1
|
Gibson FG, Paggiosi MA, Handforth C, Brown JE, Li X, Dall'Ara E, Verbruggen SW. Altered vertebral biomechanical properties in prostate cancer patients following androgen deprivation therapy. Bone 2025; 195:117465. [PMID: 40118263 DOI: 10.1016/j.bone.2025.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Androgen deprivation therapy (ADT) for localised and metastatic prostate cancer (PCa) is known to improve survival in patients but has been associated with negative long-term impacts on the skeleton, including decreased bone mineral density (BMD) and increased fracture risk. Generally, dual-enery X-ray absorptiometry (DXA) measurements of areal BMD (aBMD) of vertebrae are used clinically to assess bone health. However, a prediction of vertebral bone strength requires information that aBMD cannot provide, such as geometry and volumetric BMD (vBMD). This study aims to investigate the effect of ADT on the densitometric (aBMD, trabecular vBMD, integral vBMD) and mechanical integrity (failure load and failure strength) of vertebrae, using a combination of DXA, quantitative computed tomography (QCT) and finite element (FE) modelling. For the FE analyses, 3D models were reconstructed from QCT images of 26 ADT treated patients, and their matched controls, collected as part of the ANTELOPE clinical trial. The ADT treated group experienced significantly decreased trabecular and integral vBMD (trabecular vBMD: -18 %, p < 0.001, integral vBMD: -11 %, p < 0.001) compared to control patients that showed no significant temporal changes (trabecular vBMD p = 0.037, integral vBMD p = 0.56). A similar trend was seen in the ADT treated group for the failure load and failure strength, where a decrease of 14 % was observed (p < 0.001). When comparing the proficiency in predicting the mechanical properties from densitometric properties, the integral vBMD performed best in the pooled data (r = 0.86-0.87, p < 0.001) closely followed by trabecular vBMD (r = 0.73-0.75, p < 0.001) with aBMD having a much weaker predictive ability (r = 0.19-0.21, p < 0.01). In conclusion, ADT significantly reduced both the densitometric properties and the mechanical strength of vertebrae. A stronger relationship between both trabecular vBMD and integral vBMD with the mechanical properties than the aBMD was observed, suggesting that such clinical measurements could improve predictions of fracture risk in prostate cancer patients treated with ADT.
Collapse
Affiliation(s)
- Fiona G Gibson
- School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, Sheffield, United Kingdom; INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Margaret A Paggiosi
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Catherine Handforth
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Janet E Brown
- Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Xinshan Li
- School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, Sheffield, United Kingdom; INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Enrico Dall'Ara
- INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom; Division of Clinical Medicine, School of Medicine & Population Health, The University of Sheffield, Sheffield, United Kingdom
| | - Stefaan W Verbruggen
- School of Mechanical, Aerospace and Civil Engineering, The University of Sheffield, Sheffield, United Kingdom; INSIGNEO Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom; Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
2
|
Zhang J, Gong H, Ren P, Liu S, Jia Z, Shi P. Computer-aided diagnosis for China-Japan Friendship Hospital classification of necrotic femurs using statistical shape and appearance model based on CT scans. Med Biol Eng Comput 2025; 63:867-883. [PMID: 39538108 DOI: 10.1007/s11517-024-03239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The purpose of this study is to quantify the three-dimensional (3D) structural morphology, bone mineral density (BMD) distribution, and mechanical properties of different China-Japan Friendship Hospital (CJFH) classification types and assist clinicians in classifying necrotic femurs accurately. In this study, 41 cases were classified as types L2 and L3 based on CT images. Then, 3D Statistical Shape and Appearance Models (SSM and SAM) were established, and 80 principal component (PC) modes were extracted from the SSM and SAM as the candidate features. The bone strength of each case was also calculated as the candidate feature using finite element analysis (FEA). Support vector machine (SVM) and Extreme Gradient Boosting (XGBoost) were used to establish 10 machine learning models. Feature selection methods were used to screen the candidate features. The performance of each model was evaluated based on sensitivity, specificity, accuracy, and the area under the receiver operating characteristic (ROC) curve. This resulted in a SVM model for CJFH classification with the performance: accuracy of 87.5%, sensitivity of 85.0%, specificity of 76.0%, and AUC of 94.2%. This study provided effective machine learning models for assisting in diagnosing CJFH types, increasing the objectivity of the diagnosis. They may have great potential for application in clinical assessments of CJFH classification.
Collapse
Affiliation(s)
- Jinming Zhang
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Beijing, 100191, Haidian District, China
| | - He Gong
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China.
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Beijing, 100191, Haidian District, China.
| | - Pengling Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No.95, Yongan Road, Beijing, 100050, Xicheng District, China.
| | - Shuyu Liu
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Beijing, 100191, Haidian District, China
| | - Zhengbin Jia
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Beijing, 100191, Haidian District, China
| | - Peipei Shi
- Innovation Center for Medical Engineering & Engineering Medicine, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Beijing, 100191, Haidian District, China
| |
Collapse
|
3
|
Paracuollo M, Tarulli FR, Pellegrino G, Pellegrino A. Proximal femoral nailing for intertrochanteric fracture combined with contralateral femoral neck local osteo-enhancement procedure (LOEP) for severe osteoporotic bone loss: An original Italian case series. Injury 2024; 55 Suppl 4:111408. [PMID: 39542574 DOI: 10.1016/j.injury.2024.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 11/17/2024]
Abstract
Proximal femoral fractures in elderly women are a major cause of morbidity and mortality worldwide and a public health concern. Although pharmacological therapies have shown potential in improving bone mineral density (BMD) and decreasing fracture risk, the current research effort is focused on developing a procedure that can ensure both immediate and long-term efficacy. A minimally-invasive surgical approach, known as AGN1 local osteo-enhancement procedure (LOEP), has been recently developed to promote bone augmentation. The procedure implies the preparation of an enhancement site, a specific location where new bone is required within a local bony area weakened by osteoporotic bone loss, and the insertion of a triphasic, resorbable, calcium-based implant material. The results of this procedure have shown a significant and sustainable long-term increase in the proximal femur BMD and consequently in bone strength, thereby improving the femoral neck's resistance to compression and distraction forces that may result in fall-related fractures. A preliminary case series of ten women, suffering from intertrochanteric fracture and contralateral proximal femur severe osteoporotic bone loss, who underwent a combined procedure of proximal femoral nailing and AGN1 local osteo-enhancement procedure, has been developed over the course of a year of clinical and radiological data collection.
Collapse
Affiliation(s)
- Mario Paracuollo
- III Division of Orthopaedics and Traumatology, "C.T.O." Hospital in Naples (NA), Viale Colli Aminei, 21 80131, Italy.
| | - Filippo Rosati Tarulli
- Department of Orthopaedics and Traumatology, "San Giuseppe Moscati" Hospital in Aversa (CE), Via Antonio Gramsci, 1-81031, Italy
| | - Giuseppe Pellegrino
- Department of Orthopaedics and Traumatology, "San Giuseppe Moscati" Hospital in Aversa (CE), Via Antonio Gramsci, 1-81031, Italy
| | - Achille Pellegrino
- Department of Orthopaedics and Traumatology, "San Giuseppe Moscati" Hospital in Aversa (CE), Via Antonio Gramsci, 1-81031, Italy
| |
Collapse
|
4
|
Liu S, Zhang M, Gong H, Jia S, Zhang J, Jia Z. Explainable machine-learning-based prediction of QCT/FEA-calculated femoral strength under stance loading configuration using radiomics features. J Orthop Res 2024. [PMID: 39182185 DOI: 10.1002/jor.25962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
Finite element analysis can provide precise femoral strength assessment. However, its modeling procedures were complex and time-consuming. This study aimed to develop a model to evaluate femoral strength calculated by quantitative computed tomography-based finite element analysis (QCT/FEA) under stance loading configuration, offering an effective, simple, and explainable method. One hundred participants with hip QCT images were selected from the Hong Kong part of the Osteoporotic fractures in men cohort. Radiomics features were extracted from QCT images. Filter method, Pearson correlation analysis, and least absolute shrinkage and selection operator method were employed for feature selection and dimension reduction. The remaining features were utilized as inputs, and femoral strengths were calculated as the ground truth through QCT/FEA. Support vector regression was applied to develop a femoral strength prediction model. The influence of various numbers of input features on prediction performance was compared, and the femoral strength prediction model was established. Finally, Shapley additive explanation, accumulated local effects, and partial dependency plot methods were used to explain the model. The results indicated that the model performed best when six radiomics features were selected. The coefficient of determination (R2), the root mean square error, the normalized root mean square error, and the mean squared error on the testing set were 0.820, 1016.299 N, 10.645%, and 750.827 N, respectively. Additionally, these features all positively contributed to femoral strength prediction. In conclusion, this study provided a noninvasive, effective, and explainable method of femoral strength assessment, and it may have clinical application potential.
Collapse
Affiliation(s)
- Shuyu Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Meng Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jinming Zhang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhengbin Jia
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
5
|
Jaarah N, Lam CFJ, Lodhia N, Dulnoan D, Moore AE, Hampson G. Differential effects of teriparatide, denosumab and zoledronate on hip structural and mechanical parameters in osteoporosis; a real-life study. J Endocrinol Invest 2024; 47:1667-1677. [PMID: 38191946 PMCID: PMC11196340 DOI: 10.1007/s40618-023-02280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE The aim of this study was to evaluate changes in hip geometry parameters following treatment with teriparatide (TPD), denosumab (Dmab) and zoledronate (ZOL) in real-life setting. METHODS We studied 249 patients with osteoporosis (OP) with mean [SD] age of 71.5 [11.1] years divided into 3 treatment groups; Group A received TPD; n = 55, Group B (Dmab); n = 116 and Group C (ZOL); n = 78 attending a routine metabolic bone clinic. Bone mineral density (BMD) was measured by DXA at the lumbar spine (LS), total hip (TH) and femoral neck (FN) prior to treatment and after 2 years (Group A), after a mean treatment duration of 3.3 [1.3] years (Group B) and after 1, 2 and 3 doses of ZOL (Group C) to assess treatment response. Hip structural analysis (HSA) was carried out retrospectively from DXA-acquired femur images at the narrow neck (NN), the intertrochanter (IT) and femoral shaft (FS). RESULTS Changes in parameters of hip geometry and mechanical strength were seen in the following treatment. Percentage change in cross-sectional area (CSA): 3.56[1.6] % p = 0.01 and cross-sectional moment of inertia (CSMI): 4.1[1.8] % p = 0.029 increased at the NN only in Group A. Improvement in HSA parameters at the IT were seen in group B: CSA: 3.3[0.67]% p < 0.001, cortical thickness (Co Th): 2.8[0.78]% p = 0.001, CSMI: 5.9[1.3]% p < 0.001, section modulus (Z):6.2[1.1]% p < 0.001 and buckling ratio (BR): - 3.0[0.86]% p = 0.001 with small changes at the FS: CSA: 1.2[0.4]% p = 0.005, Z:1.6 [0.76]%, p = 0.04. Changes at the IT were also seen in Group C (after 2 doses): CSA: 2.5[0.77]% p = 0.017, Co Th: 2.4[0.84]% p = 0.012, CSMI: 3.9[1.3]% p = 0.017, Z:5.2[1.16]% p < 0.001 and BR: - 3.1[0.88]% p = 0.001 and at the NN (following 3 doses): outer diameter (OD): 4.0[1.4]% p = 0.0005, endocortical diameter(ED): 4.3[1.67% p = 0.009, CSA:5.2[1.8]% p = 0.003, CSMI: 9.3[3.8]% p = 0.019. CONCLUSIONS Analysis of the effect of OP therapies on hip geometry is useful in understanding the mechanisms of their anti-fracture effect and may provide additional information on their efficacy.
Collapse
Affiliation(s)
- N Jaarah
- Department of Chemical Pathology and Metabolic Medicine, St Thomas' Hospital, 5Th Floor, North Wing, Lambeth Palace Road, London, UK
- Osteoporosis Unit, Guy's Hospital, London, SE1 7EH, UK
| | - C F J Lam
- Department of Chemical Pathology and Metabolic Medicine, St Thomas' Hospital, 5Th Floor, North Wing, Lambeth Palace Road, London, UK
- Osteoporosis Unit, Guy's Hospital, London, SE1 7EH, UK
| | - N Lodhia
- Department of Chemical Pathology and Metabolic Medicine, St Thomas' Hospital, 5Th Floor, North Wing, Lambeth Palace Road, London, UK
- Osteoporosis Unit, Guy's Hospital, London, SE1 7EH, UK
| | - D Dulnoan
- Osteoporosis Unit, Guy's Hospital, London, SE1 7EH, UK
| | - A E Moore
- Osteoporosis Unit, Guy's Hospital, London, SE1 7EH, UK
| | - G Hampson
- Department of Chemical Pathology and Metabolic Medicine, St Thomas' Hospital, 5Th Floor, North Wing, Lambeth Palace Road, London, UK.
