1
|
Wen Y, Ullah H, Ma R, Farooqui NA, Li J, Alioui Y, Qiu J. Anemarrhena asphodeloides Bunge polysaccharides alleviate lipoteichoic acid-induced lung inflammation and modulate gut microbiota in mice. Heliyon 2024; 10:e39390. [PMID: 39469699 PMCID: PMC11513480 DOI: 10.1016/j.heliyon.2024.e39390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Pneumonia remains a prevalent infection primary ailment characterized by severe lung inflammation, leading to respiratory distress and significant mortality rates, particularly affecting young children in less developed regions. This study explores the therapeutic potential of low and high-molecular weight polysaccharides derived from Anemarrhena asphodeloides in a murine model of lipoteichoic acid (LTA)-induced pneumonia, which represents bacterial-induced lung inflammation. Administration of Anemarrhena asphodeloides polysaccharides effectively alleviated LTA-induced symptoms, including decreased lung and colon inflammation, and restored dysbiosis of gut microbiota. Polysaccharide treatment notably increased mucin-2 expression, reduced serum cytokine levels (IL-10, TNF-α), and increased tight junction protein production (ZO-1, Occludin, Claudin). Additionally, polysaccharides promoted a significant recovery in gut microbiota composition, indicating potential prebiotic effects. These findings highlight the therapeutic capability of Anemarrhena asphodeloides polysaccharides against LTA-induced pneumonia through gut microbiota modulation and restored intestinal homeostasis.
Collapse
Affiliation(s)
- Yuqi Wen
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Hidayat Ullah
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Renzhen Ma
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Nabeel Ahmad Farooqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Jiaxin Li
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Yamina Alioui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China
| | - Juanjuan Qiu
- Central Lab, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Radványi Z, Schnitzbauer U, Pastor-Arroyo EM, Hölker S, Himmerkus N, Bleich M, Müller D, Breiderhoff T, Hernando N, Wagner CA. Absence of claudin-3 does not alter intestinal absorption of phosphate in mice. Pflugers Arch 2024; 476:1597-1612. [PMID: 39115555 PMCID: PMC11381482 DOI: 10.1007/s00424-024-02998-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024]
Abstract
Intestinal absorption of phosphate is bimodal, consisting of a transcellular pathway and a poorly characterized paracellular mode, even though the latter one contributes to the bulk of absorption under normal dietary conditions. Claudin-3 (Cldn3), a tight junction protein present along the whole intestine in mice, has been proposed to tighten the paracellular pathway for phosphate. The aim of this work was to characterize the phosphate-related phenotype of Cldn3-deficient mice. Cldn3-deficient mice and wildtype littermates were fed standard diet or challenged for 3 days with high dietary phosphate. Feces, urine, blood, intestinal segments and kidneys were collected. Measurements included fecal, urinary, and plasma concentrations of phosphate and calcium, plasma levels of phosphate-regulating hormones, evaluation of trans- and paracellular phosphate transport across jejunum and ileum, and analysis of intestinal phosphate and calcium permeabilities. Fecal and urinary excretion of phosphate as well as its plasma concentration was similar in both genotypes, under standard and high-phosphate diet. However, Cldn3-deficient mice challenged with high dietary phosphate had a reduced urinary calcium excretion and increased plasma levels of calcitriol. Intact FGF23 concentration was also similar in both groups, regardless of the dietary conditions. We found no differences either in intestinal phosphate transport (trans- or paracellular) and phosphate and calcium permeabilities between genotypes. The intestinal expression of claudin-7 remained unaltered in Cldn3-deficient mice. Our data do not provide evidence for a decisive role of Cldn3 for intestinal phosphate absorption and phosphate homeostasis. In addition, our data suggest a novel role of Cldn3 in regulating calcitriol levels.
Collapse
Affiliation(s)
- Zsuzsa Radványi
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Simone Hölker
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Markus Bleich
- Institute of Physiology, Kiel University, Kiel, Germany
| | - Dominik Müller
- Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tilman Breiderhoff
- Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nati Hernando
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Burns D, Berlinguer-Palmini R, Werner A. XPR1: a regulator of cellular phosphate homeostasis rather than a Pi exporter. Pflugers Arch 2024; 476:861-869. [PMID: 38507112 PMCID: PMC11033234 DOI: 10.1007/s00424-024-02941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Phosphate (Pi) is an essential nutrient, and its plasma levels are under tight hormonal control. Uphill transport of Pi into cells is mediated by the two Na-dependent Pi transporter families SLC34 and SLC20. The molecular identity of a potential Pi export pathway is controversial, though XPR1 has recently been suggested by Giovannini and coworkers to mediate Pi export. We expressed XPR1 in Xenopus oocytes to determine its functional characteristics. Xenopus isoforms of proteins were used to avoid species incompatibility. Protein tagging confirmed the localization of XPR1 at the plasma membrane. Efflux experiments, however, failed to detect translocation of Pi attributable to XPR1. We tested various counter ions and export medium compositions (pH, plasma) as well as potential protein co-factors that could stimulate the activity of XPR1, though without success. Expression of truncated XPR1 constructs and individual domains of XPR1 (SPX, transmembrane core, C-terminus) demonstrated downregulation of the uptake of Pi mediated by the C-terminal domain of XPR1. Tethering the C-terminus to the transmembrane core changed the kinetics of the inhibition and the presence of the SPX domain blunted the inhibitory effect. Our observations suggest a regulatory role of XPR1 in cellular Pi handling rather than a function as Pi exporter. Accordingly, XPR1 senses intracellular Pi levels via its SPX domain and downregulates cellular Pi uptake via the C-terminal domain. The molecular identity of a potential Pi export protein remains therefore elusive.
Collapse
Affiliation(s)
- David Burns
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | | | - Andreas Werner
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
4
|
Abstract
Inorganic phosphate (Pi) is an essential component of many biologically important molecules such as DNA, RNA, ATP, phospholipids, or apatite. It is required for intracellular phosphorylation signaling events and acts as pH buffer in intra- and extracellular compartments. Intestinal absorption, uptake into cells, and renal reabsorption depend on a set of different phosphate transporters from the SLC20 (PiT transporters) and SLC34 (NaPi transporters) gene families. The physiological relevance of these transporters is evident from rare monogenic disorders in humans affecting SLC20A2 (Fahr's disease, basal ganglia calcification), SLC34A1 (idiopathic infantile hypercalcemia), SLC34A2 (pulmonary alveolar microlithiasis), and SLC34A3 (hereditary hypophosphatemic rickets with hypercalciuria). SLC34 transporters are inhibited by millimolar concentrations of phosphonoformic acid or arsenate while SLC20 are relatively resistant to these compounds. More recently, a series of more specific and potent drugs have been developed to target SLC34A2 to reduce intestinal Pi absorption and to inhibit SLC34A1 and/or SLC34A3 to increase renal Pi excretion in patients with renal disease and incipient hyperphosphatemia. Also, SLC20 inhibitors have been developed with the same intention. Some of these substances are currently undergoing preclinical and clinical testing. Tenapanor, a non-absorbable Na+/H+-exchanger isoform 3 inhibitor, reduces intestinal Pi absorption likely by indirectly acting on the paracellular pathway for Pi and has been tested in several phase III trials for reducing Pi overload in patients with renal insufficiency and dialysis.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Tian Z, Deng T, Gui X, Wang L, Yan Q, Wang L. Mechanisms of Lung and Intestinal Microbiota and Innate Immune Changes Caused by Pathogenic Enterococcus Faecalis Promoting the Development of Pediatric Pneumonia. Microorganisms 2023; 11:2203. [PMID: 37764047 PMCID: PMC10536929 DOI: 10.3390/microorganisms11092203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Bacterial pneumonia is the main cause of illness and death in children under 5 years old. We isolated and cultured pathogenic bacteria LE from the intestines of children with pneumonia and replicated the pediatric pneumonia model using an oral gavage bacterial animal model. Interestingly, based on 16srRNA sequencing, we found that the gut and lung microbiota showed the same imbalance trend, which weakened the natural resistance of this area. Further exploration of its mechanism revealed that the disruption of the intestinal mechanical barrier led to the activation of inflammatory factors IL-6 and IL-17, which promoted the recruitment of ILC-3 and the release of IL-17 and IL-22, leading to lung inflammation. The focus of this study is on the premise that the gut and lung microbiota exhibit similar destructive changes, mediating the innate immune response to promote the occurrence of pneumonia and providing a basis for the development and treatment of new drugs for pediatric pneumonia.
Collapse
Affiliation(s)
- Zhiying Tian
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China;
| | - Ting Deng
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (T.D.); (X.G.); (L.W.)
| | - Xuwen Gui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (T.D.); (X.G.); (L.W.)
| | - Leilei Wang
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (T.D.); (X.G.); (L.W.)
| | - Qiulong Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Dalian Medical University, Dalian 116044, China;
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China;
| |
Collapse
|
6
|
Jönsson ÅLM, Hilberg O, Simonsen U, Christensen JH, Bendstrup E. New insights in the genetic variant spectrum of SLC34A2 in pulmonary alveolar microlithiasis; a systematic review. Orphanet J Rare Dis 2023; 18:130. [PMID: 37259144 DOI: 10.1186/s13023-023-02712-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023] Open
Abstract
Pulmonary alveolar microlithiasis (PAM) is a rare autosomal recessive lung disease caused by variants in the SLC34A2 gene encoding the sodium-dependent phosphate transport protein 2B, NaPi-2b. PAM is characterized by deposition of calcium phosphate crystals in the alveoli. Onset and clinical course vary considerably; some patients remain asymptomatic while others develop severe respiratory failure with a significant symptom burden and compromised survival. It is likely that PAM is under-reported due to lack of recognition, misdiagnosis, and mild clinical presentation. Most patients are genetically uncharacterized as the diagnostic confirmation of PAM has traditionally not included a genetic analysis. Genetic testing may in the future be the preferred tool for diagnostics instead of invasive methods. This systematic review aims to provide an overview of the growing knowledge of PAM genetics. Rare variants in SLC34A2 are found in almost all genetically tested patients. So far, 34 allelic variants have been identified in at least 68 patients. A majority of these are present in the homozygous state; however, a few are found in the compound heterozygous form. Most of the allelic variants involve only a single nucleotide. Half of the variants are either nonsense or frameshifts, resulting in premature termination of the protein or decay of the mRNA. There is currently no cure for PAM, and the only effective treatment is lung transplantation. Management is mainly symptomatic, but an improved understanding of the underlying pathophysiology will hopefully result in development of targeted treatment options. More standardized data on PAM patients, including a genetic diagnosis covering larger international populations, would support the design and implementation of clinical studies to the benefit of patients. Further genetic characterization and understanding of how the molecular changes influence disease phenotype will hopefully allow earlier diagnosis and treatment of the disease in the future.
Collapse
Affiliation(s)
- Åsa Lina M Jönsson
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Ole Hilberg
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
- Department of Medicine, Lillebaelt Hospital, Vejle, Denmark.
