1
|
Wu H, Zuo J, Dai Y, Li H, Wang S. NEDD4 family E3 ligases in osteoporosis: mechanisms and emerging potential therapeutic targets. J Orthop Surg Res 2025; 20:92. [PMID: 39849530 PMCID: PMC11761774 DOI: 10.1186/s13018-025-05517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025] Open
Abstract
Osteoporosis is a systemic skeletal disorder characterized by reduced bone density and an increased risk of fractures, particularly prevalent in the aging population. Osteoporotic complications, including vertebral compression fractures, hip fractures, and distal forearm fractures, affect over 8.9 million individuals globally, placing a significant economic strain on healthcare systems. Recent advances have expanded our understanding of the mechanisms underlying osteoporosis, particularly the intricate regulatory networks involved in bone metabolism. A central player in these processes is ubiquitin-mediated proteasomal degradation, a crucial post-translational modification system that involves ubiquitin, the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), ubiquitin ligase (E3), deubiquitinating enzymes, and the proteasome. Among the various E3 ligases, the NEDD4 family has emerged as a key regulator of both bone development and osteoporotic pathology. This review delineates the role of NEDD4 family in osteoporosis and identifies potential drug targets within these pathways, offering insights into novel therapeutic approaches for osteoporosis through targeted intervention.
Collapse
Affiliation(s)
- Heng Wu
- Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Junhui Zuo
- Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yu Dai
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hairui Li
- Department of Urology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Song Wang
- Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Atta H, Kassem DH, Kamal MM, Hamdy NM. Harnessing the ubiquitin proteasome system as a key player in stem cell biology. Biofactors 2025; 51:e2157. [PMID: 39843166 DOI: 10.1002/biof.2157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
Intracellular proteins take part in almost every body function; thus, protein homeostasis is of utmost importance. The ubiquitin proteasome system (UPS) has a fundamental role in protein homeostasis. Its main role is to selectively eradicate impaired or misfolded proteins, thus halting any damage that could arise from the accumulation of these malfunctioning proteins. Proteasomes have a critical role in controlling protein homeostasis in all cell types, including stem cells. We will discuss the role of UPS enzymes as well as the 26S proteasome complex in stem cell biology from several angles. First, we shall overview common trends of proteasomal activity and gene expression of different proteasomal subunits and UPS enzymes upon passaging and differentiation of stem cells toward various cell lineages. Second, we shall explore the effect of modulating proteasomal activity in stem cells and navigate through the interrelation between proteasomes' activity and various proteasome-related transcription factors. Third, we will shed light on curated microRNAs and long non-coding RNAs using various bioinformatics tools that might have a possible role in regulating UPS in stem cells and possibly, upon manipulation, can enhance the differentiation process into different lineages and/or delay senescence upon cell passaging. This will help to decipher the role played by individual UPS enzymes and subunits as well as various interrelated molecular mediators in stem cells' maintenance and/or differentiation and open new avenues in stem cell research. This can ultimately provide a leap toward developing novel therapeutic interventions related to proteasome dysregulation.
Collapse
Affiliation(s)
- Hind Atta
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Cairo, Egypt
| | - Dina H Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Drug Research and Development Group, Health Research Center of Excellence, The British University in Egypt, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Yang Y, Luo N, Gong Z, Zhou W, Ku Y, Chen Y. Lactate and lysine lactylation of histone regulate transcription in cancer. Heliyon 2024; 10:e38426. [PMID: 39559217 PMCID: PMC11570253 DOI: 10.1016/j.heliyon.2024.e38426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
Histone lysine modifications were well-established epigenetic markers, with many types identified and extensively studied. The discovery of histone lysine lactylation had revealed a new form of epigenetic modification. The intensification of this modification was associated with glycolysis and elevated intracellular lactate levels, both of which were closely linked to cellular metabolism. Histone lactylation plays a crucial role in multiple cellular homeostasis, including immune regulation and cancer progression, thereby significantly influencing cell fate. Lactylation can modify both histone and non-histone proteins. This paper provided a comprehensive review of the typical epigenetic effects and lactylation on classical transcription-related lysine sites and summarized the known enzymes involved in histone lactylation and delactylation. Additionally, some discoveries of histone lactylation in tumor biology were also discussed, and some prospects for this field were put forward.
