1
|
Lungu O, Toscani D, Giuliani N. Mechanistic insights into bone destruction in multiple myeloma: Cellular and molecular perspectives. J Bone Oncol 2025; 51:100668. [PMID: 40124903 PMCID: PMC11928850 DOI: 10.1016/j.jbo.2025.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy that leads to significant bone destruction, resulting in debilitating pain and skeletal-related events. The pathophysiology of osteolytic bone destruction in MM involves complex interactions between malignant plasma cells (PCs) and the bone marrow (BM) microenvironment. This review aims to provide a comprehensive synthesis of the cellular and molecular pathways underlying MM-associated bone disease. We discuss the role of osteoclast (OC), osteoblast (OB), osteocytes, along with the complex interactions between immune cells and the BM microenvironment in shaping disease progression. Additionally, we explore the molecular signaling pathways involved in bone disease as well as the influence of inflammatory cytokines, and the role of the metabolic alterations that characterize the MM BM. We also explore novel therapeutic strategies targeting these pathways to improve clinical outcomes. Understanding these mechanisms is crucial for the development of more effective treatments to prevent bone damage in MM patients.
Collapse
Affiliation(s)
- Oxana Lungu
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Denise Toscani
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicola Giuliani
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Hematology and BMT Unit, “Azienda Ospedaliero-Universitaria di Parma”, Parma, Italy
| |
Collapse
|
2
|
Ye T, Yan J, Kan T, Xie G, Zhang Z, Yin W, Zhao B, Yu Z, Chu L. Articular cartilage degeneration and aberrant osteocyte perilacunar/canalicular remodeling in subchondral bone of patients with developmental dysplasia of the hip. BMC Musculoskelet Disord 2025; 26:165. [PMID: 39966795 PMCID: PMC11837434 DOI: 10.1186/s12891-025-08419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a congenital musculoskeletal disease that impairs the hip joint and exacerbates hip osteoarthritis. This study aims to investigate the alterations of osteocytic characteristics including apoptosis, lacuna-canalicular network, and perilacunar/canalicular remodeling (PLR) activity in subchondral bone from DDH patients, and potential relationship of these alterations between the cartilage degeneration and DDH progression. METHODS The femoral head specimens were acquired from 16 patients with hip fractures who received total hip arthroplasty operation, 24 patients with primary hip OA and 25 patients with DDH. The femoral head were scanned by a micro-computed tomography and the volume of interest was used for a micro-finite element analysis. Histological and immunohistochemical staining was used to observe chondrocytes in cartilage and osteocytes in subchondral bone. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to investigate the apoptotic osteocytes in subchondral bone. Ploton silver staining was used to visualize lacunocanalicular network and picrosirius red staining was to visualize collagen fiber orientation in subchondral bone. RESULTS The DDH group showed the highest apoptosis rate of osteocytes and increased PLR activity among the three groups. The micro-finite-element analysis revealed that DDH group had deteriorative microstructural and biomechanical properties of subchondral bone. The histological and immunohistochemical analyses showed that the cartilage degeneration in DDH group was the most severe. Linear regression analysis revealed a significant correlation between osteocytic activity in subchondral bone and cartilage degeneration in DDH. CONCLUSIONS Our findings indicate that the abnormal osteocyte activity in subchondral bone might contribute to the deterioration of subchondral bone structure, which accelerates cartilage degeneration and DDH progression. Targeting subchondral bone remodeling could offer a promising therapeutic strategy for DDH.
Collapse
Affiliation(s)
- Teng Ye
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiren Yan
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyou Kan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Guoming Xie
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhichang Zhang
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Yin
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bizeng Zhao
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Linyang Chu
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Krug J, Plumeyer C, Davydok A, Dragoun Kolibová S, Fischer N, Le-Phuoc XT, Rauner M, Sihota P, Schweizer M, Busse B, Fiedler IAK, Jähn-Rickert K. Bone-seeking tumor cells alter bone material quality parameters on the nanoscale in mice. BIOMATERIALS ADVANCES 2025; 167:214060. [PMID: 39486241 DOI: 10.1016/j.bioadv.2024.214060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 11/04/2024]
Abstract
Bone metastases related to breast and prostate cancer present with multiple challenges and skeletal related events like fragility fractures impair the quality of life of the patients significantly. To determine local alterations in bone material quality with bone metastasis, we subjected murine tibial specimens, generated after intratibial injections of either RM1 prostate cancer cells or EO771 breast cancer cells into male and female mice respectively, to high-resolution imaging modalities. Small and wide-angle X-ray scattering showed unaltered mineral characteristics in the more osteosclerotic prostate cancer model, while the quantification of calcium weight percentage via backscattered electron microscopy determined minor differences along the perilacunar bone matrix. Further analyses of mineral and collagen characteristics were performed using Raman spectroscopy and focused ion beam electron microscopy. Our study indicates that alterations in nanochannel properties occur due to the presence of bone seeking tumor cells with more prevalent nanopores in the perilacunar matrix.
Collapse
Affiliation(s)
- Johannes Krug
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Christine Plumeyer
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Anton Davydok
- Institute of Material Physics, Hereon Outstation at DESY, Helmholtz Zentrum Hereon, Hamburg, Germany
| | - Sofie Dragoun Kolibová
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Nico Fischer
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xuan-Thanh Le-Phuoc
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Praveer Sihota
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Core Facility of Morphology and Electron Microscopy, Center for Molecular Neurobiology, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany.
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Buss DJ, Deering J, Reznikov N, McKee MD. Understanding the structural biology of osteomalacia through multiscale 3D X-ray and electron tomographic imaging: a review of X-linked hypophosphatemia, the Hyp mouse model, and imaging methods. JBMR Plus 2025; 9:ziae176. [PMID: 39896117 PMCID: PMC11783288 DOI: 10.1093/jbmrpl/ziae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025] Open
Abstract
Biomineralization in bones and teeth is a highly regulated extracellular event. In the skeleton, mineralization at the tissue level is controlled within the collagenous extracellular matrix by both circulating and local factors. While systemic regulation of mineral ion homeostasis has been well-studied over many decades, much less is known about the regulation of mineralization at the local level directly within the extracellular matrix. Some local regulators have been identified, such as tissue-nonspecific alkaline phosphatase (TNAP), phosphate-regulating endopeptidase homolog X-linked (PHEX), pyrophosphate, and osteopontin, and others are currently under investigation. Dysregulation of the actions of enzyme-inhibitor substrate pairs engaged in mineralization (as we describe by the Stenciling Principle for extracellular matrix mineralization) leads to osteomalacic "soft bone" diseases, such as hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH). This review addresses how advances in 3D imaging tools and software now allow contextual and correlative viewing and interpretation of mineralized tissue structure across most length scales. Contextualized and integrated 3D multiscale data obtained from these imaging modalities have afforded an unprecedented structural biology view of bone from the macroscale to the nanoscale. Such correlated volume imaging data is highly quantitative, providing not only an integrated view of the skeleton in health, but also a means to observe alterations that occur in disease. In the context of the many hierarchical levels of skeletal organization, here we summarize structural features of bone over multiple length scales, with a focus on nano- and microscale features as viewed by X-ray and electron tomography imaging methods (submicron μCT and FIB-SEM). We additionally summarize structural changes observed after dysregulation of the mineralization pathway, focusing here on the Hyp mouse model for XLH. More specifically, we summarize how mineral patterns/packs at the microscale (3D crossfibrillar mineral tessellation), and how this is defective in Hyp mouse bone and Hyp enthesis fibrocartilage.
Collapse
Affiliation(s)
- Daniel J Buss
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Joseph Deering
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Natalie Reznikov
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Marc D McKee
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, School of Biomedical Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
5
|
Nakagaki R, Mukaibo T, Monir A, Gao X, Munemasa T, Nodai T, Tamura A, Obikane YH, Kondo Y, Masaki C, Hosokawa R. Simulated microgravity environment inhibits matrix mineralization during the osteoblast to osteocyte differentiation. Biochem Biophys Res Commun 2024; 739:150963. [PMID: 39550861 DOI: 10.1016/j.bbrc.2024.150963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
This study investigates the effects of microgravity on the differentiation and mineralization of IDG-SW3 osteocyte-like cells to understand the response of bone cells to microgravity and develop strategies to mitigate bone loss in astronauts. IDG-SW3 cells were cultured in collagen-coated dishes and subjected to a 3D clinostat to simulate microgravity 14 days after initiating differentiation. The static group remained under normal gravity. Cells were analyzed on days 14, 18, 22, and 26. Alizarin red staining demonstrated a substantial and time-dependent increase in mineralization in the static group, whereas the microgravity group exhibited little detectable mineralization throughout the experimental period. Quantitative RT-PCR revealed significant upregulation of Rankl, Alpl, Dmp1, and Fgf23 and downregulation of Sost and Phex in the microgravity group. RNA sequencing on day 26 showed distinct gene expression profiles between conditions. Heatmaps highlighted upregulated genes (Ptgs2, Alpl, Comp, Atf4, Lox) and downregulated genes (Rspo2, Ank, Ptn, Mmp13, Aspn, Spp1) under microgravity. Gene ontology (GO) enrichment analysis indicated that upregulated genes were associated with cytoskeletal organization and receptor activities, while downregulated genes were linked to extracellular matrix components and immune response. These findings provide insights into the molecular mechanisms of bone loss in space and emphasize the importance of gravity in bone remodeling. Future studies should validate these genes' functions in osteocyte biology under microgravity.
Collapse
Affiliation(s)
- Ryutaro Nakagaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Taro Mukaibo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| | - Ahmed Monir
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Egypt
| | - Xin Gao
- Lister Hill National Center for Biomedical Communication, National Library of Medicine, NIH, Bethesda, MD, USA
| | - Takashi Munemasa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tomotaka Nodai
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Akiko Tamura
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Yui Hirata Obikane
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Yusuke Kondo
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
6
|
Moreno-Jiménez I, Heinig S, Heras U, Maichl DS, Strifler S, Leich E, Blouin S, Fratzl P, Fratzl-Zelman N, Jundt F, Cipitria A. 3D osteocyte lacunar morphometry of human bone biopsies with high resolution microCT: From monoclonal gammopathy to newly diagnosed multiple myeloma. Bone 2024; 189:117236. [PMID: 39151745 DOI: 10.1016/j.bone.2024.117236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Osteocytes are mechanosensitive, bone-embedded cells which are connected via dendrites in a lacuno-canalicular network and regulate bone resorption and formation balance. Alterations in osteocyte lacunar volume, shape and density have been identified in conditions of aging, osteoporosis and osteolytic bone metastasis, indicating patterns of impaired bone remodeling, osteolysis and disease progression. Osteolytic bone disease is a hallmark of the hematologic malignancy multiple myeloma (MM), in which monoclonal plasma cells in the bone marrow disrupt the bone homeostasis and induce excessive resorption at local and distant sites. Qualitative and quantitative changes in the 3D osteocyte lacunar morphometry have not yet been evaluated in MM, nor in the precursor conditions monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). In this study, we characterized the osteocyte lacunar morphology in trabecular bone of the iliac crest at the ultrastructural level using high resolution microCT in human bone biopsy samples of three MGUS, two SMM and six newly diagnosed MM. In MGUS, SMM and MM we found a trend for lower lacunar density and a shift towards larger lacunae with disease progression (higher 50 % cutoff of the lacunar volume cumulative distribution) in the small osteocyte lacunae 20-900 μm3 range compared to control samples. In the larger lacunae 900-3000 μm3 range, we detected significantly higher lacunar density and microporosity in the MM group compared to the MGUS/SMM group. Regarding the shape distribution, the MGUS/SMM group showed a trend for flatter, more elongated and anisotropic osteocyte lacunae compared to the control group. Altogether, our findings suggest that osteocytes in human MM bone disease undergo changes in their lacunae density, volume and shape, which could be an indicator for osteolysis and disease progression. Future studies are needed to understand whether alterations of the lacunae architecture affect the mechanoresponsiveness of osteocytes, and ultimately bone adaptation and fracture resistance in MM and its precursors conditions.