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Elisabeth Bendstrup
- Centre for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Portales-Castillo I, Rieg T, Khalid SB, Nigwekar SU, Neyra JA. Physiopathology of Phosphate Disorders. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:177-188. [PMID: 36868732 PMCID: PMC10565570 DOI: 10.1053/j.akdh.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 03/05/2023]
Abstract
Intracellular phosphate is critical for cellular processes such as signaling, nucleic acid synthesis, and membrane function. Extracellular phosphate (Pi) is an important component of the skeleton. Normal levels of serum phosphate are maintained by the coordinated actions of 1,25-dihydroxyvitamin D3, parathyroid hormone and fibroblast growth factor-23, which intersect in the proximal tubule to control the reabsorption of phosphate via the sodium-phosphate cotransporters Npt2a and Npt2c. Furthermore, 1,25-dihydroxyvitamin D3 participates in the regulation of dietary phosphate absorption in the small intestine. Clinical manifestations associated with abnormal serum phosphate levels are common and occur as a result of genetic or acquired conditions affecting phosphate homeostasis. For example, chronic hypophosphatemia leads to osteomalacia in adults and rickets in children. Acute severe hypophosphatemia can affect multiple organs leading to rhabdomyolysis, respiratory dysfunction, and hemolysis. Patients with impaired kidney function, such as those with advanced CKD, have high prevalence of hyperphosphatemia, with approximately two-thirds of patients on chronic hemodialysis in the United States having serum phosphate levels above the recommended goal of 5.5 mg/dL, a cutoff associated with excess risk of cardiovascular complications. Furthermore, patients with advanced kidney disease and hyperphosphatemia (>6.5 mg/dL) have almost one-third excess risk of death than those with phosphate levels between 2.4 and 6.5 mg/dL. Given the complex mechanisms that regulate phosphate levels, the interventions to treat the various diseases associated with hypophosphatemia or hyperphosphatemia rely on the understanding of the underlying pathobiological mechanisms governing each patient condition.
Collapse
Affiliation(s)
- Ignacio Portales-Castillo
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA; Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL; James A. Haley Veterans' Hospital, Tampa, FL; Center for Hypertension and Kidney Research, University of South Florida, Tampa, FL
| | - Sheikh B Khalid
- Department of Internal Medicine, The Indus Hospital, Lahore Pakistan
| | - Sagar U Nigwekar
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Javier A Neyra
- Department of Internal Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
8
|
Abstract
Phosphate homeostasis is dependent on the interaction and coordination of four main organ systems: thyroid/parathyroids, gastrointestinal tract, bone and kidneys, and three key hormonal regulators, 1,25-hydroxyvitamin D3, parathyroid hormone and FGF23 with its co- factor klotho. Phosphorus is a critical nutritional element for normal cellular function, but in excess can be toxic to tissues, particularly the vasculature. As phosphate, it also has an important interaction and inter-dependence with calcium and calcium homeostasis sharing some of the same controlling hormones, although this is not covered in our article. We have chosen to provide a current overview of phosphate homeostasis only, focusing on the role of two major organ systems, the gastrointestinal tract and kidneys, and their contribution to the control of phosphate balance. We describe in some detail the mechanisms of intestinal and renal phosphate transport, and compare and contrast their regulation. We also consider a significant example of phosphate imbalance, with phosphate retention, which is chronic kidney disease; why consequent hyperphosphatemia is important, and some of the newer means of managing it.
Collapse
Affiliation(s)
- Joanne Marks
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Robert J Unwin
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom; Department of Renal Medicine, University College London, London, United Kingdom.
| |
Collapse
|
9
|
Yan J, Pan C, Liu Y, Liao X, Chen J, Zhu Y, Huang X, Yang X, Ren Z. Dietary vitamin D3 deprivation suppresses fibroblast growth factor 23 signals by reducing serum phosphorus levels in laying hens. ANIMAL NUTRITION 2022; 9:23-30. [PMID: 35949979 PMCID: PMC9344313 DOI: 10.1016/j.aninu.2021.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
The present study was carried out to evaluate the effect of dietary supplemental vitamin D3 on fibroblast growth factor 23 (FGF23) signals as well as phosphorus homeostasis and metabolism in laying hens. Fourteen 40-week-old Hy-Line Brown layers were randomly assigned into 2 treatments: 1) vitamin D3 restriction group (n = 7) fed 0 IU/kg vitamin D3 diet, and 2) regular vitamin D3 group (n = 7) fed 1,600 IU/kg vitamin D3 diet. The study lasted for 21 d. Serum parameters, phosphorus and calcium excretion status, and tissue expressions of type II sodium-phosphate co-transporters (NPt2), FGF23 signals and vitamin D3 metabolic regulators were determined. Hens fed the vitamin D3 restricted diet had decreased serum phosphorus levels (by 31.3%, P = 0.028) when compared to those fed regular vitamin D3 diet. In response to the decreased serum phosphorus, the vitamin D3 restricted laying hens exhibited: 1) suppressed kidney expressions of 25-hydroxyvitamin D 1-α-hydroxylase (CYP27B1, by 52.8%, P = 0.036) and 1,25-dihydroxyvitamin D 24-hydroxylase (CYP24A1, by 99.4%, P = 0.032); 2) suppressed serum levels of FGF23 (by 14.6%, P = 0.048) and increased serum alkaline phosphatase level (by 414.1%, P = 0.012); 3) decreased calvaria mRNA expressions of fibroblast growth factor receptors (FGFR1, by 85.2%, P = 0.003, FGFR2, by 89.4%, P = 0.014, FGFR3, by 88.8%, P = 0.017, FGFR4, by 89.6%, P = 0.030); 4) decreased kidney mRNA expressions of FGFR1 (by 65.5%, P = 0.021), FGFR4 (by 66.0%, P = 0.050) and KLOTHO (by 68.8%, P = 0.038); 5) decreased kidney protein expression of type 2a sodium-phosphorus co-transporters (by 54.3%, P = 0.039); and 6) increased percent excreta calcium (by 26.9%, P = 0.002). In conclusion, the deprivation of dietary vitamin D3 decreased FGF23 signals in laying hens by reducing serum FGF23 level and suppressing calvaria and kidney mRNA expressions of FGF23 receptors.
Collapse
|
10
|
Ogunribido TZ, Bedford MR, Adeola O, Ajuwon KM. Effect of supplemental myo-inositol on growth performance and apparent total tract digestibility of weanling piglets fed reduced protein high phytate diets and intestinal epithelial cell proliferation and function. J Anim Sci 2022; 100:6589538. [PMID: 35589552 DOI: 10.1093/jas/skac187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/18/2022] [Indexed: 11/14/2022] Open
Abstract
Myo-inositol is a breakdown product of phytate produced in the gut through the action of phytase. Although the effect of phytase-released phosphorus (P) on growth performance of animals has been well characterized, there is still little understanding of effect of myo-inositol. The first objective of this study was to determine the effects of added myo-inositol to a phytate rich low protein diet on growth performance and apparent total tract digestibility (ATTD) in growing piglets. The second objective was to determine whether myo-inositol could directly affect intestinal epithelial cell proliferation and function for which we used intestinal porcine epithelial cells (IPEC-J2). A total of 128 weanling piglets were allotted to four dietary treatments consisting of eight replicates per treatment and four piglets per replicate in a randomized complete block design for four weeks. The four experimental diets comprised the positive control (PC; 20% crude protein (CP), negative control (NC; 17% CP), negative control plus 2.0g/kg myo-inositol (NC+INO; 17% CP) and negative control plus 3000FTU/kg phytase (NC+PHY; 17% CP). Average daily feed intake (ADFI), average daily gain (ADG), gain-feed ratio (G: F) were recorded. Phytase supplementation in the protein-deficient NC diet increased the G:F ratio (P < 0.05) without myo-inositol effect on growth performance. Phosphorus digestibility in the phytase supplemented group increased compared to the PC, NC, and NC+INO groups whereas plasma myo-inositol concentration was significantly higher (P < 0.05) in the NC+INO group. Due to lack of myo-inositol effect on growth performance, an additional in vitro study was conducted to determine direct effect of myo-inositol on the intestinal epithelium that might not be reflected in growth performance. Myo-inositol increased the mRNA abundance of selected nutrient transporters in a concentration-dependent manner (P < 0.05). Myo-inositol also enhanced barrier integrity in the IPEC-J2 monolayer by increasing the transepithelial electrical resistance (TEER) with reduced paracellular permeability of FITC-dextran (P < 0.05). In conclusion, despite the lack of myo-inositol effect on animal performance, the in vitro data indicates that myo-inositol may directly regulate gut barrier integrity. Addition of myo-inositol to pig diets at levels that enhance intestinal epithelial cell function may result in effects on growth performance and gut health of pigs.
Collapse
Affiliation(s)
- Tobi Z Ogunribido
- Department of Animal Sciences, Purdue University, West Lafayette, USA
| | | | - Olayiwola Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, USA
| | - Kolapo M Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, USA
| |
Collapse
|
11
|
Jönsson ÅLM, Hernando N, Knöpfel T, Mogensen S, Bendstrup E, Hilberg O, Christensen JH, Simonsen U, Wagner CA. Impaired phosphate transport in SLC34A2 variants in patients with pulmonary alveolar microlithiasis. Hum Genomics 2022; 16:13. [PMID: 35443721 PMCID: PMC9019944 DOI: 10.1186/s40246-022-00387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Variants in SLC34A2 encoding the sodium-dependent phosphate transport protein 2b (NaPi-IIb) cause the rare lung disease pulmonary alveolar microlithiasis (PAM). PAM is characterised by the deposition of calcium-phosphate concretions in the alveoli usually progressing over time. No effective treatment is available. So far, 30 allelic variants in patients have been reported but only a few have been functionally characterised. This study aimed to determine the impact of selected SLC34A2 variants on transporter expression and phosphate uptake in cellular studies. METHODS Two nonsense variants (c.910A > T and c.1456C > T), one frameshift (c.1328delT), and one in-frame deletion (c.1402_1404delACC) previously reported in patients with PAM were selected for investigation. Wild-type and mutant c-Myc-tagged human NaPi-IIb constructs were expressed in Xenopus laevis oocytes. The transport function was investigated with a 32Pi uptake assay. NaPi-IIb protein expression and localisation were determined with immunoblotting and immunohistochemistry, respectively. RESULTS Oocytes injected with the wild-type human NaPi-IIb construct had significant 32Pi transport compared to water-injected oocytes. In addition, the protein had a molecular weight as expected for the glycosylated form, and it was readily detectable in the oocyte membrane. Although the protein from the Thr468del construct was synthesised and expressed in the oocyte membrane, phosphate transport was similar to non-injected control oocytes. All other mutants were non-functional and not expressed in the membrane, consistent with the expected impact of the truncations caused by premature stop codons. CONCLUSIONS Of four analysed SLC34A2 variants, only the Thr468del showed similar protein expression as the wild-type cotransporter in the oocyte membrane. All mutant transporters were non-functional, supporting that dysfunction of NaPi-IIb underlies the pathology of PAM.