Collapse
Affiliation(s)
- Yunhao Yang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Nanzhi Luo
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Zhipeng Gong
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Wenjing Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Yin Ku
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| | - Yaohui Chen
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Frontiers Science Center for Disease-related Molecular Network Sichuan University, Chengdu, 610097, China
| |
Collapse
|
4
|
Zhang H, Du Y, Lu D, Wang X, Li Y, Qing J, Zhang Y, Liu H, Lv L, Zhang X, Liu Y, Zhou Y, Zhang P. UBE2C orchestrates bone formation through stabilization of SMAD1/5. Bone 2024; 187:117175. [PMID: 38917963 DOI: 10.1016/j.bone.2024.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
While previous studies have demonstrated the role of ubiquitin-conjugating enzyme 2C (UBE2C) in promoting β-cell proliferation and cancer cell lineage expansion, its specific function and mechanism in bone marrow mesenchymal stem/stromal cells (BMSCs) growth and differentiation remain poorly understood. Our findings indicate that mice with conditional Ube2c deletions in BMSCs and osteoblasts exhibit reduced skeletal bone mass and impaired bone repair. A significant reduction in the proliferative capacity of BMSCs was observed in conditional Ube2c knockout mice, with no effect on apoptosis. Additionally, conditional Ube2c knockout mice exhibited enhanced osteoclastic activity and reduced osteogenic differentiation. Furthermore, human BMSCs with stable UBE2C knockdown exhibited diminished capacity for osteogenic differentiation. Mechanistically, we discovered that UBE2C binds to and stabilizes SMAD1/5 protein expression levels. Interestingly, UBE2C's role in regulating osteogenic differentiation and SMAD1/5 expression levels appears to be independent of its enzymatic activity. Notably, UBE2C regulates osteogenic differentiation through SMAD1/5 signaling. In conclusion, our findings underscore the pivotal role of UBE2C in bone formation, emphasizing its contribution to enhanced osteogenic differentiation through the stabilization of SMAD1/5. These results propose UBE2C as a promising target for BMSC-based bone regeneration.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yangge Du
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Dazhuang Lu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Xu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yang Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Jia Qing
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yingfei Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & National Health Commission Key Laboratory of Digital Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, 100081 Beijing, China.
| |
Collapse
|
5
|
Zhang HR, Wang YH, Xiao ZP, Yang G, Xu YR, Huang ZT, Wang WZ, He F. E3 ubiquitin ligases: key regulators of osteogenesis and potential therapeutic targets for bone disorders. Front Cell Dev Biol 2024; 12:1447093. [PMID: 39211390 PMCID: PMC11358089 DOI: 10.3389/fcell.2024.1447093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Ubiquitination is a crucial post-translational modification of proteins that mediates the degradation or functional regulation of specific proteins. This process participates in various biological processes such as cell growth, development, and signal transduction. E3 ubiquitin ligases play both positive and negative regulatory roles in osteogenesis and differentiation by ubiquitination-mediated degradation or stabilization of transcription factors, signaling molecules, and cytoskeletal proteins. These activities affect the proliferation, differentiation, survival, and bone formation of osteoblasts (OBs). In recent years, advances in genomics, transcriptomics, and proteomics have led to a deeper understanding of the classification, function, and mechanisms of action of E3 ubiquitin ligases. This understanding provides new insights and approaches for revealing the molecular regulatory mechanisms of bone formation and identifying therapeutic targets for bone metabolic diseases. This review discusses the research progress and significance of the positive and negative regulatory roles and mechanisms of E3 ubiquitin ligases in the process of osteogenic differentiation. Additionally, the review highlights the role of E3 ubiquitin ligases in bone-related diseases. A thorough understanding of the role and mechanisms of E3 ubiquitin ligases in osteogenic differentiation could provide promising therapeutic targets for bone tissue engineering based on stem cells.
