1
|
Kim MJ, Jillian H, Rachael T, Debra W, Sean H, Sandhya R, Richie P. Is repeated childhood fracture related to areal bone density or body composition in middle age? Osteoporos Int 2022; 33:2369-2379. [PMID: 35918403 PMCID: PMC9568436 DOI: 10.1007/s00198-022-06500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022]
Abstract
Childhood fracture is common, but whether it predicts adult fracture is not clear. Repeat childhood fracture was associated with adult (≤ 45 years) fracture, and in women, lower areal bone density was associated with repeat childhood fracture. Identifying fracture-prone children can modify adult fracture risk management. INTRODUCTION A quarter of boys and 15% of girls will suffer multiple fractures, but it is not clear whether multiple fractures during growth predict fracture risk and areal bone density in adulthood. This study evaluated whether children who repeatedly fracture were at increased risk of low areal bone density, abnormal body composition, and fractures by age 45. METHODS A subsample of a large birth cohort study with childhood fracture cases had areal bone density assessed at age 45 years. Participants were questioned regularly across their lifetime about fractures during childhood (ages 0-18 years of age) and adulthood (any fracture between 18 and 45 years). The number of fractures was collapsed into three categories: no fractures; 1 fracture; and > 1 fracture, separately for child and adult groups. RESULTS At age 45 years, areal bone mineral density (g/cm2) and body composition were measured with dual X-ray absorptiometry in n = 555 participants. Compared to no fractures, twice as many girls (14% vs 7%, P = 0.156) and boys (31.4% vs 14.1%, P = 0.004) who repeatedly fractured in childhood sustained multiple fractures as adults. Both girls and boys who were fracture-free tended to remain fracture-free as adults (79.8% compared with 62.8%, P = 0.045, and 64.8% compared with 51.4%, P = 0.025, in males and females, respectively). Participants were more than twice as likely to fracture repeatedly as adults if they had sustained multiple fractures as a child (OR 2.5 95% CI: 1.4, 4.6). Women who repeatedly fractured during childhood had lower areal bone density, whereas repeated fracturing during childhood was not associated with areal bone density or body composition in men, even after adjustment for other factors known to influence fracture history. CONCLUSION Childhood fracture history is associated with persistent skeletal fragility in adulthood (≤ 45 years), even after adjustment for behavioral and demographic factors known to influence fracture history.
Collapse
Affiliation(s)
- Meredith-Jones Kim
- Department of Medicine, University of Otago, PO Box 56, Dunedin, New Zealand.
| | - Haszard Jillian
- Biostatistics Centre, University of Otago, Dunedin, New Zealand
| | - Taylor Rachael
- Department of Medicine, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Waters Debra
- Department of Medicine, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Hogan Sean
- Department of Psychology, The Dunedin Multidisciplinary Health and Development Research Unit, Dunedin, New Zealand
| | - Ramrakha Sandhya
- Department of Psychology, The Dunedin Multidisciplinary Health and Development Research Unit, Dunedin, New Zealand
| | - Poulton Richie
- Department of Psychology, The Dunedin Multidisciplinary Health and Development Research Unit, Dunedin, New Zealand
| |
Collapse
|
2
|
Rosengren BE, Bergman E, Karlsson J, Ahlborg H, Jehpsson L, Karlsson MK. Downturn in Childhood Bone Mass: A
Cross‐Sectional
Study Over Four Decades. JBMR Plus 2021; 6:e10564. [PMID: 35079676 PMCID: PMC8770995 DOI: 10.1002/jbm4.10564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/26/2011] [Indexed: 11/17/2022] Open
Abstract
Screen time and physical inactivity have increased among children. As physical activity is a determinant of bone mass, there is a concern that children today have lower bone mass than earlier. If this is true, fractures may become more common in the future. In 2017–2018, we used single‐photon absorptiometry (SPA) to measure distal forearm bone mineral density (BMD; mg/cm2) in a normative cohort of 238 boys and 204 girls aged 7 to 15 years. We compared these results to BMD in a normative cohort collected in 1979–1981 (55 boys and 61 girls aged 7 to 15 years) measured by the same scanner. To investigate difference between the two cohorts, we used multiple linear regression with age, sex, and cohort as predictors. Predicted bone density at age 16 years was estimated through the slope values. The bone density‐age slope was flatter in the cohort measured in 2017–2018 than in the cohort measured 1979–1981 (−5.6 mg/cm2/yr [95% confidence interval −9.6 to −1.5]). Predicted bone density was at age 16 years in 2017–2018 in boys was 10% lower (−0.9 SD) and in girls 11% lower (−1.1 SD) than in their counterparts measured in 1979–1981. We found indications that children nowadays develop lower bone mass than four decades ago, giving concern that they may have a higher risk of osteoporosis and fragility fractures as they grow old. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Björn E Rosengren
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences and Orthopedics Lund University, Skåne University Hospital Malmö Sweden
| | - Erika Bergman
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences and Orthopedics Lund University, Skåne University Hospital Malmö Sweden
| | - Jessica Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences and Orthopedics Lund University, Skåne University Hospital Malmö Sweden
| | - Henrik Ahlborg
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences and Orthopedics Lund University, Skåne University Hospital Malmö Sweden
| | - Lars Jehpsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences and Orthopedics Lund University, Skåne University Hospital Malmö Sweden
| | - Magnus K Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences and Orthopedics Lund University, Skåne University Hospital Malmö Sweden
| |
Collapse
|
3
|
Yang G, Lee WYW, Hung ALH, Tang MF, Li X, Kong APS, Leung TF, Yung PSH, To KKW, Cheng JCY, Lam TP. Association of serum 25(OH)Vit-D levels with risk of pediatric fractures: a systematic review and meta-analysis. Osteoporos Int 2021; 32:1287-1300. [PMID: 33704541 DOI: 10.1007/s00198-020-05814-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022]
Abstract