Collapse
Affiliation(s)
- Inés Moreno-Jiménez
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany.
| | - Sharen Heinig
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - Unai Heras
- Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Daniela Simone Maichl
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Susanne Strifler
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Ellen Leich
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, 97080 Würzburg, Germany
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, Vienna, Austria
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany; Comprehensive Cancer Center Mainfranken, 97080 Würzburg, Germany.
| | - Amaia Cipitria
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany; Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
7
|
Osipov B, Emami AJ, Cunningham HC, Orr S, Lin YY, Jbeily EH, Punati RS, Murugesh DK, Zukowski HM, Loots GG, Carney R, Vargas D, Ferguson VL, Christiansen BA. Altered post-fracture systemic bone loss in a mouse model of osteocyte dysfunction. JBMR Plus 2024; 8:ziae135. [PMID: 39605879 PMCID: PMC11601886 DOI: 10.1093/jbmrpl/ziae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/02/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Femur fracture leads to loss of bone at uninjured skeletal sites, which may increase risk of subsequent fracture. Osteocytes, the most abundant bone cells, can directly resorb bone matrix and regulate osteoclast and osteoblast activity, but their role in systemic bone loss after fracture remains poorly understood. In this study we used a transgenic (TG+) mouse model that overexpresses human B-cell lymphoma 2 (BCL-2) in osteoblasts and osteocytes. This causes enhanced osteoblast proliferation, followed by disruption in lacunar-canalicular connectivity and massive osteocyte death by 10 wk of age. We hypothesized that reduced viable osteocyte density would decrease the magnitude of systemic bone loss after femur fracture, reduce perilacunar remodeling, and alter callus formation. Bone remodeling was assessed using serum biomarkers of bone formation and resorption at 5 d post-fracture. We used micro-computed tomography, high resolution x-ray microscopy, mechanical testing, and Raman spectroscopy to quantify the magnitude of systemic bone loss, as well as changes in osteocyte lacunar volume, bone strength, and bone composition 2 wk post-fracture. Fracture was associated with a reduction in circulating markers of bone resorption in non-transgenic (TG-) animals. TG+ mice exhibited high bone mass in the limbs, greater cortical elastic modulus and reduced post-yield displacement. After fracture, TG+ mice lost less trabecular bone than TG- mice, but conversely TG+ mice exhibited trends toward a lower yield point and reduced femoral cortical thickness after fracture, though these were not statistically significant. Lacunar density was greater in TG+ mice, but fracture did not alter lacunar volume in TG+ or TG- mice. These findings suggest that osteocytes potentially play a significant role in the post-traumatic systemic response to fracture, though the effects differ between trabecular and cortical bone.
Collapse
Affiliation(s)
- Benjamin Osipov
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA 95817, United States
| | - Armaun J Emami
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA 95817, United States
| | - Hailey C Cunningham
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA 95817, United States
| | - Sophie Orr
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA 95817, United States
| | - Yu-Yang Lin
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA 95817, United States
| | - Elias H Jbeily
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA 95817, United States
| | - Ritvik S Punati
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA 95817, United States
| | - Deepa K Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, United States
| | - Hannah M Zukowski
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA 95817, United States
| | - Gabriela G Loots
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA 95817, United States
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratories, Livermore, CA 94550, United States
| | - Randy Carney
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Diego Vargas
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Blaine A Christiansen
- Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA 95817, United States
| |
Collapse
|
8
|
Houchen CJ, Ghanem S, Kaartinen V, Bumann EE. TGF-β signaling in the cranial neural crest affects late-stage mandibular bone resorption and length. Front Physiol 2024; 15:1435594. [PMID: 39473613 PMCID: PMC11519526 DOI: 10.3389/fphys.2024.1435594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/19/2024] [Indexed: 11/06/2024] Open
Abstract
Malocclusions are common craniofacial malformations that cause quality of life and health problems if left untreated. Unfortunately, the current treatment for severe skeletal malocclusion is invasive surgery. Developing improved therapeutic options requires a deeper understanding of the cellular mechanisms responsible for determining jaw bone length. We have recently shown that neural crest mesenchyme (NCM) can alter jaw length by controlling the recruitment and function of mesoderm-derived osteoclasts. Transforming growth factor beta (TGF-β) signaling is critical to craniofacial development by directing bone resorption and formation, and heterozygous mutations in the TGF-β type I receptor (TGFBR1) are associated with micrognathia in humans. To identify the role of TGF-β signaling in NCM in controlling osteoclasts during mandibular development, the mandibles of mouse embryos deficient in the gene encoding Tgfbr1, specifically in NCM, were analyzed. Our laboratory and others have demonstrated that Tgfbr1 fl/fl ;Wnt1-Cre mice display significantly shorter mandibles with no condylar, coronoid, or angular processes. We hypothesize that TGF-β signaling in NCM can also direct late bone remodeling and further regulate late embryonic jaw bone length. Interestingly, analysis of mandibular bone based on micro-computed tomography and Masson's trichrome revealed no significant difference in bone quality between the Tgfbr1 fl/fl ;Wnt1-Cre mice and controls, as measured by the bone perimeter/bone area, trabecular rod-like diameter, number and separation, and gene expression of collagen type 1 alpha 1 (Col1α1) and matrix metalloproteinase 13 (Mmp13). Although there was not a difference in localization of bone resorption within the mandible indicated by tartrate-resistant acid phosphatase (TRAP) staining, Tgfbr1 fl/fl ;Wnt1-Cre mice had approximately three-fold less osteoclast number and perimeter than controls. Gene expression of receptor activator of nuclear factor kappa-β (Rank) and Mmp9, markers of osteoclasts and their activity, also showed a three-fold decrease in Tgfbr1 fl/fl ;Wnt1-Cre mandibles. Evaluation of osteoblast-to-osteoclast signaling revealed no significant difference between Tgfbr1 fl/fl ;Wnt1-Cre mandibles and controls, leaving the specific mechanism unresolved. Finally, pharmacological inhibition of Tgfbr1 signaling during the initiation of bone mineralization and resorption significantly shortened jaw length in embryos. We conclude that TGF-β signaling in NCM decreases mesoderm-derived osteoclast number, that TGF-β signaling in NCM impacts jaw length late in development, and that this osteoblast-to-osteoclast communication may be occurring through an undescribed mechanism.
Collapse
Affiliation(s)
- Claire J. Houchen
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, United States
| | - Saif Ghanem
- Department Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Vesa Kaartinen
- Department Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Erin Ealba Bumann
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, United States
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Chermside-Scabbo CJ, Shuster JT, Erdmann-Gilmore P, Tycksen E, Zhang Q, Townsend RR, Silva MJ. A proteomics approach to study mouse long bones: examining baseline differences and mechanical loading-induced bone formation in young-adult and old mice. Aging (Albany NY) 2024; 16:12726-12768. [PMID: 39400554 PMCID: PMC11501390 DOI: 10.18632/aging.206131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
With aging, bone mass declines and the anabolic effects of skeletal loading diminish. While much research has focused on gene transcription, how bone ages and loses its mechanoresponsiveness at the protein level remains unclear. We developed a novel proteomics approach and performed a paired mass spectrometry and RNA-seq analysis on tibias from young-adult (5-month) and old (22-month) mice. We report the first correlation estimate between the bone proteome and transcriptome (Spearman ρ = 0.40), which is in line with other tissues but indicates that a relatively low amount of variation in protein levels is explained by the variation in transcript levels. Of 71 shared targets that differed with age, eight were associated with bone mineral density in previous GWAS, including understudied targets Asrgl1 and Timp2. We used complementary RNA in situ hybridization to confirm that Asrgl1 and Timp2 had reduced expression in osteoblasts/osteocytes in old bones. We also found evidence for reduced TGF-beta signaling with aging, in particular Tgfb2. Next, we defined proteomic changes following mechanical loading. At the protein level, bone differed more with age than with loading, and aged bone had fewer loading-induced changes. Overall, our findings underscore the need for complementary protein-level assays in skeletal biology research.
Collapse
Affiliation(s)
- Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John T. Shuster
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Petra Erdmann-Gilmore
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Tycksen
- Department of Genetics, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Qiang Zhang
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - R. Reid Townsend
- Department of Medicine, Proteomics Core, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
10
|
Vahidi G, Boone C, Hoffman F, Heveran C. Aging decreases osteocyte peri-lacunar-canalicular system turnover in female C57BL/6JN mice. Bone 2024; 186:117163. [PMID: 38857854 PMCID: PMC11227388 DOI: 10.1016/j.bone.2024.117163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Osteocytes engage in bone resorption and mineralization surrounding their expansive lacunar-canalicular system (LCS) through peri-LCS turnover. However, fundamental questions persist about where, when, and how often osteocytes engage in peri-LCS turnover and how these processes change with aging. Furthermore, whether peri-LCS turnover is associated with natural variation in cortical tissue strain remains unexplored. To address these questions, we utilized confocal scanning microscopy, immunohistochemistry, and scanning electron microscopy to characterize osteocyte peri-LCS turnover in the cortical (mid-diaphysis) and cancellous (metaphysis) regions of femurs from young adult (5 mo) and early-old-age (22 mo) female C57BL/6JN mice. LCS bone mineralization was measured by the presence of perilacunar fluorochrome labels. LCS bone resorption was measured by immunohistochemical marker of bone resorption. The dynamics of peri-LCS turnover were estimated from serial fluorochrome labeling, where each mouse was administered two labels between 2 and 16 days before euthanasia. Osteocyte participation in mineralizing their surroundings is highly abundant in both cortical and cancellous bone of young adult mice but significantly decreases with aging. LCS bone resorption also decreases with aging. Aging has a greater impact on peri-LCS turnover dynamics in cancellous bone than in cortical bone. Lacunae with recent peri-LCS turnover are larger in both age groups. While peri-LCS turnover is associated with variation in tissue strain between cortical quadrants and intracortical location for 22 mo mice, these associations were not seen for 5 mo mice. The impact of aging on decreasing peri-LCS turnover may have significant implications for bone quality and mechanosensation.
Collapse
Affiliation(s)
- Ghazal Vahidi
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Connor Boone
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Fawn Hoffman
- Department of Biomedical Sciences, College of Idaho, Caldwell, ID, USA
| | - Chelsea Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
11
|
Hua R, Truong VA, Fajardo RJ, Guda T, Gu S, Jiang JX. Connexin hemichannels drive lactation-induced osteocyte acidification and perilacunar-canalicular remodeling. Cell Rep 2024; 43:114363. [PMID: 38935505 PMCID: PMC11318086 DOI: 10.1016/j.celrep.2024.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
The maternal skeleton experiences significant bone loss during lactation, followed by rapid restoration post weaning. Parathyroid-related protein (PTHrP)-induced acidification of the perilacunar matrix by osteocytes is crucial in this process, yet its mechanism remains unclear. Here, we identify Cx43 hemichannels (HCs) as key mediators of osteocyte acidification and perilacunar-canalicular remodeling (PLR). Utilizing transgenic mouse models expressing dominant-negative Cx43 mutants, we show that mice with impaired Cx43 HCs exhibit attenuated lactation-induced responses compared to wild-type and only gap junction-impaired groups, including lacunar enlargement, upregulation of PLR genes, and bone loss with compromised mechanical properties. Furthermore, inhibition of HCs by a Cx43 antibody blunts PTHrP-induced calcium influx and protein kinase A activation, followed by impaired osteocyte acidification. Additionally, impeded HCs suppress bone recovery during the post-lactation period. Our findings highlight the pivotal role of Cx43 HCs in orchestrating dynamic bone changes during lactation and recovery by regulating acidification and remodeling enzyme expression.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Vu A Truong
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Roberto J Fajardo
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
12
|
Yee CS, Meliadis C, Kaya S, Chang W, Alliston T. The osteocytic actions of glucocorticoids on bone mass, mechanical properties, or perilacunar remodeling outcomes are not rescued by PTH(1-34). Front Endocrinol (Lausanne) 2024; 15:1342938. [PMID: 39092287 PMCID: PMC11291448 DOI: 10.3389/fendo.2024.1342938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Glucocorticoids (GC) and parathyroid hormone (PTH) are widely used therapeutic endocrine hormones where their effects on bone and joint arise from actions on multiple skeletal cell types. In osteocytes, GC and PTH exert opposing effects on perilacunar canalicular remodeling (PLR). Suppressed PLR can impair bone quality and joint homeostasis, including in GC-induced osteonecrosis. However, combined effects of GC and PTH on PLR are unknown. Given the untapped potential to target osteocytes to improve skeletal health, this study sought to test the feasibility of therapeutically mitigating PLR suppression. Focusing on subchondral bone and joint homeostasis, we hypothesize that PTH(1-34), a PLR agonist, could rescue GC-suppressed PLR. The skeletal effects of GC and PTH(1-34), alone or combined, were examined in male and female mice by micro-computed tomography, mechanical testing, histology, and gene expression analysis. For each outcome, females were more responsive to GC and PTH(1-34) than males. GC and PTH(1-34) exerted regional differences, with GC increasing trabecular bone volume but reducing cortical bone thickness, stiffness, and ultimate force. Despite PTH(1-34)'s anabolic effects on trabecular bone, it did not rescue GC's catabolic effects on cortical bone. Likewise, cartilage integrity and subchondral bone apoptosis, tartrate-resistant acid phosphatase (TRAP) activity, and osteocyte lacunocanalicular networks showed no evidence that PTH(1-34) could offset GC-dependent effects. Rather, GC and PTH(1-34) each increased cortical bone gene expression implicated in bone resorption by osteoclasts and osteocytes, including Acp5, Mmp13, Atp6v0d2, Ctsk, differences maintained when GC and PTH(1-34) were combined. Since PTH(1-34) is insufficient to rescue GC's effects on young female mouse bone, future studies are needed to determine if osteocyte PLR suppression, due to GC, aging, or other factors, can be offset by a PLR agonist.