Collapse
Affiliation(s)
- Heng-Rui Zhang
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Yang-Hao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhen-Ping Xiao
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
- Department of Pain and Rehabilitation, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Guang Yang
- Department of Trauma Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yun-Rong Xu
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Zai-Tian Huang
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Wei-Zhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| |
Collapse
|
6
|
Zhao L, Lai Y, Jiao H, Li J, Lu K, Huang J. CRISPR-mediated Sox9 activation and RelA inhibition enhance cell therapy for osteoarthritis. Mol Ther 2024; 32:2549-2562. [PMID: 38879753 PMCID: PMC11405173 DOI: 10.1016/j.ymthe.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Osteoarthritis (OA) is a painful and debilitating disease affecting over 500 million people worldwide. Intraarticular injection of mesenchymal stromal cells (MSCs) shows promise for the clinical treatment of OA, but the lack of consistency in MSC preparation and application makes it difficult to further optimize MSC therapy and to properly evaluate the clinical outcomes. In this study, we used Sox9 activation and RelA inhibition, both mediated by the CRISPR-dCas9 technology simultaneously, to engineer MSCs with enhanced chondrogenic potential and downregulated inflammatory responses. We found that both Sox9 and RelA could be fine-tuned to the desired levels, which enhances the chondrogenic and immunomodulatory potentials of the cells. Intraarticular injection of modified cells significantly attenuated cartilage degradation and palliated OA pain compared with the injection of cell culture medium or unmodified cells. Mechanistically, the modified cells promoted the expression of factors beneficial to cartilage integrity, inhibited the production of catabolic enzymes in osteoarthritic joints, and suppressed immune cells. Interestingly, a substantial number of modified cells could survive in the cartilaginous tissues including articular cartilage and meniscus. Together, our results suggest that CRISPR-dCas9-based gene regulation is useful for optimizing MSC therapy for OA.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hongli Jiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Ke Lu
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
7
|
Fan X, Zhang R, Xu G, Fan P, Luo W, Cai C, Ge RL. Role of ubiquitination in the occurrence and development of osteoporosis (Review). Int J Mol Med 2024; 54:68. [PMID: 38940355 PMCID: PMC11232666 DOI: 10.3892/ijmm.2024.5392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
The ubiquitin (Ub)‑proteasome system (UPS) plays a pivotal role in maintaining protein homeostasis and function to modulate various cellular processes including skeletal cell differentiation and bone homeostasis. The Ub ligase E3 promotes the transfer of Ub to the target protein, especially transcription factors, to regulate the proliferation, differentiation and survival of bone cells, as well as bone formation. In turn, the deubiquitinating enzyme removes Ub from modified substrate proteins to orchestrate bone remodeling. As a result of abnormal regulation of ubiquitination, bone cell differentiation exhibits disorder and then bone homeostasis is affected, consequently leading to osteoporosis. The present review discussed the role and mechanism of UPS in bone remodeling. However, the specific mechanism of UPS in the process of bone remodeling is still not fully understood and further research is required. The study of the mechanism of action of UPS can provide new ideas and methods for the prevention and treatment of osteoporosis. In addition, the most commonly used osteoporosis drugs that target ubiquitination processes in the clinic are discussed in the current review.