UNLABELLED The association between the risk of fractures and suboptimal vitamin D (Vit-D) status remains controversial in children. This meta-analysis suggested that serum 25(OH)Vit-D levels were lower in pediatric cases with fractures. 25-hydroxyvitamin D (25(OH)Vit-D) levels less than 50 nmol/L were associated with increased fracture risk in children. INTRODUCTION This study aimed to assess the association between serum 25(OH)Vit-D and the risk of fractures in children, and to explore the sources of heterogeneity and investigate their impact on results. METHODS Systematic review and meta-analysis were conducted for observational studies comparing serum 25(OH)Vit-D levels between fracture and non-fracture pediatric cases. The quality of the included studies was assessed using the Newcastle-Ottawa Scale (NOS). RESULTS Analysis on 17 case-control and 6 cross-sectional studies (2929 fracture cases and 5000 controls) suggested that 25(OH)Vit-D was lower in fracture cases than in controls (pooled mean difference (MD) = - 3.51 nmol/L; 95% confidence interval (CI): - 5.60 to - 1.42) with a heterogeneity (I2) of 73.9%. The sensitivity analysis which merged the case-control studies that had a NOS score ≥ 4 showed a pooled MD of - 4.35 nmol/L (95% CI: - 6.64 to - 2.06) with a heterogeneity (I2) of 35.9%. Pooled odds ratio of fracture in subjects with 25(OH)Vit-D ≤ 50 nmol/L compared to subjects with 25(OH)Vit-D > 50 nmol/L was 1.29 (95% CI: 1.10 to 1.53; I2 < 1%). CONCLUSION This study indicated that serum 25(OH)Vit-D levels were lower in pediatric patients with fractures. 25(OH)Vit-D ≤ 50 nmol/L was associated with increased fracture risk in children.
Collapse
Affiliation(s)
- G Yang
- SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - W Y W Lee
- SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - A L H Hung
- SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - M F Tang
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - X Li
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - A P S Kong
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - T F Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - P S H Yung
- JC Sports Medicine and Health Sciences Centre, Lui Che Woo Institute of Innovative Medicine, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - K K W To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Research Laboratory of Promoting Globalization of Traditional Chinese Medicines between Shanghai Institute of Materia Medica, Chinese Academy of Sciences and The Chinese University of Hong Kong, Hong Kong SAR, China
| | - J C Y Cheng
- SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - T P Lam
- SH Ho Scoliosis Research Lab, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Sylvester FA. Effects of Digestive Diseases on Bone Metabolism. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2021:1023-1031.e7. [DOI: 10.1016/b978-0-323-67293-1.00091-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Erickson KR, Grosicki GJ, Mercado M, Riemann BL. Bone Mineral Density and Muscle Mass in Masters Olympic Weightlifters and Runners. J Aging Phys Act 2020; 28:749-755. [PMID: 32422599 DOI: 10.1123/japa.2019-0426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 11/18/2022]
Abstract
The authors examined the musculoskeletal implications of delayed exercise adoption in two distinct cohorts of masters athletes with ∼10 years of training experience: Olympic weightlifters (OWLs) and distance runners (RUNs). Total body and regional bone mineral density (BMD), and dual-energy X-ray absorptiometry-derived lean mass were compared in 51 OWLs and 43 RUNs. Multiple linear regression analyses were conducted on BMD and lean mass with the exercise group (i.e., OWLs vs. RUNs), age, sex, and years of experience as independent variables. Age was associated (p < .05) with less femoral (β = -0.25) and lumbar (β = -0.27) BMD. Total body (β = 0.23), lumbar (β = 0.25), and radial (β = 0.36) BMD were greater (p < .05) in OWLs versus RUNs. Lean mass was greater in OWLs versus RUNs (β = 0.29, p < .01), but did not relate to total body BMD (r = .15; p = .08). Greater total and regional BMD and lean mass in OWLs compared with RUNs may reduce risk for developing osteoporosis and/or sarcopenia and associated downstream health outcomes.
Collapse
|
6
|
Yang Y, Wu F, Antony B, Pan F, Winzenberg T, Jones G. The Association between First Fractures Sustained during Childhood and Adulthood and Bone Measures in Young Adulthood. J Pediatr 2019; 212:188-194.e2. [PMID: 31262529 DOI: 10.1016/j.jpeds.2019.05.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/16/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To describe the association between fractures sustained at different stages of growth and bone measures in early adulthood. STUDY DESIGN Participants (n = 201) in southern Tasmania were at birth at a higher risk of sudden infant death syndrome; they were followed to age 25. Outcomes were areal bone mineral density at the spine, hip, and total body (by dual-energy x-ray absorptiometry) and trabecular and cortical bone measures at the radius and tibia (by high-resolution peripheral quantitative computed tomography). Fractures were self-reported and confirmed by radiographs at 8, 16, and 25 years of age. Multivariable linear regression was used to analyze the association of the occurrence of prepubertal (<9 years of age), pubertal (9-16 years of age), and postpubertal (17-25 years of age) fractures with all bone measures. RESULTS Over 25 years, 99 participants had at least 1 fracture. For high-resolution peripheral quantitative computed tomography measures at age 25, prepubertal fractures were negatively associated with cortical and trabecular volumetric bone mineral density and most microarchitecture measures at both the tibia and radius. Prepubertal fractures had a significant association with smaller increase of areal bone mineral density from age 8 to 16 years and at 25 years of age compared with participants with no fractures. Pubertal fractures had no association with any bone measures and postpubertal fractures were only associated with a lower trabecular number at the tibia. CONCLUSIONS Prepubertal fractures are negatively associated with areal bone mineral density increases during growth and high-resolution peripheral quantitative computed tomography bone measures in young adulthood. There is little evidence that fractures occurring from age 8 years onward with bone measures in young adulthood, implying that prepubertal fractures may be associated with bone deficits later in life.