Collapse
Affiliation(s)
- Cristal S. Yee
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Christoforos Meliadis
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Wenhan Chang
- Endocrine Research Unit, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, CA, United States
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
13
|
Jagga S, Hughes A, Manoochehri Arash N, Sorsby M, Brooks DJ, Divieti Pajevic P, Liu ES. NFATc1 Is Required for Vitamin D- and Phosphate-Mediated Regulation of Osteocyte Lacuno-Canalicular Remodeling. Endocrinology 2024; 165:bqae087. [PMID: 39024412 PMCID: PMC11492278 DOI: 10.1210/endocr/bqae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Osteocytes are embedded in lacunae and connected by canaliculi (lacuno-canalicular network, LCN). Bones from mice with X-linked hypophosphatemia (Hyp), which have impaired production of 1,25 dihydroxyvitamin D (1,25D) and hypophosphatemia, have abnormal LCN structure that is improved by treatment with 1,25D or an anti-FGF23 targeting antibody, supporting roles for 1,25D and phosphate in regulating LCN remodeling. Bones from mice lacking the vitamin D receptor (VDR) in osteocytes (Vdrf/f;Dmp1Cre+) and mice lacking the sodium phosphate transporter 2a (Npt2aKO), which have low serum phosphate with high serum 1,25D, have impaired LCN organization, demonstrating that osteocyte-specific actions of 1,25D and hypophosphatemia regulate LCN remodeling. In osteoclasts, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) is critical for stimulating bone resorption. Since osteocytes also resorb matrix, we hypothesize that NFATc1 plays a role in 1,25D and phosphate-mediated LCN remodeling. Consistent with this, 1,25D and phosphate suppress Nfatc1 mRNA expression in IDG-SW3 osteocytes, and knockdown of Nfatc1 expression in IDG-SW3 cells blocks 1,25D- and phosphate-mediated suppression of matrix resorption gene expression and 1,25D- and phosphate-mediated suppression of RANKL-induced acidification of the osteocyte microenvironment. To determine the role of NFATc1 in 1,25D- and phosphate-mediated LCN remodeling in vivo, histomorphometric analyses of tibiae from mice lacking osteocyte-specific Nfatc1 in Vdrf/f;Dmp1Cre+ and Npt2aKO mice were performed, demonstrating that bones from these mice have decreased lacunar size and expression of matrix resorption genes, and improved canalicular structure compared to Vdrf/f;Dmp1Cre+ and Npt2aKO control. This study demonstrates that NFATc1 is necessary for 1,25D- and phosphate-mediated regulation of LCN remodeling.
Collapse
Affiliation(s)
- Supriya Jagga
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ashleigh Hughes
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Niusha Manoochehri Arash
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Melissa Sorsby
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Daniel J Brooks
- Harvard Medical School, Boston, MA 02115, USA
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Boston University School of Dental Medicine, Boston, MA 02118, USA
| | - Eva S Liu
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Sieverts M, Yee C, Nemani M, Parkinson DY, Alliston T, Acevedo C. Spatial control of perilacunar canalicular remodeling during lactation. Sci Rep 2024; 14:14655. [PMID: 38918485 PMCID: PMC11199490 DOI: 10.1038/s41598-024-63645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Osteocytes locally remodel their surrounding tissue through perilacunar canalicular remodeling (PLR). During lactation, osteocytes remove minerals to satisfy the metabolic demand, resulting in increased lacunar volume, quantifiable with synchrotron X-ray radiation micro-tomography (SRµCT). Although the effects of lactation on PLR are well-studied, it remains unclear whether PLR occurs uniformly throughout the bone and what mechanisms prevent PLR from undermining bone quality. We used SRµCT imaging to conduct an in-depth spatial analysis of the impact of lactation and osteocyte-intrinsic MMP13 deletion on PLR in murine bone. We found larger lacunae undergoing PLR are located near canals in the mid-cortex or endosteum. We show lactation-induced hypomineralization occurs 14 µm away from lacunar edges, past a hypermineralized barrier. Our findings reveal that osteocyte-intrinsic MMP13 is crucial for lactation-induced PLR near lacunae in the mid-cortex but not for whole-bone resorption. This research highlights the spatial control of PLR on mineral distribution during lactation.
Collapse
Affiliation(s)
- Michael Sieverts
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Cristal Yee
- Department of Orthopedic Surgery, University of California, San Francisco, CA, 94131, USA
| | - Minali Nemani
- Department of Orthopedic Surgery, University of California, San Francisco, CA, 94131, USA
| | | | - Tamara Alliston
- Department of Orthopedic Surgery, University of California, San Francisco, CA, 94131, USA
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
- Department of Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, 92161, USA.
| |
Collapse
|
15
|
Bell-Hensley A, Beard DC, Feeney K, Zheng H, Jiang Y, Zhang X, Liu J, Gabel H, McAlinden A. Skeletal abnormalities in mice with Dnmt3a missense mutations. Bone 2024; 183:117085. [PMID: 38522809 PMCID: PMC11057337 DOI: 10.1016/j.bone.2024.117085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Overgrowth and intellectual disability disorders in humans are typified by length/height and/or head circumference ≥ 2 standard deviations above the mean as well as intellectual disability and behavioral comorbidities, including autism and anxiety. Tatton-Brown-Rahman Syndrome is one type of overgrowth and intellectual disability disorder caused by heterozygous missense mutations in the DNA methyltransferase 3A (DNMT3A) gene. Numerous DNMT3A mutations have been identified in Tatton-Brown-Rahman Syndrome patients and may be associated with varying phenotype severities of clinical presentation. Two such mutations are the R882H and P904L mutations which result in severe and mild phenotypes, respectively. Mice with paralogous mutations (Dnmt3aP900L/+ and Dnmt3aR878H/+) exhibit overgrowth in their long bones (e.g., femur, humerus), but the mechanisms responsible for their skeletal overgrowth remain unknown. The goal of this study is to characterize skeletal phenotypes in mouse models of Tatton-Brown-Rahman Syndrome and identify potential cellular mechanisms involved in the skeletal overgrowth phenotype. We report that mature mice with the Dnmt3aP900L/+ or Dnmt3aR878H/+ mutation exhibit tibial overgrowth, cortical bone thinning, and weakened bone mechanical properties. Dnmt3aR878H/+ mutants also contain larger bone marrow adipocytes while Dnmt3aP900L/+ mutants show no adipocyte phenotype compared to control animals. To understand the potential cellular mechanisms regulating these phenotypes, growth plate chondrocytes, osteoblasts, and osteoclasts were assessed in juvenile mutant mice using quantitative static histomorphometry and dynamic histomorphometry. Tibial growth plates appeared thicker in mutant juvenile mice, but no changes were observed in osteoblast activity or osteoclast number in the femoral mid-diaphysis. These studies reveal new skeletal phenotypes associated with Tatton-Brown-Rahman Syndrome in mice and provide a rationale to extend clinical assessments of patients with this condition to include bone density and quality testing. These findings may be also informative for skeletal characterization of other mouse models presenting with overgrowth and intellectual disability phenotypes.
Collapse
Affiliation(s)
- Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Diana C Beard
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn Feeney
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Yunhao Jiang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiyun Zhang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Jin Liu
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Harrison Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA; Department of Cell Biology & Physiology, Washington University in St. Louis, St. Louis, MO, USA; Shriners Hospital for Children - St. Louis, St. Louis, MO, USA.
| |
Collapse
|
16
|
Houchen CJ, Ghanem S, Kaartinen V, Bumann EE. TGF-β Signaling in Cranial Neural Crest Affects Late-Stage Mandibular Bone Resorption and Length. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595783. [PMID: 38826301 PMCID: PMC11142237 DOI: 10.1101/2024.05.24.595783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Malocclusions are common craniofacial malformations which cause quality of life and health problems if left untreated. Unfortunately, the current treatment for severe skeletal malocclusion is invasive surgery. Developing improved therapeutic options requires a deeper understanding of the cellular mechanisms responsible for determining jaw bone length. We have recently shown that neural crest mesenchyme (NCM) can alter jaw length by controlling recruitment and function of mesoderm-derived osteoclasts. Transforming growth factor beta (TGF-β) signaling is critical to craniofacial development by directing bone resorption and formation, and heterozygous mutations in TGF-β type I receptor (TGFBR1) are associated with micrognathia in humans. To identify what role TGF-β signaling in NCM plays in controlling osteoclasts during mandibular development, mandibles of mouse embryos deficient in the gene encoding Tgfbr1 specifically in NCM were analyzed. Our lab and others have demonstrated that Tgfbr1fl/fl;Wnt1-Cre mice display significantly shorter mandibles with no condylar, coronoid, or angular processes. We hypothesize that TGF-β signaling in NCM can also direct later bone remodeling and further regulate late embryonic jaw bone length. Interestingly, analysis of mandibular bone through micro-computed tomography and Masson's trichrome revealed no significant difference in bone quality between the Tgfbr1fl/fl;Wnt1-Cre mice and controls, as measured by bone perimeter/bone area, trabecular rod-like diameter, number and separation, and gene expression of Collagen type 1 alpha 1 (Col1α1) and Matrix metalloproteinase 13 (Mmp13). Though there was not a difference in localization of bone resorption within the mandible indicated by TRAP staining, Tgfbr1fl/fl;Wnt1-Cre mice had approximately three-fold less osteoclast number and perimeter than controls. Gene expression of receptor activator of nuclear factor kappa-β (Rank) and Mmp9, markers of osteoclasts and their activity, also showed a three-fold decrease in Tgfbr1fl/fl;Wnt1-Cre mandibles. Evaluation of osteoblast-to-osteoclast signaling revealed no significant difference between Tgfbr1fl/fl;Wnt1-Cre mandibles and controls, leaving the specific mechanism unresolved. Finally, pharmacological inhibition of Tgfbr1 signaling during the initiation of bone mineralization and resorption significantly shortened jaw length in embryos. We conclude that TGF-β signaling in NCM decreases mesoderm-derived osteoclast number, that TGF-β signaling in NCM impacts jaw length late in development, and that this osteoblast-to-osteoclast communication may be occurring through an undescribed mechanism.
Collapse
Affiliation(s)
- Claire J. Houchen
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, USA
| | - Saif Ghanem
- Department Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Vesa Kaartinen
- Department Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Erin Ealba Bumann
- Department of Oral and Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO, USA
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Delsmann J, Eissele J, Simon A, Alimy AR, von Kroge S, Mushumba H, Püschel K, Busse B, Ries C, Amling M, Beil FT, Rolvien T. Alterations in compositional and cellular properties of the subchondral bone are linked to cartilage degeneration in hip osteoarthritis. Osteoarthritis Cartilage 2024; 32:535-547. [PMID: 38403152 DOI: 10.1016/j.joca.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE The subchondral bone is an emerging regulator of osteoarthritis (OA). However, knowledge of how specific subchondral alterations relate to cartilage degeneration remains incomplete. METHOD Femoral heads were obtained from 44 patients with primary OA during total hip arthroplasty and from 30 non-OA controls during autopsy. A multiscale assessment of the central subchondral bone region comprising histomorphometry, quantitative backscattered electron imaging, nanoindentation, and osteocyte lacunocanalicular network characterization was employed. RESULTS In hip OA, thickening of the subchondral bone coincided with a higher number of osteoblasts (controls: 3.7 ± 4.5 mm-1, OA: 16.4 ± 10.2 mm-1, age-adjusted mean difference 10.5 mm-1 [95% CI 4.7 to 16.4], p < 0.001) but a similar number of osteoclasts compared to controls (p = 0.150). Furthermore, higher matrix mineralization heterogeneity (CaWidth, controls: 2.8 ± 0.2 wt%, OA: 3.1 ± 0.3 wt%, age-adjusted mean difference 0.2 wt% [95% CI 0.1 to 0.4], p = 0.011) and lower tissue hardness (controls: 0.69 ± 0.06 GPa, OA: 0.67 ± 0.06 GPa, age-adjusted mean difference -0.05 GPa [95% CI -0.09 to -0.01], p = 0.032) were detected. While no evidence of altered osteocytic perilacunar/canalicular remodeling in terms of fewer osteocyte canaliculi was found in OA, specimens with advanced cartilage degeneration showed a higher number of osteocyte canaliculi and larger lacunocanalicular network area compared to those with low-grade cartilage degeneration. Multiple linear regression models indicated that several subchondral bone properties, especially osteoblast and osteocyte parameters, were closely related to cartilage degeneration (R2 adjusted = 0.561, p < 0.001). CONCLUSION Subchondral bone properties in OA are affected at the compositional, mechanical, and cellular levels. Based on their strong interaction with cartilage degeneration, targeting osteoblasts/osteocytes may be a promising therapeutic OA approach. DATA AND MATERIALS AVAILABILITY All data are available in the main text or the supplementary materials.