- Osteoporosis Unit, Guy's Hospital, London, SE1 7EH, UK.
| |
Collapse
|
6
|
Lewiecki EM, Betah D, Humbert L, Libanati C, Oates M, Shi Y, Winzenrieth R, Ferrari S, Omura F. 3D-modeling from hip DXA shows improved bone structure with romosozumab followed by denosumab or alendronate. J Bone Miner Res 2024; 39:473-483. [PMID: 38477808 PMCID: PMC11262148 DOI: 10.1093/jbmr/zjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/22/2023] [Accepted: 12/15/2024] [Indexed: 03/14/2024]
Abstract
Romosozumab treatment in women with postmenopausal osteoporosis increases bone formation while decreasing bone resorption, resulting in large BMD gains to reduce fracture risk within 1 yr. DXA-based 3D modeling of the hip was used to assess estimated changes in cortical and trabecular bone parameters and map the distribution of 3D changes in bone parameters over time in patients from 2 randomized controlled clinical trials: FRAME (romosozumab vs placebo followed by denosumab) and ARCH (romosozumab vs alendronate followed by alendronate). For each study, data from a subset of ~200 women per treatment group who had TH DXA scans at baseline and months 12 and 24 and had provided consent for future research were analyzed post hoc. 3D-SHAPER software v2.11 (3D-SHAPER Medical) was used to generate patient-specific 3D models from TH DXA scans. Percentage changes from baseline to months 12 and 24 in areal BMD (aBMD), integral volumetric BMD (vBMD), cortical thickness, cortical vBMD, cortical surface BMD (sBMD), and trabecular vBMD were evaluated. Data from 377 women from FRAME (placebo, 190; romosozumab, 187) and 368 women from ARCH (alendronate, 185; romosozumab, 183) with evaluable 3D assessments at baseline and months 12 and 24 were analyzed. At month 12, treatment with romosozumab vs placebo in FRAME and romosozumab vs alendronate in ARCH resulted in greater increases in aBMD, integral vBMD, cortical thickness, cortical vBMD, cortical sBMD, and trabecular vBMD (P < .05 for all). At month 24, cumulative gains in all parameters were greater in the romosozumab-to-denosumab vs placebo-to-denosumab sequence and romosozumab-to-alendronate vs alendronate-to-alendronate sequence (P < .05 for all). 3D-SHAPER analysis provides a novel technique for estimating changes in cortical and trabecular parameters from standard hip DXA images. These data add to the accumulating evidence that romosozumab improves hip bone density and structure, thereby contributing to the antifracture efficacy of the drug.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, 300 Oak St NE, Albuquerque, NM 87106, United States
| | - Donald Betah
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Ludovic Humbert
- 3D-SHAPER Medical, Rambla de Catalunya, 53, 4-H, Eixample, 08007 Barcelona, Spain
| | - Cesar Libanati
- UCB Pharma, Allée de la Recherche, 60, Brussels B-1070, Belgium
| | - Mary Oates
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Yifei Shi
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Renaud Winzenrieth
- 3D-SHAPER Medical, Rambla de Catalunya, 53, 4-H, Eixample, 08007 Barcelona, Spain
| | - Serge Ferrari
- Division of Bone Diseases, University Hospital of Geneva, Geneva 1211, Switzerland
| | - Fumitoshi Omura
- Koenji Orthopedics Clinic, 4-29-2, Koenji minami, Suginami-ku, Tokyo, 166-0003, Japan
| |
Collapse
|
7
|
Emerzian SR, Wu T, Vaidya R, Tang SY, Abergel RJ, Keaveny TM. Relative Effects of Radiation-Induced Changes in Bone Mass, Structure, and Tissue Material on Vertebral Strength in a Rat Model. J Bone Miner Res 2023; 38:1032-1042. [PMID: 37191221 PMCID: PMC10524463 DOI: 10.1002/jbmr.4828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/06/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The observed increased risk of fracture after cancer radiation therapy is presumably due to a radiation-induced reduction in whole-bone strength. However, the mechanisms for impaired strength remain unclear, as the increased fracture risk is not fully explained by changes in bone mass. To provide insight, a small animal model was used to determine how much of this whole-bone weakening effect for the spine is attributable to changes in bone mass, structure, and material properties of the bone tissue and their relative effects. Further, because women have a greater risk of fracture after radiation therapy than men, we investigated if sex had a significant influence on bone's response to irradiation. Fractionated in vivo irradiation (10 × 3 Gy) or sham irradiation (0 Gy) was administered daily to the lumbar spine in twenty-seven 17-week-old Sprague-Dawley rats (n = 6-7/sex/group). Twelve weeks after final treatment, animals were euthanized, and lumbar vertebrae (L4 and L5 ) were isolated. Using a combination of biomechanical testing, micro-CT-based finite element analysis, and statistical regression analysis, we separated out the effect of mass, structural, and tissue material changes on vertebral strength. Compared with the sham group (mean ± SD strength = 420 ± 88 N), the mean strength of the irradiated group was lower by 28% (117 N/420 N, p < 0.0001). Overall, the response of treatment did not differ with sex. By combining results from both general linear regression and finite element analyses, we calculated that mean changes in bone mass, structure, and material properties of the bone tissue accounted for 56% (66 N/117 N), 20% (23 N/117 N), and 24% (28 N/117 N), respectively, of the overall change in strength. As such, these results provide insight into why an elevated clinical fracture risk for patients undergoing radiation therapy is not well explained by changes in bone mass alone. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shannon R. Emerzian
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
| | - Tongge Wu
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
| | - Rachana Vaidya
- Department of Orthopaedic Surgery, Washington University,
St. Louis, Missouri, USA
| | - Simon Y. Tang
- Department of Orthopaedic Surgery, Washington University,
St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington
University, St. Louis, Missouri, USA
- Department of Material Science & Mechanical
Engineering, Washington University, St. Louis, Missouri, USA
| | - Rebecca J. Abergel
- Department of Nuclear Engineering, University of
California, Berkeley, California, USA
| | - Tony M. Keaveny
- Department of Mechanical Engineering, University of
California, Berkeley, California, USA
- Department of Bioengineering, University of California,
Berkeley, California, USA
| |
Collapse
|
8
|
Teng PF, Chiang JM, Schafer AL, Sukerkar PA, Keaveny TM, Bikle D. Prevalence of osteoporosis in older male veterans receiving hip-containing computed tomography scans: opportunistic use of biomechanical computed tomography analysis (BCT). Osteoporos Int 2023; 34:551-561. [PMID: 36580097 PMCID: PMC9908633 DOI: 10.1007/s00198-022-06624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/23/2022] [Indexed: 12/30/2022]
Abstract
Osteoporosis care in men is suboptimal due to low rates of testing and treatment. Applying biomechanical computed tomography (BCT) analysis to existing CT scans, we found a high proportion of men with osteoporosis have never been diagnosed or treated. BCT may improve identification of patients at high risk of fracture. PURPOSE Osteoporosis care in men is suboptimal due to low rates of DXA testing and treatment. Biomechanical computed tomography analysis (BCT) can be applied "opportunistically" to prior hip-containing CT scans to measure femoral bone strength and hip BMD. METHODS In this retrospective, cross-sectional study, we used BCT in male veterans with existing CT scans to investigate the prevalence of osteoporosis, defined by hip BMD (T-score ≤ - 2.5) or fragile bone strength (≤ 3500 N). 577 men, age ≥ 65 with abdominal/pelvic CTs performed in 2017-2019, were randomly selected for BCT analysis. Clinical data were collected via electronic health records and used with the femoral neck BMD T-score from BCT to estimate 10-year hip fracture risks by FRAX. RESULTS Prevalence of osteoporosis by BCT increased with age (13.5% age 65-74; 18.2% age 75-84; 34.3% age ≥ 85), with an estimated overall prevalence of 18.3% for men age ≥ 65. In those with osteoporosis (n = 108/577), only 38.0% (41/108) had a prior DXA and 18.6% (7/108) had received osteoporosis pharmacotherapy. Elevated hip fracture risk by FRAX (≥ 3%) did not fully capture those with fragile bone strength. In a multivariate logistic regression model adjusted for age, BMI, race, and CT location, end stage renal disease (odds ratio 7.4; 95% confidence interval 2.3-23.9), COPD (2.2; 1.2-4.0), and high-dose inhaled corticosteroid use (3.7; 1.2-11.8) were associated with increased odds of having osteoporosis by BCT. CONCLUSION Opportunistic BCT in male veterans provides an additional avenue to identify patients who are at high risk of fractures.
Collapse
Affiliation(s)
- Polly F Teng
- Divison of Endocrinology, Diabetes and Metabolism, University of California, Davis, USA
- Department of Orthopedic Surgery, University of California, Davis, USA
| | - Janet M Chiang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of California, 4150 Clement St., CA, 94121, San Francisco, USA.
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, USA.
| | - Anne L Schafer
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of California, 4150 Clement St., CA, 94121, San Francisco, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, USA
| | - Preeti A Sukerkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, USA
| | - Daniel Bikle
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of California, 4150 Clement St., CA, 94121, San Francisco, USA
- Endocrine Research Unit, San Francisco Veterans Affairs Health Care System, San Francisco, USA
| |
Collapse
|
9
|
Ganapathy A, Nieves JW, Keaveny TM, Cosman F. Effects of four-year cyclic versus two-year daily teriparatide treatment on volumetric bone density and bone strength in postmenopausal women with osteoporosis. Bone 2023; 167:116618. [PMID: 36410666 PMCID: PMC9822869 DOI: 10.1016/j.bone.2022.116618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/23/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE To evaluate the effects of cyclic vs daily teriparatide treatment (TPTD) on volumetric bone mineral density (vBMD) and bone strength at the hip and spine in women who were previously untreated. METHODS A total of 86 women were randomized to a 24-month open label treatment of either daily TPTD (20 μg daily) or cyclic TPTD (20 μg daily for 3 months followed by 3 months off). During a 2-year extension, women in the daily TPTD group were switched to alendronate (ALN) and those in the cyclic TPTD group continued on cyclic TPTD (without any ALN). QCT images were acquired at baseline, 2-years (n = 54) and 4-years (n = 35) and analyzed for volumetric integral, cortical and trabecular bone mineral density (vBMD) and bone strength (by finite element analysis) at the hip and spine. The primary analysis presented here compared the responses across equal total TPTD doses (2 years daily vs 4 years cyclic). RESULTS In the spine, integral vBMD and strength increased substantially after 2 years daily and 4 years cyclic TPTD, with no significant differences (vBMD +12 % vs +11 %, respectively, p = 0.70; spine strength +21 % vs +16 %, respectively, p = 0.35). At the hip, the gains were smaller, but again no significant differences were detected between the groups for the increases in either vBMD (+2 % in both groups, p = 0.97) or hip strength (3 % vs 3 %, p = 0.91). In the spine, the vBMD increment was about twice as large in the trabecular vs peripheral compartment; in the hip, significant vBMD gain was seen only in the trabecular compartment. CONCLUSIONS The gains in volumetric BMD and bone strength for an equivalent dose of TPTD did not depend on whether it was administered every day over two years or cyclically over four years.
Collapse
Affiliation(s)
- Aravinda Ganapathy
- Institute of Human Nutrition, Columbia University, New York, NY, United States of America
| | - Jeri W Nieves
- Department of Epidemiology and Institute of Human Nutrition, Columbia University, New York, NY, United States of America.
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, United States of America
| | - Felicia Cosman
- Department of Medicine, Columbia University, New York, NY, United States of America
| |
Collapse
|
10
|
Song F, Wei Y, Feng W, Fu R, Li Z, Gao X, Cheng X, Yang H. Biomechanical CT-computed bone strength predicts the risk of subsequent vertebral fracture. Bone 2023; 166:116601. [PMID: 36336262 DOI: 10.1016/j.bone.2022.116601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Following primary fractures and percutaneous kyphoplasty (PKP), patients have a high risk of incurring a subsequent vertebral fracture (SVF). Given that SVF is a consequence of mechanical deterioration of the vertebra, we sought to examine whether vertebral strength derived from QCT-based finite element analysis (i.e., BCT) can predict the risk of SVF. Sixty-six patients who underwent PKP were categorized into two groups: control or non-SVF group (age: 70 ± 7 years; n = 40) and SVF group (age: 69 ± 8 years; n = 26). BCT was performed on L4 or L3 vertebrae to noninvasively measure vertebral strength. Vertebral strength was also estimated based upon the geometry and material properties of the vertebra. Additionally, trabecular volumetric bone mineral density (vBMD) and L1 Hounsfield unit (HU) were measured. t-Test, χ2 test or Mann Whitney U test were used to compare differences in these parameters between the two groups. The predictive abilities of BCT strength and other measured parameters were evaluated using the receiver operating characteristic (ROC) analysis. Results showed no significant difference in either vBMD or L1 HU between the control and SVF groups (p > 0.05), whereas BCT-computed and estimated vertebral strength values were significantly reduced by 33 % and 24 % for the SVF group relative to the non-SVF group, respectively. ROC curve indicated that BCT strength had the largest area under the curve, compared to other parameters. These results suggest that BCT-computed vertebral strength may serve as a surrogate for assessing risk of SVF.