Collapse
Affiliation(s)
- Åsa Lina M. Jönsson
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Nati Hernando
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | - Thomas Knöpfel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| | - Susie Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Elisabeth Bendstrup
- Centre for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Hilberg
- Medical Department, Vejle Hospital, Vejle, Denmark
| | | | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Carsten A. Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Swiss National Center of Competence in Research NCCR Kidney.CH, Zurich, Switzerland
| |
Collapse
|
12
|
Wang X, Xu Y, Yu X, Dey A, Zhang HY, Zink CM, Wodka D, Porter G, Matter WF, Porras L, Reidy CA, Peterson JA, Mattioni BE, Haas JV, Kowala MC, Wetterau JR. Effects of pharmacological inhibition of the sodium-dependent phosphate cotransporter 2b (NPT2b) on intestinal phosphate absorption in mouse and rat models. Pharmacol Res Perspect 2022; 10:e00938. [PMID: 35194979 PMCID: PMC8863579 DOI: 10.1002/prp2.938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/08/2022] Open
Abstract
An excess phosphate burden in renal disease has pathological consequences for bone, kidney, and heart. Therapies to decrease intestinal phosphate absorption have been used to address the problem, but with limited success. Here, we describe the in vivo effects of a novel potent inhibitor of the intestinal sodium-dependent phosphate cotransporter NPT2b, LY3358966. Following treatment with LY3358966, phosphate uptake into plasma 15 min following an oral dose of radiolabeled phosphate was decreased 74% and 22% in mice and rats, respectively, indicating NPT2b plays a much more dominant role in mice than rats. Following the treatment with LY3358966 and radiolabeled phosphate, mouse feces were collected for 48 h to determine the ability of LY3358966 to inhibit phosphate absorption. Compared to vehicle-treated animals, there was a significant increase in radiolabeled phosphate recovered in feces (8.6% of the dose, p < .0001). Similar studies performed in rats also increased phosphate recovered in feces (5.3% of the dose, p < .05). When used in combination with the phosphate binder sevelamer in rats, there was a further small, but not significant, increase in fecal phosphate. In conclusion, LY3358966 revealed a more prominent role for NPT2b on acute intestinal phosphate uptake into plasma in mice than rats. However, the modest effects on total intestinal phosphate absorption observed in mice and rats with LY3359866 when used alone or in combination with sevelamer highlights the challenge to identify new more effective therapeutic targets and/or drug combinations to treat the phosphate burden in patients with renal disease.
Collapse
Affiliation(s)
- Xiaojun Wang
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | - Yanping Xu
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | - Xiaohong Yu
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | - Asim Dey
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | - Hong Y. Zhang
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | - Charity M. Zink
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | - Derek Wodka
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | - Gina Porter
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | - William F. Matter
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | - Leah Porras
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | - Charles A. Reidy
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | | | - Brian E. Mattioni
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | - Joseph V. Haas
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | - Mark C. Kowala
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | - John R. Wetterau
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| |
Collapse
|
13
|
Maemoto M, Hirata Y, Hosoe S, Ouchi J, Narushima K, Akizawa E, Tsuji Y, Takada H, Yanagisawa A, Shuto S. Discovery of Gut-Restricted Small-Molecule Inhibitors of Intestinal Sodium-Dependent Phosphate Transport Protein 2b (NaPi2b) for the Treatment of Hyperphosphatemia. J Med Chem 2022; 65:1946-1960. [PMID: 35034442 DOI: 10.1021/acs.jmedchem.1c01474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NaPi2b is primarily expressed in the small intestine, lungs, and testes and plays an important role in phosphate homeostasis. The inhibition of NaPi2b, responsible for intestinal phosphate absorption, is considered to reduce serum phosphate levels, making it a promising therapeutic approach for hyperphosphatemia. Using a novel phosphate uptake inhibitor 3 (IC50 = 87 nM), identified from an in-house compound collection in human NaPi2b-transfected cells as a prototype compound, we conducted its derivatization based on a Ro5-deviated strategy to develop orally administrable small-molecule NaPi2b inhibitors with nonsystemic exposure. Consequently, compound 15, a zwitterionic compound with a potent in vitro phosphate uptake inhibitory activity (IC50 = 64 nM) and a low membrane permeability (Pe < 0.025 × 10-6 cm/s), was developed. Compound 15 showed a low bioavailability (F = 0.1%) in rats and a reduction in phosphate absorption in the rat intestinal loop assay comparable to sevelamer hydrochloride, a clinically effective phosphate binder for treating hyperphosphatemia.
Collapse
Affiliation(s)
- Michihiro Maemoto
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo-shi, Hokkaido 060-0812, Japan
| | - Yuuki Hirata
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Shintaro Hosoe
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Jun Ouchi
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Kazuya Narushima
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Emi Akizawa
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Yoshiro Tsuji
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Hidenori Takada
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Arata Yanagisawa
- Research Unit, R&D Division, Kyowa Kirin Co., Ltd., 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8731, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo-shi, Hokkaido 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo-shi, Hokkaido 060-0812, Japan
| |
Collapse
|
14
|
Xue J, Thomas L, Murali SK, Levi M, Fenton RA, Dominguez Rieg JA, Rieg T. Enhanced phosphate absorption in intestinal epithelial cell-specific NHE3 knockout mice. Acta Physiol (Oxf) 2022; 234:e13756. [PMID: 34978760 PMCID: PMC9286053 DOI: 10.1111/apha.13756] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/16/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022]
Abstract
Aims The kidneys play a major role in maintaining Pi homeostasis. Patients in later stages of CKD develop hyperphosphatemia. One novel treatment option is tenapanor, an intestinal‐specific NHE3 inhibitor. To gain mechanistic insight into the role of intestinal NHE3 in Pi homeostasis, we studied tamoxifen‐inducible intestinal epithelial cell‐specific NHE3 knockout (NHE3IEC‐KO) mice. Methods Mice underwent dietary Pi challenges, and hormones as well as urinary/plasma Pi were determined. Intestinal 33P uptake studies were conducted in vivo to compare the effects of tenapanor and NHE3IEC‐KO. Ex vivo Pi transport was measured in everted gut sacs and brush border membrane vesicles. Intestinal and renal protein expression of Pi transporters were determined. Results On the control diet, NHE3IEC‐KO mice had similar Pi homeostasis, but a ~25% reduction in FGF23 compared with control mice. Everted gut sacs and brush border membrane vesicles showed enhanced Pi uptake associated with increased Npt2b expression in NHE3IEC‐KO mice. Acute oral Pi loading resulted in higher plasma Pi in NHE3IEC‐KO mice. Tenapanor inhibited intestinal 33P uptake acutely but then led to hyper‐absorption at later time points compared to vehicle. In response to high dietary Pi, plasma Pi and FGF23 increased to higher levels in NHE3IEC‐KO mice which was associated with greater Npt2b expression. Reduced renal Npt2c and a trend for reduced Npt2a expression were unable to correct for higher plasma Pi. Conclusion Intestinal NHE3 has a significant contribution to Pi homeostasis. In contrast to effects described for tenapanor on Pi homeostasis, NHE3IEC‐KO mice show enhanced, rather than reduced, intestinal Pi uptake.
Collapse
Affiliation(s)
- Jianxiang Xue
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
| | | | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology Georgetown University Washington District of Columbia USA
| | | | - Jessica A. Dominguez Rieg
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
- James A. Haley Veterans' Hospital Tampa Florida USA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
- James A. Haley Veterans' Hospital Tampa Florida USA
| |
Collapse
|
15
|
Ye G, Zhang J, Bi Z, Zhang W, Zhang M, Zhang Q, Wang M, Chen J. Dominant factors of the phosphorus regulatory network differ under various dietary phosphate loads in healthy individuals. Ren Fail 2021; 43:1076-1086. [PMID: 34193019 PMCID: PMC8253199 DOI: 10.1080/0886022x.2021.1945463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The purpose of this study was to explore the contribution of each factor of the phosphorus metabolism network following phosphorus diet intervention via Granger causality analysis. METHODS In this study, a total of six healthy male volunteers were enrolled. All participants sequentially received regular, low-, and high-phosphorus diets. Consumption of each diet lasted for five days, with a 5-day washout period between different diets. Blood and urinary samples were collected on the fifth day of consumption of each diet at 9 time points (00:00, 04:00, 08:00, 10:00, 12:00, 14:00, 16:00, 20:00, 24:00) for measurements of serum levels of phosphate, calcium, PTH, FGF23, BALP, α-Klotho, and 1,25 D and urinary phosphorus excretion. Granger causality and the centrality of the above variables in the phosphorus network were analyzed by pairwise panel Granger causality analysis using the time-series data. RESULTS The mean age of the participants was 28.5 ± 2.1 years. By using Granger causality analysis, we found that the α-Klotho level had the strongest connection with and played a key role in influencing the other variables. In addition, urinary phosphorus excretion was frequently regulated by other variables in the network of phosphorus metabolism following a regular phosphorus diet. After low-phosphorus diet intervention, serum phosphate affected the other factors the most, and the 1,25 D level was the main outcome factor, while urinary phosphorus excretion was the most strongly associated variable in the network of phosphorus metabolism. After high-phosphorus diet intervention, FGF23 and 1,25 D played a more critical role in active regulation and passive regulation in the Granger causality analysis. CONCLUSIONS Variations in dietary phosphorus intake led to changes in the central factors involved in phosphorus metabolism.
Collapse
Affiliation(s)
- Guoxin Ye
- Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaying Zhang
- Division of Nutrition, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaori Bi
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Weichen Zhang
- Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Minmin Zhang
- Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Zhang
- Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengjing Wang
- Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Chen
- Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 2021; 135:201-227. [PMID: 33416083 PMCID: PMC7796315 DOI: 10.1042/cs20190895] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
Collapse
|
17
|
Wagner CA. Coming out of the PiTs-novel strategies for controlling intestinal phosphate absorption in patients with CKD. Kidney Int 2021; 98:273-275. [PMID: 32709284 DOI: 10.1016/j.kint.2020.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
The kidneys are the gatekeepers of phosphate balance, and loss of kidney function causes a profound disturbance of mineral metabolism. Patients with chronic kidney disease suffer from an excessive cardiovascular disease risk with a high morbidity and mortality. Current therapies aimed at reducing total phosphate body load are insufficient, and novel strategies are urgently needed. In this issue, Tsuboi and colleagues provide evidence for the use of a novel phosphate transporter inhibitor to reduce intestinal phosphate absorption.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Tang X, Liu X, Liu H. Mechanisms of Epidermal Growth Factor Effect on Animal Intestinal Phosphate Absorption: A Review. Front Vet Sci 2021; 8:670140. [PMID: 34195248 PMCID: PMC8236626 DOI: 10.3389/fvets.2021.670140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Phosphorus is one of the essential mineral elements of animals that plays an important role in animal growth and development, bone formation, energy metabolism, nucleic acid synthesis, cell signal transduction, and blood acid–base balance. It has been established that the Type IIb sodium-dependent phosphate cotransporters (NaPi-IIb) protein is the major sodium-dependent phosphate (Pi) transporter, which plays an important role in Pi uptake across the apical membrane of epithelial cells in the small intestine. Previous studies have demonstrated that epidermal growth factor (EGF) is involved in regulating intestinal Pi absorption. Here we summarize the effects of EGF on active Pi transport of NaPi-IIb under different conditions. Under normal conditions, EGF inhibits the active transport of Pi by inhibiting the expression of NaPi-IIb, while, under intestinal injury condition, EGF promotes the active absorption of Pi through upregulating the expression of NaPi-IIb. This review provides a reference for information about EGF-regulatory functions in Pi absorption in the animal intestine.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Xuguang Liu
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Hu Liu
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Asowata EO, Olusanya O, Abaakil K, Chichger H, Srai SKS, Unwin RJ, Marks J. Diet-induced iron deficiency in rats impacts small intestinal calcium and phosphate absorption. Acta Physiol (Oxf) 2021; 232:e13650. [PMID: 33749990 DOI: 10.1111/apha.13650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022]
Abstract
AIMS Recent reports suggest that iron deficiency impacts both intestinal calcium and phosphate absorption, although the exact transport pathways and intestinal segment responsible have not been determined. Therefore, we aimed to systematically investigate the impact of iron deficiency on the cellular mechanisms of transcellular and paracellular calcium and phosphate transport in different regions of the rat small intestine. METHODS Adult, male Sprague-Dawley rats were maintained on a control or iron-deficient diet for 2 weeks and changes in intestinal calcium and phosphate uptake were determined using the in situ intestinal loop technique. The circulating levels of the hormonal regulators of calcium and phosphate were determined by ELISA, while the expression of transcellular calcium and phosphate transporters, and intestinal claudins were determined using qPCR and western blotting. RESULTS Diet-induced iron deficiency significantly increased calcium absorption in the duodenum but had no impact in the jejunum and ileum. In contrast, phosphate absorption was significantly inhibited in the duodenum and to a lesser extent the jejunum, but remained unchanged in the ileum. The changes in duodenal calcium and phosphate absorption in the iron-deficient animals were associated with increased claudin 2 and 3 mRNA and protein levels, while levels of parathyroid hormone, fibroblast growth factor-23 and 1,25-dihydroxy vitamin D3 were unchanged. CONCLUSION We propose that iron deficiency alters calcium and phosphate transport in the duodenum. This occurs via changes to the paracellular pathway, whereby upregulation of claudin 2 increases calcium absorption and upregulation of claudin 3 inhibits phosphate absorption.