Collapse
Affiliation(s)
- Yi Yang
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Feitong Wu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Benny Antony
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Feng Pan
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Tania Winzenberg
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
7
|
Popko J, Karpiński M, Chojnowska S, Maresz K, Milewski R, Badmaev V, Schurgers LJ. Decreased Levels of Circulating Carboxylated Osteocalcin in Children with Low Energy Fractures: A Pilot Study. Nutrients 2018; 10:E734. [PMID: 29882816 PMCID: PMC6024307 DOI: 10.3390/nu10060734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE In the past decades, an increased interest in the roles of vitamin D and K has become evident, in particular in relation to bone health and prevention of bone fractures. The aim of the current study was to evaluate vitamin D and K status in children with low-energy fractures and in children without fractures. METHODS The study group of 20 children (14 boys, 6 girls) aged 5 to 15 years old, with radiologically confirmed low-energy fractures was compared with the control group of 19 healthy children (9 boys, 10 girls), aged 7 to 17 years old, without fractures. Total vitamin D (25(OH)D3 plus 25(OH)D2), calcium, BALP (bone alkaline phosphatase), NTx (N-terminal telopeptide), and uncarboxylated (ucOC) and carboxylated osteocalcin (cOC) serum concentrations were evaluated. Ratio of serum uncarboxylated osteocalcin to serum carboxylated osteocalcin ucOC:cOC (UCR) was used as an indicator of bone vitamin K status. Logistic regression models were created to establish UCR influence for odds ratio of low-energy fractures in both groups. RESULTS There were no statistically significant differences in the serum calcium, NTx, BALP, or total vitamin D levels between the two groups. There was, however, a statistically significant difference in the UCR ratio. The median UCR in the fracture group was 0.471 compared with the control group value of 0.245 (p < 0.0001). In the logistic regression analysis, odds ratio of low-energy fractures for UCR was calculated, with an increased risk of fractures by some 78.3 times. CONCLUSIONS In this pilot study, better vitamin K status expressed as the ratio of ucOC:cOC-UCR—is positively and statistically significantly correlated with lower rate of low-energy fracture incidence.
Collapse
Affiliation(s)
- Janusz Popko
- Department of Pediatric Orthopedics and Traumatology, Medical University of Białystok, 15-089 Białystok, Poland.
| | - Michał Karpiński
- Department of Pediatric Orthopedics and Traumatology, Medical University of Białystok, 15-089 Białystok, Poland.
| | - Sylwia Chojnowska
- Faculty of Health Sciences, Lomza State University of Applied Sciences, 18-400 Łomża, Poland.
| | - Katarzyna Maresz
- International Science &Health Foundation, 30-148 Krakow, Poland.
| | - Robert Milewski
- Department of Statistics and Medical Informatics, Medical University of Białystok, 15-089 Białystok, Poland.
| | | | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
8
|
Macdonald HM, Määttä M, Gabel L, Mulpuri K, McKay HA. Bone Strength in Girls and Boys After a Distal Radius Fracture: A 2-Year HR-pQCT Double Cohort Study. J Bone Miner Res 2018; 33:229-240. [PMID: 29024249 DOI: 10.1002/jbmr.3307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 11/07/2022]
Abstract
We recently reported impaired bone strength in girls with low- to moderate-energy distal radius fractures (Fx) compared with girls with no history of forearm fractures (Non-Fx). We aimed to determine whether bone strength deficits observed at baseline were still present after 2 years. We assessed bone strength, microarchitecture, and bone mineral density (BMD) of the non-fractured (Fx) and non-dominant (Non-Fx) distal radius (7% site) at baseline, 12, and 24 months using high-resolution pQCT (Scanco Medical, Brüttisellen, Switzerland) in 104 girls (aged 11.0 ± 1.7 years; 47 Fx, 57 Non-Fx) and 157 boys (aged 12.7 ± 1.7 years; 86 Fx, 71 Non-Fx). Bone outcomes included total area (Tt.Ar) and bone mineral density (Tt.BMD), trabecular bone volume ratio (BV/TV), thickness (Tb.Th), separation (Tb.Sp), and number (Tb.N), and cortical BMD (Ct.BMD), thickness (Ct.Th), and porosity (Ct.Po). We used finite element analysis to estimate bone strength (failure load [F.Load]; ultimate stress [U.Stress]; load-to-strength ratio). We used sex-specific mixed-effects models to compare bone outcomes between Fx and Non-Fx over 2 years. In girls, those with fractures had 18% to 24% lower U.Stress and 5% to 9% lower Tt.BMD than Non-Fx at all time points (p < 0.017). In secondary analysis by fracture degree, girls with low-energy (LE) fractures had 19% to 21% lower F.Load, 25% to 47% lower U.Stress, 11% to 14% lower Tt.BMD, and 11% to 15% lower BV/TV than Non-Fx at all time points (p < 0.017). In contrast, boys' bone outcomes were similar between Fx and Non-Fx at all time points. In secondary analysis by fracture degree, boys with LE fractures had 10% lower Tt.BMD and 10% lower Ct.Th compared with Non-Fx at 12 months only. Deficits in distal radius bone strength and trabecular bone microarchitecture appear to track across 2 years after a forearm fracture in girls but not in boys. Longer follow-up is needed to determine whether deficits persist into adulthood in women and how they may influence future risk of fragility fracture. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Heather M Macdonald
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada.,Department of Family Practice, University of British Columbia, Vancouver, Canada
| | - Mikko Määttä
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada.,Department of Orthopedics, University of British Columbia, Vancouver, Canada