Collapse
Affiliation(s)
- Fei Song
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yi Wei
- Department of Spinal Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Wentian Feng
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ruisen Fu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zuchang Li
- Department of Spinal Surgery, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xing Gao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
11
|
Zhang Y, Liang J, Liu P, Wang Q, Liu L, Zhao H. The RANK/RANKL/OPG system and tumor bone metastasis: Potential mechanisms and therapeutic strategies. Front Endocrinol (Lausanne) 2022; 13:1063815. [PMID: 36589815 PMCID: PMC9800780 DOI: 10.3389/fendo.2022.1063815] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
With the markedly increased diagnosis and incidence of cancer in the population, tumor bone metastasis has become a frequent event in tumor patients. Healthy bone integrity is maintained by a delicate balance between bone formation and bone resorption. Unfortunately, many tumors, such as prostate and breast, often metastasize to the bone, and the alterations to the bone homeostasis can particularly favor tumor homing and consequent osteolytic or osteoblastic lesions. Receptor activator of NF-κB ligand (RANKL), its receptor RANK, and osteoprotegerin (OPG) are involved in the regulation of the activation, differentiation, and survival of osteoclasts, which play critical roles in bone metastasis formation. High rates of osteoclastic bone resorption significantly increase fracture risk, cause severe bone pain, and contribute to homing tumor cells in bone and bone marrow. Consequently, suppression of the RANK/RANKL/OPG system and osteoclastic activity can not only ameliorate bone resorption but may also prevent tumor bone metastases. This review summarizes the important role of the RANK/RANKL/OPG system and osteoclasts in bone homeostasis and its effect on tumor bone metastasis and discusses therapeutic strategies based on RANKL inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
12
|
Geusens P, Bevers MS, van Rietbergen B, Messina OD, Lespessailles E, Oliveri B, Chapurlat R, Engelke K, Chines A, Huang S, Saag KG, van den Bergh JP. Effect of Denosumab Compared With Risedronate on Bone Strength in Patients Initiating or Continuing Glucocorticoid Treatment. J Bone Miner Res 2022; 37:1136-1146. [PMID: 35340062 PMCID: PMC9324223 DOI: 10.1002/jbmr.4551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/24/2022] [Accepted: 03/13/2022] [Indexed: 11/10/2022]
Abstract
In a randomized clinical trial in patients initiating glucocorticoid therapy (GC-I) or on long-term therapy (GC-C), denosumab every 6 months increased spine and hip bone mineral density at 12 and 24 months significantly more than daily risedronate. The aim of this study was to evaluate the effects of denosumab compared with risedronate on bone strength and microarchitecture measured by high-resolution peripheral quantitative computed tomography (HR-pQCT) in GC-I and GC-C. A subset of 110 patients had high-resolution peripheral quantitative computed tomography (HR-pQCT) scans of the distal radius and tibia at baseline and at 12 and 24 months. Cortical and trabecular microarchitecture were assessed with standard analyses and failure load (FL) with micro-finite element analysis. At the radius at 24 months, FL remained unchanged with denosumab and significantly decreased with risedronate in GC-I (-4.1%, 95% confidence interval [CI] -6.4, -1.8) and, in GC-C, it significantly increased with denosumab (4.3%, 95% CI 2.1, 6.4) and remained unchanged with risedronate. Consequently, FL was significantly higher with denosumab than with risedronate in GC-I (5.6%, 95% CI 2.4, 8.7, p < 0.001) and in GC-C (4.1%, 95% CI 1.1, 7.2, p = 0.011). We also found significant differences between denosumab and risedronate in percentage changes in cortical and trabecular microarchitectural parameters in GC-I and GC-C. Similar results were found at the tibia. To conclude, this HR-pQCT study shows that denosumab is superior to risedronate in terms of preventing FL loss at the distal radius and tibia in GC-I and in increasing FL at the radius in GC-C, based on significant differences in changes in the cortical and trabecular bone compartments between treatment groups in GC-I and GC-C. These results suggest that denosumab could be a useful therapeutic option in patients initiating GC therapy or on long-term GC therapy and may contribute to treatment decisions in this patient population. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Piet Geusens
- Department of Internal Medicine, Subdivision of Rheumatology, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Melissa Sam Bevers
- Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands.,NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Osvaldo D Messina
- IRO Medical Center, Investigaciones Reumatologicas y Osteologicas SRL, Buenos Aires, Argentina
| | - Eric Lespessailles
- Regional Hospital of Orleans, Translational Medicine Research Platform, PRIMMO, Orleans, France
| | - Beatriz Oliveri
- INIGEM, Hospital de Clínicas José de San Martin, Buenos Aires, Argentina
| | - Roland Chapurlat
- INSERM UMR 1033, Université de Lyon, Hospital Edouard Herriot, Lyon, France
| | - Klaus Engelke
- Bioclinica Inc, Hamburg, Germany.,Department of Medicine 3, FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | | - Kenneth G Saag
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joop P van den Bergh
- Department of Internal Medicine, Subdivision of Rheumatology, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Department of Internal Medicine, VieCuri Medical Center, Venlo, The Netherlands.,NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
13
|
Zhang Y, Zhang T, Ge X, Ma Y, Cui Z, Wu S, Liang Y, Zhu S, Li Z. A Three-Dimensional Cement Quantification Method for Decision Prediction of Vertebral Recompression after Vertebroplasty. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2330472. [PMID: 35602341 PMCID: PMC9119757 DOI: 10.1155/2022/2330472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
Abstract
Objective Proposing parameters to quantify cement distribution and increasing accuracy for decision prediction of vertebroplasty postoperative complication. Methods Finite element analysis was used to biomechanically assess vertebral mechanics (n = 51) after percutaneous vertebroplasty (PVP) or kyphoplasty (PKP). The vertebral space was divided into 27 portions. The numbers of cement occupied portions and numbers of cement-endplate contact portions were defined as overall distribution number (oDN) and overall endplate contact number (oEP), respectively. And cement distribution was parametrized by oDN and oEP. The determination coefficients of vertebral mechanics and parameters (R 2) can validate the correlation of proposed parameters with vertebral mechanics. Results oDN and oEP were mainly correlated with failure load (R 2 = 0.729) and stiffness (R 2 = 0.684), respectively. oDN, oEP, failure load, and stiffness had obvious difference between the PVP group and the PKP group (P < 0.05). The regional endplate contact number in the front column is most correlated with vertebral stiffness (R 2 = 0.59) among all regional parameters. Cement volume and volume fraction are not dominant factors of vertebral augmentation, and they are not suitable for postoperative fracture risk prediction. Conclusions Proposed parameters with high correlation on vertebral mechanics are promising for clinical utility. The oDN and oEP can strongly affect augmented vertebral mechanics thus is suitable for postoperative fracture risk prediction. The parameters are beneficial for decision-making process of revision surgery necessity. Parametrized methods are also favorable for surgeon's preoperative planning. The methods can be inspirational for clinical image recognition development and auxiliary diagnosis.
Collapse
Affiliation(s)
- Yanming Zhang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Tao Zhang
- Department of Orthopedic Surgery, Tianjin First Central Hospital, Tianjin 300190, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300354, China
| | - Yong Ma
- Pain Department, The Third People's Hospital of Yunnan Province, Kunming 650010, China
| | - Zhenduo Cui
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Shuilin Wu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yanqin Liang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Shengli Zhu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhaoyang Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
14
|
Yano S, Matsuura Y, Hagiwara S, Nakamura J, Kawarai Y, Suzuki T, Kanno K, Shoda J, Tsurumi Y, Ohtori S. Determinants of fracture type in the proximal femur: Biomechanical study of fresh frozen cadavers and finite element models. Bone 2022; 158:116352. [PMID: 35181576 DOI: 10.1016/j.bone.2022.116352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Proximal femur fractures are usually categorized as either a cervical or trochanteric fracture, but the relationship between fracture type and fall direction is not clear. By cadaveric mechanical testing and finite element analysis (FEA), the aims of this research were to verify the factors that define the proximal femur fracture type and to clarify the change in stress distribution based on fall direction. METHODS From fresh frozen cadavers, we obtained 26 proximal femora including ten pairs of 20 femora. We conducted quasi-static compression tests in two fall patterns (lateral and posterolateral), and identified the fracture type. We then examined the relationship between fracture type and the following explanatory variables: age, sex, neck shaft angle, femoral neck length, bone mineral density (cervical and trochanteric), and fall direction. In addition, for the ten pairs of femurs, the effect of fall direction on fracture type was examined by comparing the left and right sides. In addition, we generated the proximal femur finite element (FE) models from computed tomography data to simulate and verify the change of external force in different fall directions. RESULTS In mechanical tests, only fall direction was found to have a significant relationship with fracture type (p = 0.0227). The posterolateral fall group had a significantly higher incidence of trochanteric fractures than lateral fall group (p = 0.0325). According to FEA, the equivalent stress in the lateral fall was found to be more concentrated in the cervical area than in the posterolateral fall. CONCLUSION In proximal femur fractures, fall direction was significantly associated with fracture type; in particular, trochanteric fractures were more likely to occur following a posterolateral fall than a lateral fall.
Collapse
Affiliation(s)
- Sei Yano
- Department of Orthopaedics Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yusuke Matsuura
- Department of Orthopaedics Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Shigeo Hagiwara
- Department of Orthopaedics Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Junichi Nakamura
- Department of Orthopaedics Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Yuya Kawarai
- Department of Orthopaedics Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takane Suzuki
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Keijiro Kanno
- Department of Orthopaedics Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Jumpei Shoda
- Department of Orthopaedics Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Yousuke Tsurumi
- Department of Orthopaedics Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Seiji Ohtori
- Department of Orthopaedics Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
15
|
Jia S, Gong H, Zhang Y, Liu H, Cen H, Zhang R, Fan Y. Prediction of Femoral Strength Based on Bone Density and Biochemical Markers in Elderly Men With Type 2 Diabetes Mellitus. Front Bioeng Biotechnol 2022; 10:855364. [PMID: 35419355 PMCID: PMC8995504 DOI: 10.3389/fbioe.2022.855364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Effects of bone density, bone turnover and advanced glycation end products (AGEs) on femoral strength (FS) are still unclear in patients with type 2 diabetes mellitus (T2DM). This study aims to assess and predict femoral strength and its influencing factors in elderly men with T2DM. Methods: T2DM patients (n = 10, mean age, 66.98 years) and age-matched controls (n = 8, mean age, 60.38 years) were recruited. Femoral bone mineral density (BMD) and serum biochemical indices of all subjects were measured. FS was evaluated through finite element analysis based on quantitative computed tomography. Multiple linear regression was performed to obtain the best predictive models of FS and to analyze the ability of predictors of FS in both groups. Results: FS (p = 0.034), HbA1c (p = 0.000) and fasting blood glucose (p = 0.000) levels of T2DM group were significantly higher than those of control group; however, the P1NP level (p = 0.034) was significantly lower. FS was positively correlated with femoral neck T score (FNTS) (r = 0.794, p < 0.01; r = 0.881, p < 0.01) in both groups. FS was correlated with age (r = -0.750, p < 0.05) and pentosidine (r = -0.673, p < 0.05) in T2DM group. According to multiple linear regression, FNTS and P1NP both contributed to FS in two groups. P1NP significantly improved the prediction of FS in both groups, but significant effect of FNTS on predicting FS was only presented in control group. Furthermore, pentosidine, age and HbA1c all played significant roles in predicting FS of T2DM. Conclusion: Femoral strength was higher in elderly men with T2DM, which might be caused by higher BMD and lower bone turnover rate. Moreover, besides BMD and bone formation level, AGEs, blood glucose and age might significantly impact the prediction of femoral strength in T2DM.
Collapse
Affiliation(s)
- Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Hongmei Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Rehabilitation Hospital, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Haipeng Cen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Rui Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
16
|
Kendler DL, Cosman F, Stad RK, Ferrari S. Denosumab in the Treatment of Osteoporosis: 10 Years Later: A Narrative Review. Adv Ther 2022; 39:58-74. [PMID: 34762286 PMCID: PMC8799550 DOI: 10.1007/s12325-021-01936-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
The fully human monoclonal antibody denosumab was approved for treatment of osteoporosis in 2010 on the basis of its potent antiresorptive activity, which produces clinically meaningful increases in bone mineral density (BMD) and reduces fracture risk at key skeletal sites. At that time, questions remained regarding the long-term safety and efficacy of this receptor activator of nuclear factor kappa-B ligand (RANKL) inhibitor; and with clinical experience, new questions have arisen regarding its optimal use. Here, we examine these questions through the lens of data from the FREEDOM trial program and other studies to determine where denosumab fits in the osteoporosis treatment landscape. Clinical consensus and evidentiary support have grown for denosumab as a highly effective anti-osteoporosis therapy for patients at high risk of fracture. In the 10-year FREEDOM Extension study, denosumab treatment produced progressive incremental increases in BMD, sustained low rates of vertebral fracture, and further reduction in nonvertebral fracture risk without increased risk of infection, cancer, or immunogenicity. There was no evidence that suppression of bone turnover or mineralization was excessive, and rates of osteonecrosis of the jaw (ONJ) and atypical femoral fracture (AFF) were very low. It is now recognized, however, that transitioning to another anti-osteoporosis therapy after denosumab discontinuation is essential to mitigate a transient rebound of bone turnover causing rapid BMD loss and increased risk of multiple vertebral fractures (MVFs). Taken together, the available data show that denosumab has a favorable benefit/risk profile and is a versatile agent for preventing osteoporotic fractures in the short and long term. Video abstract: Denosumab in the Treatment of Osteoporosis—10 Years Later (MP4 62727 KB)
Collapse
|
17
|
Brown JP, Engelke K, Keaveny TM, Chines A, Chapurlat R, Foldes AJ, Nogues X, Civitelli R, De Villiers T, Massari F, Zerbini CAF, Wang Z, Oates MK, Recknor C, Libanati C. Romosozumab improves lumbar spine bone mass and bone strength parameters relative to alendronate in postmenopausal women: results from the Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial. J Bone Miner Res 2021; 36:2139-2152. [PMID: 34190361 PMCID: PMC9292813 DOI: 10.1002/jbmr.4409] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 01/20/2023]
Abstract
The Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial (NCT01631214; https://clinicaltrials.gov/ct2/show/NCT01631214) showed that romosozumab for 1 year followed by alendronate led to larger areal bone mineral density (aBMD) gains and superior fracture risk reduction versus alendronate alone. aBMD correlates with bone strength but does not capture all determinants of bone strength that might be differentially affected by various osteoporosis therapeutic agents. We therefore used quantitative computed tomography (QCT) and finite element analysis (FEA) to assess changes in lumbar spine volumetric bone mineral density (vBMD), bone volume, bone mineral content (BMC), and bone strength with romosozumab versus alendronate in a subset of ARCH patients. In ARCH, 4093 postmenopausal women with severe osteoporosis received monthly romosozumab 210 mg sc or weekly oral alendronate 70 mg for 12 months, followed by open-label weekly oral alendronate 70 mg for ≥12 months. Of these, 90 (49 romosozumab, 41 alendronate) enrolled in the QCT/FEA imaging substudy. QCT scans at baseline and at months 6, 12, and 24 were assessed to determine changes in integral (total), cortical, and trabecular lumbar spine vBMD and corresponding bone strength by FEA. Additional outcomes assessed include changes in aBMD, bone volume, and BMC. Romosozumab caused greater gains in lumbar spine integral, cortical, and trabecular vBMD and BMC than alendronate at months 6 and 12, with the greater gains maintained upon transition to alendronate through month 24. These improvements were accompanied by significantly greater increases in FEA bone strength (p < 0.001 at all time points). Most newly formed bone was accrued in the cortical compartment, with romosozumab showing larger absolute BMC gains than alendronate (p < 0.001 at all time points). In conclusion, romosozumab significantly improved bone mass and bone strength parameters at the lumbar spine compared with alendronate. These results are consistent with greater vertebral fracture risk reduction observed with romosozumab versus alendronate in ARCH and provide insights into structural determinants of this differential treatment effect. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jacques P Brown
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre, Department of Medicine, Rheumatology Division, Laval University, Quebec City, Québec, Canada
| | - Klaus Engelke
- Bioclinica, Hamburg, Germany.,Department of Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California Berkeley, Berkeley, California, USA
| | | | - Roland Chapurlat
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMR) 1033, Université de Lyon, Hôpital E Herriot, Lyon, France
| | - A Joseph Foldes
- Osteoporosis Center, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Xavier Nogues
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Autonomous University of Barcelona, Barcelona, Spain
| | - Roberto Civitelli
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tobias De Villiers
- Department of Obstetrics and Gynaecology, Stellenbosch University, Stellenbosch, South Africa
| | - Fabio Massari
- Instituto de Diagnóstico e Investigaciones Metabólicas, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
18
|
Tani S, Ishikawa K, Kudo Y, Tsuchiya K, Matsuoka A, Maruyama H, Emori H, Yamamura R, Hayakawa C, Sekimizu M, Oshita Y, Ozawa T, Shirahata T, Nagai T, Toyone T, Inagaki K. The effect of denosumab on pedicle screw fixation: a prospective 2-year longitudinal study using finite element analysis. J Orthop Surg Res 2021; 16:219. [PMID: 33771178 PMCID: PMC7995779 DOI: 10.1186/s13018-021-02360-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pedicle screw loosening is a major complication following spinal fixation associated with osteoporosis in elderly. However, denosumab is a promising treatment in patients with osteoporosis. The effect of denosumab on pedicle screw fixation is unknown. Therefore, we investigated whether denosumab treatment improves pedicle screw fixation in elderly patients with osteoporosis. METHODS This was a 2-year prospective open-label study. From February 2015 to January 2016, we included 21 patients with postmenopausal osteoporosis who received initial denosumab treatment. At baseline, 12 months, and 24 months, we measured volumetric bone mineral density (BMD) using quantitative computed tomography (QCT) and performed CT-based finite element analysis (FEA). Finite element models of L4 vertebrae were created to analyze the bone strength and screw fixation. RESULTS BMD increased with denosumab treatment. FEA revealed that both pullout strength of pedicle screws and compression force of the vertebra increased significantly at 12 and 24 months following denosumab treatment. Notably, pullout strength showed a stronger correlation with three-dimensional volumetric BMD around pedicle screw placement assessed by QCT (r = 0.83, at 24 months) than with two-dimensional areal BMD assessed by dual energy X-ray absorptiometry (r = 0.35, at 24 months). CONCLUSION To our knowledge, this is the first study to reveal that denosumab treatment achieved strong pedicle screw fixation with an increase in BMD around the screw assessed by QCT and FEA; therefore, denosumab could be useful for osteoporosis treatment during spinal surgery in elderly patients with osteoporosis.