Collapse
Affiliation(s)
- Xiaoxia Fan
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Rong Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Guocai Xu
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Peiyun Fan
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Wei Luo
- Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
| | - Chunmei Cai
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of The Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China
- Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai 810000, P.R. China
- Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai 810000, P.R. China
| |
Collapse
|
8
|
Zhao L, Lai Y, Jiao H, Huang J. Nerve growth factor receptor limits inflammation to promote remodeling and repair of osteoarthritic joints. Nat Commun 2024; 15:3225. [PMID: 38622181 PMCID: PMC11018862 DOI: 10.1038/s41467-024-47633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/08/2024] [Indexed: 04/17/2024] Open
Abstract
Osteoarthritis (OA) is a painful, incurable disease affecting over 500 million people. Recent clinical trials of the nerve growth factor (NGF) inhibitors in OA patients have suggested adverse effects of NGF inhibition on joint structure. Here we report that nerve growth factor receptor (NGFR) is upregulated in skeletal cells during OA and plays an essential role in the remodeling and repair of osteoarthritic joints. Specifically, NGFR is expressed in osteochondral cells but not in skeletal progenitor cells and induced by TNFα to attenuate NF-κB activation, maintaining proper BMP-SMAD1 signaling and suppressing RANKL expression in mice. NGFR deficiency hyper-activates NF-κB in murine osteoarthritic joints, which impairs bone formation and enhances bone resorption as exemplified by a reduction in subchondral bone and osteophytes. In human OA cartilage, NGFR is also negatively associated with NF-κB activation. Together, this study suggests a role of NGFR in limiting inflammation for repair of diseased skeletal tissues.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hongli Jiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
9
|
Wang H, Han J, Dmitrii G, Ning K, Zhang X. KLF transcription factors in bone diseases. J Cell Mol Med 2024; 28:e18278. [PMID: 38546623 PMCID: PMC10977429 DOI: 10.1111/jcmm.18278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2025] Open
Abstract
Krüppel-like factors (KLFs) are crucial in the development of bone disease. They are a family of zinc finger transcription factors that are unusual in containing three highly conserved zinc finger structural domains interacting with DNA. It has been discovered that it engages in various cell functions, including proliferation, apoptosis, autophagy, stemness, invasion and migration, and is crucial for the development of human tissues. In recent years, the role of KLFs in bone physiology and pathology has received adequate attention. In addition to regulating the normal growth and development of the musculoskeletal system, KLFs participate in the pathological process of the bones and joints and are intimately linked to several skeletal illnesses, such as osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis (OP) and osteosarcoma (OS). Consequently, targeting KLFs has emerged as a promising therapeutic approach for an array of bone disorders. In this review, we summarize the current literature on the importance of KLFs in the emergence and regulation of bone illnesses, with a particular emphasis on the pertinent mechanisms by which KLFs regulate skeletal diseases. We also discuss the need for KLFs-based medication-targeted treatment. These endeavours offer new perspectives on the use of KLFs in bone disorders and provide prognostic biomarkers, therapeutic targets and possible drug candidates for bone diseases.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| | - Juanjuan Han
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
- Department of Sport RehabilitationShanghai University of SportShanghaiChina
| | - Gorbachev Dmitrii
- Head of General Hygiene DepartmentSamara State Medical UniversitySamaraRussia
| | - Ke Ning
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| | - Xin‐an Zhang
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| |
Collapse
|
10
|
Feng X, Wang C, Ji B, Qiao J, Xu Y, Zhu S, Ji Z, Zhou B, Tong W, Xu W. CD_99 G1 neutrophils modulate osteogenic differentiation of mesenchymal stem cells in the pathological process of ankylosing spondylitis. Ann Rheum Dis 2024; 83:324-334. [PMID: 37977819 PMCID: PMC10894850 DOI: 10.1136/ard-2023-224107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES This study aimed to identify the types and heterogeneity of cells within the spinal enthesis and investigate the underlying mechanisms of osteogenesis. METHODS Single-cell RNA sequencing was used to identify cell populations and their gene signatures in the spinal enthesis of five patients with ankylosing spondylitis (AS) and three healthy individuals. The transcriptomes of 40 065 single cells were profiled and divided into 7 clusters: neutrophils, monocytic cells, granulomonocytic progenitor_erythroblasts, T cells, B cells, plasma cells and stromal cells. Real-time quantitative PCR, immunofluorescence, flow cytometry, osteogenesis induction, alizarin red staining, immunohistochemistry, short