| | - Leigh Gabel
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Kishore Mulpuri
- Department of Orthopedics, University of British Columbia, Vancouver, Canada.,Department of Orthopedic Surgery, British Columbia Children's Hospital, Vancouver, Canada
| | - Heather A McKay
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada.,Department of Family Practice, University of British Columbia, Vancouver, Canada.,Department of Orthopedics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Martins A, Monjardino T, Nogueira L, Canhão H, Lucas R. Do bone mineral content and density determine fracture in children? A possible threshold for physical activity. Pediatr Res 2017; 82:396-404. [PMID: 28467405 DOI: 10.1038/pr.2017.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/15/2017] [Indexed: 11/09/2022]
Abstract
BackgroundRelations between bone parameters, physical exertion, and childhood fractures are complex. We aimed to estimate the associations between fracture history and bone mineral content (BMC) and areal bone mineral density (aBMD) at 7 years of age, by levels of physical activity, as a proxy for trauma frequency.MethodsWe used data collected from 2,261 children of the Generation XXI birth cohort, assembled in 2005/6 in Porto, Portugal. At the age of 7 years (2012/4), fracture history, time spent per week in active play, and sports practice were reported by parents. Subtotal and lumbar spine (LS) BMC and aBMD were measured using whole-body dual-energy X-ray absorptiometry.ResultsBoys and girls in the highest categories of time spent in sports practice or active play generally had higher BMC and aBMD. Among girls, BMC and aBMD were protective of fracture only in the highest quarter of active play (>660 min/week)-odds ratios (OR; 95% confidence interval (95% CI)) for subtotal BMC=0.27 (0.11-0.67), subtotal aBMD=0.18 (0.06-0.49), and LS aBMD=0.41 (0.22-0.75). For boys in the highest quarter of sports practice (>240 min/week), subtotal and LS BMC were protective of fracture-OR=0.39 (0.16-0.98) and 0.51 (0.27-0.96), respectively.ConclusionIn prepubertal children, BMC and aBMD predicted fracture history only in the highest levels of physical activity.
Collapse
Affiliation(s)
- Ana Martins
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Teresa Monjardino
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Luísa Nogueira
- Department of Radiology, School of Health Technology of Porto/Polytechnic Institute of Porto (ESTSP/IPP), Porto, Portugal
| | - Helena Canhão
- EpiDoC, CEDOC, Nova Medical School, NOVA University, Lisbon, Portugal
| | - Raquel Lucas
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Abstract
Identifying children most susceptible to clinically significant fragility fractures (low trauma fractures or vertebral compression fractures) or recurrent fractures is an important issue facing general pediatricians and subspecialists alike. Over the last decade, several imaging technologies, including dual-energy X-ray absorptiometry and peripheral quantitative computed tomography, have become useful to identify abnormal bone mineralization in children and in adolescents. This review aimed to summarize the latest literature on the utility of these modalities as they pertain to use in pediatrics. In addition, we review several disease states associated with poor bone health and increased fracture risk in children, and discuss the implications of low bone mineral density in these patients. Finally, we will highlight the gaps in knowledge with regard to pediatric bone health and make recommendations for future areas of research.
Collapse
Affiliation(s)
- Halley Wasserman
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Catherine M Gordon
- Divisions of Adolescent Medicine and Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Jerrhag D, Englund M, Karlsson MK, Rosengren BE. Epidemiology and time trends of distal forearm fractures in adults - a study of 11.2 million person-years in Sweden. BMC Musculoskelet Disord 2017; 18:240. [PMID: 28576135 PMCID: PMC5457562 DOI: 10.1186/s12891-017-1596-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Background A distal forearm fracture is a very common injury causing both suffering and substantial health care costs. The incidence of this fracture type seemed to increase worldwide until the middle 1980’s, but thereafter most reports have shown stable or decreasing rates. As few large studies have been presented lately we aimed to describe recent epidemiology and time trends of distal forearm fractures in adults. We paid special attention to fractures in working ages as they present challenges in terms of treatment and costs for sick-leave, and have not previously been thoroughly investigated. Methods By use of population data from Statistics Sweden and official in- and out-patient register data of men and women (≥17 years) in Sweden (Skåne region), we ascertained distal forearm fractures and estimated age- and sex-specific rates and time-trends from year 1999 to 2010 (11.2 million person-years (py)). Results The total incidence rate was 278 per 100,000 py (31,233 fractures) with 23% higher annual numbers 2010 compared with 1999. An increase in the annual age standardized incidence was found in men, +0.7% per annum (95% confidence interval (CI) 0.1, 1.4), and women, +0.9% (95% CI 0.5, 1.3), driven mainly by an increasing incidence in working ages (17–64 years). Also, expected demographic changes including a 25% population increase may result in 38% more fractures until 2050, compared to 2017. Conclusions The incidence of distal forearm fractures in adults in southern Sweden is increasing, mainly driven by an increase in working ages. In combination with expected demographic changes these findings may present substantial challenges for the future.