Collapse
Affiliation(s)
- Soji Tani
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan.
| | - Yoshifumi Kudo
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Koki Tsuchiya
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
- Department of Orthopaedic Surgery, Yamanashi Red Cross Hospital, 6663-1 Funatsu Fujikawaguchiko-machi, Minamitsuru-gun, Yamanashi, 401-0301, Japan
| | - Akira Matsuoka
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Hiroshi Maruyama
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Haruka Emori
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
- Department of Orthopaedic Surgery, Showa University Northern Yokohama Hospital, 35-1, Chigasaki-Chuo Tsuzuki-ku, Yokohama, Kanagawa, Japan
| | - Ryo Yamamura
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Chikara Hayakawa
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Masaya Sekimizu
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Yusuke Oshita
- Department of Orthopaedic Surgery, Showa University Northern Yokohama Hospital, 35-1, Chigasaki-Chuo Tsuzuki-ku, Yokohama, Kanagawa, Japan
| | - Tomoyuki Ozawa
- Department of Orthopaedic Surgery, Tokyo Kyosai Hospital, 2-3-8, Nakameguro, Meguro, Tokyo, 153-0061, Japan
| | - Toshiyuki Shirahata
- Department of Orthopaedic Surgery, Showa University Koto Toyosu Hospital, 5-1-38 Toyosu, Koto-ku, Tokyo, 135-8577, Japan
| | - Takashi Nagai
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Tomoaki Toyone
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| | - Katsunori Inagaki
- Department of Orthopaedic Surgery, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8666, Japan
| |
Collapse
|
19
|
Chaudhari AJ, Raynor WY, Gholamrezanezhad A, Werner TJ, Rajapakse CS, Alavi A. Total-Body PET Imaging of Musculoskeletal Disorders. PET Clin 2021; 16:99-117. [PMID: 33218607 PMCID: PMC7684980 DOI: 10.1016/j.cpet.2020.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging of musculoskeletal disorders, including arthritis, infection, osteoporosis, sarcopenia, and malignancies, is often limited when using conventional modalities such as radiography, computed tomography (CT), and MR imaging. As a result of recent advances in Positron Emission Tomography (PET) instrumentation, total-body PET/CT offers a longer axial field-of-view, higher geometric sensitivity, and higher spatial resolution compared with standard PET systems. This article discusses the potential applications of total-body PET/CT imaging in the assessment of musculoskeletal disorders.
Collapse
Affiliation(s)
- Abhijit J Chaudhari
- Department of Radiology, University of California Davis, 4860 Y Street, Sacramento, CA 95825, USA.
| | - William Y Raynor
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA
| | - Ali Gholamrezanezhad
- Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA 90033, USA
| | - Thomas J Werner
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Hong N, Lee DC, Khosla S, Keaveny TM, Rhee Y. Comparison of Vertebral and Femoral Strength Between White and Asian Adults Using Finite Element Analysis of Computed Tomography Scans. J Bone Miner Res 2020; 35:2345-2354. [PMID: 32750185 PMCID: PMC9260814 DOI: 10.1002/jbmr.4149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 11/09/2022]
Abstract
Given non-optimal testing rates for dual-energy X-ray absorptiometry (DXA) and the high use of computed tomography (CT) in some Asian countries, biomechanical computed tomography analysis (BCT)-based bone strength testing, which utilizes previously taken clinical CT scans, may improve osteoporosis testing rates. However, an understanding of ethnic differences in such bone strength measurements between Whites and Asians is lacking, which is an obstacle to clinical interpretation. Using previously taken CT and DXA scans, we analyzed bone strength and bone mineral density (BMD) at the hip and spine in two sex- and age-matched community-based cohorts, aged 40 to 80 years: Whites (Rochester, MN, USA) and Koreans (Seoul, South Korea). For both the spine and femur, the age dependence of bone strength was similar for both groups, White (n = 371; women n = 202, 54.5%) and Korean (n = 396; women n = 199, 50.3%). For both sexes, mean spine strength did not differ between groups, but femur strength was 9% to 14% higher in Whites (p ≤ 0.001), an effect that became non-significant after weight adjustment (p = 0.375). For Koreans of both sexes, the fragile bone strength thresholds for classifying osteoporosis, when derived from regional DXA BMD T-score references, equaled the clinically validated thresholds for Whites (in women and men, femoral strength, 3000 N and 3500 N; vertebral strength 4500 N and 6500 N, respectively). Using these thresholds, classifications for osteoporosis for Koreans based on bone strength versus based on DXA BMD T-scores were consistent (89.1% to 94.4% agreement) at both the hip and spine and for both sexes. The BCT-based, clinically validated bone strength thresholds for Whites also applied to Koreans, which may facilitate clinical interpretation of CT-based bone strength measurements for Koreans. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Namki Hong
- Department of Internal Medicine, Endocrine Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | | | - Sundeep Khosla
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, USA
| | - Yumie Rhee
- Department of Internal Medicine, Endocrine Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Oliviero S, Owen R, Reilly GC, Bellantuono I, Dall'Ara E. Optimization of the failure criterion in micro-Finite Element models of the mouse tibia for the non-invasive prediction of its failure load in preclinical applications. J Mech Behav Biomed Mater 2020; 113:104190. [PMID: 33191174 DOI: 10.1016/j.jmbbm.2020.104190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 01/21/2023]
Abstract
New treatments against osteoporosis require testing in animal models and the mouse tibia is among the most common studied anatomical sites. In vivo micro-Computed Tomography (microCT) based micro-Finite Element (microFE) models can be used for predicting the bone strength non-invasively, after proper validation against experiments. The aim of this study was to evaluate the ability of different microCT-based bone parameters and microFE models to predict tibial structural mechanical properties in compression. Twenty tibiae were scanned at 10.4 μm voxel size and subsequently tested in uniaxial compression at 0.03 mm/s until failure. Stiffness and failure load were measured from the load-displacement curves. Standard morphometric parameters were measured from the microCT images. The spatial distribution of bone mineral content (BMC) was evaluated by dividing the tibia into 40 regions. MicroFE models were generated by converting each microCT image into a voxel-based mesh with homogeneous isotropic material properties. Failure load was estimated by using different failure criteria, and the optimized parameters were selected by minimising the errors with respect to experimental measurements. Experimental and predicted stiffness were moderately correlated (R2 = 0.65, error = 14% ± 8%). Normalized failure load was best predicted by microFE models (R2 = 0.81, error = 9% ± 6%). Failure load was not correlated to the morphometric parameters and weakly correlated with some geometrical parameters (R2 < 0.37). In conclusion, microFE models can improve the current estimation of the mouse tibia structural properties and in this study an optimal failure criterion has been defined. Since it is a non-invasive method, this approach can be applied longitudinally for evaluating temporal changes in the bone strength.
Collapse
Affiliation(s)
- S Oliviero
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, UK; INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK
| | - R Owen
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK; Department of Materials Science and Engineering, University of Sheffield, UK; Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, UK
| | - G C Reilly
- INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK; Department of Materials Science and Engineering, University of Sheffield, UK
| | - I Bellantuono
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, UK; INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK; Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, UK
| | - E Dall'Ara
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, UK; INSIGNEO Institute for in Silico Medicine, University of Sheffield, UK.
| |
Collapse
|
22
|
Keaveny TM, Clarke BL, Cosman F, Orwoll ES, Siris ES, Khosla S, Bouxsein ML. Biomechanical Computed Tomography analysis (BCT) for clinical assessment of osteoporosis. Osteoporos Int 2020; 31:1025-1048. [PMID: 32335687 PMCID: PMC7237403 DOI: 10.1007/s00198-020-05384-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
The surgeon general of the USA defines osteoporosis as "a skeletal disorder characterized by compromised bone strength, predisposing to an increased risk of fracture." Measuring bone strength, Biomechanical Computed Tomography analysis (BCT), namely, finite element analysis of a patient's clinical-resolution computed tomography (CT) scan, is now available in the USA as a Medicare screening benefit for osteoporosis diagnostic testing. Helping to address under-diagnosis of osteoporosis, BCT can be applied "opportunistically" to most existing CT scans that include the spine or hip regions and were previously obtained for an unrelated medical indication. For the BCT test, no modifications are required to standard clinical CT imaging protocols. The analysis provides measurements of bone strength as well as a dual-energy X-ray absorptiometry (DXA)-equivalent bone mineral density (BMD) T-score at the hip and a volumetric BMD of trabecular bone at the spine. Based on both the bone strength and BMD measurements, a physician can identify osteoporosis and assess fracture risk (high, increased, not increased), without needing confirmation by DXA. To help introduce BCT to clinicians and health care professionals, we describe in this review the currently available clinical implementation of the test (VirtuOst), its application for managing patients, and the underlying supporting evidence; we also discuss its main limitations and how its results can be interpreted clinically. Together, this body of evidence supports BCT as an accurate and convenient diagnostic test for osteoporosis in both sexes, particularly when used opportunistically for patients already with CT. Biomechanical Computed Tomography analysis (BCT) uses a patient's CT scan to measure both bone strength and bone mineral density at the hip or spine. Performing at least as well as DXA for both diagnosing osteoporosis and assessing fracture risk, BCT is particularly well-suited to "opportunistic" use for the patient without a recent DXA who is undergoing or has previously undergone CT testing (including hip or spine regions) for an unrelated medical condition.
Collapse
Affiliation(s)
- T M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley, CA, USA.
| | - B L Clarke
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - F Cosman
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - E S Orwoll
- Bone and Mineral Unit, Oregon Health and Science University, Portland, OR, USA
| | - E S Siris
- Toni Stabile Osteoporosis Center, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - S Khosla
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - M L Bouxsein
- Orthopedic Biomechanics Laboratory, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Jeong C, Kim HJ, Lee S, Kang MI, Ha J. Effect of Denosumab on Bone Mineral Density of Hematopoietic Stem Cell Transplantation Recipients. Int J Endocrinol 2020; 2020:3410921. [PMID: 32454821 PMCID: PMC7218957 DOI: 10.1155/2020/3410921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/09/2020] [Accepted: 04/23/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Denosumab is a monoclonal antibody that prevents the development of osteoclasts. The effect of denosumab in solid organ transplant recipients has been elucidated, but its effect in haematopoietic stem cell transplantation recipients has not been studied yet. The aim of this study was to determine the effectiveness and safety of denosumab in haematopoietic stem cell transplantation recipients. METHODS We retrospectively evaluated 33 female patients with osteoporosis (mean age 52.6 ± 9.8 years) following allogeneic haematopoietic stem cell transplantation. Patients were treated with denosumab every 6 months for 12 months. Changes in bone mineral density were evaluated for denosumab-treated patients in a 12-month interval after the first administration of denosumab. RESULTS Significant increases in bone mineral density were observed in all measured skeletal sites including 4.39 ± 6.63% in the lumbar spine (p=0.014), 3.11 ± 7.69% in the femoral neck (p=0.048), and 1.97 ± 6.01% in the total hip (p=0.138). The bone turnover marker serum cross-linked C-terminal telopeptide of type 1 collagen was decreased at 18 months (-51.6 ± 17.6%, p < 0.001). No serious symptomatic hypocalcaemia was observed. Serious adverse drug reactions requiring drug discontinuation were not observed. CONCLUSION Denosumab improved bone mineral density in haematopoietic stem cell transplantation recipients. The use of denosumab could be a good therapeutic option without causing severe adverse effects in recipients of haematopoietic transplantation.