Collapse
Affiliation(s)
- Julian Delsmann
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Eissele
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Simon
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Assil-Ramin Alimy
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon von Kroge
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Mushumba
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Ries
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Timo Beil
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, Division of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
18
|
Li X, Chen W, Liu D, Chen P, Wang S, Li F, Chen Q, Lv S, Li F, Chen C, Guo S, Yuan W, Li P, Hu Z. Pathological progression of osteoarthritis: a perspective on subchondral bone. Front Med 2024; 18:237-257. [PMID: 38619691 DOI: 10.1007/s11684-024-1061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 04/16/2024]
Abstract
Osteoarthritis (OA) is a degenerative bone disease associated with aging. The rising global aging population has led to a surge in OA cases, thereby imposing a significant socioeconomic burden. Researchers have been keenly investigating the mechanisms underlying OA. Previous studies have suggested that the disease starts with synovial inflammation and hyperplasia, advancing toward cartilage degradation. Ultimately, subchondral-bone collapse, sclerosis, and osteophyte formation occur. This progression is deemed as "top to bottom." However, recent research is challenging this perspective by indicating that initial changes occur in subchondral bone, precipitating cartilage breakdown. In this review, we elucidate the epidemiology of OA and present an in-depth overview of the subchondral bone's physiological state, functions, and the varied pathological shifts during OA progression. We also introduce the role of multifunctional signal pathways (including osteoprotegerin (OPG)/receptor activator of nuclear factor-kappa B ligand (RANKL)/receptor activator of nuclear factor-kappa B (RANK), and chemokine (CXC motif) ligand 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4)) in the pathology of subchondral bone and their role in the "bottom-up" progression of OA. Using vivid pattern maps and clinical images, this review highlights the crucial role of subchondral bone in driving OA progression, illuminating its interplay with the condition.
Collapse
Affiliation(s)
- Xuefei Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenhua Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dan Liu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Pinghua Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shiyun Wang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fangfang Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qian Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shunyi Lv
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Fangyu Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chen Chen
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Suxia Guo
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Weina Yuan
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Pan Li
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhijun Hu
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
19
|
Machireddy M, Oberman AG, DeBiase L, Stephens M, Li J, Littlepage LE, Niebur GL. Controlled mechanical loading affects the osteocyte transcriptome in porcine trabecular bone in situ. Bone 2024; 181:117028. [PMID: 38309412 PMCID: PMC10923013 DOI: 10.1016/j.bone.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Osteocytes modulate bone adaptation in response to mechanical stimuli imparted by the deforming bone tissue in which they are encased by communicating with osteoclasts and osteoblasts as well as other osteocytes in the lacuna-canalicular network through secreted cytokines and chemokines. Understanding the transcriptional response of osteocytes to mechanical stimulation in situ could identify new targets to inhibit bone loss or enhance bone formation in the presence of diseases like osteoporosis or metastatic cancer. We compared the mechanically regulated transcriptional response of osteocytes in trabecular bone following one or three days of controlled mechanical loading. METHODS Porcine trabecular bone explants were cultured in a bioreactor for 48 h and subsequently loaded twice a day for one day or 3 days. RNA was isolated and sequenced, and the Tuxedo suite was used to identify differentially expressed genes and pathway analysis was conducted using Ingenuity Pathway Analysis (IPA). RESULTS There were about 4000 differentially expressed genes following in situ culture relative to fresh bone. One hundred six genes were differentially expressed between the loaded and non-loaded groups following one day of loading compared to 913 genes after 3 d of loading. Only 45 of these were coincident between the two time points, indicating an evolving transcriptome. Clustering and principal component analysis indicated differences between the loaded and non-loaded groups after 3 d of loading. DISCUSSION With sustained loading, there was a nine-fold increase in the number of differentially expressed genes, suggesting that osteocytes respond to loading through sequential activation of downstream genes in the same pathways. The differentially expressed genes were related to osteoarthritis, osteocyte, and chondrocyte signaling pathways. We noted that NFkB and TNF signaling are affected by early loading and this may drive downstream effects on the mechanobiological response. Moreover, these genes may regulate catabolic effects of mechanical disuse through their actions on pre-osteoclasts in the bone marrow niche.
Collapse
Affiliation(s)
- Meghana Machireddy
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Alyssa G Oberman
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Lucas DeBiase
- Dept. of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, USA
| | - Melissa Stephens
- Genomics and Bioinformatics Core Facility, University of Notre Dame, IN 46556, USA
| | - Jun Li
- Dept. of Applied Mathematics, Computations, and Statistics, University of Notre Dame, IN 46556, USA
| | - Laurie E Littlepage
- Dept. of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
| | - Glen L Niebur
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA; Dept. of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, USA.
| |
Collapse
|
20
|
Saranya I, Akshaya R, Gomathi K, Mohanapriya R, He Z, Partridge N, Selvamurugan N. Circ_ST6GAL1-mediated competing endogenous RNA network regulates TGF-β1-stimulated matrix Metalloproteinase-13 expression via Runx2 acetylation in osteoblasts. Noncoding RNA Res 2024; 9:153-164. [PMID: 38035043 PMCID: PMC10686813 DOI: 10.1016/j.ncrna.2023.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-β1) stimulates matrix metalloproteinase-13 (MMP-13, a bone-remodeling gene) expression, and this effect requires p300-mediated Runx2 (Runt-related transcription factor 2) acetylation in osteoblasts. p300 and Runx2 are transcriptional coactivator and bone transcription factor, respectively, which play key roles in the regulation of bone-remodeling genes. Non-coding ribonucleic acids (ncRNAs), such as long ncRNAs (lncRNAs) and microRNAs (miRNAs), have been linked to both physiological and pathological bone states. In this study, we proposed that TGF-β1-mediated stimulation of MMP-13 expression is due to the downregulation of p300 targeting miRNAs in osteoblasts. We identified miR-130b-5p as one of the miRNAs downregulated by TGF-β1 in osteoblasts. Forced expression of miR-130b-5p decreased p300 expression, Runx2 acetylation, and MMP-13 expression in these cells. Furthermore, TGF-β1 upregulated circ_ST6GAL1, (a circular lncRNA) in osteoblasts; circRNA directly targeted miR-130b-5p. Antisense-mediated knockdown of circ_ST6GAL1 restored the function of miR-130b-5p, resulting in downregulation of p300, Runx2, and MMP-13 in these cells. Hence, our results suggest that TGF-β1 influences circ_ST6GAL1 to sponge and degrade miR-130b-5p, thereby promoting p300-mediated Runx2 acetylation for MMP-13 expression in osteoblasts. Thus, the circ_ST6GAL1/miR-130b-5p/p300 axis has potential significance in the treatment of bone and bone-related disorders.
Collapse
Affiliation(s)
- I. Saranya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - R.L. Akshaya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - K. Gomathi
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - R. Mohanapriya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - Z. He
- Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - N.C. Partridge
- Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - N. Selvamurugan
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| |
Collapse
|
21
|
Schurman CA, Kaya S, Dole N, Luna NMM, Castillo N, Potter R, Rose JP, Bons J, King CD, Burton JB, Schilling B, Melov S, Tang S, Schaible E, Alliston T. Aging impairs the osteocytic regulation of collagen integrity and bone quality. Bone Res 2024; 12:13. [PMID: 38409111 PMCID: PMC10897167 DOI: 10.1038/s41413-023-00303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 02/28/2024] Open
Abstract
Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFβ signaling (TβRIIocy-/-) that suppresses PLR. The control aged bone displayed decreased TGFβ signaling and PLR, but aging did not worsen the existing PLR suppression in male TβRIIocy-/- bone. This relationship impacted the behavior of collagen material at the nanoscale and tissue scale in macromechanical tests. The effects of age on bone mass, density, and mineral material behavior were independent of osteocytic TGFβ. We determined that the decline in bone quality with age arises from the loss of osteocyte function and the loss of TGFβ-dependent maintenance of collagen integrity.
Collapse
Affiliation(s)
- Charles A Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
| | - Neha Dole
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
| | - Nadja M Maldonado Luna
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA
| | - Natalia Castillo
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
| | - Ryan Potter
- Washington University in St Louis, Department of Orthopedics, St. Louis, MO, 63130, USA
| | - Jacob P Rose
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Jordan B Burton
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Simon Tang
- Washington University in St Louis, Department of Orthopedics, St. Louis, MO, 63130, USA
| | - Eric Schaible
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA.
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA.
| |
Collapse
|
22
|
Zhang Y, Chen Q. Novel insights into osteocyte and inter-organ/tissue crosstalk. Front Endocrinol (Lausanne) 2024; 14:1308408. [PMID: 38685911 PMCID: PMC11057460 DOI: 10.3389/fendo.2023.1308408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/14/2023] [Indexed: 05/02/2024] Open
Abstract
Osteocyte, a cell type living within the mineralized bone matrix and connected to each other by means of numerous dendrites, appears to play a major role in body homeostasis. Benefiting from the maturation of osteocyte extraction and culture technique, many cross-sectional studies have been conducted as a subject of intense research in recent years, illustrating the osteocyte-organ/tissue communication not only mechanically but also biochemically. The present review comprehensively evaluates the new research work on the possible crosstalk between osteocyte and closely situated or remote vital organs/tissues. We aim to bring together recent key advances and discuss the mutual effect of osteocyte and brain, kidney, vascular calcification, muscle, liver, adipose tissue, and tumor metastasis and elucidate the therapeutic potential of osteocyte.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingchang Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
23
|
Danyukova T, Alimy AR, Velho RV, Yorgan TA, Di Lorenzo G, von Kroge S, Tidow H, Wiegert JS, Hermans-Borgmeyer I, Schinke T, Rolvien T, Pohl S. Mice heterozygous for an osteogenesis imperfecta-linked MBTPS2 variant display a compromised subchondral osteocyte lacunocanalicular network associated with abnormal articular cartilage. Bone 2023; 177:116927. [PMID: 37797712 DOI: 10.1016/j.bone.2023.116927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Missense variants in the MBTPS2 gene, located on the X chromosome, have been associated with an X-linked recessive form of osteogenesis imperfecta (X-OI), an inherited bone dysplasia characterized by multiple and recurrent bone fractures, short stature, and various skeletal deformities in affected individuals. The role of site-2 protease, encoded by MBTPS2, and the molecular pathomechanism underlying the disease are to date elusive. This study is the first to report on the generation of two Mbtps2 mouse models, a knock-in mouse carrying one of the disease-causative MBTPS2 variants (N455S) and a Mbtps2 knock-out (ko) mouse. Because both loss-of-function variants lead to embryonic lethality in hemizygous male mutant mice, we performed a comprehensive skeletal analysis of heterozygous Mbtps2+/N455S and Mbtps2+/ko female mice. Both models displayed osteochondral abnormalities such as thinned subchondral bone, altered subchondral osteocyte interconnectivity as well as thickened articular cartilage with chondrocyte clustering, altogether resembling an early osteoarthritis (OA) phenotype. However, distant from the joints, no alterations in the bone mass and turnover could be detected in either of the mutant mice. Based on our findings we conclude that MBTPS2 haploinsufficiency results in early OA-like alterations in the articular cartilage and underlying subchondral bone, which likely precede the development of typical OI phenotype in bone. Our study provides first evidence for a potential role of site-2 protease for maintaining homeostasis of both bone and cartilage.