Collapse
Affiliation(s)
- Evans O. Asowata
- Department of Neuroscience, Physiology & Pharmacology University College London London UK
| | - Oluwatobi Olusanya
- Department of Neuroscience, Physiology & Pharmacology University College London London UK
| | - Kaoutar Abaakil
- Department of Neuroscience, Physiology & Pharmacology University College London London UK
| | - Havovi Chichger
- Biomedical Research Group School of Life Sciences Anglia Ruskin University Cambridge UK
| | - Surjit K. S. Srai
- Institute of Structural and Molecular Biology University College London London UK
| | - Robert J. Unwin
- Department of Renal Medicine University College London London UK
| | - Joanne Marks
- Department of Neuroscience, Physiology & Pharmacology University College London London UK
| |
Collapse
|
20
|
Bird RP, Eskin NAM. The emerging role of phosphorus in human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:27-88. [PMID: 34112356 DOI: 10.1016/bs.afnr.2021.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphorus, an essential nutrient, performs vital functions in skeletal and non-skeletal tissues and is pivotal for energy production. The last two decades of research on the physiological importance of phosphorus have provided several novel insights about its dynamic nature as a nutrient performing functions as a phosphate ion. Phosphorous also acts as a signaling molecule and induces complex physiological responses. It is recognized that phosphorus homeostasis is critical for health. The intake of phosphorus by the general population world-wide is almost double the amount required to maintain health. This increase is attributed to the incorporation of phosphate containing food additives in processed foods purchased by consumers. Research findings assessed the impact of excessive phosphorus intake on cells' and organs' responses, and highlighted the potential pathogenic consequences. Research also identified a new class of bioactive phosphates composed of polymers of phosphate molecules varying in chain length. These polymers are involved in metabolic responses including hemostasis, brain and bone health, via complex mechanism(s) with positive or negative health effects, depending on their chain length. It is amazing, that phosphorus, a simple element, is capable of exerting multiple and powerful effects. The role of phosphorus and its polymers in the renal and cardiovascular system as well as on brain health appear to be important and promising future research directions.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| | - N A Michael Eskin
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
21
|
Pastor-Arroyo EM, Rodriguez JMM, Pellegrini G, Bettoni C, Levi M, Hernando N, Wagner CA. Constitutive depletion of Slc34a2/NaPi-IIb in rats causes perinatal mortality. Sci Rep 2021; 11:7943. [PMID: 33846411 PMCID: PMC8042035 DOI: 10.1038/s41598-021-86874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Absorption of dietary phosphate (Pi) across intestinal epithelia is a regulated process mediated by transcellular and paracellular pathways. Although hyperphosphatemia is a risk factor for the development of cardiovascular disease, the amount of ingested Pi in a typical Western diet is above physiological needs. While blocking intestinal absorption has been suggested as a therapeutic approach to prevent hyperphosphatemia, a complete picture regarding the identity and regulation of the mechanism(s) responsible for intestinal absorption of Pi is missing. The Na+/Pi cotransporter NaPi-IIb is a secondary active transporter encoded by the Slc34a2 gene. This transporter has a wide tissue distribution and within the intestinal tract is located at the apical membrane of epithelial cells. Based on mouse models deficient in NaPi-IIb, this cotransporter is assumed to mediate the bulk of active intestinal absorption of Pi. However, whether or not this is also applicable to humans is unknown, since human patients with inactivating mutations in SLC34A2 have not been reported to suffer from Pi depletion. Thus, mice may not be the most appropriate experimental model for the translation of intestinal Pi handling to humans. Here, we describe the generation of a rat model with Crispr/Cas-driven constitutive depletion of Slc34a2. Slc34a2 heterozygous rats were indistinguishable from wild type animals under standard dietary conditions as well as upon 3 days feeding on low Pi. However, unlike in humans, homozygosity resulted in perinatal lethality.
Collapse
Affiliation(s)
- Eva Maria Pastor-Arroyo
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Josep M Monné Rodriguez
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057, Zurich, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Nati Hernando
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
22
|
King AJ, Kohler J, Fung C, Jiang Z, Quach A, Kumaraswamy P, Chertow GM, Rosenbaum DP. Combination treatment with tenapanor and sevelamer synergistically reduces urinary phosphorus excretion in rats. Am J Physiol Renal Physiol 2021; 320:F133-F144. [PMID: 33283643 DOI: 10.1152/ajprenal.00137.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022] Open
Abstract
The majority of patients with chronic kidney disease (CKD) receiving dialysis do not achieve target serum phosphorus concentrations, despite treatment with phosphate binders. Tenapanor is a nonbinder, sodium/hydrogen exchanger isoform 3 (NHE3) inhibitor that reduces paracellular intestinal phosphate absorption. This preclinical study evaluated the effect of tenapanor and varying doses of sevelamer carbonate on urinary phosphorus excretion, a direct reflection of intestinal phosphate absorption. We measured 24-h urinary phosphorus excretion in male rats assigned to groups dosed orally with vehicle or tenapanor (0.3 mg/kg/day) and provided a diet containing varying amounts of sevelamer [0-3% (wt/wt)]. We also evaluated the effect of the addition of tenapanor or vehicle on 24-h urinary phosphorus excretion to rats on a stable dose of sevelamer [1.5% (wt/wt)]. When administered together, tenapanor and sevelamer decreased urinary phosphorus excretion significantly more than either tenapanor or sevelamer alone across all sevelamer dose levels. The Bliss statistical model of independence indicated that the combination was synergistic. A stable sevelamer dose [1.5% (wt/wt)] reduced mean ± SE urinary phosphorus excretion by 42 ± 3% compared with vehicle; together, tenapanor and sevelamer reduced residual urinary phosphorus excretion by an additional 37 ± 6% (P < 0.05). Although both tenapanor and sevelamer reduce intestinal phosphate absorption individually, administration of tenapanor and sevelamer together results in more pronounced reductions in intestinal phosphate absorption than if either agent is administered alone. Further evaluation of combination tenapanor plus phosphate binder treatment in patients receiving dialysis with hyperphosphatemia is warranted.
Collapse
Affiliation(s)
| | | | - Cyra Fung
- Ardelyx, Incorporated, Fremont, California
| | | | | | | | - Glenn M Chertow
- Division of Nephrology, Stanford University School of Medicine, Stanford, California
| | | |
Collapse
|
23
|
Hernando N, Pastor-Arroyo EM, Marks J, Schnitzbauer U, Knöpfel T, Bürki M, Bettoni C, Wagner CA. 1,25(OH) 2 vitamin D 3 stimulates active phosphate transport but not paracellular phosphate absorption in mouse intestine. J Physiol 2020; 599:1131-1150. [PMID: 33200827 DOI: 10.1113/jp280345] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Intestinal absorption of phosphate proceeds via an active/transcellular route mostly mediated by NaPi-IIb/Slc34a2 and a poorly characterized passive/paracellular pathway. Intestinal phosphate absorption and expression of NaPi-IIb are stimulated by 1,25(OH)2 vitamin D3 but whether NaPi-IIb is the only target under hormonal control remains unknown. We report that administration of 1,25(OH)2 vitamin D3 to wild-type mice resulted in the expected increase in active transport of phosphate in jejunum, without changing paracellular fluxes. Instead, the same treatment failed to alter phosphate transport in intestinal-depleted Slc34a2-deficient mice. In both genotypes, 1,25(OH)2 vitamin D3 induced similar hyperphosphaturic responses and changes in the plasma levels of FGF23 and PTH. While urinary phosphate loss induced by administration of 1,25(OH)2 vitamin D3 did not alter plasma phosphate, further studies should investigate whether chronic administration would lead to phosphate imbalance in mice with reduced active intestinal absorption. ABSTRACT Intestinal absorption of phosphate is stimulated by 1,25(OH)2 vitamin D3. At least two distinct mechanisms underlie phosphate absorption in the gut, an active transcellular transport requiring the Na+ /phosphate cotransporter NaPi-IIb/Slc34a2, and a poorly characterized paracellular passive pathway. 1,25(OH)2 vitamin D3 stimulates NaPi-IIb expression and function, and loss of NaPi-IIb reduces intestinal phosphate absorption. However, it is remains unknown whether NaPi-IIb is the only target for hormonal regulation by 1,25(OH)2 vitamin D3 . Here we compared the effects of intraperitoneal administration of 1,25(OH)2 vitamin D3 (2 days, once per day) in wild-type and intestinal-specific Slc34a2-deficient mice, and analysed trans- vs. paracellular routes of phosphate absorption. We found that treatment stimulated active transport of phosphate only in jejunum of wild-type mice, though NaPi-IIb protein expression was upregulated in jejunum and ileum. In contrast, 1,25(OH)2 vitamin D3 administration had no effect in Slc34a2-deficient mice, suggesting that the hormone specifically regulates NaPi-IIb expression. In both groups, 1,25(OH)2 vitamin D3 elicited the expected increase of plasma fibroblast growth factor 23 (FGF23) and reduction of parathyroid hormone (PTH). Treatment resulted in hyperphosphaturia (and hypercalciuria) in both genotypes, though mice remained normophosphataemic. While increased intestinal absorption and higher FGF23 can trigger the hyperphosphaturic response in wild types, only higher FGF23 can explain the renal response in Slc34a2-deficient mice. Thus, 1,25(OH)2 vitamin D3 stimulates intestinal phosphate absorption by acting on the active transcellular pathway mostly mediated by NaPi-IIb while the paracellular pathway appears not to be affected.