Collapse
Affiliation(s)
- Chaiho Jeong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hee-Je Kim
- Division of Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok Lee
- Division of Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Moo Il Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
24
|
Howe JG, Hill RS, Stroncek JD, Shaul JL, Favell D, Cheng RR, Engelke K, Genant HK, Lee DC, Keaveny TM, Bouxsein ML, Huber B. Treatment of bone loss in proximal femurs of postmenopausal osteoporotic women with AGN1 local osteo-enhancement procedure (LOEP) increases hip bone mineral density and hip strength: a long-term prospective cohort study. Osteoporos Int 2020; 31:921-929. [PMID: 31802158 PMCID: PMC7170985 DOI: 10.1007/s00198-019-05230-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
UNLABELLED This first-in-human study of AGN1 LOEP demonstrated that this minimally-invasive treatment durably increased aBMD in femurs of osteoporotic postmenopausal women. AGN1 resorption was coupled with new bone formation by 12 weeks and that new bone was maintained for at least 5-7 years resulting in substantially increased FEA-estimated femoral strength. INTRODUCTION This first-in-human study evaluated feasibility, safety, and in vivo response to treating proximal femurs of postmenopausal osteoporotic women with a minimally-invasive local osteo-enhancement procedure (LOEP) to inject a resorbable triphasic osteoconductive implant material (AGN1). METHODS This prospective cohort study enrolled 12 postmenopausal osteoporotic (femoral neck T-score ≤ - 2.5) women aged 56 to 89 years. AGN1 LOEP was performed on left femurs; right femurs were untreated controls. Subjects were followed-up for 5-7 years. Outcomes included adverse events, proximal femur areal bone mineral density (aBMD), AGN1 resorption, and replacement with bone by X-ray and CT, and finite element analysis (FEA) estimated hip strength. RESULTS Baseline treated and control femoral neck aBMD was equivalent. Treated femoral neck aBMD increased by 68 ± 22%, 59 ± 24%, and 58 ± 27% over control at 12 and 24 weeks and 5-7 years, respectively (p < 0.001, all time points). Using conservative assumptions, FEA-estimated femoral strength increased by 41%, 37%, and 22% at 12 and 24 weeks and 5-7 years, respectively (p < 0.01, all time points). Qualitative analysis of X-ray and CT scans demonstrated that AGN1 resorption and replacement with bone was nearly complete by 24 weeks. By 5-7 years, AGN1 appeared to be fully resorbed and replaced with bone integrated with surrounding trabecular and cortical bone. No procedure- or device-related serious adverse events (SAEs) occurred. CONCLUSIONS Treating femurs of postmenopausal osteoporotic women with AGN1 LOEP results in a rapid, durable increase in aBMD and femoral strength. These results support the use and further clinical study of this approach in osteoporotic patients at high risk of hip fracture.
Collapse
Affiliation(s)
- J G Howe
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - R S Hill
- AgNovos Healthcare LLC, Rockville, MD, USA.
| | | | - J L Shaul
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - D Favell
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - R R Cheng
- AgNovos Healthcare LLC, Rockville, MD, USA
| | - K Engelke
- Bioclinica-Synarc, Inc., Hamburg, Germany
- FAU University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - H K Genant
- University of California San Francisco, San Francisco, CA, USA
- Bioclinica-Synarc, Inc., Newark, CA, USA
| | - D C Lee
- O.N. Diagnostics, Berkeley, CA, USA
| | - T M Keaveny
- University of California Berkeley, Berkley, CA, USA
| | - M L Bouxsein
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - B Huber
- Mansfield Orthopedics, Morrisville, VT, USA
| |
Collapse
|
25
|
Rajapakse CS, Farid AR, Kargilis DC, Jones BC, Lee JS, Johncola AJ, Batzdorf AS, Shetye SS, Hast MW, Chang G. MRI-based assessment of proximal femur strength compared to mechanical testing. Bone 2020; 133:115227. [PMID: 31926345 PMCID: PMC7096175 DOI: 10.1016/j.bone.2020.115227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Half of the women who sustain a hip fracture would not qualify for osteoporosis treatment based on current DXA-estimated bone mineral density criteria. Therefore, a better approach is needed to determine if an individual is at risk of hip fracture from a fall. The objective of this study was to determine the association between radiation-free MRI-derived bone strength and strain simulations compared to results from direct mechanical testing of cadaveric femora. Imaging was conducted on a 3-Tesla MRI scanner using two sequences: one balanced steady-state free precession sequence with 300 μm isotropic voxel size and one spoiled gradient echo with anisotropic voxel size of 234 × 234 × 1500 μm. Femora were dissected free of soft-tissue and 4350-ohm strain-gauges were securely applied to surfaces at the femoral shaft, inferior neck, greater trochanter, and superior neck. Cadavers were mechanically tested with a hydraulic universal test frame to simulate loading in a sideways fall orientation. Sideways fall forces were simulated on MRI-based finite element meshes and bone stiffness, failure force, and force for plastic deformation were computed. Simulated bone strength metrics from the 300 μm isotropic sequence showed strong agreement with experimentally obtained values of bone strength, with stiffness (r = 0.88, p = 0.0002), plastic deformation point (r = 0.89, p < 0.0001), and failure force (r = 0.92, p < 0.0001). The anisotropic sequence showed similar trends for stiffness, plastic deformation point, and failure force (r = 0.68, 0.70, 0.84; p = 0.02, 0.01, 0.0006, respectively). Surface strain-gauge measurements showed moderate to strong agreement with simulated magnitude strain values at the greater trochanter, superior neck, and inferior neck (r = -0.97, -0.86, 0.80; p ≤0.0001, 0.003, 0.03, respectively). The findings from this study support the use of MRI-based FE analysis of the hip to reliably predict the mechanical competence of the human femur in clinical settings.
Collapse
Affiliation(s)
- Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania, United States of America; Department of Orthopaedic Surgery, University of Pennsylvania, United States of America.
| | - Alexander R Farid
- Department of Radiology, University of Pennsylvania, United States of America
| | - Daniel C Kargilis
- Department of Radiology, University of Pennsylvania, United States of America
| | - Brandon C Jones
- Department of Radiology, University of Pennsylvania, United States of America
| | - Jae S Lee
- Department of Radiology, University of Pennsylvania, United States of America
| | - Alyssa J Johncola
- Department of Radiology, University of Pennsylvania, United States of America
| | | | - Snehal S Shetye
- Department of Orthopaedic Surgery, University of Pennsylvania, United States of America
| | - Michael W Hast
- Department of Orthopaedic Surgery, University of Pennsylvania, United States of America
| | - Gregory Chang
- Department of Radiology, New York University, United States of America
| |
Collapse
|
26
|
Bouxsein ML, Zysset P, Glüer CC, McClung M, Biver E, Pierroz DD, Ferrari SL. Perspectives on the non-invasive evaluation of femoral strength in the assessment of hip fracture risk. Osteoporos Int 2020; 31:393-408. [PMID: 31900541 DOI: 10.1007/s00198-019-05195-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022]
Abstract
UNLABELLED We reviewed the experimental and clinical evidence that hip bone strength estimated by BMD and/or finite element analysis (FEA) reflects the actual strength of the proximal femur and is associated with hip fracture risk and its changes upon treatment. INTRODUCTION The risk of hip fractures increases exponentially with age due to a progressive loss of bone mass, deterioration of bone structure, and increased incidence of falls. Areal bone mineral density (aBMD), measured by dual-energy X-ray absorptiometry (DXA), is the most used surrogate marker of bone strength. However, age-related declines in bone strength exceed those of aBMD, and the majority of fractures occur in those who are not identified as osteoporotic by BMD testing. With hip fracture incidence increasing worldwide, the development of accurate methods to estimate bone strength in vivo would be very useful to predict the risk of hip fracture and to monitor the effects of osteoporosis therapies. METHODS We reviewed experimental and clinical evidence regarding the association between aBMD and/orCT-finite element analysis (FEA) estimated femoral strength and hip fracture risk as well as their changes with treatment. RESULTS Femoral aBMD and bone strength estimates by CT-FEA explain a large proportion of femoral strength ex vivo and predict hip fracture risk in vivo. Changes in femoral aBMD are strongly associated with anti-fracture efficacy of osteoporosis treatments, though comparable data for FEA are currently not available. CONCLUSIONS Hip aBMD and estimated femoral strength are good predictors of fracture risk and could potentially be used as surrogate endpoints for fracture in clinical trials. Further improvements of FEA may be achieved by incorporating trabecular orientations, enhanced cortical modeling, effects of aging on bone tissue ductility, and multiple sideway fall loading conditions.
Collapse
Affiliation(s)
- M L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, and Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - P Zysset
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - C C Glüer
- Section of Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - M McClung
- Oregon Osteoporosis Center, Portland, OR, USA
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - E Biver
- Division of Bone Disease, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - D D Pierroz
- International Osteoporosis Foundation (IOF), Nyon, Switzerland
| | - S L Ferrari
- Division of Bone Disease, Department of Internal Medicine Specialties, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland.
| | | |
Collapse
|
27
|
Costa M, Eltes P, Lazary A, Varga P, Viceconti M, Dall’Ara E. Biomechanical assessment of vertebrae with lytic metastases with subject-specific finite element models. J Mech Behav Biomed Mater 2019; 98:268-290. [DOI: 10.1016/j.jmbbm.2019.06.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 12/25/2022]
|
28
|
Yongyun C, Jingwei Z, Zhiqing L, Wenxiang C, Huiwu L. Andrographolide stimulates osteoblastogenesis and bone formation by inhibiting nuclear factor kappa-Β signaling both in vivo and in vitro. J Orthop Translat 2019; 19:47-57. [PMID: 31844613 PMCID: PMC6896731 DOI: 10.1016/j.jot.2019.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/23/2019] [Accepted: 02/07/2019] [Indexed: 11/23/2022] Open
Abstract
Osteoporosis is a bone disease that is associated with a decrease in bone mineral density, deterioration of bone microarchitecture and increased fracture risk. Currently, available treatments mainly focus on either inhibiting osteoclast function, such as administration of bisphosphonate, calcitonin, oestrogen, selective oestrogen receptor modulator and so on, or stimulating osteoblasts, such as parathyroid hormone, to improve bone mass and skeletal microarchitecture. However, there is no option that is completely satisfactory because of the limitations of monotherapy with either class. Thus, it is highly appealing to investigate novel drugs with both antiresorptive and osteoanabolic activities that have the potential to be more beneficial than monotherapy because of the different mechanism of action. As has been proven in previous study that andrographolide (AP), as a key herbal medicine, could suppress osteoclast formation and function both in vivo and in vitro. The purpose of this present study was to identify the effect of AP on osteoblast differentiation and oestrogen deficiency-induced osteoporosis. It was concluded that AP significantly reduced oestrogen deficiency-induced bone loss in vivo. Furthermore, it was proved that tumor necrosis factor alpha severely impaired bone morphogenetic protein-2 (BMP-2)-induced osteoblast differentiation, and this inhibition could be greatly attenuated by AP. This was further supported by the fact that AP significantly increases the expression of osteoblast-specific markers, including runt-related transcription factor-2, osteocalcin and osteopontin. In addition, molecular analysis revealed that AP greatly ceased tumor necrosis factor alpha-mediated stimulation of nuclear factor kappa-Β activity, whereas overexpression of the nuclear factor kappa-Β subunit p65 reversed the stimulatory effects of AP on osteoblast differentiation. Thus, combined with previous study, AP was demonstrated to be a novel agent with both antiresorptive and osteoanabolic activities and had the potential to be developed as an antiosteoporosis alternative. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE This study provides strong evidence for the identification that AP has both antiresorptive and osteoanabolic activities and thus has great potential to be developed as a novel antiosteoporosis agent.
Collapse
Affiliation(s)
| | | | | | | | - Li Huiwu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People’s Republic of China
| |
Collapse
|
29
|
Tsai JN, Lee H, David NL, Eastell R, Leder BZ. Combination denosumab and high dose teriparatide for postmenopausal osteoporosis (DATA-HD): a randomised, controlled phase 4 trial. Lancet Diabetes Endocrinol 2019; 7:767-775. [PMID: 31447409 PMCID: PMC6980341 DOI: 10.1016/s2213-8587(19)30255-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND In the Denosumab and Teriparatide Administration (DATA) study, we showed that denosumab fully inhibits teriparatide-induced bone resorption while allowing for continued teriparatide-induced bone formation, resulting in larger increases in hip and spine bone mineral density (BMD) than with either drug alone. We aimed to assess whether administration of denosumab with high dose teriparatide would stimulate larger increases in bone mass than those observed in the DATA study. METHODS DATA-HD was an open-label, randomised, controlled phase 4 trial done at Massachusetts General Hospital. Eligible women were postmenopausal women (at least 36 months since last menses or since hysterectomy with a follicle-stimulating hormone concentration of ≥40 U/L) with osteoporosis. Participants were randomly assigned (1:1) to receive teriparatide 20 μg (standard dose) or 40 μg (high dose) daily via subcutaneous injection for 9 months. At 3 months, both groups were started on denosumab 60 mg every 6 months via subcutaneous injection for 12 months. Areal BMD (aBMD) was measured at 0, 3, 9, and 15 months. Treatment was given open label, but outcome assessors were masked. The primary endpoint was percentage change from baseline in spine areal BMD (aBMD) at 15 months. Women who completed at least one study visit after baseline were included in the modified intention-to-treat analysis. Safety was assessed in all randomly assigned participants. This study is registered with ClinicalTrials.gov, number NCT02176382. FINDINGS Between Oct 15, 2014, and June 10, 2016, 269 women were assessed for eligibility. 76 participants were randomly assigned to 20 μg teriparatide (n=39) or 40 μg teriparatide (n=37), of whom 69 completed at least one post-baseline visit. At 15 months, mean spine aBMD had increased to a significantly greater extent in the 40 μg group (17·5% [SD 6·0] increase) than the 20 μg group (9·5% [3·2]; difference 8·1%, 95% CI 5·5 to 10·6, p<0·0001). Mean femoral neck aBMD had also increased to a greater extent in the 40 μg group (6·8% [SD 4·1] increase) than the 20 μg group (4·3% [3·7]; difference 2·5%, 0·5 to 4·5, p=0·04), as did mean total hip aBMD (40 μg group, 6·1% [3·4] increase; 20 μg group, 3·9% [2·9] increase; difference 2·2%, 0·6 to 3·8, p<0·0001). 30 (77%) of 39 participants in the 20 μg group and 29 (78%) of 37 participants in the 40 μg group had an adverse event, and seven (18%) and two (5%) patients had serious adverse events. The most frequent adverse events were joint pain (15 [38%]), muscle cramp (15 [38%]), and fatigue (12 [31%]) in the 20 μg group group and fatigue (14 [38%]), nausea (16 [43%]), and joint pain (17 [46%]) in the 40 μg group. No deaths were reported. INTERPRETATION Combined treatment with teriparatide 40 μg and denosumab increases spine and hip BMD more than standard combination therapy. This large and rapid increase in bone mass suggest that this high dose regimen might provide a method of restoring skeletal integrity in patients with osteoporosis. FUNDING National Institutes of Health and the Dart Foundation.