Collapse
Affiliation(s)
- Daniel Jerrhag
- Clinical and Molecular Osteoporosis Research Unit, Departments of Clinical Sciences and Orthopedics Malmö, Skåne University Hospital, Lund University, SE 20502, Malmo, Sweden.
| | - Martin Englund
- Department of Clinical Sciences Lund, Orthopedics, Clinical Epidemiology Unit, Lund University, Faculty of Medicine, Lund, Sweden.,Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, Boston, MA, USA
| | - Magnus K Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Departments of Clinical Sciences and Orthopedics Malmö, Skåne University Hospital, Lund University, SE 20502, Malmo, Sweden
| | - Bjorn E Rosengren
- Clinical and Molecular Osteoporosis Research Unit, Departments of Clinical Sciences and Orthopedics Malmö, Skåne University Hospital, Lund University, SE 20502, Malmo, Sweden
| |
Collapse
|
12
|
|
13
|
Baptista F, Rebocho LM, Cardadeiro G, Zymbal V, Rosati N. Sex- and Maturity-Related Differences in Cortical Bone at the Distal Radius and Midshaft Tibia Evaluated by Quantitative Ultrasonography. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2043-2049. [PMID: 27181690 DOI: 10.1016/j.ultrasmedbio.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/16/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Boys usually have higher values of bone mineral density measured by dual-energy X-ray absorptiometry than girls, but contradictorily also have a greater incidence of fractures during growth. The purpose of this study was to investigate sex- and maturity-related differences in bone speed of sound (SoS) at the radius and tibia in a sample of 625 healthy children aged 10-14 y and to analyze the contributions of physical activity (PA) to possible dissimilarities. Radial and tibial SoS was evaluated by quantitative ultrasound, maturity was estimated as the years of distance from the peak height velocity age, and PA was assessed by accelerometry. Comparisons between sexes and maturity groups (low: below average [<-2.5 y], high: average or above [≥-2.5 y]) were made by two-sample t-tests with unequal variances. Girls in the high-maturity group had higher SoS at the radius and tibia compared with girls in the low-maturity group (p < 0.001). There were no SoS differences at the radius or tibia between the high- and low-maturity groups in boys. Within high-maturity children, girls had higher SoS than boys at the radius and tibia (p < 0.001). There were no differences at the radius and tibia between girls and boys with low maturity. The results were not modified after controlling for PA. Regardless of PA, the results provide insight into sex- and maturity-related differences in bone SoS at the distal radius and midshaft tibia from maturity less than 2.5 y from the peak height velocity age, with boys having lower SoS.
Collapse
Affiliation(s)
- Fátima Baptista
- Exercise and Health Laboratory, Interdisciplinary Centre for the Study of Human Performance, Faculty of Human Kinetics, University of Lisbon, Portugal.
| | - Lurdes M Rebocho
- Exercise and Health Laboratory, Interdisciplinary Centre for the Study of Human Performance, Faculty of Human Kinetics, University of Lisbon, Portugal
| | - Graça Cardadeiro
- Exercise and Health Laboratory, Interdisciplinary Centre for the Study of Human Performance, Faculty of Human Kinetics, University of Lisbon, Portugal
| | - Vera Zymbal
- Exercise and Health Laboratory, Interdisciplinary Centre for the Study of Human Performance, Faculty of Human Kinetics, University of Lisbon, Portugal
| | - Nicoletta Rosati
- Center for Applied Mathematics and Economics (CEMAPRE) and Department of Mathematics, Instituto Superior de Economia e Gestão (ISEG), University of Lisbon, Portugal
| |
Collapse
|
14
|
Mäkitie RE, Haanpää M, Valta H, Pekkinen M, Laine CM, Lehesjoki AE, Schalin-Jäntti C, Mäkitie O. Skeletal Characteristics of WNT1 Osteoporosis in Children and Young Adults. J Bone Miner Res 2016; 31:1734-42. [PMID: 27005318 DOI: 10.1002/jbmr.2841] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/13/2016] [Accepted: 03/20/2016] [Indexed: 12/22/2022]
Abstract
WNT proteins comprise a 19-member glycoprotein family that act in several developmental and regenerative processes. In bone, WNT proteins regulate osteoblast differentiation and maintain bone health by activating the canonical WNT/β-catenin pathway. We reported a heterozygous missense mutation c.652T>G (p.C218G) in WNT1 exon 4 as the cause for severe early-onset, autosomal dominant osteoporosis. The initial study concerned a large Finnish family with 10 affected adults. Here we report clinical findings of the WNT1 osteoporosis in 8 children and young adults (median age 14 years; range 10 to 30 years) in two families, all with the p.C218G mutation in WNT1. Clinical assessments showed no apparent dysmorphia or features similar to typical osteogenesis imperfecta (OI). Biochemistry revealed no changes in parameters of calcium metabolism and bone turnover markers. Fracture frequencies varied, but all subjects had sustained at least one fracture and 4 had a pathological fracture history. Plain radiographs showed osteopenic appearance, loss in vertebral height, and thin diaphyses of the long bones. Bone densitometry showed the BMD to be below normal median in all subjects and the bone mass deficit seemed to be more severe in older participants. Bone histomorphometry revealed a low turnover osteoporosis in 2 subjects at ages 14 and 16 years. These findings are congruent with earlier findings in adult patients and indicate that WNT1 osteoporosis causes significant skeletal changes already in early childhood and impairs bone mass gain during pubertal years. Genetic testing of children or close relatives of affected individuals is recommended for appropriate preventive measures. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Riikka E Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