Collapse
Affiliation(s)
- Nati Hernando
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | | | - Joanne Marks
- University College London, Gower St, London, WC1E 6BT, UK
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Thomas Knöpfel
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Matthias Bürki
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
24
|
Pastor‐Arroyo EM, Knöpfel T, Imenez Silva PH, Schnitzbauer U, Poncet N, Biber J, Wagner CA, Hernando N. Intestinal epithelial ablation of Pit-2/Slc20a2 in mice leads to sustained elevation of vitamin D 3 upon dietary restriction of phosphate. Acta Physiol (Oxf) 2020; 230:e13526. [PMID: 32564464 DOI: 10.1111/apha.13526] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
AIM Several Na+ -dependent phosphate cotransporters, namely NaPi-IIb/SLC34A2, Pit-1/SLC20A1 and Pit-2/SLC20A2, are expressed at the apical membrane of enterocytes but their contribution to active absorption of phosphate is unclear. The aim of this study was to compare their pattern of mRNA expression along the small and large intestine and to analyse the effect of intestinal depletion of Pit-2 on phosphate homeostasis. METHODS Intestinal epithelial Pit-2-deficient mice were generated by crossing floxed Pit-2 with villin-Cre mice. Mice were fed 2 weeks standard or low phosphate diets. Stool, urine, plasma and intestinal and renal tissue were collected. Concentration of electrolytes and hormones, expression of mRNAs and proteins and intestinal transport of tracers were analysed. RESULTS Intestinal mRNA expression of NaPi-IIb and Pit-1 is segment-specific, whereas the abundance of Pit-2 mRNA is more homogeneous. In ileum, NaPi-IIb mRNA expression is restricted to enterocytes, whereas Pit-2 mRNA is found in epithelial and non-epithelial cells. Overall, their mRNA expression is not regulated by dietary phosphate. The absence of Pit-2 from intestinal epithelial cells does not affect systemic phosphate homeostasis under normal dietary conditions. However, in response to dietary phosphate restriction, Pit-2-deficient mice showed exacerbated hypercalciuria and sustained elevation of 1,25(OH)2 vitamin D3 . CONCLUSIONS In mice, the intestinal Na+ /phosphate cotransporters are not coexpressed in all segments. NaPi-IIb but not Pit-2 mRNA is restricted to epithelial cells. Intestinal epithelial Pit-2 does not contribute significantly to absorption of phosphate under normal dietary conditions. However, it may play a more significant role upon dietary phosphate restriction.
Collapse
Affiliation(s)
| | - Thomas Knöpfel
- Institute of Physiology University of Zürich Zürich Switzerland
| | | | | | - Nadège Poncet
- Institute of Physiology University of Zürich Zürich Switzerland
| | - Jürg Biber
- Institute of Physiology University of Zürich Zürich Switzerland
| | | | - Nati Hernando
- Institute of Physiology University of Zürich Zürich Switzerland
| |
Collapse
|
25
|
Thomas L, Xue J, Tomilin VN, Pochynyuk OM, Dominguez Rieg JA, Rieg T. PF-06869206 is a selective inhibitor of renal P i transport: evidence from in vitro and in vivo studies. Am J Physiol Renal Physiol 2020; 319:F541-F551. [PMID: 32744087 DOI: 10.1152/ajprenal.00146.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plasma phosphate (Pi) levels are tightly controlled, and elevated plasma Pi levels are associated with an increased risk of cardiovascular complications and death. Two renal transport proteins mediate the majority of Pi reabsorption: Na+-phosphate cotransporters Npt2a and Npt2c, with Npt2a accounting for 70-80% of Pi reabsorption. The aim of the present study was to determine the in vitro effects of a novel Npt2a inhibitor (PF-06869206) in opossum kidney (OK) cells as well as determine its selectivity in vivo in Npt2a knockout (Npt2a-/-) mice. In OK cells, Npt2a inhibitor caused dose-dependent reductions of Na+-dependent Pi uptake (IC50: ~1.4 μmol/L), whereas the unselective Npt2 inhibitor phosphonoformic acid (PFA) resulted in an ~20% stronger inhibition of Pi uptake. The dose-dependent inhibitory effects were present after 24 h of incubation with both low- and high-Pi media. Michaelis-Menten kinetics in OK cells identified an ~2.4-fold higher Km for Pi in response to Npt2a inhibition with no significant change in apparent Vmax. Higher parathyroid hormone concentrations decreased Pi uptake equivalent to the maximal inhibitory effect of Npt2a inhibitor. In vivo, the Npt2a inhibitor induced a dose-dependent increase in urinary Pi excretion in wild-type mice (ED50: ~23 mg/kg), which was completely absent in Npt2a-/- mice, alongside a lack of decrease in plasma Pi. Of note, the Npt2a inhibitor-induced dose-dependent increase in urinary Na+ excretion was still present in Npt2a-/- mice, a response possibly mediated by an off-target acute inhibitory effect of the Npt2a inhibitor on open probability of the epithelial Na+ channel in the cortical collecting duct.
Collapse
Affiliation(s)
- Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Jianxiang Xue
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Viktor N Tomilin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Oleh M Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| |
Collapse
|
26
|
Abstract
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phosphate are highly regulated, a process that is accomplished by the coordinated effort of two families of sodium-dependent transporter proteins. The three isoforms of the SLC34 family (SLC34A1-A3) show very restricted tissue expression and regulate intestinal absorption and renal excretion of phosphate. SLC34A2 also regulates the phosphate concentration in multiple lumen fluids including milk, saliva, pancreatic fluid, and surfactant. Both isoforms of the SLC20 family exhibit ubiquitous expression (with some variation as to which one or both are expressed), are regulated by ambient phosphate, and likely serve the phosphate needs of the individual cell. These proteins exhibit similarities to phosphate transporters in nonmammalian organisms. The proteins are nonredundant as mutations in each yield unique clinical presentations. Further research is essential to understand the function, regulation, and coordination of the various phosphate transporters, both the ones described in this review and the phosphate transporters involved in intracellular transport.
Collapse
Affiliation(s)
- Nati Hernando
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Kenneth Gagnon
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| | - Eleanor Lederer
- University of Zurich-Irchel, Institute of Physiology, Zurich, Switzerland; Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky; and Robley Rex VA Medical Center, Louisville, Kentucky
| |
Collapse
|
27
|
Motta SE, Imenez Silva PH, Daryadel A, Haykir B, Pastor-Arroyo EM, Bettoni C, Hernando N, Wagner CA. Expression of NaPi-IIb in rodent and human kidney and upregulation in a model of chronic kidney disease. Pflugers Arch 2020; 472:449-460. [PMID: 32219532 DOI: 10.1007/s00424-020-02370-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/29/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023]
Abstract
Na+-coupled phosphate cotransporters from the SLC34 and SLC20 families of solute carriers mediate transepithelial transport of inorganic phosphate (Pi). NaPi-IIa/Slc34a1, NaPi-IIc/Slc34a3, and Pit-2/Slc20a2 are all expressed at the apical membrane of renal proximal tubules and therefore contribute to renal Pi reabsorption. Unlike NaPi-IIa and NaPi-IIc, which are rather kidney-specific, NaPi-IIb/Slc34a2 is expressed in several epithelial tissues, including the intestine, lung, testis, and mammary glands. Recently, the expression of NaPi-IIb was also reported in kidneys from rats fed on high Pi. Here, we systematically quantified the mRNA expression of SLC34 and SLC20 cotransporters in kidneys from mice, rats, and humans. In all three species, NaPi-IIa mRNA was by far the most abundant renal transcript. Low and comparable mRNA levels of the other four transporters, including NaPi-IIb, were detected in kidneys from rodents and humans. In mice, the renal expression of NaPi-IIa transcripts was restricted to the cortex, whereas NaPi-IIb mRNA was observed in medullary segments. Consistently, NaPi-IIb protein colocalized with uromodulin at the luminal membrane of thick ascending limbs of the loop of Henle segments. The abundance of NaPi-IIb transcripts in kidneys from mice was neither affected by dietary Pi, the absence of renal NaPi-IIc, nor the depletion of intestinal NaPi-IIb. In contrast, it was highly upregulated in a model of oxalate-induced kidney disease where all other SLC34 phosphate transporters were downregulated. Thus, NaPi-IIb may contribute to renal phosphate reabsorption, and its upregulation in kidney disease might promote hyperphosphatemia.
Collapse
Affiliation(s)
- Sarah E Motta
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Pedro Henrique Imenez Silva
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Arezoo Daryadel
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Betül Haykir
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Eva Maria Pastor-Arroyo
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, Switzerland and National Center of Competence in Research NCCR Kidney, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
28
|
Cozzolino M, Ketteler M, Wagner CA. An expert update on novel therapeutic targets for hyperphosphatemia in chronic kidney disease: preclinical and clinical innovations. Expert Opin Ther Targets 2020; 24:477-488. [PMID: 32191548 DOI: 10.1080/14728222.2020.1743680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The management of hyperphosphatemia in patients with chronic kidney disease (CKD) is complicated, requiring a multidisciplinary approach that includes dietary phosphate restriction, dialysis, and phosphate binders.Areas covered: We describe key players involved in regulating inorganic phosphate homeostasis and their differential role in healthy people and different stages of CKD. The contribution of paracellular and transcellular intestinal absorptive mechanisms are also examined. Finally, we illuminate recent therapeutic approaches for hyperphosphatemia in CKD. We searched PubMed/Medline (up to November 2019) using the following terms: chronic kidney disease, dialysis, diet, hyperphosphatemia, NaPi2b, nicotinamide, phosphate binder, secondary hyperparathyroidism, tenapanor and vascular calcification.Expert opinion: The precise mechanisms regulating intestinal phosphate absorption in humans is not completely understood. However, it is now established that this process involves two independent pathways: a) active transport (i.e. transcellular route, via specific ion transporters) and inactive transport (i.e. paracellular route across tight junctions). Dietary phosphate restriction and phosphate-binder use can lead to an undesirable maladaptive increase in phosphate uptake and promote active phosphate transport by increased expression of the gastrointestinal sodium-dependent phosphate transporter, NaPi2b. Nicotinamide may overcome these limitations through the inhibition of NaPi2b, by improved efficacy and reduced phosphate binder use and better compliance.
Collapse
Affiliation(s)
- Mario Cozzolino
- Renal Division, ASST Santi Paolo E Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Markus Ketteler
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Carsten Alexander Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Center of Competence in Research, NCCR Kidney. CH, Zurich, Switzerland
| |
Collapse
|
29
|
Abstract
Over the past 25 years, successive cloning of SLC34A1, SLC34A2 and SLC34A3, which encode the sodium-dependent inorganic phosphate (Pi) cotransport proteins 2a-2c, has facilitated the identification of molecular mechanisms that underlie the regulation of renal and intestinal Pi transport. Pi and various hormones, including parathyroid hormone and phosphatonins, such as fibroblast growth factor 23, regulate the activity of these Pi transporters through transcriptional, translational and post-translational mechanisms involving interactions with PDZ domain-containing proteins, lipid microdomains and acute trafficking of the transporters via endocytosis and exocytosis. In humans and rodents, mutations in any of the three transporters lead to dysregulation of epithelial Pi transport with effects on serum Pi levels and can cause cardiovascular and musculoskeletal damage, illustrating the importance of these transporters in the maintenance of local and systemic Pi homeostasis. Functional and structural studies have provided insights into the mechanism by which these proteins transport Pi, whereas in vivo and ex vivo cell culture studies have identified several small molecules that can modify their transport function. These small molecules represent potential new drugs to help maintain Pi homeostasis in patients with chronic kidney disease - a condition that is associated with hyperphosphataemia and severe cardiovascular and skeletal consequences.