Collapse
Affiliation(s)
- Joy N Tsai
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Havard Medical School, Boston, MA, USA.
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Havard Medical School, Boston, MA, USA
| | - Natalie L David
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Havard Medical School, Boston, MA, USA
| | - Richard Eastell
- Academic Unit of Bone Metabolism, University of Sheffield, Sheffield, UK
| | - Benjamin Z Leder
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Havard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Stroncek JD, Shaul JL, Favell D, Hill RS, Huber BM, Howe JG, Bouxsein ML. In vitro injection of osteoporotic cadaveric femurs with a triphasic calcium-based implant confers immediate biomechanical integrity. J Orthop Res 2019; 37:908-915. [PMID: 30793358 PMCID: PMC6593990 DOI: 10.1002/jor.24239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/21/2019] [Indexed: 02/04/2023]
Abstract
Current pharmaceutical therapies can reduce hip fractures by up to 50%, but compliance to treatment is low and therapies take up to 18 months to reduce risk. Thus, alternative or complementary approaches to reduce the risk of hip fracture are needed. The AGN1 local osteo-enhancement procedure (LOEP) is one such alternative approach, as it is designed to locally replace bone lost due to osteoporosis and provide immediate biomechanical benefit. This in vitro study evaluated the initial biomechanical impact of this treatment on human cadaveric femurs. We obtained 45 pairs of cadaveric femurs from women aged 77.8 ± 8.8 years. One femur of each pair was treated, while the contralateral femur served as an untreated control. Treatment included debridement, irrigation/suction, and injection of a triphasic calcium-based implant (AGN1). Mechanical testing of the femora was performed in a sideways fall configuration 24 h after treatment. Of the 45 pairs, 4 had normal, 16 osteopenic, and 25 osteoporotic BMD T-scores. Altogether, treatment increased failure load on average by 20.5% (p < 0.0001). In the subset of osteoporotic femurs, treatment increased failure load by 26% and work to failure by 45% (p < 0.01 for both). Treatment did not significantly affect stiffness in any group. These findings provide evidence that local delivery of the triphasic calcium-based implant in the proximal femur is technically feasible and provides immediate biomechanical benefit. Our results provide strong rationale for additional studies investigating the utility of this approach for reducing the risk of hip fracture. © 2019 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.
Collapse
Affiliation(s)
- John D. Stroncek
- AgNovos Healthcare7301 Calhoun Place Suite 100RockvilleMaryland 20855
| | - Jonathan L. Shaul
- AgNovos Healthcare7301 Calhoun Place Suite 100RockvilleMaryland 20855
| | - Dominique Favell
- AgNovos Healthcare7301 Calhoun Place Suite 100RockvilleMaryland 20855
| | - Ronald S. Hill
- AgNovos Healthcare7301 Calhoun Place Suite 100RockvilleMaryland 20855
| | - Bryan M. Huber
- Copley Hospital528 Washington HwyMorrisvilleVermont 05661
| | - James G. Howe
- AgNovos Healthcare7301 Calhoun Place Suite 100RockvilleMaryland 20855
| | - Mary L. Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Dept. of Orthopedic SurgeryHarvard Medical School330 Brookline AveBostonMassachusetts 02215
| |
Collapse
|
31
|
Rajapakse CS, Chang G. Micro-Finite Element Analysis of the Proximal Femur on the Basis of High-Resolution Magnetic Resonance Images. Curr Osteoporos Rep 2018; 16:657-664. [PMID: 30232586 PMCID: PMC6234089 DOI: 10.1007/s11914-018-0481-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Hip fractures have catastrophic consequences. The purpose of this article is to review recent developments in high-resolution magnetic resonance imaging (MRI)-guided finite element analysis (FEA) of the hip as a means to determine subject-specific bone strength. RECENT FINDINGS Despite the ability of DXA to predict hip fracture, the majority of fractures occur in patients who do not have BMD T scores less than - 2.5. Therefore, without other detection methods, these individuals go undetected and untreated. Of methods available to image the hip, MRI is currently the only one capable of depicting bone microstructure in vivo. Availability of microstructural MRI allows generation of patient-specific micro-finite element models that can be used to simulate real-life loading conditions and determine bone strength. MRI-based FEA enables radiation-free approach to assess hip fracture strength. With further validation, this technique could become a potential clinical tool in managing hip fracture risk.
Collapse
Affiliation(s)
- Chamith S Rajapakse
- Departments of Radiology and Orthopaedic Surgery, University of Pennsylvania, 3400 Spruce Street, 1 Founders Building, Philadelphia, PA, 19104, USA.
| | - Gregory Chang
- Department of Radiology, New York University, 426 1st Avenue, New York, NY, 10010, USA
| |
Collapse
|
32
|
Reddi S, Mada SB, Kumar N, Kumar R, Ahmad N, Karvande A, Kapila S, Kapila R, Trivedi R. Antiosteopenic Effect of Buffalo Milk Casein-Derived Peptide (NAVPITPTL) in Ovariectomized Rats. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9763-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Abstract
Denosumab (Prolia®; Pralia®) is a human monoclonal antibody targeting the key bone resorption mediator RANKL. The drug is administered via subcutaneous injection once every 6 months and is approved for various indications, including the treatment of postmenopausal (PM) women with osteoporosis at increased/high risk of fracture or failure/intolerance of other osteoporosis therapies (indications featured in this review). Denosumab showed benefit in several phase 3 or 4 studies in PM women with osteoporosis or low bone mineral density (BMD), including the pivotal 3-year double-blind FREEDOM trial and its 7-year open-label extension. Denosumab reduced the risk of vertebral, nonvertebral and hip fractures and increased BMD across skeletal sites versus placebo in FREEDOM, with these benefits maintained over up to 10 years' therapy in the extension. The drug was also more effective in improving BMD than bisphosphonates, including in women switched from a bisphosphonate regimen, in 1-year trials; however, whether these differences translate into differences in anti-fracture efficacy is unclear. Denosumab was generally well tolerated over up to 10 years' treatment, although an increased risk of multiple vertebral fractures was observed after discontinuation of the drug. Thus, denosumab is a key treatment option for PM women with osteoporosis who have an increased/high risk of fracture or failure/intolerance of other osteoporosis therapies, although the potential for multiple vertebral fractures to occur after discontinuation of the drug requires consideration of subsequent management options.
Collapse
Affiliation(s)
- Emma D Deeks
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
34
|
Yang L, Parimi N, Orwoll ES, Black DM, Schousboe JT, Eastell R. Association of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the Osteoporotic Fractures in Men (MrOS) study. Osteoporos Int 2018; 29:643-651. [PMID: 29167969 PMCID: PMC6959538 DOI: 10.1007/s00198-017-4319-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/15/2017] [Indexed: 02/04/2023]
Abstract
UNLABELLED Finite element model can estimate bone strength better than BMD. This study used such a model to determine its association with hip fracture risk and found that the strength estimate provided limited improvement over the hip BMDs in predicting femoral neck (FN) fracture risk only. INTRODUCTION Bone fractures occur only when it is loaded beyond its ultimate strength. The goal of this study was to determine the association of femoral strength, as estimated by finite element (FE) analysis of DXA scans, with incident hip fracture as a single condition or with femoral neck (FN) and trochanter (TR) fractures separately in older men. METHODS This prospective case-cohort study included 91 FN and 64 TR fracture cases and a random sample of 500 men (14 had a hip fracture) from the Osteoporotic Fractures in Men study during a mean ± SD follow-up of 7.7 ± 2.2 years. We analysed the baseline DXA scans of the hip using a validated plane-stress, linear-elastic FE model of the proximal femur and estimated the femoral strength during a sideways fall. RESULTS The estimated strength was significantly (P < 0.05) associated with hip fracture independent of the TR and total hip (TH) BMDs but not FN BMD, and combining the strength with BMD did not improve the hip fracture prediction. The strength estimate was associated with FN fractures independent of the FN, TR and TH BMDs; the age-BMI-BMD adjusted hazard ratio (95% CI) per SD decrease of the strength was 1.68 (1.07-2.64), 2.38 (1.57, 3.61) and 2.04 (1.34, 3.11), respectively. This association with FN fracture was as strong as FN BMD (Harrell's C index for the strength 0.81 vs. FN BMD 0.81) and stronger than TR and TH BMDs (0.8 vs. 0.78 and 0.81 vs. 0.79). The strength's association with TR fracture was not independent of hip BMD. CONCLUSIONS Although the strength estimate provided additional information over the hip BMDs, its improvement in predictive ability over the hip BMDs was confined to FN fracture only and limited.
Collapse
Affiliation(s)
- L Yang
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK.
| | - N Parimi
- California Pacific Medical Center Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - E S Orwoll
- Bone and Mineral Unit, Oregon Health & Science University, Portland, OR, USA
| | - D M Black
- California Pacific Medical Center Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - J T Schousboe
- Division of Rheumatology, Park Nicollet Health Services and HealthPartners Institute, HealthPartners, Minneapolis, MN, USA
| | - R Eastell
- Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
35
|
Gifre L, Humbert L, Muxi A, Del Rio L, Vidal J, Portell E, Monegal A, Guañabens N, Peris P. Analysis of the evolution of cortical and trabecular bone compartments in the proximal femur after spinal cord injury by 3D-DXA. Osteoporos Int 2018; 29:201-209. [PMID: 29043391 DOI: 10.1007/s00198-017-4268-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/11/2017] [Indexed: 01/18/2023]
Abstract
UNLABELLED Marked trabecular and cortical bone loss was observed at the proximal femur short-term after spinal cord injury (SCI). 3D-DXA provided measurement of vBMD evolution at both femoral compartments and cortical thinning, thereby suggesting that this technique could be useful for bone analysis in these patients. INTRODUCTION SCI is associated with a marked increase in bone loss and risk of osteoporosis development short-term after injury. 3D-DXA is a new imaging analysis technique providing 3D analysis of the cortical and trabecular bone from DXA scans. The aim of this study was to assess the evolution of trabecular macrostructure and cortical bone using 3D-DXA in patients with recent SCI followed over 12 months. METHODS Sixteen males with recent SCI (< 3 months since injury) and without antiosteoporotic treatment were included. Clinical assessment, bone mineral density (BMD) measurements by DXA, and 3D-DXA evaluation at proximal femur (analyzing the integral, trabecular and cortical volumetric BMD [vBMD] and cortical thickness) were performed at baseline and at 6 and 12 months of follow-up. RESULTS vBMD significantly decreased at integral, trabecular, and cortical compartments at 6 months (- 8.8, - 11.6, and - 2.4%), with a further decrease at 12 months, resulting in an overall decrease of - 16.6, - 21.9, and - 5.0%, respectively. Cortical thickness also decreased at 6 and 12 months (- 8.0 and - 11.4%), with the maximal decrease being observed during the first 6 months. The mean BMD losses by DXA at femoral neck and total femur were - 17.7 and - 21.1%, at 12 months, respectively. CONCLUSIONS Marked trabecular and cortical bone loss was observed at the proximal femur short-term after SCI. 3D-DXA measured vBMD evolution at both femoral compartments and cortical thinning, providing better knowledge of their differential contributory role to bone strength and probably of the effect of therapy in these patients.
Collapse
Affiliation(s)
- L Gifre
- Rheumatology Department, Hospital Clinic of Barcelona, IDIBAPS, CIBERehd, Metabolic Bone Diseases Unit, Service of Rheumatology, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Rheumatology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - A Muxi
- Nuclear Medicine Department, Hospital Clínic of Barcelona, Barcelona, Spain
| | | | - J Vidal
- Guttmann Neurorehabilitation Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - E Portell
- Guttmann Neurorehabilitation Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - A Monegal
- Rheumatology Department, Hospital Clinic of Barcelona, IDIBAPS, CIBERehd, Metabolic Bone Diseases Unit, Service of Rheumatology, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - N Guañabens
- Rheumatology Department, Hospital Clinic of Barcelona, IDIBAPS, CIBERehd, Metabolic Bone Diseases Unit, Service of Rheumatology, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - P Peris
- Rheumatology Department, Hospital Clinic of Barcelona, IDIBAPS, CIBERehd, Metabolic Bone Diseases Unit, Service of Rheumatology, University of Barcelona, Villarroel 170, 08036, Barcelona, Spain.
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Vertebral fractures are the most common osteoporotic fracture and result in functional decline and excess mortality. Dual-energy x-ray absorptiometry (DXA) is the gold standard for the diagnosis of osteoporosis to identify patients at risk for fragility fractures; however, advances in imaging have expanded the role of computed tomography (CT) and magnetic resonance imaging (MRI) in evaluating bone health. RECENT FINDINGS The utility of CT and MRI in the assessment of bone density is starting to gain traction, particularly when used opportunistically. DXA, conventional radiography, CT, and MRI can all be used to assess for vertebral fractures, and MRI can determine the acuity of fractures. Finally, advances in imaging allow for non-invasive assessment of measures of bone quality, including microarchitecture, bone strength, and bone turnover, to help identify and treat at-risk patients prior to sustaining a vertebral fracture. CT and MRI techniques remain primarily research tools to assess metabolic bone dysfunction, while use of DXA can be clinically expanded beyond measurement of bone density to assess for vertebral fractures and bone architecture to improve fracture risk assessment and guide treatment.
Collapse
Affiliation(s)
- Sharon H Chou
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA, 02115, USA
| | - Meryl S LeBoff
- Harvard Medical School, Boston, MA, 02115, USA.