Collapse
Affiliation(s)
- Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Assil-Ramin Alimy
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Renata Voltolini Velho
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Giorgia Di Lorenzo
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Henning Tidow
- The Hamburg Advanced Research Center for Bioorganic Chemistry (HARBOR), Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany.
| | - J Simon Wiegert
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Tim Rolvien
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
24
|
Kaya S, Alliston T, Evans DS. Genetic and Gene Expression Resources for Osteoporosis and Bone Biology Research. Curr Osteoporos Rep 2023; 21:637-649. [PMID: 37831357 PMCID: PMC11098148 DOI: 10.1007/s11914-023-00821-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE OF REVIEW The integration of data from multiple genomic assays from humans and non-human model organisms is an effective approach to identify genes involved in skeletal fragility and fracture risk due to osteoporosis and other conditions. This review summarizes genome-wide genetic variation and gene expression data resources relevant to the discovery of genes contributing to skeletal fragility and fracture risk. RECENT FINDINGS Genome-wide association studies (GWAS) of osteoporosis-related traits are summarized, in addition to gene expression in bone tissues in humans and non-human organisms, with a focus on rodent models related to skeletal fragility and fracture risk. Gene discovery approaches using these genomic data resources are described. We also describe the Musculoskeletal Knowledge Portal (MSKKP) that integrates much of the available genomic data relevant to fracture risk. The available genomic resources provide a wealth of knowledge and can be analyzed to identify genes related to fracture risk. Genomic resources that would fill particular scientific gaps are discussed.
Collapse
Affiliation(s)
- Serra Kaya
- Department of Orthopedic Surgery, University of California, San Francisco, CA, USA
| | - Tamara Alliston
- Department of Orthopedic Surgery, University of California, San Francisco, CA, USA
| | - Daniel S Evans
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
- California Pacific Medical Center Research Institute, San Francisco, CA, USA.
| |
Collapse
|
25
|
Jiang Y, Liu L, Deng YX, Zhang J, Ye AH, Ye FL, He BC. MMP13 promotes the osteogenic potential of BMP9 by enhancing Wnt/β-catenin signaling via HIF-1α upregulation in mouse embryonic fibroblasts. Int J Biochem Cell Biol 2023; 164:106476. [PMID: 37802385 DOI: 10.1016/j.biocel.2023.106476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Bone morphogenetic protein 9 (BMP9) has been validated as one of the most potent osteoinduction factors, but its underlying mechanism remains unclear. As a member of the matrix metalloproteinase (MMP) family, MMP13 may be involved in regulating the lineage-specific differentiation of mouse embryonic fibroblasts (MEFs). The goal of this study was to determine whether MMP13 regulates the osteoinduction potential of BMP9 in MEFs, which are multipotent progenitor cells widely used for stem cell biology research. In vitro and in vivo experiments showed that BMP9-induced osteogenic markers and/or bone were enhanced by exogenous MMP13 in MEFs, but were reduced by MMP13 knockdown or inhibition. The expression of hypoxia inducible factor 1 alpha (HIF-1α) was induced by BMP9, which was enhanced by MMP13. The protein expression of β-catenin and phosphorylation level of glycogen synthase kinase-3 beta (GSK-3β) were increased by BMP9 in MEFs, as was the translocation of β-catenin from the cytoplasm to the nucleus; all these effects of BMP9 were enhanced by MMP13. Furthermore, the MMP13 effects of increasing BMP9-induced β-catenin protein expression and GSK-3β phosphorylation level were partially reversed by HIF-1α knockdown. These results suggest that MMP13 can enhance the osteoinduction potential of BMP9, which may be mediated, at least in part, through the HIF-1α/β-catenin axis. Our findings demonstrate a novel role of MMP13 in the lineage decision of progenitor cells and provide a promising strategy to speed up bone regeneration.
Collapse
Affiliation(s)
- Yue Jiang
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lu Liu
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yi-Xuan Deng
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jie Zhang
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Ai-Hua Ye
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Fang-Lin Ye
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Bai-Cheng He
- Department of pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
26
|
Yoon J, Kaya S, Matsumae G, Dole N, Alliston T. miR181a/b-1 controls osteocyte metabolism and mechanical properties independently of bone morphology. Bone 2023; 175:116836. [PMID: 37414200 PMCID: PMC11156520 DOI: 10.1016/j.bone.2023.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Bone derives its ability to resist fracture from bone mass and quality concurrently; however, many questions about the molecular mechanisms controlling bone quality remain unanswered, limiting the development of diagnostics and therapeutics. Despite the increasing evidence on the importance of miR181a/b-1 in bone homeostasis and disease, whether and how osteocyte-intrinsic miR181a/b-1 controls bone quality remains elusive. Osteocyte-intrinsic deletion of miR181a/b-1 in osteocytes in vivo resulted in compromised overall bone mechanical behavior in both sexes, although the parameters affected by miR181a/b-1 varied distinctly based on sex. Furthermore, impaired fracture resistance in both sexes was unexplained by cortical bone morphology, which was altered in female mice and intact in male mice with miR181a/b-1-deficient osteocytes. The role of miR181a/b-1 in the regulation of osteocyte metabolism was apparent in bioenergetic testing of miR181a/b-1-deficient OCY454 osteocyte-like cells and transcriptomic analysis of cortical bone from mice with osteocyte-intrinsic ablation of miR181a/b-1. Altogether, this study demonstrates the control of osteocyte bioenergetics and the sexually dimorphic regulation of cortical bone morphology and mechanical properties by miR181a/b-1, hinting at the role of osteocyte metabolism in the regulation of mechanical behavior.
Collapse
Affiliation(s)
- Jihee Yoon
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA; Oral and Craniofacial Sciences Program, School of Dentistry, University of California San Francisco, California, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA
| | - Gen Matsumae
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA
| | - Neha Dole
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, AR, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA; Oral and Craniofacial Sciences Program, School of Dentistry, University of California San Francisco, California, USA.
| |
Collapse
|
27
|
Li YY, Zhang LY, Xiang YH, Li D, Zhang J. Matrix metalloproteinases and tissue inhibitors in multiple myeloma: promote or inhibit? Front Oncol 2023; 13:1127407. [PMID: 37823051 PMCID: PMC10562598 DOI: 10.3389/fonc.2023.1127407] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) play a vital role in the pathogenesis of multiple myeloma (MM), especially for tumor invasion and osteolytic osteopathy. By breaking down extracellular matrix (ECM) components and releasing the proteins composing the ECM and growth factors, as well as their receptors, MMPs affect tissue integrity and promote cancer cell invasion and metastasis. A vital pathophysiological characteristic of MM is the progress of osteolytic lesions, which are brought on by interactions between myeloma cells and the bone marrow microenvironment. MMPs, certainly, are one of the fundamental causes of myeloma bone disease due to their ability to degrade various types of collagens. TIMPs, as important regulators of MMP hydrolysis or activation, also participate in the occurrence and evolution of MM and the formation of bone disease. This review focuses on the role of MMP-1, MMP-2, MMP-7, MMP-9, MMP-13, MMP-14, and MMP-15 and the four types of TIMPs in the invasion of myeloma cells, angiogenesis, osteolytic osteopathy, to offer some novel perspectives on the clinical diagnostics and therapeutics of MM.
Collapse
Affiliation(s)
- Yan-Ying Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liu-Yun Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun-Hui Xiang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Juan Zhang
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
28
|
Khoswanto C. Role of matrix metalloproteinases in bone regeneration: Narrative review. J Oral Biol Craniofac Res 2023; 13:539-543. [PMID: 37351418 PMCID: PMC10282173 DOI: 10.1016/j.jobcr.2023.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) not only work as enzymes but also as degrading enzymes that have been shown to play an important function in extracellular matrix (ECM) regeneration, including bone regeneration. To generate new bone tissue, bone regeneration or repair relies on a series of regulated processes in which MMPs play an important role. Bone cells express the MMPs in an active state, and these MMPs are assumed to have a crucial role, not only for the viability and functionality of osteoclasts, osteoblasts, and osteocytes but also for the formation and development of chondrocytes. Objective This study aimed to review and present the roles of matrix metalloproteinases in bone regeneration. Methods An analysis of the scientific literature on the topics of matrix metalloproteinases in bone regeneration was done on PubMed and Google Scholar. Search results were screened for articles that described or investigated the impacts matrix metalloproteinases have on bones in relation to dentistry. The journals' cited papers were also assessed for relevance and included if they complied with the criteria for inclusion. Accessibility to the full document was one of the prerequisites for admission. Result Bone regeneration are intricate ongoing processes involving numerous MMPs, especially MMP 2, 9 and 13. MMP-2 appears to alter bone growth through influencing osteoclast and osteoblast activity and proliferation, MMP-9-deficient animals have abnormal bone formation exclusively during endochondral ossification, MMP 13 is responsible for osteoclast receptor activation, has been linked to the breakdown bone resorption. Conclusions MMP 2, 9, and 13 play a major protective role in osteogenesis and bone regeneration.
Collapse
Affiliation(s)
- Christian Khoswanto
- Department of Oral Biology Faculty of Dentistry, Airlangga University. Jln. Mayjend. Prof. Dr. Moestopo No. 47, Surabaya, 60132, Indonesia
| |
Collapse
|
29
|
Varadinkova S, Oralova V, Clarke M, Frampton J, Knopfova L, Lesot H, Bartos P, Matalova E. Expression dynamics of metalloproteinases during mandibular bone formation: association with Myb transcription factor. Front Cell Dev Biol 2023; 11:1168866. [PMID: 37701782 PMCID: PMC10493412 DOI: 10.3389/fcell.2023.1168866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
As the dentition forms and becomes functional, the alveolar bone is remodelled. Metalloproteinases are known to contribute to this process, but new regulators are emerging and their contextualization is challenging. This applies to Myb, a transcription factor recently reported to be involved in bone development and regeneration. The regulatory effect of Myb on Mmps expression has mostly been investigated in tumorigenesis, where Myb impacted the expression of Mmp1, Mmp2, Mmp7, and Mmp9. The aim of this investigation was to evaluate the regulatory influence of the Myb on Mmps gene expression, impacting osteogenesis and mandibular bone formation. For that purpose, knock-out mouse model was used. Gene expression of bone-related Mmps and the key osteoblastic transcription factors Runx2 and Sp7 was analysed in Myb knock-out mice mandibles at the survival limit. Out of the metalloproteinases under study, Mmp13 was significantly downregulated. The impact of Myb on the expression of Mmp13 was confirmed by the overexpression of Myb in calvarial-derived cells causing upregulation of Mmp13. Expression of Mmp13 in the context of other Mmps during mandibular/alveolar bone development was followed in vivo along with Myb, Sp7 and Runx2. The most significant changes were observed in the expression of Mmp9 and Mmp13. These MMPs and MYB were further localized in situ by immunohistochemistry and were identified in pre/osteoblastic cells as well as in pre/osteocytes. In conclusion, these results provide a comprehensive insight into the expression dynamics of bone related Mmps during mandibular/alveolar bone formation and point to Myb as another potential regulator of Mmp13.
Collapse
Affiliation(s)
- S. Varadinkova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| | - V. Oralova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| | - M. Clarke
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - J. Frampton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - L. Knopfova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - H. Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
| | - P. Bartos
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
| | - E. Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences, Brno, Czechia
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| |
Collapse
|
30
|
Bolger MW, Tekkey T, Kohn DH. The Contribution of Perilacunar Composition and Mechanical Properties to Whole-Bone Mechanical Outcomes in Streptozotocin-Induced Diabetes. Calcif Tissue Int 2023; 113:229-245. [PMID: 37261462 PMCID: PMC11144452 DOI: 10.1007/s00223-023-01098-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Osteocytes are the most abundant cell type in bone and remodel their local perilacunar matrix in response to a variety of stimuli and diseases. How the perilacunar composition and mechanical properties are affected by type 1 diabetes (T1D), and the contribution of these local changes to the decline in whole-bone functional properties that occurs with diabetes remains unclear. 12-14 week old C57/BL6 male mice were administered a series of low-dose streptozotocin injections and sacrificed at baseline (BL), 3 (D3) and 7 weeks (D7) following confirmation of diabetes, along with age-matched controls (C3, C7). Femora were then subjected to a thorough morphological (μCT), mechanical (four-point bending, nanoindentation), and compositional (HPLC for collagen cross-links, Raman spectroscopy) analysis at the whole-bone and local (perilacunar and intracortical) levels. At the whole-bone level, D7 mice exhibited 10.7% lower ultimate load and 26.4% lower post-yield work relative to C7. These mechanical changes coincided with 52.2% higher levels of pentosidine at D7 compared to C7. At the local level, the creep distance increased, while modulus and hardness decreased in the perilacunar region relative to the intracortical for D7 mice, suggesting a spatial uncoupling in skeletal adaptation. D7 mice also exhibited increased matrix maturity in the 1660/1690 cm-1 ratio at both regions relative to C7. The perilacunar matrix maturity was predictive of post-yield work (46%), but perilacunar measures were not predictive of ultimate load, which was better explained by cortical area (26%). These results show that diabetes causes local perilacunar composition perturbations that affect whole-bone level mechanical properties, implicating osteocyte maintenance of its local matrix in the progression of diabetic skeletal fragility.