Collapse
|
30
|
King AJ, Siegel M, He Y, Nie B, Wang J, Koo-McCoy S, Minassian NA, Jafri Q, Pan D, Kohler J, Kumaraswamy P, Kozuka K, Lewis JG, Dragoli D, Rosenbaum DP, O'Neill D, Plain A, Greasley PJ, Jönsson-Rylander AC, Karlsson D, Behrendt M, Strömstedt M, Ryden-Bergsten T, Knöpfel T, Pastor Arroyo EM, Hernando N, Marks J, Donowitz M, Wagner CA, Alexander RT, Caldwell JS. Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci Transl Med 2019; 10:10/456/eaam6474. [PMID: 30158152 DOI: 10.1126/scitranslmed.aam6474] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 10/31/2017] [Accepted: 03/06/2018] [Indexed: 12/16/2022]
Abstract
Hyperphosphatemia is common in patients with chronic kidney disease and is increasingly associated with poor clinical outcomes. Current management of hyperphosphatemia with dietary restriction and oral phosphate binders often proves inadequate. Tenapanor, a minimally absorbed, small-molecule inhibitor of the sodium/hydrogen exchanger isoform 3 (NHE3), acts locally in the gastrointestinal tract to inhibit sodium absorption. Because tenapanor also reduces intestinal phosphate absorption, it may have potential as a therapy for hyperphosphatemia. We investigated the mechanism by which tenapanor reduces gastrointestinal phosphate uptake, using in vivo studies in rodents and translational experiments on human small intestinal stem cell-derived enteroid monolayers to model ion transport physiology. We found that tenapanor produces its effect by modulating tight junctions, which increases transepithelial electrical resistance (TEER) and reduces permeability to phosphate, reducing paracellular phosphate absorption. NHE3-deficient monolayers mimicked the phosphate phenotype of tenapanor treatment, and tenapanor did not affect TEER or phosphate flux in the absence of NHE3. Tenapanor also prevents active transcellular phosphate absorption compensation by decreasing the expression of NaPi2b, the major active intestinal phosphate transporter. In healthy human volunteers, tenapanor (15 mg, given twice daily for 4 days) increased stool phosphorus and decreased urinary phosphorus excretion. We determined that tenapanor reduces intestinal phosphate absorption predominantly through reduction of passive paracellular phosphate flux, an effect mediated exclusively via on-target NHE3 inhibition.
Collapse
Affiliation(s)
| | | | - Ying He
- Ardelyx Inc., Fremont, CA 94555, USA
| | | | - Ji Wang
- Ardelyx Inc., Fremont, CA 94555, USA
| | | | | | | | - Deng Pan
- Ardelyx Inc., Fremont, CA 94555, USA
| | | | | | | | | | | | | | - Debbie O'Neill
- University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| | - Allein Plain
- University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| | - Peter J Greasley
- Cardiovascular and Metabolic Disease (CVMD) Translational Medicine Unit, Early Clinical Development, Innovative Medicines and Early Development (IMED) Biotech Unit, AstraZeneca Gothenburg, 431 50 Mölndal, Sweden
| | | | - Daniel Karlsson
- Bioscience, CVMD, IMED Biotech Unit, AstraZeneca Gothenburg, 431 50 Mölndal, Sweden
| | - Margareta Behrendt
- Bioscience, CVMD, IMED Biotech Unit, AstraZeneca Gothenburg, 431 50 Mölndal, Sweden
| | - Maria Strömstedt
- Bioscience, CVMD, IMED Biotech Unit, AstraZeneca Gothenburg, 431 50 Mölndal, Sweden
| | | | - Thomas Knöpfel
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney Control of Homeostasis, CH-8057 Zurich, Switzerland
| | - Eva M Pastor Arroyo
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney Control of Homeostasis, CH-8057 Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney Control of Homeostasis, CH-8057 Zurich, Switzerland
| | - Joanne Marks
- Department of Neuroscience, Physiology and Pharmacology, University College London, Royal Free Campus, London NW3 2PF, UK
| | - Mark Donowitz
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich and National Center of Competence in Research Kidney Control of Homeostasis, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
31
|
Knöpfel T, Himmerkus N, Günzel D, Bleich M, Hernando N, Wagner CA. Paracellular transport of phosphate along the intestine. Am J Physiol Gastrointest Liver Physiol 2019; 317:G233-G241. [PMID: 31169994 DOI: 10.1152/ajpgi.00032.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inorganic phosphate (Pi) is crucial for many biological functions, such as energy metabolism, signal transduction, and pH buffering. Efficient systems must exist to ensure sufficient supply for the body of Pi from diet. Previous experiments in humans and rodents suggest that two pathways for the absorption of Pi exist, an active transcellular Pi transport and a second paracellular pathway. Whereas the identity, role, and regulation of active Pi transport have been extensively studied, much less is known about the properties of the paracellular pathway. In Ussing chamber experiments, we characterized paracellular intestinal Pi permeabilities and fluxes. Dilution potential measurements in intestinal cell culture models demonstrated that the tight junction is permeable to Pi, with monovalent Pi having a higher permeability than divalent Pi. These findings were confirmed in rat and mouse intestinal segments by use of Ussing chambers and a combination of dilution potential measurements and fluxes of radiolabeled 32Pi. Both techniques yielded very similar results, showing that paracellular Pi fluxes were bidirectional and that Pi permeability was ~50% of the permeability for Na+ or Cl-. Pi fluxes were a function of the concentration gradient and Pi species (mono- vs. divalent Pi). In mice lacking the active transcellular Pi transport component sodium-dependent Pi transporter NaPi-IIb, the paracellular pathway was not upregulated. In summary, the small and large intestines have a very high paracellular Pi permeability, which may favor monovalent Pi fluxes and allow efficient uptake of Pi even in the absence of active transcellular Pi uptake.NEW & NOTEWORTHY The paracellular permeability for phosphate is high along the entire axis of the small and large intestine. There is a slight preference for monovalent phosphate. Paracellular phosphate fluxes do not increase when transcellular phosphate transport is genetically abolished. Paracellular phosphate transport may be an important target for therapies aiming to reduce intestinal phosphate absorption.
Collapse
Affiliation(s)
- Thomas Knöpfel
- University of Zürich, Institute of Physiology, Zürich, Switzerland
| | - Nina Himmerkus
- Christian-Albrechts-Universität zu Kiel, Physiologisches Institut, Kiel, Germany
| | - Dorothee Günzel
- Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Institut für Klinische Physiologie, Berlin, Germany
| | - Markus Bleich
- Christian-Albrechts-Universität zu Kiel, Physiologisches Institut, Kiel, Germany
| | - Nati Hernando
- University of Zürich, Institute of Physiology, Zürich, Switzerland
| | - Carsten A Wagner
- University of Zürich, Institute of Physiology, Zürich, Switzerland
| |
Collapse
|
32
|
Wagner CA, Rubio-Aliaga I, Hernando N. Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Pediatr Nephrol 2019; 34:549-559. [PMID: 29275531 DOI: 10.1007/s00467-017-3873-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/12/2023]
Abstract
Renal phosphate handling critically determines plasma phosphate and whole body phosphate levels. Filtered phosphate is mostly reabsorbed by Na+-dependent phosphate transporters located in the brush border membrane of the proximal tubule: NaPi-IIa (SLC34A1), NaPi-IIc (SLC34A3), and Pit-2 (SLC20A2). Here we review new evidence for the role and relevance of these transporters in inherited disorders of renal phosphate handling. The importance of NaPi-IIa and NaPi-IIc for renal phosphate reabsorption and mineral homeostasis has been highlighted by the identification of mutations in these transporters in a subset of patients with infantile idiopathic hypercalcemia and patients with hereditary hypophosphatemic rickets with hypercalciuria. Both diseases are characterized by disturbed calcium homeostasis secondary to elevated 1,25-(OH)2 vitamin D3 as a consequence of hypophosphatemia. In vitro analysis of mutated NaPi-IIa or NaPi-IIc transporters suggests defective trafficking underlying disease in most cases. Monoallelic pathogenic mutations in both SLC34A1 and SLC34A3 appear to be very frequent in the general population and have been associated with kidney stones. Consistent with these findings, results from genome-wide association studies indicate that variants in SLC34A1 are associated with a higher risk to develop kidney stones and chronic kidney disease, but underlying mechanisms have not been addressed to date.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,National Center for Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland.
| | - Isabel Rubio-Aliaga
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,National Center for Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,National Center for Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| |
Collapse
|
33
|
Saurette M, Alexander RT. Intestinal phosphate absorption: The paracellular pathway predominates? Exp Biol Med (Maywood) 2019; 244:646-654. [PMID: 30764666 DOI: 10.1177/1535370219831220] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
IMPACT STATEMENT This review summarizes the work on transcellular intestinal phosphate absorption, arguing why this pathway is not the predominant pathway in humans consuming a "Western" diet. We then highlight the recent evidence which is strongly consistent with paracellular intestinal phosphate absorption mediating the bulk of intestinal phosphate absorption in humans.
Collapse
Affiliation(s)
- Matthew Saurette
- 1 Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,2 The Women's & Children's Health Research Institute, Edmonton, Alberta T6G 1C9, Canada
| | - R Todd Alexander
- 1 Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,2 The Women's & Children's Health Research Institute, Edmonton, Alberta T6G 1C9, Canada.,3 Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
34
|
Lederer E, Wagner CA. Clinical aspects of the phosphate transporters NaPi-IIa and NaPi-IIb: mutations and disease associations. Pflugers Arch 2018; 471:137-148. [DOI: 10.1007/s00424-018-2246-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
|
35
|
Systemic network for dietary inorganic phosphate adaptation among three organs. Pflugers Arch 2018; 471:123-136. [DOI: 10.1007/s00424-018-2242-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
|
36
|
Hu MC, Shi M, Moe OW. Role of αKlotho and FGF23 in regulation of type II Na-dependent phosphate co-transporters. Pflugers Arch 2018; 471:99-108. [PMID: 30506274 DOI: 10.1007/s00424-018-2238-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 11/26/2022]
Abstract
Alpha-Klotho is a member of the Klotho family consisting of two other single-pass transmembrane proteins: βKlotho and γKlotho; αKlotho has been shown to circulate in the blood. Fibroblast growth factor (FGF)23 is a member of the FGF superfamily of 22 genes/proteins. αKlotho serves as a co-receptor with FGF receptors (FGFRs) to provide a receptacle for physiological FGF23 signaling including regulation of phosphate metabolism. The extracellular domain of transmembrane αKlotho is shed by secretases and released into blood circulation (soluble αKlotho). Soluble αKlotho has both FGF23-independent and FGF23-dependent roles in phosphate homeostasis by modulating intestinal phosphate absorption, urinary phosphate excretion, and phosphate distribution into bone in concerted interaction with other calciophosphotropic hormones such as PTH and 1,25-(OH)2D. The direct role of αKlotho and FGF23 in the maintenance of phosphate homeostasis is partly mediated by modulation of type II Na+-dependent phosphate co-transporters in target organs. αKlotho and FGF23 are principal phosphotropic hormones, and the manipulation of the αKlotho-FGF23 axis is a novel therapeutic strategy for genetic and acquired phosphate disorders and for conditions with FGF23 excess and αKlotho deficiency such as chronic kidney disease.