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Antioxidative peptide from milk exhibits antiosteopenic effects through inhibition of oxidative damage and bone-resorbing cytokines in ovariectomized rats. Nutrition 2017; 43-44:21-31. [DOI: 10.1016/j.nut.2017.06.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/02/2017] [Accepted: 06/17/2017] [Indexed: 12/21/2022]
|
38
|
McClung MR, Lippuner K, Brandi ML, Zanchetta JR, Bone HG, Chapurlat R, Hans D, Wang A, Zapalowski C, Libanati C. Effect of denosumab on trabecular bone score in postmenopausal women with osteoporosis. Osteoporos Int 2017; 28:2967-2973. [PMID: 28748386 DOI: 10.1007/s00198-017-4140-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/28/2017] [Indexed: 01/13/2023]
Abstract
UNLABELLED Trabecular bone score (TBS) assesses bone quality in the lumbar spine using dual-energy X-ray absorptiometry (DXA) scans. In postmenopausal women with osteoporosis, denosumab significantly improved TBS independently of bone mineral density (BMD). This practical technique may have a role in managing patients with osteoporosis. INTRODUCTION TBS, a gray-level texture index determined from lumbar spine DXA scans, correlates with bone microarchitecture and enhances assessment of vertebral fracture risk independently of BMD. In the FREEDOM study, denosumab increased BMD and reduced new vertebral fractures in postmenopausal women with osteoporosis. This retrospective analysis explored the effect of denosumab on TBS and the association between TBS and BMD in FREEDOM. METHODS Postmenopausal women with lumbar spine or total hip BMD T-score <-2.5 and -4.0 or higher at both sites received placebo or denosumab 60 mg subcutaneously every 6 months. TBS indices were determined from DXA scans at baseline and months 12, 24, and 36 in a subset of 285 women (128 placebo, 157 denosumab) who had TBS values at baseline and ≥1 postbaseline visit. RESULTS Baseline characteristics were comparable between treatment groups; mean (SD) lumbar spine BMD T-score was -2.79 (0.64), and mean (standard deviation [SD]) TBS was 1.200 (0.101) overall. In the placebo group, BMD and TBS increased by ≤0.2% or decreased from baseline at each visit. In the denosumab group, progressive increases from baseline at 12, 24, and 36 months were observed for BMD (5.7, 7.8, and 9.8%) and TBS (1.4, 1.9, and 2.4%). Percentage changes in TBS were statistically significant compared with baseline (p < 0.001) and placebo (p ≤ 0.014). TBS was largely unrelated to BMD, regardless of treatment, either at baseline or for annual changes from baseline (all r 2 ≤ 0.06). CONCLUSIONS In postmenopausal women with osteoporosis, denosumab significantly improved TBS independently of BMD.
Collapse
Affiliation(s)
- M R McClung
- Oregon Osteoporosis Center, Portland, OR, USA.
- Institute for Health and Ageing, Australian Catholic University, Melbourne, Australia.
| | | | | | - J R Zanchetta
- Instituto de Investigaciones Metabólicas, Buenos Aires, Argentina
| | - H G Bone
- Michigan Bone and Mineral Clinic, Detroit, MI, USA
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Hôpital Edouard Herriot, Lyon, France
| | - D Hans
- Lausanne University Hospital, Center of Bone Diseases, Lausanne, Switzerland
| | - A Wang
- Amgen Inc., Thousand Oaks, CA, USA
| | - C Zapalowski
- Amgen Inc., Thousand Oaks, CA, USA
- Radius Health, Waltham, MA, USA
| | - C Libanati
- Amgen Inc., Thousand Oaks, CA, USA
- UCB Pharma, Brussels, Belgium
| |
Collapse
|
39
|
Langdahl BL, Libanati C, Crittenden DB, Bolognese MA, Brown JP, Daizadeh NS, Dokoupilova E, Engelke K, Finkelstein JS, Genant HK, Goemaere S, Hyldstrup L, Jodar-Gimeno E, Keaveny TM, Kendler D, Lakatos P, Maddox J, Malouf J, Massari FE, Molina JF, Ulla MR, Grauer A. Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet 2017; 390:1585-1594. [PMID: 28755782 DOI: 10.1016/s0140-6736(17)31613-6] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Previous bisphosphonate treatment attenuates the bone-forming effect of teriparatide. We compared the effects of 12 months of romosozumab (AMG 785), a sclerostin monoclonal antibody, versus teriparatide on bone mineral density (BMD) in women with postmenopausal osteoporosis transitioning from bisphosphonate therapy. METHODS This randomised, phase 3, open-label, active-controlled study was done at 46 sites in North America, Latin America, and Europe. We enrolled women (aged ≥55 to ≤90 years) with postmenopausal osteoporosis who had taken an oral bisphosphonate for at least 3 years before screening and alendronate the year before screening; an areal BMD T score of -2·5 or lower at the total hip, femoral neck, or lumbar spine; and a history of fracture. Patients were randomly assigned (1:1) via an interactive voice response system to receive subcutaneous romosozumab (210 mg once monthly) or subcutaneous teriparatide (20 μg once daily). The primary endpoint was percentage change from baseline in areal BMD by dual-energy x-ray absorptiometry at the total hip through month 12 (mean of months 6 and 12), which used a linear mixed effects model for repeated measures and represented the mean treatment effect at months 6 and 12. All randomised patients with a baseline measurement and at least one post-baseline measurement were included in the efficacy analysis. This trial is registered with ClinicalTrials.gov, number NCT01796301. FINDINGS Between Jan 31, 2013, and April 29, 2014, 436 patients were randomly assigned to romosozumab (n=218) or teriparatide (n=218). 206 patients in the romosozumab group and 209 in the teriparatide group were included in the primary efficacy analysis. Through 12 months, the mean percentage change from baseline in total hip areal BMD was 2·6% (95% CI 2·2 to 3·0) in the romosozumab group and -0·6% (-1·0 to -0·2) in the teriparatide group; difference 3·2% (95% CI 2·7 to 3·8; p<0·0001). The frequency of adverse events was generally balanced between treatment groups. The most frequently reported adverse events were nasopharyngitis (28 [13%] of 218 in the romosozumab group vs 22 [10%] of 214 in the teriparatide group), hypercalcaemia (two [<1%] vs 22 [10%]), and arthralgia (22 [10%] vs 13 [6%]). Serious adverse events were reported in 17 (8%) patients on romosozumab and in 23 (11%) on teriparatide; none were judged treatment related. There were six (3%) patients in the romosozumab group compared with 12 (6%) in the teriparatide group with adverse events leading to investigational product withdrawal. INTERPRETATION Transition to a bone-forming agent is common practice in patients treated with bisphosphonates, such as those who fracture while on therapy. In such patients, romosozumab led to gains in hip BMD that were not observed with teriparatide. These data could inform clinical decisions for patients at high risk of fracture. FUNDING Amgen, Astellas, and UCB Pharma.
Collapse
Affiliation(s)
| | | | | | | | - Jacques P Brown
- Laval University and CHU de Québec (CHUL) Research Centre, Quebec City, QC, Canada
| | | | | | - Klaus Engelke
- BioClinica, Hamburg, Germany; Institute of Medical Physics, University of Erlangen, Erlangen, Germany
| | | | - Harry K Genant
- Department of Radiology, University of California, San Francisco, CA, USA
| | | | | | - Esteban Jodar-Gimeno
- Servicio de Endocrinología, Hospital Universitario Quirón Salud, Universidad Europea de Madrid, Madrid, Spain
| | | | - David Kendler
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Peter Lakatos
- Department of Medicine, Semmelweis University, Budapest, Hungary
| | | | - Jorge Malouf
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fabio E Massari
- Instituto de Investigaciones Metabólicas, Buenos Aires, Argentina
| | | | - Maria Rosa Ulla
- Instituto Latinoamericano de Investigaciones Médicas, Córdoba, Argentina
| | | |
Collapse
|
40
|
Keaveny TM, Crittenden DB, Bolognese MA, Genant HK, Engelke K, Oliveri B, Brown JP, Langdahl BL, Yan C, Grauer A, Libanati C. Greater Gains in Spine and Hip Strength for Romosozumab Compared With Teriparatide in Postmenopausal Women With Low Bone Mass. J Bone Miner Res 2017; 32:1956-1962. [PMID: 28543940 DOI: 10.1002/jbmr.3176] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/09/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022]
Abstract
Romosozumab is a monoclonal antibody that inhibits sclerostin and has been shown to reduce the risk of fractures within 12 months. In a phase II, randomized, placebo-controlled clinical trial of treatment-naïve postmenopausal women with low bone mass, romosozumab increased bone mineral density (BMD) at the hip and spine by the dual effect of increasing bone formation and decreasing bone resorption. In a substudy of that trial, which included placebo and teriparatide arms, here we investigated whether those observed increases in BMD also resulted in improvements in estimated strength, as assessed by finite element analysis. Participants received blinded romosozumab s.c. (210 mg monthly) or placebo, or open-label teriparatide (20 μg daily) for 12 months. CT scans, obtained at the lumbar spine (n = 82) and proximal femur (n = 46) at baseline and month 12, were analyzed with finite element software (VirtuOst, O.N. Diagnostics) to estimate strength for a simulated compression overload for the spine (L1 vertebral body) and a sideways fall for the proximal femur, all blinded to treatment assignment. We found that, at month 12, vertebral strength increased more for romosozumab compared with both teriparatide (27.3% versus 18.5%; p = 0.005) and placebo (27.3% versus -3.9%; p < 0.0001); changes in femoral strength for romosozumab showed similar but smaller changes, increasing more with romosozumab versus teriparatide (3.6% versus -0.7%; p = 0.027), and trending higher versus placebo (3.6% versus -0.1%; p = 0.059). Compartmental analysis revealed that the bone-strengthening effects for romosozumab were associated with positive contributions from both the cortical and trabecular bone compartments at both the lumbar spine and hip. Taken together, these findings suggest that romosozumab may offer patients with osteoporosis a new bone-forming therapeutic option that increases both vertebral and femoral strength within 12 months. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | | | | | | | - Klaus Engelke
- Bioclinica, Hamburg, Germany, and Institute of Medical Physics, University of Erlangen, Erlangen, Germany
| | | | - Jacques P Brown
- CHU de Québec Research Centre and Laval University, Québec City, QC, Canada
| | | | | | | | | |
Collapse
|
41
|
Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation. Curr Opin Rheumatol 2017; 29:402-409. [PMID: 28376059 DOI: 10.1097/bor.0000000000000405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Palanca M, Bodey AJ, Giorgi M, Viceconti M, Lacroix D, Cristofolini L, Dall'Ara E. Local displacement and strain uncertainties in different bone types by digital volume correlation of synchrotron microtomograms. J Biomech 2017; 58:27-36. [DOI: 10.1016/j.jbiomech.2017.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 04/01/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
|
43
|
Snyder PJ, Kopperdahl DL, Stephens-Shields AJ, Ellenberg SS, Cauley JA, Ensrud KE, Lewis CE, Barrett-Connor E, Schwartz AV, Lee DC, Bhasin S, Cunningham GR, Gill TM, Matsumoto AM, Swerdloff RS, Basaria S, Diem SJ, Wang C, Hou X, Cifelli D, Dougar D, Zeldow B, Bauer DC, Keaveny TM. Effect of Testosterone Treatment on Volumetric Bone Density and Strength in Older Men With Low Testosterone: A Controlled Clinical Trial. JAMA Intern Med 2017; 177:471-479. [PMID: 28241231 PMCID: PMC5433755 DOI: 10.1001/jamainternmed.2016.9539] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE As men age, they experience decreased serum testosterone concentrations, decreased bone mineral density (BMD), and increased risk of fracture. OBJECTIVE To determine whether testosterone treatment of older men with low testosterone increases volumetric BMD (vBMD) and estimated bone strength. DESIGN, SETTING, AND PARTICIPANTS Placebo-controlled, double-blind trial with treatment allocation by minimization at 9 US academic medical centers of men 65 years or older with 2 testosterone concentrations averaging less than 275 ng/L participating in the Testosterone Trials from December 2011 to June 2014. The analysis was a modified intent-to-treat comparison of treatment groups by multivariable linear regression adjusted for balancing factors as required by minimization. INTERVENTIONS Testosterone gel, adjusted to maintain the testosterone level within the normal range for young men, or placebo gel for 1 year. MAIN OUTCOMES AND MEASURES Spine and hip vBMD was determined by quantitative computed tomography at baseline and 12 months. Bone strength was estimated by finite element analysis of quantitative computed tomography data. Areal BMD was assessed by dual energy x-ray absorptiometry at baseline and 12 months. RESULTS There were 211 participants (mean [SD] age, 72.3 [5.9] years; 86% white; mean [SD] body mass index, 31.2 [3.4]). Testosterone treatment was associated with significantly greater increases than placebo in mean spine trabecular vBMD (7.5%; 95% CI, 4.8% to 10.3% vs 0.8%; 95% CI, -1.9% to 3.4%; treatment effect, 6.8%; 95% CI, 4.8%-8.7%; P < .001), spine peripheral vBMD, hip trabecular and peripheral vBMD, and mean estimated strength of spine trabecular bone (10.8%; 95% CI, 7.4% to 14.3% vs 2.4%; 95% CI, -1.0% to 5.7%; treatment effect, 8.5%; 95% CI, 6.0%-10.9%; P < .001), spine peripheral bone, and hip trabecular and peripheral bone. The estimated strength increases were greater in trabecular than peripheral bone and greater in the spine than hip. Testosterone treatment increased spine areal BMD but less than vBMD. CONCLUSIONS AND RELEVANCE Testosterone treatment for 1 year of older men with low testosterone significantly increased vBMD and estimated bone strength, more in trabecular than peripheral bone and more in the spine than hip. A larger, longer trial could determine whether this treatment also reduces fracture risk. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00799617.
