austria
| | | | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine Institute of Musculoskeletal Medicine (IMM) University Hospital Münster Münster Germany
| | - Nathaniel Magilnick
- Department of Molecular and Cellular Biology Beckman Research Institute City of Hope Duarte California USA
| | - Silvia Hayer
- Department of Rheumatology Medical University of Vienna Vienna Austria
| | - Gerwin Heller
- Department of Medicine I Medical University of Vienna Vienna Austria
| | - Günter Steiner
- Department of Rheumatology Medical University of Vienna Vienna Austria
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine Institute of Musculoskeletal Medicine (IMM) University Hospital Münster Münster Germany
| | - Mark Boldin
- Department of Molecular and Cellular Biology Beckman Research Institute City of Hope Duarte California USA
| | - Gernot Schabbauer
- Institute for Vascular Biology Centre for Physiology and Pharmacology Medical University of Vienna Vienna Austria
| | - Moritz Weigl
- TAmiRNA GmbH Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| | - Matthias Hackl
- TAmiRNA GmbH Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration Vienna Austria
- Department of Biotechnology Institute for Molecular Biotechnology BOKU – University of Natural Resources and Life Sciences Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center Vienna Austria
| | - Josef S. Smolen
- Department of Rheumatology Medical University of Vienna Vienna Austria
| | - Stephan Blüml
- Department of Rheumatology Medical University of Vienna Vienna Austria
| |
Collapse
|
23
|
Associations of Serum MicroRNA with Bone Mineral Density in Community-Dwelling Subjects: The Yakumo Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5047243. [PMID: 32802851 PMCID: PMC7414326 DOI: 10.1155/2020/5047243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Osteoporosis is a disease characterized by deterioration of bone tissue and mass, with an increasing global prevalence. Therefore, the discovery of biomarkers for osteoporosis would help to guide appropriate treatment. Circulating microRNAs (miRNAs) have become increasingly recognized as biomarkers for detecting diseases. However, few studies have investigated the association of circulating miRNA with osteoporosis in the general population. The aim of this study was to identify miRNA associated with osteoporosis in a general resident health check-up for potential use as an osteoporosis biomarker. We conducted a cross-sectional study as part of a health check-up program and recruited 352 volunteers (139 men, 213 women, mean age 64.1 ± 9.6 years). Osteoporosis was diagnosed according to the WHO classification. Twenty-two candidate microRNAs were screened through real-time quantitative PCR, and miRNAs associated with osteoporosis were analyzed using logistic regression analysis including other risk factors. In total, 95 females and 30 males were diagnosed with osteoporosis with bone mineral density tests (BMD: T‐score < −2.5). We found that miR195 was significantly lower in females, while miR150 and miR222 were significantly higher in males. The results of the logistic regression analysis indicated that in females, higher age and lower miR195 (odds ratio: 0.45, 95% confidential interval: 0.03–0.98) were significant risk factors for lower BMD, while the presence of a smoking habit and lower miR150 (odds ratio: 1.35, 95% confidential interval: 1.02–1.79) were significant risk factors for osteoporosis. Serum levels of miR195 and miR150 are independently associated with low bone mineral density in females and males, respectively.
Collapse
|
24
|
Sun JL, Yan JF, Yu SB, Zhao J, Lin QQ, Jiao K. MicroRNA-29b Promotes Subchondral Bone Loss in TMJ Osteoarthritis. J Dent Res 2020; 99:1469-1477. [PMID: 32693649 DOI: 10.1177/0022034520937617] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abnormal subchondral bone remodeling plays important roles during osteoarthritis (OA) pathology. Recent studies show that bone marrow mesenchymal stem cells (BMSCs) in osteoarthritic subchondral bones exhibit a prominent pro-osteoclastic effect that contributes to abnormal subchondral bone remodeling; however, the pathologic mechanism remains unclear. In the present study, we used a mouse model with OA-like change in the temporomandibular joint (TMJ) induced by an experimentally unilateral anterior crossbite (UAC) and found that the level of microRNA-29b (miR-29b), but not miR-29a or miR-29c, was markedly lower in BMSCs from subchondral bones of UAC mice as compared with that from the sham control mice. With an intra-articular aptamer delivery system, BMSC-specific overexpression of miR-29b by aptamer-agomiR-29b rescued subchondral bone loss and osteoclast hyperfunction in UAC mice, as demonstrated by a significant increase in bone mineral density, bone volume fraction, trabecular thickness, and the gene expression of osteocalcin and Runx2 but decreased trabecular separation, osteoclast number and osteoclast surface/bone surface, and the gene expression of cathepsin K, Trap, Wnt5a, Rankl, and Rank as compared with those in the UAC mice treated by aptamer-NC (all P < 0.05). In addition, BMSC-specific inhibition of miR-29b by aptamer-antagomiR-29b exacerbated those responses in UAC mice. Notably, although it primarily affected miR-29b levels in the subchondral bone (but not in cartilage and synovium), BMSC-specific overexpression of miR-29b in UAC mice largely rescued OA-like cartilage degradation, including decreased chondrocyte density, cartilage thickness, and the percentage areas of proteoglycans and type II collagen, while BMSC-specific inhibition of miR-29b aggravated these characteristics of cartilage degradation in UAC mice. Moreover, we identified Wnt5a, but not Rankl or Sdf-1, as the direct target of miR-29b. The results of the present study indicate that miR-29b is a key regulator of the pro-osteoclastic effects of BMSCs in TMJ-OA subchondral bones and plays important roles in the TMJ-OA progression.
Collapse
Affiliation(s)
- J L Sun
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Stomatology, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - J F Yan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - S B Yu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - J Zhao
- Department of Stomatology, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Q Q Lin
- Department of Stomatology, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - K Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|