| | - Maria Haanpää
- Department of Clinical Genetics, Turku University Hospital, Turku, Finland
| | - Helena Valta
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Minna Pekkinen
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
| | - Christine M Laine
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland.,Department of Endocrinology, Institute of Medicine, Sahlgrenska University Hospital and University of Gothenburg, Gothenburg, Sweden
| | | | - Camilla Schalin-Jäntti
- Endocrinology, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Center for Molecular Medicine, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
15
|
Jerrhag D, Englund M, Petersson I, Lempesis V, Landin L, Karlsson MK, Rosengren BE. Increasing wrist fracture rates in children may have major implications for future adult fracture burden. Acta Orthop 2016; 87:296-300. [PMID: 26905618 PMCID: PMC4900094 DOI: 10.3109/17453674.2016.1152855] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background and purpose - Childhood fractures are associated with lower peak bone mass (a determinant of osteoporosis in old age) and higher adult fracture risk. By examining time trends in childhood fracture epidemiology, it may be possible to estimate the vector of fragility fracture risk in the future. Patients and methods - By using official inpatient and outpatient data from the county of Skåne in Sweden, 1999-2010, we ascertained distal forearm fractures in children aged ≤ 16 years and estimated overall and age- and sex-specific rates and time trends (over 2.8 million patient years) and compared the results to earlier estimations in the same region from 1950 onwards. Results - During the period 1999-2010, the distal forearm fracture rate was 634 per 10(5) patient years (750 in boys and 512 in girls). This was 50% higher than in the 1950s with a different age-rate distribution (p < 0.001) that was most evident during puberty. Also, within the period 1999-2010, there were increasing fracture rates per 10(5) and year (boys +2.0% (95% CI: 1.5-2.6), girls +2.4% (95% CI: 1.7-3.1)). Interpretation - The distal forearm fracture rate in children is currently 50% higher than in the 1950s, and it still appears to be increasing. If this higher fracture risk follows the children into old age, numbers of fragility fractures may increase sharply-as an upturn in life expectancy has also been predicted. The origin of the increase remains unknown, but it may be associated with a more sedentary lifestyle or with changes in risk behavior.
Collapse
Affiliation(s)
- Daniel Jerrhag
- Clinical and Molecular Osteoporosis Research Unit, Departments of Clinical Sciences and Orthopedics Malmö, Skåne University Hospital, Lund University,,Correspondence:
| | - Martin Englund
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden,,Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, Boston, MA, USA
| | - Ingmar Petersson
- Clinical Epidemiology Unit, Orthopedics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden,
| | - Vasileios Lempesis
- Clinical and Molecular Osteoporosis Research Unit, Departments of Clinical Sciences and Orthopedics Malmö, Skåne University Hospital, Lund University,
| | - Lennart Landin
- Clinical and Molecular Osteoporosis Research Unit, Departments of Clinical Sciences and Orthopedics Malmö, Skåne University Hospital, Lund University,
| | - Magnus K Karlsson
- Clinical and Molecular Osteoporosis Research Unit, Departments of Clinical Sciences and Orthopedics Malmö, Skåne University Hospital, Lund University,
| | - Bjorn E Rosengren
- Clinical and Molecular Osteoporosis Research Unit, Departments of Clinical Sciences and Orthopedics Malmö, Skåne University Hospital, Lund University,
| |
Collapse
|
16
|
Abstract
Age-related fragility fractures are an enormous public health problem. Both acquisition of bone mass during growth and bone loss associated with ageing affect fracture risk late in life. The development of high-resolution peripheral quantitative CT (HRpQCT) has enabled in vivo assessment of changes in the microarchitecture of trabecular and cortical bone throughout life. Studies using HRpQCT have demonstrated that the transient increase in distal forearm fractures during adolescent growth is associated with alterations in cortical bone, which include cortical thinning and increased porosity. Children with distal forearm fractures in the setting of mild, but not moderate, trauma also have increased deficits in cortical bone at the distal radius and in bone mass systemically. Moreover, these children transition into young adulthood with reduced peak bone mass. Elderly men, but not elderly women, with a history of childhood forearm fractures have an increased risk of osteoporotic fractures. With ageing, men lose trabecular bone primarily by thinning of trabeculae, whereas the number of trabeculae is reduced in women, which is much more destabilizing from a biomechanical perspective. However, age-related losses of cortical bone and increases in cortical porosity seem to have a much larger role than previously recognized, and increased cortical porosity might characterize patients at increased risk of fragility fractures.