hairpin RNA and H&E staining were applied to validate the bioinformatics analysis. RESULTS Pseudo-time analysis showed two differentiation directions of stromal cells from the mesenchymal stem cell subpopulation MSC-C2 to two Cxcl12-abundant-reticular (CAR) cell subsets, Osteo-CAR and Adipo-CAR, within which three transcription factors, C-JUN, C-FOS and CAVIN1, were highly expressed in AS and regulated the osteogenesis of mesenchymal stem cells. A novel subcluster of early-stage neutrophils, CD99_G1, was elevated in AS. The proinflammatory characteristics of monocyte dendritic cell progenitor-recombinant adiponectin receptor 2 monocytic cells were explored. Interactions between Adipo-CAR cells, CD99_G1 neutrophils and other cell types were mapped by identifying ligand-receptor pairs, revealing the recruitment characteristics of CD99_G1 neutrophils by Adipo-CAR cells and the pathogenesis of osteogenesis induced in AS. CONCLUSIONS Our results revealed the dynamics of cell subpopulations, gene expression and intercellular interactions during AS pathogenesis. These findings provide new insights into the cellular and molecular mechanisms of osteogenesis and will benefit the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xinzhe Feng
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Wang
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Boyao Ji
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Junjie Qiao
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yihong Xu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shanbang Zhu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhou Ji
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Bole Zhou
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wenwen Tong
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weidong Xu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
11
|
Zhao L, Lai Y, Jiao H, Huang J. Nerve Growth Factor Receptor Limits Inflammation to Promote Remodeling and Repair of Osteoarthritic Joints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572937. [PMID: 38187570 PMCID: PMC10769345 DOI: 10.1101/2023.12.21.572937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Osteoarthritis (OA) is a painful, incurable disease affecting over 500 million people. The need for relieving OA pain is paramount but inadequately addressed, partly due to limited understandings of how pain signaling regulates non-neural tissues. Here we report that nerve growth factor receptor (NGFR) is upregulated in skeletal cells during OA and plays an essential role in the remodeling and repair of osteoarthritic joints. Specifically, NGFR is expressed in osteochondral cells but not in skeletal progenitor cells and induced by TNFα to attenuate NF-κB activation, maintaining proper BMP-SMAD1 signaling and suppressing RANKL expression. NGFR deficiency hyper-activates NF-κB in murine osteoarthritic joints, which impairs bone formation and enhances bone resorption as exemplified by a reduction in subchondral bone and osteophytes. In human OA cartilage, NGFR is also negatively associated with NF-κB activation. Together, this study uncovers a role of NGFR in limiting inflammation for repair of diseased skeletal tissues.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- These authors contributed equally: Lan Zhao, Jian Huang
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Hongli Jiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- These authors contributed equally: Lan Zhao, Jian Huang
| |
Collapse
|
12
|
Dong Y, Chen Y, Ma G, Cao H. The role of E3 ubiquitin ligases in bone homeostasis and related diseases. Acta Pharm Sin B 2023; 13:3963-3987. [PMID: 37799379 PMCID: PMC10547920 DOI: 10.1016/j.apsb.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.
Collapse
Affiliation(s)
| | | | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| |
Collapse
|
13
|
Ren FJ, Cai XY, Yao Y, Fang GY. JunB: a paradigm for Jun family in immune response and cancer. Front Cell Infect Microbiol 2023; 13:1222265. [PMID: 37731821 PMCID: PMC10507257 DOI: 10.3389/fcimb.2023.1222265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Jun B proto-oncogene (JunB) is a crucial member of dimeric activator protein-1 (AP-1) complex, which plays a significant role in various physiological processes, such as placental formation, cardiovascular development, myelopoiesis, angiogenesis, endochondral ossification and epidermis tissue homeostasis. Additionally, it has been reported that JunB has great regulatory functions in innate and adaptive immune responses by regulating the differentiation and cytokine secretion of immune cells including T cells, dendritic cells and macrophages, while also facilitating the effector of neutrophils and natural killer cells. Furthermore, a growing body of studies have shown that JunB is involved in tumorigenesis through regulating cell proliferation, differentiation, senescence and metastasis, particularly affecting the tumor microenvironment through transcriptional promotion or suppression of oncogenes in tumor cells or immune cells. This review summarizes the physiological function of JunB, its immune regulatory function, and its contribution to tumorigenesis, especially focusing on its regulatory mechanisms within tumor-associated immune processes.