Collapse
Affiliation(s)
- Morgan W Bolger
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tara Tekkey
- Department of Chemistry, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - David H Kohn
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
31
|
ROSENBERG JL, WOOLLEY W, ELNUNU I, KAMML J, KAMMER DS, ACEVEDO C. Effect of non-enzymatic glycation on collagen nanoscale mechanisms in diabetic and age-related bone fragility. BIOCELL 2023; 47:1651-1659. [PMID: 37693278 PMCID: PMC10486207 DOI: 10.32604/biocell.2023.028014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/20/2023] [Indexed: 09/12/2023]
Abstract
Age and diabetes have long been known to induce an oxidative reaction between glucose and collagen, leading to the accumulation of advanced glycation end-products (AGEs) cross-links in collagenous tissues. More recently, AGEs content has been related to loss of bone quality, independent of bone mass, and increased fracture risk with aging and diabetes. Loss of bone quality is mostly attributed to changes in material properties, structural organization, or cellular remodeling. Though all these factors play a role in bone fragility disease, some common recurring patterns can be found between diabetic and age-related bone fragility. The main pattern we will discuss in this viewpoint is the increase of fibrillar collagen stiffness and loss of collagen-induced plasticity with AGE accumulation. This study focused on recent related experimental studies and discusses the correlation between fluorescent AGEs content at the molecular and fibrillar scales, collagen deformation mechanisms at the nanoscale, and resistance to bone fracture at the macroscale.
Collapse
Affiliation(s)
- James L. ROSENBERG
- Department of Mechanical Engineering, University of Utah, Salt Lake City, 84112, USA
| | - William WOOLLEY
- Department of Mechanical Engineering, University of Utah, Salt Lake City, 84112, USA
| | - Ihsan ELNUNU
- Department of Mechanical Engineering, University of Utah, Salt Lake City, 84112, USA
| | - Julia KAMML
- Institute for Building Materials, ETH Zurich, Zurich, Switzerland
| | - David S. KAMMER
- Institute for Building Materials, ETH Zurich, Zurich, Switzerland
| | - Claire ACEVEDO
- Department of Mechanical Engineering, University of Utah, Salt Lake City, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, 84112, USA
| |
Collapse
|
32
|
Kaya S, Bailey KN, Schurman CA, Evans DS, Alliston T. Bone-cartilage crosstalk informed by aging mouse bone transcriptomics and human osteoarthritis genome-wide association studies. Bone Rep 2023; 18:101647. [PMID: 36636109 PMCID: PMC9830153 DOI: 10.1016/j.bonr.2022.101647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Subchondral bone participates in crosstalk with articular cartilage to maintain joint homeostasis, and disruption of either tissue results in overall joint degeneration. Among the subchondral bone changes observed in osteoarthritis (OA), subchondral bone plate (SBP) thickening has a time-dependent relationship with cartilage degeneration and has recently been shown to be regulated by osteocytes. Here, we evaluate the effect of age on SBP thickness and cartilage degeneration in aging mice. We find that SBP thickness significantly increases by 18-months of age, corresponding temporally with increased cartilage degeneration. To identify factors in subchondral bone that may participate in bone cartilage crosstalk or OA, we leveraged mouse transcriptomic data from one joint tissue compartment - osteocyte-enriched bone - to search for enrichment with human OA in UK Biobank and Arthritis Research UK Osteoarthritis Genetics (arcOGEN) GWAS using the mouse2human (M2H, www.mouse2human.org) strategy. Genes differentially expressed in aging mouse bone are significantly enriched for human OA, showing joint site-specific (knee vs. hip) relationships, exhibit temporal associations with age, and unique gene clusters are implicated in each type of OA. Application of M2H identifies genes with known and unknown functions in osteocytes and OA development that are clinically associated with human OA. Altogether, this work prioritizes genes with a potential role in bone/cartilage crosstalk for further mechanistic study based on their association with human OA in GWAS.
Collapse
Affiliation(s)
- Serra Kaya
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
| | - Karsyn N. Bailey
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States of America
| | - Charles A. Schurman
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States of America
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, United States of America
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, CA, United States of America
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States of America
| |
Collapse
|
33
|
Arai Y, Lee SH. MMP13-Overexpressing Mesenchymal Stem Cells Enhance Bone Tissue Formation in the Presence of Collagen Hydrogel. Tissue Eng Regen Med 2023; 20:461-471. [PMID: 37041434 PMCID: PMC10219901 DOI: 10.1007/s13770-023-00535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are proteins involved in the repair and remodeling the extracellular matrix (ECM). MMP13 is essential for bone development and healing through the remodeling of type I collagen (COL1), the main component of the ECM in bone tissue. Mesenchymal stem cells (MSCs)-based cell therapy has been considered a promising approach for bone regeneration because of their osteogenic properties. However, the approaches using MSC to completely regenerate bone tissue have been limited. To overcome the limitation, genetic engineering of MSC could be a strategy for promoting regeneration efficacy. METHODS We performed in vitro and in vivo experiments using MMP13-overexpressing MSCs in the presence of COL1. To examine MMP13-overexpressing MSCs in vivo, we prepared a fibrin/COL1-based hydrogel to encapsulate MSCs and subcutaneously implanted gel-encapsulated MSCs in nude mice. We found that the osteogenic marker genes, ALP and RUNX2, were upregulated in MMP13-overexpressing MSCs through p38 phosphorylation. In addition, MMP13 overexpression in MSCs stimulated the expression of integrin α3, which is up-stream receptor of p38, and substantially increased osteogenic differentiation potential of MSCs. Bone tissue formation in MMP13-overexpressing MSCs was significantly higher than that in control MSCs. Taken together, our findings demonstrate that MMP13 is not only an essential factor for bone development and bone healing but also has a pivotal role in promoting osteogenic differentiation of MSCs to induce bone formation. CONCLUSION MSCs Genetically engineered to overexpress MMP13, which have a powerful potential to differentiate into the osteogenic cells, might be beneficial in bone disease therapy.
Collapse
Affiliation(s)
- Yoshie Arai
- Department of Medical Biotechnology, Dongguk University, Seoul, 04620, South Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, Seoul, 04620, South Korea.
| |
Collapse
|
34
|
Guo Q, Chen N, Qian C, Qi C, Noller K, Wan M, Liu X, Zhang W, Cahan P, Cao X. Sympathetic Innervation Regulates Osteocyte-Mediated Cortical Bone Resorption during Lactation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207602. [PMID: 37186379 PMCID: PMC10288263 DOI: 10.1002/advs.202207602] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Indexed: 05/17/2023]
Abstract
Bone undergoes constant remodeling by osteoclast bone resorption coupled with osteoblast bone formation at the bone surface. A third major cell type in the bone is osteocytes, which are embedded in the matrix, are well-connected to the lacunar network, and are believed to act as mechanical sensors. Here, it is reported that sympathetic innervation directly regulates lacunar osteocyte-mediated bone resorption inside cortical bone. It is found that sympathetic activity is elevated in different mouse models of bone loss, including lactation, ovariectomy, and glucocorticoid treatment. Further, during lactation elevated sympathetic outflow induces netrin-1 expression by osteocytes to further promote sympathetic nerve sprouting in the cortical bone endosteum in a feed-forward loop. Depletion of tyrosine hydroxylase-positive (TH+ ) sympathetic nerves ameliorated osteocyte-mediated perilacunar bone resorption in lactating mice. Moreover, norepinephrine activates β-adrenergic receptor 2 (Adrb2) signaling to promote secretion of extracellular vesicles (EVs) containing bone-degrading enzymes for perilacunar bone resorption and inhibit osteoblast differentiation. Importantly, osteocyte-specific deletion of Adrb2 or treatment with a β-blocker results in lower bone resorption in lactating mice. Together, these findings show that the sympathetic nervous system promotes osteocyte-driven bone loss during lactation, likely as an adaptive response to the increased energy and mineral demands of the nursing mother.
Collapse
Affiliation(s)
- Qiaoyue Guo
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Ningrong Chen
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Cheng Qian
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Cheng Qi
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Kathleen Noller
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Mei Wan
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Xiaonan Liu
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Weixin Zhang
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Patrick Cahan
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Xu Cao
- Department of Orthopedic SurgeryJohns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMD21205USA
| |
Collapse
|
35
|
Peurière L, Mastrandrea C, Vanden-Bossche A, Linossier MT, Thomas M, Normand M, Lafage-Proust MH, Vico L. Hindlimb unloading in C57BL/6J mice induces bone loss at thermoneutrality without change in osteocyte and lacuno-canalicular network. Bone 2023; 169:116640. [PMID: 36526262 DOI: 10.1016/j.bone.2022.116640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Impaired mechanical stimuli during hindlimb unloading (HLU) are believed to exacerbate osteocyte paracrine regulation of osteoclasts. We hypothesized that bone loss and deterioration of the osteocyte lacuno-canalicular network are attenuated in HLU mice housed at thermoneutrality (28 °C) compared with those housed at ambient temperature (22 °C). Following acclimatization, 20-week-old male C57BL/6J mice were submitted to HLU or kept in pair-fed control cages (CONT), for 5 days (5d) or 14d, at 22 °C or 28 °C. In the femur distal metaphysis, thermoneutral CONT mice had higher bone volume (p = 0.0007, BV/TV, in vivo μCT, vs. 14dCONT22) whilst osteoclastic surfaces of CONT and HLU were greater at 22 °C (5dCONT22 + 53 %, 5dHLU22 + 50 %, 14dCONT22 + 186 %, 14dHLU22 + 104 %, vs matching 28 °C group). In the femur diaphysis and at both temperatures, 14dHLU exhibited thinner cortices distally or proximally compared to controls; the mid-diaphysis being thicker at 28 °C than at 22 °C in all groups. Expression of cortical genes for proteolytic enzyme (Mmp13), markers for osteoclastogenic differentiation (MCSF, RANKL), and activity (TRAP, Ctsk) were increased following 22 °C HLU, whereas only Ctsk expression was increased following 28 °C HLU. Expression of cortical genes for apoptosis, senescence, and autophagy were not elevated following HLU at any temperature. Osteocyte density at the posterior mid-diaphysis was similar between groups, as was the proportion of empty lacunae (<0.5 %). However, analysis of the lacuno-canalicular network (LCN, fluorescein staining) revealed unstained areas in the 14dHLU22 group only, suggesting disrupted LCN flow in this group alone. In conclusion, 28 °C housing influences the HLU bone response but does not prevent bone loss. Furthermore, our results do not show osteocyte senescence or death, and at thermoneutrality, HLU-induced bone resorption is not triggered by osteoclastic activators RANKL and MCSF.
Collapse
Affiliation(s)
- Laura Peurière
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France.
| | - Carmelo Mastrandrea
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Arnaud Vanden-Bossche
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Marie-Thérèse Linossier
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Mireille Thomas
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Myriam Normand
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Marie-Hélène Lafage-Proust
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Laurence Vico
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| |
Collapse
|
36
|
Insights into the Molecular and Hormonal Regulation of Complications of X-Linked Hypophosphatemia. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
X-linked hypophosphatemia (XLH) is characterized by mutations in the PHEX gene, leading to elevated serum levels of FGF23, decreased production of 1,25 dihydroxyvitamin D3 (1,25D), and hypophosphatemia. Those affected with XLH manifest impaired growth and skeletal and dentoalveolar mineralization as well as increased mineralization of the tendon–bone attachment site (enthesopathy), all of which lead to decreased quality of life. Many molecular and murine studies have detailed the role of mineral ions and hormones in regulating complications of XLH, including how they modulate growth and growth plate maturation, bone mineralization and structure, osteocyte-mediated mineral matrix resorption and canalicular organization, and enthesopathy development. While these studies have provided insight into the molecular underpinnings of these skeletal processes, current therapies available for XLH do not fully prevent or treat these complications. Therefore, further investigations are needed to determine the molecular pathophysiology underlying the complications of XLH.