Collapse
Affiliation(s)
- Peter J Snyder
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | - Alisa J Stephens-Shields
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Susan S Ellenberg
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jane A Cauley
- Department of Epidemiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Kristine E Ensrud
- Division of Epidemiology and Community Health, Department of Medicine, University of Minnesota, Minneapolis.,Minneapolis VA Health Care System, Minneapolis
| | - Cora E Lewis
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham
| | - Elizabeth Barrett-Connor
- Division of Epidemiology, Department of Family and Preventive Medicine, University of California, San Diego, School of Medicine, La Jolla
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California, San Francisco
| | | | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Glenn R Cunningham
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, Texas.,Baylor St. Luke's Medical Center, Houston, Texas
| | - Thomas M Gill
- Division of Geriatric Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Alvin M Matsumoto
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Puget Sound Health Care System, University of Washington School of Medicine, Seattle.,Division of Gerontology and Geriatric Medicine, Department of Internal Medicine, University of Washington School of Medicine, Seattle
| | - Ronald S Swerdloff
- Division of Endocrinology, Harbor-University of California at Los Angeles Medical Center, Torrance.,Los Angeles Biomedical Research Institute, Torrance, California
| | - Shehzad Basaria
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Susan J Diem
- Division of Epidemiology and Community Health, Department of Medicine, University of Minnesota, Minneapolis
| | - Christina Wang
- Division of Endocrinology, Harbor-University of California at Los Angeles Medical Center, Torrance.,Los Angeles Biomedical Research Institute, Torrance, California
| | - Xiaoling Hou
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Denise Cifelli
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Darlene Dougar
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Bret Zeldow
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Douglas C Bauer
- Department of Medicine, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California, Berkeley
| |
Collapse
|
44
|
McClung MR. Denosumab for the treatment of osteoporosis. Osteoporos Sarcopenia 2017; 3:8-17. [PMID: 30775498 PMCID: PMC6372782 DOI: 10.1016/j.afos.2017.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Denosumab, a specific inhibitor of RANK ligand, is a novel therapy for postmenopausal osteoporosis and related disorders. An extensive clinical development program has evaluated the clinical efficacy and safety of denosumab with several thousand patients being followed for up to 10 years. Combined with more than six years of postmarketing experience, these studies provide substantial confidence that denosumab is a convenient and appropriate treatment for patients, including Asians, at high risk for fracture. This review will summarize the clinical development of denosumab and lessons learned since its approval for clinical use in 2010.
Collapse
Affiliation(s)
- Michael R. McClung
- Institute of Health and Ageing, Australian Catholic University, Melbourne, Australia
- Oregon Osteoporosis Center, 2881 NW Cumberland Road, Portland, OR 97210, USA
| |
Collapse
|
45
|
Herrera S, Diez-Perez A. Clinical experience with microindentation in vivo in humans. Bone 2017; 95:175-182. [PMID: 27840302 DOI: 10.1016/j.bone.2016.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 12/28/2022]
Abstract
Densitometry and imaging techniques are currently used in clinical settings to measure bone quantity and spatial structure. Recently, Reference Point Indentation has opened the possibility of directly assessing the mechanical characteristics of cortical bone in living individuals, adding a new dimension to the assessment of bone strength. Impact microindentation was specifically developed for clinical studies and has been tested in several populations where there are discrepancies between bone density and fracture propensity, such as type 2 diabetes, atypical femoral fracture, stress fractures, glucocorticoid treatment, patients with osteopenia and fragility fractures, and individuals infected with HIV, among others. Microindentation will complement, not replace, existing bone analysis methods, particularly where bone mineral density does not fully explain fracture propensity. The available evidence provides solid proof of concept; future studies will fully define the role of microindentation for the assessment of bone health both in clinics and in research.
Collapse
Affiliation(s)
- Sabina Herrera
- Department of Internal Medicine, Hospital del Mar Institute of Medical Investigation, Autonomous University of Barcelona, Barcelona, Spain
| | - Adolfo Diez-Perez
- Department of Internal Medicine, Hospital del Mar Institute of Medical Investigation, Autonomous University of Barcelona, Barcelona, Spain.
| |
Collapse
|
46
|
|
47
|
Poole KES, Skingle L, Gee AH, Turmezei TD, Johannesdottir F, Blesic K, Rose C, Vindlacheruvu M, Donell S, Vaculik J, Dungl P, Horak M, Stepan JJ, Reeve J, Treece GM. Focal osteoporosis defects play a key role in hip fracture. Bone 2017; 94:124-134. [PMID: 27777119 PMCID: PMC5135225 DOI: 10.1016/j.bone.2016.10.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/05/2016] [Accepted: 10/20/2016] [Indexed: 02/02/2023]
Abstract
BACKGROUND Hip fractures are mainly caused by accidental falls and trips, which magnify forces in well-defined areas of the proximal femur. Unfortunately, the same areas are at risk of rapid bone loss with ageing, since they are relatively stress-shielded during walking and sitting. Focal osteoporosis in those areas may contribute to fracture, and targeted 3D measurements might enhance hip fracture prediction. In the FEMCO case-control clinical study, Cortical Bone Mapping (CBM) was applied to clinical computed tomography (CT) scans to define 3D cortical and trabecular bone defects in patients with acute hip fracture compared to controls. Direct measurements of trabecular bone volume were then made in biopsies of target regions removed at operation. METHODS The sample consisted of CT scans from 313 female and 40 male volunteers (158 with proximal femoral fracture, 145 age-matched controls and 50 fallers without hip fracture). Detailed Cortical Bone Maps (c.5580 measurement points on the unfractured hip) were created before registering each hip to an average femur shape to facilitate statistical parametric mapping (SPM). Areas where cortical and trabecular bone differed from controls were visualised in 3D for location, magnitude and statistical significance. Measures from the novel regions created by the SPM process were then tested for their ability to classify fracture versus control by comparison with traditional CT measures of areal Bone Mineral Density (aBMD). In women we used the surgical classification of fracture location ('femoral neck' or 'trochanteric') to discover whether focal osteoporosis was specific to fracture type. To explore whether the focal areas were osteoporotic by histological criteria, we used micro CT to measure trabecular bone parameters in targeted biopsies taken from the femoral heads of 14 cases. RESULTS Hip fracture patients had distinct patterns of focal osteoporosis that determined fracture type, and CBM measures classified fracture type better than aBMD parameters. CBM measures however improved only minimally on aBMD for predicting any hip fracture and depended on the inclusion of trabecular bone measures alongside cortical regions. Focal osteoporosis was confirmed on biopsy as reduced sub-cortical trabecular bone volume. CONCLUSION Using 3D imaging methods and targeted bone biopsy, we discovered focal osteoporosis affecting trabecular and cortical bone of the proximal femur, among men and women with hip fracture.
Collapse
Affiliation(s)
- Kenneth E S Poole
- Department of Medicine, University of Cambridge and Addenbrooke's Hospital, Hills Road, Cambridge, UK.
| | - Linda Skingle
- Department of Medicine, University of Cambridge and Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Andrew H Gee
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Thomas D Turmezei
- Department of Medicine, University of Cambridge and Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Fjola Johannesdottir
- Department of Medicine, University of Cambridge and Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Karen Blesic
- Department of Medicine, University of Cambridge and Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Collette Rose
- Department of Medicine, University of Cambridge and Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | | | - Simon Donell
- Department of Orthopaedics, Norfolk & Norwich University Hospital, Norwich, UK
| | - Jan Vaculik
- Department of Orthopaedics, Faculty of Medicine, Charles University and Bulovka Hospital, Prague, Czech Republic
| | - Pavel Dungl
- Department of Orthopaedics, Faculty of Medicine, Charles University and Bulovka Hospital, Prague, Czech Republic
| | - Martin Horak
- Department of Radiology, Homolka Hospital, Prague, Czech Republic
| | - Jan J Stepan
- Faculty of Medicine 1, Charles University and Institute of Rheumatology, Prague, Czech Republic
| | - Jonathan Reeve
- BOTNAR Research Institute, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences University of Oxford, UK
| | - Graham M Treece
- Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
48
|
Ishikawa K, Nagai T, Sakamoto K, Ohara K, Eguro T, Ito H, Toyoshima Y, Kokaze A, Toyone T, Inagaki K. High bone turnover elevates the risk of denosumab-induced hypocalcemia in women with postmenopausal osteoporosis. Ther Clin Risk Manag 2016; 12:1831-1840. [PMID: 27980413 PMCID: PMC5147395 DOI: 10.2147/tcrm.s123172] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hypocalcemia is the most common major adverse event in patients with osteoporosis receiving the bone resorption inhibitor denosumab; however, limited information is available regarding risk factors of hypocalcemia. Therefore, this study aimed to identify the risk factors of hypocalcemia induced by denosumab treatment for osteoporosis. We retrospectively reviewed the records of patients who had received initial denosumab supplemented with activated vitamin D for osteoporosis. Serum levels of the following bone turnover markers (BTMs) were measured at baseline: bone-specific alkaline phosphatase (BAP), total N-terminal propeptide of type 1 procollagen (P1NP), tartrate-resistant acid phosphatase 5b (TRACP-5b), and urinary cross-linked N-telopeptide of type 1 collagen (NTX). Of the 85 denosumab-treated patients with osteoporosis studied, 22 (25.9%) developed hypocalcemia. Baseline serum total P1NP, TRACP-5b, and urinary NTX were significantly higher in patients with hypocalcemia than in those with normocalcemia following denosumab administration (all P<0.01). Multivariate logistic regression analysis revealed that patients with total P1NP >76.5 μg/L, TRACP-5b >474 mU/dL, or urinary NTX >49.5 nmol bone collagen equivalent/mmol creatinine had a higher risk of hypocalcemia (P<0.01). Our study suggests that denosumab may have a greater impact on serum calcium levels in patients with postmenopausal osteoporosis with higher baseline bone turnover than in patients with postmenopausal osteoporosis with normal baseline bone turnover, because maintenance of normal serum calcium in this subgroup is more dependent on bone resorption. Close monitoring of serum calcium levels is strongly recommended for denosumab-treated patients with high bone turnover, despite supplementation with activated vitamin D and oral calcium.
Collapse
Affiliation(s)
- Koji Ishikawa
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo
| | - Takashi Nagai
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo
| | - Keizo Sakamoto
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo
| | - Kenji Ohara
- Department of Orthopaedic Surgery, Yamanashi Red Cross Hospital, Yamanashi
| | - Takeshi Eguro
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo; Department of Orthopaedic Surgery, Yamanashi Red Cross Hospital, Yamanashi
| | - Hiroshi Ito
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo
| | - Yoichi Toyoshima
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo
| | - Akatsuki Kokaze
- Department of Public Health, Showa University School of Medicine, Tokyo, Japan
| | - Tomoaki Toyone
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo
| | - Katsunori Inagaki
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo
| |
Collapse
|
49
|
Knowles NK, Reeves JM, Ferreira LM. Quantitative Computed Tomography (QCT) derived Bone Mineral Density (BMD) in finite element studies: a review of the literature. J Exp Orthop 2016; 3:36. [PMID: 27943224 PMCID: PMC5234499 DOI: 10.1186/s40634-016-0072-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/30/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Finite element modeling of human bone provides a powerful tool to evaluate a wide variety of outcomes in a highly repeatable and parametric manner. These models are most often derived from computed tomography data, with mechanical properties related to bone mineral density (BMD) from the x-ray energy attenuation provided from this data. To increase accuracy, many researchers report the use of quantitative computed tomography (QCT), in which a calibration phantom is used during image acquisition to improve the estimation of BMD. Since model accuracy is dependent on the methods used in the calculation of BMD and density-mechanical property relationships, it is important to use relationships developed for the same anatomical location and using the same scanner settings, as these may impact model accuracy. The purpose of this literature review is to report the relationships used in the conversion of QCT equivalent density measures to ash, apparent, and/or tissue densities in recent finite element (FE) studies used in common density-modulus relationships. For studies reporting experimental validation, the validation metrics and results are presented. RESULTS Of the studies reviewed, 29% reported the use of a dipotassium phosphate (K2HPO4) phantom, 47% a hydroxyapatite (HA) phantom, 13% did not report phantom type, 7% reported use of both K2HPO4 and HA phantoms, and 4% alternate phantom types. Scanner type and/or settings were omitted or partially reported in 31% of studies. The majority of studies used densitometric and/or density-modulus relationships derived from different anatomical locations scanned in different scanners with different scanner settings. The methods used to derive various densitometric relationships are reported and recommendations are provided toward the standardization of reporting metrics. CONCLUSIONS This review assessed the current state of QCT-based FE modeling with use of clinical scanners. It was found that previously developed densitometric relationships vary by anatomical location, scanner type and settings. Reporting of all parameters used when referring to previously developed relationships, or in the development of new relationships, may increase the accuracy and repeatability of future FE models.
Collapse
Affiliation(s)
- Nikolas K. Knowles
- Graduate Program in Biomedical Engineering, The University of Western Ontario, 1151 Richmond St, London, ON Canada
- Roth|McFarlane Hand and Upper Limb Centre, Surgical Mechatronics
Laboratory, St. Josephs Health Care, 268 Grosvenor St, London, ON Canada
- Collaborative Training Program in Musculoskeletal Health Research, and
Bone and Joint Institute, The University of Western Ontario, 1151 Richmond St, London, ON Canada
| | - Jacob M. Reeves
- Roth|McFarlane Hand and Upper Limb Centre, Surgical Mechatronics
Laboratory, St. Josephs Health Care, 268 Grosvenor St, London, ON Canada
- Collaborative Training Program in Musculoskeletal Health Research, and
Bone and Joint Institute, The University of Western Ontario, 1151 Richmond St, London, ON Canada
- Department of Mechanical and Materials Engineering, The University of Western Ontario, 1151 Richmond St, London, ON Canada
| | - Louis M. Ferreira
- Graduate Program in Biomedical Engineering, The University of Western Ontario, 1151 Richmond St, London, ON Canada
- Roth|McFarlane Hand and Upper Limb Centre, Surgical Mechatronics
Laboratory, St. Josephs Health Care, 268 Grosvenor St, London, ON Canada
- Collaborative Training Program in Musculoskeletal Health Research, and
Bone and Joint Institute, The University of Western Ontario, 1151 Richmond St, London, ON Canada
| |
Collapse
|
50
|
Abstract
Beyond bone mineral density (BMD), bone quality designates the mechanical integrity of bone tissue. In vivo images based on X-ray attenuation, such as CT reconstructions, provide size, shape, and local BMD distribution and may be exploited as input for finite element analysis (FEA) to assess bone fragility. Further key input parameters of FEA are the material properties of bone tissue. This review discusses the main determinants of bone mechanical properties and emphasizes the added value, as well as the important assumptions underlying finite element analysis. Bone tissue is a sophisticated, multiscale composite material that undergoes remodeling but exhibits a rather narrow band of tissue mineralization. Mechanically, bone tissue behaves elastically under physiologic loads and yields by cracking beyond critical strain levels. Through adequate cell-orchestrated modeling, trabecular bone tunes its mechanical properties by volume fraction and fabric. With proper calibration, these mechanical properties may be incorporated in quantitative CT-based finite element analysis that has been validated extensively with ex vivo experiments and has been applied increasingly in clinical trials to assess treatment efficacy against osteoporosis.
Collapse
Affiliation(s)
- Dieter H Pahr
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria
| | - Philippe K Zysset
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland.
| |
Collapse
|