Collapse
Affiliation(s)
- Fu-jia Ren
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| | - Xiao-yu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Luo W, Zhang G, Wang Z, Wu Y, Xiong Y. Ubiquitin-specific proteases: Vital regulatory molecules in bone and bone-related diseases. Int Immunopharmacol 2023; 118:110075. [PMID: 36989900 DOI: 10.1016/j.intimp.2023.110075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Stabilization of bone structure and function involves multiple cell-to-cell and molecular interactions, in which the regulatory functions of post-translational modifications such as ubiquitination and deubiquitination shouldn't be underestimated. As the largest family of deubiquitinating enzymes, the ubiquitin-specific proteases (USPs) participate in the development of bone homeostasis and bone-related diseases through multiple classical osteogenic and osteolytic signaling pathways, such as BMP/TGF-β pathway, NF-κB/p65 pathway, EGFR-MAPK pathway and Wnt/β-catenin pathway. Meanwhile, USPs may also broadly regulate regulate hormone expression level, cell proliferation and differentiation, and may further influence bone homeostasis from gene fusion and nuclear translocation of transcription factors. The number of patients with bone-related diseases is currently enormous, making exploration of their pathogenesis and targeted therapy a hot topic. Pathological increases in the levels of inflammatory mediators such as IL-1β and TNF-α lead to inflammatory bone diseases such as osteoarthritis, rheumatoid arthritis and periodontitis. While impaired body metabolism greatly increases the probability of osteoporosis. Abnormal physiological activity of bone-associated cells results in a variety of bone tumors. The regulatory role of USPs in bone-related disease has received particular attention from academics in recent studies. In this review, we focuse on the roles and mechanisms of USPs in bone homeostasis and bone-related diseases, with the expectation of informing targeted therapies in the clinic.
Collapse
Affiliation(s)
- Wenxin Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Pan Y, Tang Y, Gu H, Ge W. Ubiquitin modification in osteogenic differentiation and bone formation: From mechanisms to clinical significance. Front Cell Dev Biol 2022; 10:1033223. [PMID: 36340031 PMCID: PMC9634082 DOI: 10.3389/fcell.2022.1033223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/10/2022] [Indexed: 01/03/2024] Open
Abstract
The ubiquitin-proteasome system is an important pathway for mediating posttranslational modification and protein homeostasis and exerts a wide range of functions in diverse biological processes, including stem cell differentiation, DNA repair, and cell cycle regulation. Many studies have shown that ubiquitination modification plays a critical role in regulating the osteogenic differentiation of stem cells and bone formation through various mechanisms. This review summarizes current progress on the effects and mechanisms of ubiquitin modification on transcription factors and signaling pathways involved in osteogenic differentiation. Moreover, the review highlights the latest advances in the clinical application of drugs in bone tissue engineering. A thorough understanding of ubiquitin modifications may provide promising therapeutic targets for stem cell-based bone tissue engineering.
Collapse
Affiliation(s)
- Yuan Pan
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yiman Tang
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hang Gu
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Wenshu Ge
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
16
|
E3 Ubiquitin Ligases: Potential Therapeutic Targets for Skeletal Pathology and Degeneration. Stem Cells Int 2022; 2022:6948367. [PMID: 36203882 PMCID: PMC9532118 DOI: 10.1155/2022/6948367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
The ubiquitination-proteasome system (UPS) is crucial in regulating a variety of cellular processes including proliferation, differentiation, and survival. Ubiquitin protein ligase E3 is the most critical molecule in the UPS system. Dysregulation of the UPS system is associated with many conditions. Over the past few decades, there have been an increasing number of studies focusing on the UPS system and how it affects bone metabolism. Multiple E3 ubiquitin ligases have been found to mediate osteogenesis or osteolysis through a variety of pathways. In this review, we describe the mechanisms of UPS, especially E3 ubiquitin ligases on bone metabolism. To date, many E3 ubiquitin ligases have been found to regulate osteogenesis or osteoclast differentiation. We review the classification of these E3 enzymes and the mechanisms that influence upstream and downstream molecules and transduction pathways. Finally, this paper reviews the discovery of the relevant UPS inhibitors, drug molecules, and noncoding RNAs so far and prospects the future research and treatment.