Collapse
|
37
|
Athonvarangkul D, Wysolmerski JJ. Crosstalk within a brain-breast-bone axis regulates mineral and skeletal metabolism during lactation. Front Physiol 2023; 14:1121579. [PMID: 36875035 PMCID: PMC9979219 DOI: 10.3389/fphys.2023.1121579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
To support the increased calcium demands for milk production during lactation, a dramatic and reversible physiological response occurs to alter bone and mineral metabolism. This coordinated process involves a brain-breast-bone axis that integrates hormonal signals that allow for adequate calcium delivery to milk yet also protects the maternal skeletal from excessive bone loss or decreases in bone quality or function. Here, we review the current knowledge on the crosstalk between the hypothalamus, mammary gland, and skeleton during lactation. We discuss the rare entity of pregnancy and lactation associated osteoporosis and consider how the physiology of bone turnover in lactation may impact the pathophysiology of postmenopausal osteoporosis. Further understanding of the regulators of bone loss during lactation, particularly in humans, may provide insights into new therapies for osteoporosis and other diseases of excess bone loss.
Collapse
Affiliation(s)
- Diana Athonvarangkul
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
38
|
O'Donohue AK, Xiao Y, Lee LR, Schofield T, Cheng TL, Munns CF, Baldock PA, Schindeler A. Targeted postnatal knockout of Sclerostin using a bone-targeted adeno-associated viral vector increases bone anabolism and decreases canalicular density. Bone 2023; 167:116636. [PMID: 36462771 DOI: 10.1016/j.bone.2022.116636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
PURPOSE The creation of murine gene knockout models to study bone gene functions often requires the resource intensive crossbreeding of Cre transgenic and gene-floxed strains. The developmental versus postnatal roles of genes can be difficult to discern in such models. For example, embryonic deletion of the Sclerostin (Sost) gene establishes a high-bone mass phenotype in neonatal mice that may impact on future bone growth. To generate a postnatal skeletal knockout of Sost in adult mice, this study used a single injection of a bone-targeted recombinant adeno-associated virus (rAAV) vector. METHODS 8-week-old Sostflox/flox mice were injected with saline (control) or a single injection containing 5 × 1011 vg AAV8-Sp7-Cre vector. Ai9 fluorescent Cre reporter mice were dosed in parallel to confirm targeting efficiency. After 6 weeks, detailed bone analysis was performed via microCT, biomechanical testing, and bone histology on vertebral and long bone specimens. RESULTS The AAV8-Sp7-Cre vector induced widespread persistent recombination in the bone compartment. Regional microCT analyses revealed significant increases in bone with vector treatment. In the L3 vertebrae, Sostflox/flox:AAV-Cre showed a 22 % increase in bone volume and 21 % in trabecular bone fraction compared to controls; this translated to a 17 % increase in compressive strength. In the tibiae, Sostflox/flox:AAV-Cre led to small but statistically significant increases in cortical bone volume and thickness. These were consistent with a 25 % increase in mineral apposition rate, but this did not translate into increased four-point bending strength. Ploton silver nitrate stain on histological sections revealed an unexpected increase in canalicular density associated with Sost ablation. CONCLUSION This report demonstrates a proof-of-concept that the AAV8-Sp7-Cre vector can efficiently produce postnatal skeletal knockout mice using gene-floxed strains. This technology has the potential for broad utility in the bone field with existing conditional lines. These data also confirm an important postnatal role for Sost in regulating bone homeostasis, consistent with prior studies using neutralizing Sclerostin antibodies, and highlights a novel role of Sost in canalicular remodeling.
Collapse
Affiliation(s)
- Alexandra K O'Donohue
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Westmead, NSW, Australia; The Children's Hospital at Westmead Clinical School, The University of Sydney, Camperdown, NSW, Australia
| | - Ya Xiao
- Bone Division, Garvan Institute for Medical Research, Darlinghurst, NSW, Australia
| | - Lucinda R Lee
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Westmead, NSW, Australia; The Children's Hospital at Westmead Clinical School, The University of Sydney, Camperdown, NSW, Australia
| | - Timothy Schofield
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Westmead, NSW, Australia; The Children's Hospital at Westmead Clinical School, The University of Sydney, Camperdown, NSW, Australia
| | - Tegan L Cheng
- University of Sydney School of Health Sciences, University of Sydney, Camperdown, NSW, Australia; Engineering Prototypes & Implants for Children (EPIC) Lab, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Craig F Munns
- Department of Endocrinology and Diabetes, Queensland Children's Hospital, Brisbane, QLD, Australia; Child Health Research Centre and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul A Baldock
- Bone Division, Garvan Institute for Medical Research, Darlinghurst, NSW, Australia
| | - Aaron Schindeler
- Bioengineering & Molecular Medicine Laboratory, The Children's Hospital at Westmead and the Westmead Institute for Medical Research, Westmead, NSW, Australia; The Children's Hospital at Westmead Clinical School, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
39
|
Heveran CM, Boerckel JD. Osteocyte Remodeling of the Lacunar-Canalicular System: What's in a Name? Curr Osteoporos Rep 2023; 21:11-20. [PMID: 36512204 PMCID: PMC11223162 DOI: 10.1007/s11914-022-00766-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Osteocytes directly modify the bone surrounding the expansive lacunar-canalicular system (LCS) through both resorption and deposition. The existence of this phenomenon is now widely accepted, but is referred to as "osteocyte osteolysis," "LCS remodeling," and "perilacunar remodeling," among other names. The uncertainty in naming this physiological process reflects the many persistent questions about why and how osteocytes interact with local bone matrix. The goal of this review is to examine the purpose and nature of LCS remodeling and its impacts on multiscale bone quality. RECENT FINDINGS While LCS remodeling is clearly important for systemic calcium mobilization, this process may have additional potential drivers and may impact the ability of bone to resist fracture. There is abundant evidence that the osteocyte can resorb and replace bone mineral and does so outside of extreme challenges to mineral homeostasis. The impacts of the osteocyte on organic matrix are less certain, especially regarding whether osteocytes produce osteoid. Though multiple lines of evidence point towards osteocyte production of organic matrix, definitive work is needed. Recent high-resolution imaging studies demonstrate that LCS remodeling influences local material properties. The role of LCS remodeling in the maintenance and deterioration of bone matrix quality in aging and disease are active areas of research. In this review, we highlight current progress in understanding why and how the osteocyte removes and replaces bone tissue and the consequences of these activities to bone quality. We posit that answering these questions is essential for evaluating whether, how, when, and why LCS remodeling may be manipulated for therapeutic benefit in managing bone fragility.
Collapse
Affiliation(s)
- C M Heveran
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, USA.
| | - J D Boerckel
- Department of Orthopaedic Surgery, Department of Bioengineering, University of Pennsylvania School of Medicine, Philadelphia, USA.
| |
Collapse
|
40
|
Wölfel EM, Lademann F, Hemmatian H, Blouin S, Messmer P, Hofbauer LC, Busse B, Rauner M, Jähn-Rickert K, Tsourdi E. Reduced Bone Mass and Increased Osteocyte Tartrate-Resistant Acid Phosphatase (TRAP) Activity, But Not Low Mineralized Matrix Around Osteocyte Lacunae, Are Restored After Recovery From Exogenous Hyperthyroidism in Male Mice. J Bone Miner Res 2023; 38:131-143. [PMID: 36331133 DOI: 10.1002/jbmr.4736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Hyperthyroidism causes secondary osteoporosis through favoring bone resorption over bone formation, leading to bone loss with elevated bone fragility. Osteocytes that reside within lacunae inside the mineralized bone matrix orchestrate the process of bone remodeling and can themselves actively resorb bone upon certain stimuli. Nevertheless, the interaction between thyroid hormones and osteocytes and the impact of hyperthyroidism on osteocyte cell function are still unknown. In a preliminary study, we analyzed bones from male C57BL/6 mice with drug-induced hyperthyroidism, which led to mild osteocytic osteolysis with 1.14-fold larger osteocyte lacunae and by 108.33% higher tartrate-resistant acid phosphatase (TRAP) activity in osteocytes of hyperthyroid mice compared to euthyroid mice. To test whether hyperthyroidism-induced bone changes are reversible, we rendered male mice hyperthyroid by adding levothyroxine into their drinking water for 4 weeks, followed by a weaning period of 4 weeks with access to normal drinking water. Hyperthyroid mice displayed cortical and trabecular bone loss due to high bone turnover, which recovered with weaning. Although canalicular number and osteocyte lacunar area were similar in euthyroid, hyperthyroid and weaned mice, the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL)-positive osteocytes was 100% lower in the weaning group compared to euthyroid mice and the osteocytic TRAP activity was eightfold higher in hyperthyroid animals. The latter, along with a 3.75% lower average mineralization around the osteocyte lacunae in trabecular bone, suggests osteocytic osteolysis activity that, however, did not result in significantly enlarged osteocyte lacunae. In conclusion, we show a recovery of bone microarchitecture and turnover after reversal of hyperthyroidism to a euthyroid state. In contrast, osteocytic osteolysis was initiated in hyperthyroidism, but its effects were not reversed after 4 weeks of weaning. Due to the vast number of osteocytes in bone, we speculate that even minor individual cell functions might contribute to altered bone quality and mineral homeostasis in the setting of hyperthyroidism-induced bone disease. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva Maria Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Lademann
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Phaedra Messmer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| |
Collapse
|
41
|
Temporomandibular Joint Osteoarthritis: Pathogenic Mechanisms Involving the Cartilage and Subchondral Bone, and Potential Therapeutic Strategies for Joint Regeneration. Int J Mol Sci 2022; 24:ijms24010171. [PMID: 36613615 PMCID: PMC9820477 DOI: 10.3390/ijms24010171] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The temporomandibular joint (TMJ) is a specialized synovial joint that is crucial for the movement and function of the jaw. TMJ osteoarthritis (TMJ OA) is the result of disc dislocation, trauma, functional overburden, and developmental anomalies. TMJ OA affects all joint structures, including the articular cartilage, synovium, subchondral bone, capsule, ligaments, periarticular muscles, and sensory nerves that innervate the tissues. The present review aimed to illustrate the main pathomechanisms involving cartilage and bone changes in TMJ OA and some therapeutic options that have shown potential restorative properties regarding these joint structures in vivo. Chondrocyte loss, extracellular matrix (ECM) degradation, and subchondral bone remodeling are important factors in TMJ OA. The subchondral bone actively participates in TMJ OA through an abnormal bone remodeling initially characterized by a loss of bone mass, followed by reparative mechanisms that lead to stiffness and thickening of the condylar osteochondral interface. In recent years, such therapies as intraarticular platelet-rich plasma (PRP), hyaluronic acid (HA), and mesenchymal stem cell-based treatment (MSCs) have shown promising results with respect to the regeneration of joint structures or the protection against further damage in TMJ OA. Nevertheless, PRP and MSCs are more frequently associated with cartilage and/or bone repair than HA. According to recent findings, the latter could enhance the restorative potential of other therapies (PRP, MSCs) when used in combination, rather than repair TMJ structures by itself. TMJ OA is a complex disease in which degenerative changes in the cartilage and bone develop through intricate mechanisms. The regenerative potential of such therapies as PRP, MSCs, and HA regarding the cartilage and subchondral bone (alone or in various combinations) in TMJ OA remains a matter of further research, with studies sometimes obtaining discrepant results.
Collapse
|
42
|
Wang JS, Wein MN. Pathways Controlling Formation and Maintenance of the Osteocyte Dendrite Network. Curr Osteoporos Rep 2022; 20:493-504. [PMID: 36087214 PMCID: PMC9718876 DOI: 10.1007/s11914-022-00753-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the molecular mechanisms involved in osteocyte dendrite formation, summarize the similarities between osteocytic and neuronal projections, and highlight the importance of osteocyte dendrite maintenance in human skeletal disease. RECENT FINDINGS It is suggested that there is a causal relationship between the loss of osteocyte dendrites and the increased osteocyte apoptosis during conditions including aging, microdamage, and skeletal disease. A few mechanisms are proposed to control dendrite formation and outgrowth, such as via the regulation of actin polymerization dynamics. This review addresses the impact of osteocyte dendrites in bone health and disease. Recent advances in multi-omics, in vivo and in vitro models, and microscopy-based imaging have provided novel approaches to reveal the underlying mechanisms that regulate dendrite development. Future therapeutic approaches are needed to target the process of osteocyte dendrite formation.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
43
|
The Effects of Vitamin E Analogues α-Tocopherol and γ-Tocotrienol on the Human Osteocyte Response to Ultra-High Molecular Weight Polyethylene Wear Particles. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polyethylene (PE) liners are a common bearing surface of orthopaedic prostheses. Wear particles of ultra-high molecular weight PE (UHMWPE) contribute to periprosthetic osteolysis, a major cause of aseptic loosening. Vitamin E is added to some PE liners to prevent oxidative degradation. Osteocytes, an important cell type for controlling both bone mineralisation and bone resorption, have been shown to respond UHMWPE particles by upregulating pro-osteoclastogenic and osteocytic osteolysis. Here, we examined the effects of the vitamin E analogues α-tocopherol and γ-tocotrienol alone or in the context of UHMWPE particles on human osteocyte gene expression and mineralisation behaviour. Human osteoblasts differentiated to an osteocyte-like stage were exposed to UHMWPE wear particles in the presence or absence of either α-Tocopherol or γ-Tocotrienol. Both α-Tocopherol and γ-Tocotrienol induced antioxidant-related gene expression. UHMWPE particles independently upregulated antioxidant gene expression, suggesting an effect of wear particles on oxidative stress. Both vitamin E analogues strongly induced OPG mRNA expression and γ-Tocotrienol also inhibited RANKL mRNA expression, resulting in a significantly reduced RANKL:OPG mRNA ratio (p < 0.01) overall. UHMWPE particles reversed the suppressive effect of α-Tocopherol but not of γ-Tocotrienol on this pro-osteoclastogenic index. UHMWPE particles also upregulated osteocytic-osteolysis related gene expression. Vitamin E analogues alone or in combination with UHMWPE particles also resulted in upregulation of these genes. Consistent with this, both vitamin E analogues promoted calcium release from mineralised cultures of osteocyte-like cells. Our findings suggest that while vitamin E may suppress osteocyte support of osteoclastogenesis in the presence of UHMWPE particles, the antioxidant effect may induce osteocytic osteolysis, which could promote periprosthetic osteolysis. It will be important to conduct further studies of vitamin E to determine the long-term effects of its inclusion in prosthetic materials.