Collapse
Affiliation(s)
- Joshua N Farr
- Endocrine Research Unit and Kogod Center on Aging, Mayo Clinic, Guggenheim 7-11, 200 First Street SW, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Endocrine Research Unit and Kogod Center on Aging, Mayo Clinic, Guggenheim 7-11, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Farr JN, Khosla S, Achenbach SJ, Atkinson EJ, Kirmani S, McCready LK, Melton LJ, Amin S. Diminished bone strength is observed in adult women and men who sustained a mild trauma distal forearm fracture during childhood. J Bone Miner Res 2014; 29:2193-202. [PMID: 24753047 PMCID: PMC4352579 DOI: 10.1002/jbmr.2257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/24/2014] [Accepted: 03/30/2014] [Indexed: 11/08/2022]
Abstract
Children and adolescents who sustain a distal forearm fracture (DFF) owing to mild, but not moderate, trauma have reduced bone strength and cortical thinning at the distal radius and tibia. Whether these skeletal deficits track into adulthood is unknown. Therefore, we studied 75 women and 75 men (age range, 20 to 40 years) with a childhood (age < 18 years) DFF and 150 sex-matched controls with no history of fracture using high-resolution peripheral quantitative computed tomography (HRpQCT) to examine bone strength (ie, failure load) by micro-finite element (µFE) analysis, as well as cortical and trabecular bone parameters at the distal radius and tibia. Level of trauma (mild versus moderate) was assigned using a validated classification scheme, blind to imaging results. When compared to sex-matched, nonfracture controls, women and men with a mild trauma childhood DFF (eg, fall from standing height) had significant reductions in failure load (p < 0.05) of the distal radius, whereas women and men with a moderate trauma childhood DFF (eg, fall while riding a bicycle) had values similar to controls. Consistent findings were observed at the distal tibia. Furthermore, women and men with a mild trauma childhood DFF had significant deficits in distal radius cortical area (p < 0.05), and significantly lower dual-energy X-ray absorptiometry (DXA)-derived bone density at the radius, hip, and total body regions compared to controls (all p < 0.05). By contrast, women and men with a moderate trauma childhood DFF had bone density, structure, and strength that did not differ significantly from controls. These findings in young adults are consistent with our observations in children/adolescents with DFF, and they suggest that a mild trauma childhood DFF may presage suboptimal peak bone density, structure, and strength in young adulthood. Children and adolescents who suffer mild trauma DFFs may need to be targeted for lifestyle interventions to help achieve improved skeletal health.
Collapse
Affiliation(s)
- Joshua N Farr
- Division of Endocrinology, Metabolism, Nutrition and Diabetes, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Division of Endocrinology, Metabolism, Nutrition and Diabetes, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sara J Achenbach
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth J Atkinson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Salman Kirmani
- Division of Medical Genetics, Department of Pediatrics, Mayo Clinic, Rochester, MN, USA
| | - Louise K McCready
- Division of Endocrinology, Metabolism, Nutrition and Diabetes, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - L Joseph Melton
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Shreyasee Amin
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
von Heideken J, Svensson T, Iversen M, Ekbom A, Janarv PM. Femur shaft fracture at a young age and the risk of subsequent severe injuries during childhood: a cohort study. BMC Pediatr 2014; 14:62. [PMID: 24589362 PMCID: PMC3974004 DOI: 10.1186/1471-2431-14-62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A child who suffers a fracture or a soft-tissue injury at a young age faces an increased risk of subsequent injuries during childhood. This risk could be related to personal and family characteristics or to lower-than-average bone-mineral density. The purpose of this nationwide cohort study was to estimate the association between a femur shaft fracture at a young age and the subsequent risk of hospitalization for injuries during childhood. METHODS We compared the subsequent risk of hospitalization for injuries during childhood among 1,404 children (exposed) who were one to three years of age when they suffered a femur shaft fracture with the risk among 13,814 randomly selected, gender- and age-matched femur fracture-free children (unexposed). Hazard ratios (HRs) and 95% confidence intervals (CIs) for severe injuries defined as fractures or soft-tissue injuries requiring hospital admission were estimated in a Cox proportional hazards model. RESULTS Exposed children exhibited no significantly increased risk of upper-extremity fractures or soft-tissue injuries during childhood, regardless of sex and follow-up time. Boys exhibited a 162% increased risk of suffering a lower leg fracture requiring hospital admission (HR?=?2.62, 95% CI: 1.45-4.71), but the refracture risk was not significant for girls 2.02 (0.58-6.97). CONCLUSIONS We found an increased risk for subsequent fractures in the lower leg that requires inpatient care during childhood for boys, but not for girls, who were one to three years of age when they first suffered a femur shaft fracture. This increased fracture risk is probably not simply the result of greater risk-taking among boys. The explanation might relate to factors affecting the bone quality of the lower leg.
Collapse
Affiliation(s)
- Johan von Heideken
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Solna, SE 171 77, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
19
|
Thandrayen K, Norris SA, Micklesfield LK, Pettifor JM. Fracture patterns and bone mass in South African adolescent-mother pairs: the Birth to Twenty cohort. Osteoporos Int 2014; 25:693-700. [PMID: 23943166 PMCID: PMC3906554 DOI: 10.1007/s00198-013-2477-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022]
Abstract
UNLABELLED The associations of fracture prevalence and bone mass in adolescents with maternal fracture history and bone mass have not been investigated previously in South Africa. Maternal bone mass has a significant inverse association with their adolescents' fracture rates and bone mass across all ethnic groups. INTRODUCTION Differences in fracture rates and bone mass between families and individuals of different ethnic origins may be due to differing lifestyles and/or genetic backgrounds. This study aimed to assess associations of fracture prevalence and bone mass in adolescents with maternal fracture history and bone mass, and sibling fracture history. METHODS Data from 1,389 adolescent-biological mother pairs from the Birth to Twenty longitudinal study were obtained. Questionnaires were completed on adolescent fractures until 17/18 years of age and on sibling fractures. Biological mothers completed questionnaires on their own fractures prior to the age of 18 years. Anthropometric and bone mass data on adolescent-biological mother pairs were collected. RESULTS An adolescent's risk of lifetime fracture decreased with increasing maternal lumbar spine (LS) bone mineral content (BMC; 24 % reduction in fracture risk for every unit increase in maternal LS BMC Z-score) and increased if they were white, male, or had a sibling with a history of fracture. Adolescent height, weight, male gender, maternal bone area and BMC, and white ethnicity were positive predictors of adolescent bone mass. White adolescents and their mothers had a higher fracture prevalence (adolescents 42 %, mothers 31 %) compared to the black (adolescents 20 %, mothers 6 %) and mixed ancestry (adolescents 20 %, mothers 16 %) groups. CONCLUSION Maternal bone mass has a significant inverse association with their adolescent off-springs' fracture risk and bone mass. Furthermore, there is a strong familial component in fracture patterns among South African adolescents and their siblings.