Collapse
|
17
|
Xu K, Chu Y, Liu Q, Fan W, He H, Huang F. NEDD4 E3 Ligases: Functions and Mechanisms in Bone and Tooth. Int J Mol Sci 2022; 23:ijms23179937. [PMID: 36077334 PMCID: PMC9455957 DOI: 10.3390/ijms23179937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Protein ubiquitination is a precisely controlled enzymatic cascade reaction belonging to the post-translational modification of proteins. In this process, E3 ligases catalyze the binding of ubiquitin (Ub) to protein substrates and define specificity. The neuronally expressed developmentally down-regulated 4 (NEDD4) subfamily, belonging to the homology to E6APC terminus (HECT) class of E3 ligases, has recently emerged as an essential determinant of multiple cellular processes in different tissues, including bone and tooth. Here, we place special emphasis on the regulatory role of the NEDD4 subfamily in the molecular and cell biology of osteogenesis. We elucidate in detail the specific roles, downstream substrates, and upstream regulatory mechanisms of the NEDD4 subfamily. Further, we provide an overview of the involvement of E3 ligases and deubiquitinases in the development, repair, and regeneration of another mineralized tissue—tooth.
Collapse
Affiliation(s)
- Ke Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Yanhao Chu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Qin Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
- Correspondence: (H.H.); (F.H.)
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510008, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510008, China
- Correspondence: (H.H.); (F.H.)
| |
Collapse
|
18
|
Nian F, Qian Y, Xu F, Yang M, Wang H, Zhang Z. LDHA promotes osteoblast differentiation through histone lactylation. Biochem Biophys Res Commun 2022; 615:31-35. [DOI: 10.1016/j.bbrc.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
|
19
|
Zhang H, Li X, Liu J, Lin X, Pei L, Boyce BF, Xing L. Proteasome inhibition-enhanced fracture repair is associated with increased mesenchymal progenitor cells in mice. PLoS One 2022; 17:e0263839. [PMID: 35213543 PMCID: PMC8880819 DOI: 10.1371/journal.pone.0263839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
The ubiquitin/proteasome system controls the stability of Runx2 and JunB, proteins essential for differentiation of mesenchymal progenitor/stem cells (MPCs) to osteoblasts. Local administration of proteasome inhibitor enhances bone fracture healing by accelerating endochondral ossification. However, if a short-term administration of proteasome inhibitor enhances fracture repair and potential mechanisms involved have yet to be exploited. We hypothesize that injury activates the ubiquitin/proteasome system in callus, leading to elevated protein ubiquitination and degradation, decreased MPCs, and impaired fracture healing, which can be prevented by a short-term of proteasome inhibition. We used a tibial fracture model in Nestin-GFP reporter mice, in which a subgroup of MPCs are labeled by Nestin-GFP, to test our hypothesis. We found increased expression of ubiquitin E3 ligases and ubiquitinated proteins in callus tissues at the early phase of fracture repair. Proteasome inhibitor Bortezomib, given soon after fracture, enhanced fracture repair, which is accompanied by increased callus Nestin-GFP+ cells and their proliferation, and the expression of osteoblast-associated genes and Runx2 and JunB proteins. Thus, early treatment of fractures with Bortezomib could enhance the fracture repair by increasing the number and proliferation of MPCs.