Collapse
|
44
|
Meftahpour V, Ghorbani F, Ahmadi M, Aghebati-Maleki A, Abbaspour-Aghdam S, Fotouhi A, Zamani M, Maleki A, Khakpour M, Aghebati-Maleki L. Evaluating the effects of autologous platelet lysate on gene expression of bone growth factors and related cytokines secretion in rabbits with bone fracture. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Effects of the Interleukin-6 Receptor Blocker Sarilumab on Metabolic Activity and Differentiation Capacity of Primary Human Osteoblasts. Pharmaceutics 2022; 14:pharmaceutics14071390. [PMID: 35890286 PMCID: PMC9318132 DOI: 10.3390/pharmaceutics14071390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Interleukin (IL-) 6 is a key factor in the inflammatory processes of rheumatoid arthritis. Several biologic agents target the IL-6 signaling pathway, including sarilumab, a monoclonal antibody that blocks the IL-6 receptor and inhibits IL-6-mediated cis- and trans-signaling. A careful analysis of the IL-6 signaling blockade should consider not only inflammatory processes but also the regenerative functions of IL-6. The purpose of this study was to investigate whether inhibition of the IL-6 receptors affects differentiation of human primary osteoblasts (hOB). The effects of sarilumab on viability and the differentiation capacity in unstimulated osteoblasts as well as after stimulation with various IL-6 and sIL6-R concentrations were determined. Sarilumab treatment alone did not affect the differentiation or induction of inflammatory processes in hOB. However, the significant induction of alkaline phosphatase activity which was observed after exogenous IL-6/sIL-6R costimulation at the highest concentrations was reduced back to baseline levels by the addition of sarilumab. The IL-6 receptor blockade also decreased gene expression of mediators required for osteogenesis and bone matrix maintenance. Our results demonstrate that concomitant administration of the IL-6 receptor blocker sarilumab can inhibit IL-6/sIL-6R-induced osteogenic differentiation.
Collapse
|
46
|
Mmp13 deletion in mesenchymal cells increases bone mass and may attenuate the cortical bone loss caused by estrogen deficiency. Sci Rep 2022; 12:10257. [PMID: 35715555 PMCID: PMC9205908 DOI: 10.1038/s41598-022-14470-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
The protective effect of estrogens against cortical bone loss is mediated via direct actions on mesenchymal cells, but functional evidence for the mediators of these effects has only recently begun to emerge. We report that the matrix metalloproteinase 13 (MMP13) is the highest up-regulated gene in mesenchymal cells from mice lacking the estrogen receptor alpha (ERα). In sham-operated female mice with conditional Mmp13 deletion in Prrx1 expressing cells (Mmp13ΔPrrx1), the femur and tibia length was lower as compared to control littermates (Mmp13f./f). Additionally, in the sham-operated female Mmp13ΔPrrx1 mice cortical thickness and trabecular bone volume in the femur and tibia were higher and osteoclast number at the endocortical surfaces was lower, whereas bone formation rate was unaffected. Notably, the decrease of cortical thickness caused by ovariectomy (OVX) in the femur and tibia of Mmp13f./f mice was attenuated in the Mmp13ΔPrrx1 mice; but the decrease of trabecular bone caused by OVX was not affected. These results reveal that mesenchymal cell-derived MMP13 may regulate osteoclast number and/or activity, bone resorption, and bone mass. And increased production of mesenchymal cell-derived factors may be important mediators of the adverse effect of estrogen deficiency on cortical, but not trabecular, bone.
Collapse
|
47
|
Smith SS, Chu D, Qu T, Aggleton JA, Schneider RA. Species-specific sensitivity to TGFβ signaling and changes to the Mmp13 promoter underlie avian jaw development and evolution. eLife 2022; 11:e66005. [PMID: 35666955 PMCID: PMC9246370 DOI: 10.7554/elife.66005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
Precise developmental control of jaw length is critical for survival, but underlying molecular mechanisms remain poorly understood. The jaw skeleton arises from neural crest mesenchyme (NCM), and we previously demonstrated that these progenitor cells express more bone-resorbing enzymes including Matrix metalloproteinase 13 (Mmp13) when they generate shorter jaws in quail embryos versus longer jaws in duck. Moreover, if we inhibit bone resorption or Mmp13, we can increase jaw length. In the current study, we uncover mechanisms establishing species-specific levels of Mmp13 and bone resorption. Quail show greater activation of and sensitivity to transforming growth factor beta (TGFβ) signaling than duck; where intracellular mediators like SMADs and targets like Runt-related transcription factor 2 (Runx2), which bind Mmp13, become elevated. Inhibiting TGFβ signaling decreases bone resorption, and overexpressing Mmp13 in NCM shortens the duck lower jaw. To elucidate the basis for this differential regulation, we examine the Mmp13 promoter. We discover a SMAD-binding element and single nucleotide polymorphisms (SNPs) near a RUNX2-binding element that distinguish quail from duck. Altering the SMAD site and switching the SNPs abolish TGFβ sensitivity in the quail Mmp13 promoter but make the duck promoter responsive. Thus, differential regulation of TGFβ signaling and Mmp13 promoter structure underlie avian jaw development and evolution.
Collapse
Affiliation(s)
- Spenser S Smith
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Daniel Chu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Tiange Qu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Jessye A Aggleton
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
48
|
Muratovic D, Findlay DM, Quarrington RD, Cao X, Solomon LB, Atkins GJ, Kuliwaba JS. Elevated levels of active Transforming Growth Factor β1 in the subchondral bone relate spatially to cartilage loss and impaired bone quality in human knee osteoarthritis. Osteoarthritis Cartilage 2022; 30:896-907. [PMID: 35331858 DOI: 10.1016/j.joca.2022.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The association between the spatially distributed level of active TGFβ1 in human subchondral bone, and the characteristic structural and cellular parameters of human knee OA, was assessed. DESIGN Paired subchondral bone samples from 35 OA arthroplasty patients, (15 men and 20 women, aged 69 ± 9 years) were obtained from beneath macroscopically present (CA+) or denuded cartilage (CA-) to determine the concentration of active TGFβ1 (ELISA) and its relationship to bone quality (synchrotron micro-CT), cellularity, and vascularization (histology). RESULTS Bone samples beneath (CA-) regions had significantly increased concentrations of active TGFβ1 protein (mean difference: 26.4; 95% CI: [3.2, 49.7]), when compared to bone in CA + regions. Trabecular Bone below (CA-) regions had increased bone volume (median difference: 4.3; 96.49% CI: [-1.7, 17.8]), increased trabecular number (1.5 [0.006, 2.6], decreased trabecular separation (-0.05 [-0.1,-0.005]), and increased bone mineral density (394.5 [65.7, 723.3]) comparing to (CA+) regions. Further, (CA-) bone regions showed increased osteocyte density (0.012 [0.006, 0.018]), with larger osteocyte lacunae (39.8 [7.8, 71.7]) that were less spherical (-0.02 [-0.04, -0.003]), and increased bone matrix vascularity (12.4 [0.3, 24.5]) compared to (CA+). In addition, increased levels of active TGFβ1 related to increased bone volume (0.04 [-0.11, 0.9]), while increased OARSI grade associated with lacunar volume (-44.1 [-71.1, -17.2]), and orientation (2.7 [0.8, 4.6]). CONCLUSION Increased concentration of active TGFβ1 in the subchondral bone of human knee OA associates spatially with impaired bone quality and disease severity, suggesting that TGFβ1 is a potential therapeutic target to prevent or reduce human OA disease progression.
Collapse
Affiliation(s)
- D Muratovic
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - D M Findlay
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - R D Quarrington
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - X Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - L B Solomon
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia; Orthopaedic and Trauma Service, The Royal Adelaide Hospital and the Central Adelaide Local Health Network, Adelaide, South Australia 5000, Australia.
| | - G J Atkins
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| | - J S Kuliwaba
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
49
|
Vincent TL, Alliston T, Kapoor M, Loeser RF, Troeberg L, Little CB. Osteoarthritis Pathophysiology: Therapeutic Target Discovery may Require a Multifaceted Approach. Clin Geriatr Med 2022; 38:193-219. [PMID: 35410676 PMCID: PMC9107912 DOI: 10.1016/j.cger.2021.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular understanding of osteoarthritis (OA) has greatly increased through careful analysis of tissue samples, preclinical models, and large-scale agnostic "-omic" studies. There is broad acceptance that systemic and biomechanical signals affect multiple tissues of the joint, each of which could potentially be targeted to improve patient outcomes. In this review six experts in different aspects of OA pathogenesis provide their independent view on what they believe to be good tractable approaches to OA target discovery. We conclude that molecular discovery has been high but future transformative studies require a multidisciplinary holistic approach to develop therapeutic strategies with high clinical efficacy.
Collapse
Affiliation(s)
- Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mohit Kapoor
- Department of Surgery and Laboratory Medicine and Pathobiology, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, University of Toronto, Toronto, Canada
| | - Richard F Loeser
- Department of Medicine, Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Linda Troeberg
- University of East Anglia, Norwich Medical School, Norwich NR4 7UQ, UK
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute University of Sydney Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| |
Collapse
|
50
|
Kaya S, Schurman CA, Dole NS, Evans DS, Alliston T. Prioritization of Genes Relevant to Bone Fragility Through the Unbiased Integration of Aging Mouse Bone Transcriptomics and Human GWAS Analyses. J Bone Miner Res 2022; 37:804-817. [PMID: 35094432 PMCID: PMC9018503 DOI: 10.1002/jbmr.4516] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Abstract
Identifying new genetic determinants of bone mineral density (BMD) and fracture promises to yield improved diagnostics and therapies for bone fragility. However, prioritizing candidate genes from genome-wide screens can be challenging. To overcome this challenge, we prioritized mouse genes that are differentially expressed in aging mouse bone based on whether their human homolog is associated with human BMD and/or fracture. Unbiased RNA-seq analysis of young and old male C57BL/6 mouse cortical bone identified 1499, 1685, and 5525 differentially expressed genes (DEGs) in 1, 2, and 2.5-year-old bone, relative to 2-month-old bone, respectively. Gene-based scores for heel ultrasound bone mineral density (eBMD) and fracture were estimated using published genome-wide association studies (GWAS) results of these traits in the UK Biobank. Enrichment analysis showed that mouse bone DEG sets for all three age groups, relative to young bone, are significantly enriched for eBMD, but only the oldest two DEG sets are enriched for fracture. Using gene-based scores, this approach prioritizes among thousands of DEGs by a factor of 5- to 100-fold, yielding 10 and 21 genes significantly associated with fracture in the two oldest groups of mouse DEGs. Though these genes were not the most differentially expressed, they included Sost, Lrp5, and others with well-established functions in bone. Several others have, as yet, unknown roles in the skeleton. Therefore, this study accelerates identification of new genetic determinants of bone fragility by prioritizing a clinically relevant and experimentally tractable number of candidate genes for functional analysis. Finally, we provide a website (www.mouse2human.org) to enable other researchers to easily apply our strategy. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Serra Kaya
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
| | - Charles A. Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA
| | - Neha S. Dole
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA
| |
Collapse
|