Collapse
Affiliation(s)
- K. Thandrayen
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Paediatrics, Chris Hani Baragwanath Hospital, PO Bertsham, Johannesburg, 2013 South Africa
| | - S. A. Norris
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - L. K. Micklesfield
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - J. M. Pettifor
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
20
|
Rudäng R, Darelid A, Nilsson M, Mellström D, Ohlsson C, Lorentzon M. X-ray-verified fractures are associated with finite element analysis-derived bone strength and trabecular microstructure in young adult men. J Bone Miner Res 2013; 28:2305-16. [PMID: 23658040 DOI: 10.1002/jbmr.1974] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 11/08/2022]
Abstract
It has been suggested that fracture during childhood could be a predictor of low peak bone mass and thereby a potential risk factor for osteoporosis and fragility fractures later in life. The aim of this cross-sectional, population-based study was to investigate whether prevalent fractures, occurring from birth to young adulthood, were related to high-resolution peripheral quantitative computed tomography (HR-pQCT)-derived trabecular and cortical microstructure, as well as bone strength estimated by finite element (FEA) analysis of the radius and tibia in 833 young adult men around the time of peak bone mass (ages 23 to 25 years). In total, 292 subjects with prevalent X-ray-verified fractures were found. Men with prevalent fractures had lower trabecular bone volume fraction (BV/TV) at the radius (5.5%, p < 0.001) and tibia (3.7%, p < 0.001), as well as lower cortical thickness (5.1%, p < 0.01) and cortical cross-sectional area (4.1%, p < 0.01) at the tibia. No significant differences were seen for the cortical porosity or mean pore diameter. Using a logistic regression model (including age, smoking, physical activity, calcium intake, height, and weight as covariates), every SD decrease of FEA-estimated failure load was associated with an increased prevalence of fractures at both the radius (odds ratio [OR] 1.22 [1.03-1.45]) and tibia (OR 1.32 [1.11-1.56]). Including dual-energy X-ray absorptiometry (DXA)-derived radius areal bone mineral density (aBMD), cortical thickness, and trabecular BV/TV simultaneously in a logistic regression model (with age, smoking, physical activity, calcium intake, height, and weight as covariates), BV/TV was inversely and independently associated with prevalent fractures (OR 1.28 [1.04-1.59]), whereas aBMD and cortical thickness were not (OR 1.19 [0.92-1.55] and OR 0.91 [0.73-1.12], respectively). In conclusion, prevalent fractures in young adult men were associated with impaired trabecular BV/TV at the radius, independently of aBMD and cortical thickness, indicating that primarily trabecular bone deficits are of greatest importance for prevalent fracture in this population.
Collapse
Affiliation(s)
- Robert Rudäng
- Geriatric Medicine, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
21
|
Amin S, Melton LJ, Achenbach SJ, Atkinson EJ, Dekutoski MB, Kirmani S, Fischer PR, Khosla S. A distal forearm fracture in childhood is associated with an increased risk for future fragility fractures in adult men, but not women. J Bone Miner Res 2013; 28:1751-9. [PMID: 23456800 PMCID: PMC3909660 DOI: 10.1002/jbmr.1914] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 11/11/2022]
Abstract
Distal forearm fractures are among the most common fractures during childhood, but it remains unclear whether they predict an increased fracture risk later in life. We studied a population-based cohort of 1776 children ≤18 years of age, from Olmsted County, MN, USA, who had a distal forearm fracture in 1935-1992. Incident fractures occurring at age ≥35 years were identified through review of complete medical records using the linkage system of the Rochester Epidemiology Project. Observed nonpathologic fractures resulting from no more than moderate trauma (fragility fractures) were compared with expected numbers estimated from fracture site-specific incidence rates, based on age, sex, and calendar year, for Olmsted County (standardized incidence ratios [SIR]). In 1086 boys (mean ± SD age; 11 ± 4 years) and 690 girls (10 ± 4 years) followed for 27,292 person-years after the age of 35 years, subsequent fragility fractures were observed in 144 (13%) men and 74 (11%) women. There was an increased risk for future fragility fractures in boys who had a distal forearm fracture (SIR, 1.9; 95% CI, 1.6-2.3) but not girls (SIR, 1.0; 95% CI, 0.8-1.2). Fragility fractures at both major osteoporotic (hip, spine, wrist, and shoulder) sites (SIR, 2.6; 95% CI, 2.1-3.3) and remaining sites (SIR, 1.7; 95% CI, 1.3-2.0) were increased in men, irrespective of age at distal forearm fracture as boys. A distal forearm fracture in boys, but not girls, is associated with an increased risk for fragility fractures as older adults. It is necessary to determine whether the increased fractures observed in men is due to persistent deficits of bone strength, continued high fracture risk activity, or both. Until then, men should be asked about a childhood distal forearm fracture and, if so, warrant further screening and counseling on measures to optimize bone health and prevent fractures.
Collapse
Affiliation(s)
- Shreyasee Amin
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|