Collapse
Affiliation(s)
- Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
37
|
Marks J. The role of SLC34A2 in intestinal phosphate absorption and phosphate homeostasis. Pflugers Arch 2018; 471:165-173. [PMID: 30343332 PMCID: PMC6325986 DOI: 10.1007/s00424-018-2221-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
There has recently been significant interest in the concept of directly targeting intestinal phosphate transport to control hyperphosphatemia in patients with chronic kidney disease. However, we do not have a complete understanding of the cellular mechanisms that govern dietary phosphate absorption. Studies in the 1970s documented both active and passive pathways for intestinal phosphate absorption. However, following the cloning of the intestinal SLC34 cotransporter, NaPi-IIb, much of the research focused on the role of this protein in active transcellular phosphate absorption and the factors involved in its regulation. Generation of a conditional NaPi-IIb knockout mouse has demonstrated that this protein is critical for the maintenance of skeletal integrity during periods of phosphate restriction and that under normal physiological conditions, the passive sodium-independent pathway is likely be the more dominant pathway for intestinal phosphate absorption. The review aims to summarise the most recent developments in our understanding of the role of the intestine in phosphate homeostasis, including the acute and chronic renal adaptations that occur in response to dietary phosphate intake. Evidence regarding the overall contribution of the transcellular and paracellular pathways for phosphate absorption will be discussed, together with the clinical benefit of inhibiting these pathways for the treatment of hyperphosphatemia in chronic kidney disease.
Collapse
Affiliation(s)
- Joanne Marks
- Department of Neuroscience, Physiology and Pharmacology, Royal Free Campus, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
38
|
Michigami T, Kawai M, Yamazaki M, Ozono K. Phosphate as a Signaling Molecule and Its Sensing Mechanism. Physiol Rev 2018; 98:2317-2348. [DOI: 10.1152/physrev.00022.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, phosphate balance is maintained by influx and efflux via the intestines, kidneys, bone, and soft tissue, which involves multiple sodium/phosphate (Na+/Pi) cotransporters, as well as regulation by several hormones. Alterations in the levels of extracellular phosphate exert effects on both skeletal and extra-skeletal tissues, and accumulating evidence has suggested that phosphate itself evokes signal transduction to regulate gene expression and cell behavior. Several in vitro studies have demonstrated that an elevation in extracellular Piactivates fibroblast growth factor receptor, Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular signal-regulated kinase) pathway and Akt pathway, which might involve the type III Na+/Picotransporter PiT-1. Excessive phosphate loading can lead to various harmful effects by accelerating ectopic calcification, enhancing oxidative stress, and dysregulating signal transduction. The responsiveness of mammalian cells to altered extracellular phosphate levels suggests that they may sense and adapt to phosphate availability, although the precise mechanism for phosphate sensing in mammals remains unclear. Unicellular organisms, such as bacteria and yeast, use some types of Pitransporters and other molecules, such as kinases, to sense the environmental Piavailability. Multicellular animals may need to integrate signals from various organs to sense the phosphate levels as a whole organism, similarly to higher plants. Clarification of the phosphate-sensing mechanism in humans may lead to the development of new therapeutic strategies to prevent and treat diseases caused by phosphate imbalance.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Izumi, Osaka, Japan; and Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
39
|
Tatsumi S, Katai K, Kaneko I, Segawa H, Miyamoto KI. NAD metabolism and the SLC34 family: evidence for a liver-kidney axis regulating inorganic phosphate. Pflugers Arch 2018; 471:109-122. [PMID: 30218374 DOI: 10.1007/s00424-018-2204-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022]
Abstract
The solute carrier 34 (SLC34) family of membrane transporters is a major contributor to Pi homeostasis. Many factors are involved in regulating the SLC34 family. The roles of the bone mineral metabolism factors parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) in Pi homeostasis are well studied. Intracellular Pi is thought to be involved in energy metabolism, such as ATP production. Under certain conditions of altered energy metabolism, plasma Pi concentrations are affected by the regulation of a Pi shift into cells or release from the tissues. We recently investigated the mechanism of hepatectomy-related hypophosphatemia, which is thought to involve an unknown phosphaturic factor. Hepatectomy-related hypophosphatemia is due to impaired nicotinamide adenine dinucleotide (NAD) metabolism through its effects on the SLC34 family in the liver-kidney axis. The oxidized form of NAD, NAD+, is an essential cofactor in various cellular biochemical reactions. Levels of NAD+ and its reduced form NADH vary with the availability of dietary energy and nutrients. Nicotinamide phosphoribosyltransferase (Nampt) generates a key NAD+ intermediate, nicotinamide mononucleotide, from nicotinamide and 5-phosphoribosyl 1-pyrophosphate. The liver, an important organ of NAD metabolism, is thought to release metabolic products such as nicotinamide and may control NAD metabolism in other organs. Moreover, NAD is an important regulator of the circadian rhythm. Liver-specific Nampt-deficient mice and heterozygous Nampt mice have abnormal daily plasma Pi concentration oscillations. These data indicate that NAD metabolism in the intestine, liver, and kidney is closely related to Pi metabolism through the SLC34 family. Here, we review the relationship between the SLC34 family and NAD metabolism based on our recent studies.
Collapse
Affiliation(s)
- Sawako Tatsumi
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.,Department of Food Science and Nutrition, School of Human Cultures, The University of Shiga Prefecture, Hikone, Japan
| | - Kanako Katai
- Faculty of Human Life and Science, Department of Food Science and Nutrition, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| |
Collapse
|
40
|
Sasaki S, Segawa H, Hanazaki A, Kirino R, Fujii T, Ikuta K, Noguchi M, Sasaki S, Koike M, Tanifuji K, Shiozaki Y, Kaneko I, Tatsumi S, Shimohata T, Kawai Y, Narisawa S, Millán JL, Miyamoto KI. A Role of Intestinal Alkaline Phosphatase 3 (Akp3) in Inorganic Phosphate Homeostasis. Kidney Blood Press Res 2018; 43:1409-1424. [PMID: 30212831 DOI: 10.1159/000493379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS Hyperphosphatemia is a serious complication of late-stage chronic kidney disease (CKD). Intestinal inorganic phosphate (Pi) handling plays an important role in Pi homeostasis in CKD. We investigated whether intestinal alkaline phosphatase 3 (Akp3), the enzyme that hydrolyzes dietary Pi compounds, is a target for the treatment of hyperphosphatemia in CKD. METHODS We investigated Pi homeostasis in Akp3 knockout mice (Akp3-/-). We also studied the progression of renal failure in an Akp3-/- mouse adenine treated renal failure model. Plasma, fecal, and urinary Pi and Ca concentration were measured with commercially available kit, and plasma fibroblast growth factor 23, parathyroid hormone, and 1,25(OH)2D3 concentration were measured with ELISA. Brush border membrane vesicles were prepared from mouse intestine using the Ca2+ precipitation method and used for Pi transport activity and alkaline phosphatase activity. In vivo intestinal Pi absorption was measured with oral 32P administration. RESULTS Akp3-/- mice exhibited reduced intestinal type II sodium-dependent Pi transporter (Npt2b) protein levels and Na-dependent Pi co-transport activity. In addition, plasma active vitamin D levels were significantly increased in Akp3-/- mice compared with wild-type animals. In the adenine-induced renal failure model, Akp3 gene deletion suppressed hyperphosphatemia. CONCLUSION The present findings indicate that intestinal Akp3 deletion affects Na+-dependent Pi transport in the small intestine. In the adenine-induced renal failure model, Akp3 is predicted to be a factor contributing to suppression of the plasma Pi concentration.
Collapse
Affiliation(s)
- Shohei Sasaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima,
| | - Ai Hanazaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Ruri Kirino
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Toru Fujii
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Kayo Ikuta
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Miwa Noguchi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Sumire Sasaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Megumi Koike
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Kazuya Tanifuji
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Yuji Shiozaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Yoshichika Kawai
- Department of Food Science, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Sonoko Narisawa
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institute of Biomedical Sciences, University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
41
|
Hernando N, Wagner CA. Mechanisms and Regulation of Intestinal Phosphate Absorption. Compr Physiol 2018; 8:1065-1090. [PMID: 29978897 DOI: 10.1002/cphy.c170024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
States of hypo- and hyperphosphatemia have deleterious consequences including rickets/osteomalacia and renal/cardiovascular disease, respectively. Therefore, the maintenance of appropriate plasma levels of phosphate is an essential requirement for health. This control is executed by the collaborative action of intestine and kidney whose capacities to (re)absorb phosphate are regulated by a number of hormonal and metabolic factors, among them parathyroid hormone, fibroblast growth factor 23, 1,25(OH)2 vitamin D3 , and dietary phosphate. The molecular mechanisms responsible for the transepithelial transport of phosphate across enterocytes are only partially understood. Indeed, whereas renal reabsorption entirely relies on well-characterized active transport mechanisms of phosphate across the renal proximal epithelia, intestinal absorption proceeds via active and passive mechanisms, with the molecular identity of the passive component still unknown. The active absorption of phosphate depends mostly on the activity and expression of the sodium-dependent phosphate cotransporter NaPi-IIb (SLC34A2), which is highly regulated by many of the factors, mentioned earlier. Physiologically, the contribution of NaPi-IIb to the maintenance of phosphate balance appears to be mostly relevant during periods of low phosphate availability. Therefore, its role in individuals living in industrialized societies with high phosphate intake is probably less relevant. Importantly, small increases in plasma phosphate, even within normal range, associate with higher risk of cardiovascular disease. Therefore, therapeutic approaches to treat hyperphosphatemia, including dietary phosphate restriction and phosphate binders, aim at reducing intestinal absorption. Here we review the current state of research in the field. © 2017 American Physiological Society. Compr Physiol 8:1065-1090, 2018.
Collapse
Affiliation(s)
- Nati Hernando
- National Center for Competence in Research NCCR Kidney.CH, Institute of Physiology, University Zurich-Irchel, Zurich, Switzerland
| | - Carsten A Wagner
- National Center for Competence in Research NCCR Kidney.CH, Institute of Physiology, University Zurich-Irchel, Zurich, Switzerland
| |
Collapse
|
42
|
Filipski KJ, Sammons MF, Bhattacharya SK, Panteleev J, Brown JA, Loria PM, Boehm M, Smith AC, Shavnya A, Conn EL, Song K, Weng Y, Facemire C, Jüppner H, Clerin V. Discovery of Orally Bioavailable Selective Inhibitors of the Sodium-Phosphate Cotransporter NaPi2a (SLC34A1). ACS Med Chem Lett 2018; 9:440-445. [PMID: 29795756 DOI: 10.1021/acsmedchemlett.8b00013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/04/2018] [Indexed: 11/30/2022] Open
Abstract
Sodium-phosphate cotransporter 2a, or NaPi2a (SLC34A1), is a solute-carrier (SLC) transporter located in the kidney proximal tubule that reabsorbs glomerular-filtered phosphate. Inhibition of NaPi2a may enhance urinary phosphate excretion and correct maladaptive mineral and hormonal derangements associated with increased cardiovascular risk in chronic kidney disease-mineral and bone disorder (CKD-MBD). To date, only nonselective NaPi inhibitors have been described. Herein, we detail the discovery of the first series of selective NaPi2a inhibitors, resulting from optimization of a high-throughput screening hit. The oral PK profile of inhibitor PF-06869206 (6f) in rodents allows for the exploration of the pharmacology of selective NaPi2a inhibition.
Collapse
Affiliation(s)
- Kevin J. Filipski
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Matthew F. Sammons
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Samit K. Bhattacharya
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jane Panteleev
- Pfizer Worldwide Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Janice A. Brown
- Pfizer Worldwide Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Paula M. Loria
- Pfizer Worldwide Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Markus Boehm
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Aaron C. Smith
- Pfizer Worldwide Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Andre Shavnya
- Pfizer Worldwide Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Edward L. Conn
- Pfizer Worldwide Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kun Song
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Yan Weng
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Carie Facemire
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Harald Jüppner
- Endocrine Unit and Pediatric Nephrology Unit, Thier 10, Massachusetts General Hospital and Harvard Medical School, 50 Blossom Street, Boston, Massachusetts 02114, United States
| | - Valerie Clerin
- Pfizer Worldwide Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
43
|
Miyagawa A, Tatsumi S, Takahama W, Fujii O, Nagamoto K, Kinoshita E, Nomura K, Ikuta K, Fujii T, Hanazaki A, Kaneko I, Segawa H, Miyamoto KI. The sodium phosphate cotransporter family and nicotinamide phosphoribosyltransferase contribute to the daily oscillation of plasma inorganic phosphate concentration. Kidney Int 2018; 93:1073-1085. [PMID: 29398136 DOI: 10.1016/j.kint.2017.11.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/07/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022]
Abstract
Circulating inorganic phosphate exhibits a remarkable daily oscillation based on food intake. In humans and rodents, the daily oscillation in response to food intake may be coordinated to control the intestinal absorption, renal excretion, cellular shifts, and extracellular concentration of inorganic phosphate. However, mechanisms regulating the resulting oscillation are unknown. Here we investigated the roles of the sodium phosphate cotransporter SLC34 (Npt2) family and nicotinamide phosphoribosyltransferase (Nampt) in the daily oscillation of plasma inorganic phosphate levels. First, it is roughly linked to urinary inorganic phosphate excretion. Second, expression of renal Npt2a and Npt2c, and intestinal Npt2b proteins also exhibit a dynamic daily oscillation. Analyses of Npt2a, Npt2b, and Npt2c knockout mice revealed the importance of renal inorganic phosphate reabsorption and cellular inorganic phosphate shifts in the daily oscillation. Third, experiments in which nicotinamide and a specific Nampt inhibitor (FK866) were administered in the active and rest phases revealed that the Nampt/NAD+ system is involved in renal inorganic phosphate excretion. Additionally, for cellular shifts, liver-specific Nampt deletion disturbed the daily oscillation of plasma phosphate during the rest but not the active phase. In systemic Nampt+/- mice, NAD levels were significantly reduced in the liver, kidney, and intestine, and the daily oscillation (active and rest phases) of the plasma phosphate concentration was attenuated. Thus, the Nampt/NAD+ system for Npt2 regulation and cellular shifts to tissues such as the liver play an important role in generating daily oscillation of plasma inorganic phosphate levels.
Collapse
Affiliation(s)
- Atsumi Miyagawa
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Sawako Tatsumi
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan.
| | - Wako Takahama
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Osamu Fujii
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kenta Nagamoto
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Emi Kinoshita
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kengo Nomura
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kayo Ikuta
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Toru Fujii
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ai Hanazaki
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institution of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
44
|
Nicolescu RC, Lombet J, Cavalier E. Vitamin D-Resistant Rickets and Cinacalcet-One More Favorable Experience. Front Pediatr 2018; 6:376. [PMID: 30555810 PMCID: PMC6282023 DOI: 10.3389/fped.2018.00376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022] Open
Abstract
Hereditary vitamin D-resistant rickets (HVDRR) is an autosomal recessive disorder characterized by early onset of severe rickets, with a complete triad of clinical, biochemical and skeletal abnormalities. Homozygous or heterozygous mutations in the vitamin D receptor (VDR) gene leading to complete or partial target organ resistance to the action of 1α, 25-dihydroxyvitamin D3 (the active form of vitamin D) are responsible for HVDRR. Theoretically the therapeutic goal is to overcome this tissue resistance, and to normalize calcium and phosphate homeostasis. Practically, the treatment could be oriented to correct the secondary hyperparathyroidism to avoid long-term negative impact on bone health. The conventional therapeutic strategy (high-dose calcium plus active vitamin D metabolites) gives variable responses in magnitude and duration. We report a case of HVDRR with heterozygous mutation in the VDR gene, neonatal alopecia, and a severe clinical phenotype diagnosed at the age of 30 months who showed unsatisfactory response to traditional therapy. The short-term responsiveness to cinacalcet was encouraging, with adequate correction of phosphate-calcium homeostasis and significant improvement of clinical and radiological status at 6 months of treatment.
Collapse
Affiliation(s)
- Ramona C Nicolescu
- Division of Endocrinology and Diabetes, Department of Pediatrics, Centre Hospitalier Regional Citadelle, University of Liège, Liège, Belgium
| | - Jacques Lombet
- Division of Nephrology, Department of Pediatrics, University Hospital Center of Liège, Liège, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, University Hospital Center of Liège, University of Liège, Liège, Belgium
| |
Collapse
|
45
|
The intestinal phosphate transporter NaPi-IIb (Slc34a2) is required to protect bone during dietary phosphate restriction. Sci Rep 2017; 7:11018. [PMID: 28887454 PMCID: PMC5591270 DOI: 10.1038/s41598-017-10390-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/07/2017] [Indexed: 02/04/2023] Open
Abstract
NaPi-IIb/Slc34a2 is a Na+-dependent phosphate transporter that accounts for the majority of active phosphate transport into intestinal epithelial cells. Its abundance is regulated by dietary phosphate, being high during dietary phosphate restriction. Intestinal ablation of NaPi-IIb in mice leads to increased fecal excretion of phosphate, which is compensated by enhanced renal reabsorption. Here we compared the adaptation to dietary phosphate of wild type (WT) and NaPi-IIb−/− mice. High phosphate diet (HPD) increased fecal and urinary excretion of phosphate in both groups, though NaPi-IIb−/− mice still showed lower urinary excretion than WT. In both genotypes low dietary phosphate (LDP) resulted in reduced fecal excretion and almost undetectable urinary excretion of phosphate. Consistently, the expression of renal cotransporters after prolonged LDP was similar in both groups. Plasma phosphate declined more rapidly in NaPi-IIb−/− mice upon LDP, though both genotypes had comparable levels of 1,25(OH)2vitamin D3, parathyroid hormone and fibroblast growth factor 23. Instead, NaPi-IIb−/− mice fed LDP had exacerbated hypercalciuria, higher urinary excretion of corticosterone and deoxypyridinoline, lower bone mineral density and higher number of osteoclasts. These data suggest that during dietary phosphate restriction NaPi-IIb-mediated intestinal absorption prevents excessive demineralization of bone as an alternative source of phosphate.
Collapse
|
46
|
Liu X, Zhou X, Xu H, He Z, Shi X, Wu S. SLC34A2 Regulates the Proliferation, Migration, and Invasion of Human Osteosarcoma Cells Through PTEN/PI3K/AKT Signaling. DNA Cell Biol 2017; 36:775-780. [PMID: 28777670 DOI: 10.1089/dna.2017.3750] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is a bone malignancy with high incidence. The underlying molecular mechanisms that are associated with the development of OS need further investigation. In this study, we showed that SLC34A2, a member of the solute carrier gene family, was significantly downregulated in OS patients and cell lines. Overexpression of SLC34A2 inhibited the proliferation, migration, and invasion of OS cells. Mechanistically, we found that SLC34A2 interacted with PTEN, and inactivated the PI3K/AKT signaling pathway. Collectively, our results demonstrated that SLC34A2 plays important roles in regulating the cancer cell growth of OS. The downregulation of SLC34A2 in OS patients suggested that it might be a promising target in the diagnosis and therapy of OS.
Collapse
Affiliation(s)
- Xiaozhou Liu
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Xing Zhou
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Haidong Xu
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Zhiwei He
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Xin Shi
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| | - Sujia Wu
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University , Nanjing China
| |
Collapse
|
47
|
Thomas L, Bettoni C, Knöpfel T, Hernando N, Biber J, Wagner CA. Acute Adaption to Oral or Intravenous Phosphate Requires Parathyroid Hormone. J Am Soc Nephrol 2016; 28:903-914. [PMID: 28246304 DOI: 10.1681/asn.2016010082] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022] Open
Abstract
Phosphate (Pi) homeostasis is regulated by renal, intestinal, and endocrine mechanisms through which Pi intake stimulates parathyroid hormone (PTH) and fibroblast growth factor-23 secretion, increasing phosphaturia. Mechanisms underlying the early adaptive phase and the role of the intestine, however, remain ill defined. We investigated mineral, endocrine, and renal responses during the first 4 hours after intravenous and intragastric Pi loading in rats. Intravenous Pi loading (0.5 mmol) caused a transient rise in plasma Pi levels and creatinine clearance and an increase in phosphaturia within 10 minutes. Plasma calcium levels fell and PTH levels increased within 10 minutes and remained low or high, respectively. Fibroblast growth factor-23, 1,25-(OH)2-vitamin D3, and insulin concentrations did not respond, but plasma dopamine levels increased by 4 hours. In comparison, gastric Pi loading elicited similar but delayed phosphaturia and endocrine responses but did not affect plasma mineral levels. Either intravenous or gastric loading led to decreased expression and activity of renal Pi transporters after 4 hours. In parathyroidectomized rats, however, only intravenous Pi loading caused phosphaturia, which was blunted and transient compared with that in intact rats. Intravenous but not gastric Pi loading in parathyroidectomized rats also led to higher creatinine clearance and lower plasma calcium levels but did not reduce the expression or activity of Pi transporters. This evidence suggests that an intravenous or intestinal Pi bolus causes rapid phosphaturia through mechanisms requiring PTH and downregulation of renal Pi transporters but does not support a role of the intestine in stimulating renal clearance of Pi.
Collapse
Affiliation(s)
- Linto Thomas
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and National Centre for Competence in Research, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and National Centre for Competence in Research, Zurich, Switzerland
| | - Thomas Knöpfel
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and National Centre for Competence in Research, Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and National Centre for Competence in Research, Zurich, Switzerland
| | - Jürg Biber
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and National Centre for Competence in Research, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and National Centre for Competence in Research, Zurich, Switzerland
| |
Collapse
|
48
|
Tatsumi S, Miyagawa A, Kaneko I, Shiozaki Y, Segawa H, Miyamoto KI. Regulation of renal phosphate handling: inter-organ communication in health and disease. J Bone Miner Metab 2016; 34:1-10. [PMID: 26296817 DOI: 10.1007/s00774-015-0705-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/16/2015] [Indexed: 01/18/2023]
Abstract
In this review, we focus on the interconnection of inorganic phosphate (Pi) homeostasis in the network of the bone-kidney, parathyroid-kidney, intestine-kidney, and liver-kidney axes. Such a network of organ communication is important for body Pi homeostasis. Normalization of serum Pi levels is a clinical target in patients with chronic kidney disease (CKD). Particularly, disorders of the fibroblast growth factor 23/klotho system are observed in early CKD. Identification of phosphaturic factors from the intestine and liver may enhance our understanding of body Pi homeostasis and Pi metabolism disturbances in CKD patients.
Collapse
Affiliation(s)
- Sawako Tatsumi
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Atsumi Miyagawa
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ichiro Kaneko
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Shiozaki
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hiroko Segawa
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| |
Collapse
|