Collapse
Affiliation(s)
- Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Xing Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jiatong Liu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Xi Lin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Lingpeng Pei
- Key Laboratory of Ethnomedicine, Minzu University of China, Beijing, China
| | - Brendan F. Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
20
|
Long noncoding RNA SNHG1 silencing accelerates hepatocyte-like cell differentiation of bone marrow-derived mesenchymal stem cells to alleviate cirrhosis via the microRNA-15a/SMURF1/UVRAG axis. Cell Death Dis 2022; 8:77. [PMID: 35194023 PMCID: PMC8863836 DOI: 10.1038/s41420-022-00850-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) can differentiate into hepatocyte-like cells (HLCs) to attenuate cirrhosis. Long noncoding RNA (lncRNA) SNHG1 has been demonstrated to orchestrate BMSC differentiation, whereas its role in cirrhosis remains elusive. Therefore, this study was performed to figure out whether lncRNA SNHG1 was involved in cirrhosis by affecting HLC differentiation of BMSCs. Mouse BMSCs were isolated, and the BMSC differentiation into HLCs was induced by hepatocyte growth factor (HGF). A cirrhotic mouse model was established using carbon tetrachloride and phenobarbital, followed by intravenous injection of BMSCs with manipulated expression of lncRNA SNHG1, microRNA (miR)-15a, and SMURF1. Subsequent to HGF induction, expression of hepatocyte-related genes, albumin secretion, and glycogen accumulation was increased in BMSCs, suggesting the differentiation of BMSCs into HLCs. Mechanistically, lncRNA SNHG1 bound to miR-15a that targeted SMURF1, and SMURF1 diminished ATG5 and Wnt5a expression by enhancing the ubiquitination of UVRAG. LncRNA SNHG1 or SMURF1 silencing or miR-15a overexpression promoted differentiation of BMSCs into HLCs and repressed cirrhosis of mice by upregulating ATG5 and Wnt5a via UVRAG. Conclusively, lncRNA SNHG1 silencing might facilitate HLC differentiation from mouse BMSCs and alleviate cirrhosis via the miR-15a/SMURF1/UVRAG/ATG5/Wnt5a axis.
Collapse
|
21
|
Genome-Wide CRISPR/Cas9-Based Screening for Deubiquitinase Subfamily Identifies Ubiquitin-Specific Protease 11 as a Novel Regulator of Osteogenic Differentiation. Int J Mol Sci 2022; 23:ijms23020856. [PMID: 35055037 PMCID: PMC8778097 DOI: 10.3390/ijms23020856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
The osteoblast differentiation capacity of mesenchymal stem cells must be tightly regulated, as inadequate bone mineralization can lead to osteoporosis, and excess bone formation can cause the heterotopic ossification of soft tissues. The balanced protein level of Msh homeobox 1 (MSX1) is critical during normal osteogenesis. To understand the factors that prevent MSX1 protein degradation, the identification of deubiquitinating enzymes (DUBs) for MSX1 is essential. In this study, we performed loss-of-function-based screening for DUBs regulating MSX1 protein levels using the CRISPR/Cas9 system. We identified ubiquitin-specific protease 11 (USP11) as a protein regulator of MSX1 and further demonstrated that USP11 interacts and prevents MSX1 protein degradation by its deubiquitinating activity. Overexpression of USP11 enhanced the expression of several osteogenic transcriptional factors in human mesenchymal stem cells (hMSCs). Additionally, differentiation studies revealed reduced calcification and alkaline phosphatase activity in USP11-depleted cells, while overexpression of USP11 enhanced the differentiation potential of hMSCs. These results indicate the novel role of USP11 during osteogenic differentiation and suggest USP11 as a potential target for bone regeneration.
Collapse
|
22
|
Nikkhah H, Vafaei M, Farashahi-Yazd E, Sheikhha MH, Jafari-Nudoshan J. The significant increase of miR-140-5P in papillary thyroid cancer samples. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Shen J, Fu B, Li Y, Wu Y, Sang H, Zhang H, Lin H, Liu H, Huang W. E3 Ubiquitin Ligase-Mediated Regulation of Osteoblast Differentiation and Bone Formation. Front Cell Dev Biol 2021; 9:706395. [PMID: 34513836 PMCID: PMC8430030 DOI: 10.3389/fcell.2021.706395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is an essential pathway that regulates the homeostasis and function of intracellular proteins and is a crucial protein-degradation system in osteoblast differentiation and bone formation. Abnormal regulation of ubiquitination leads to osteoblast differentiation disorders, interfering with bone formation and ultimately leading to osteoporosis. E3 ubiquitin ligases (E3) promote addition of a ubiquitin moiety to substrate proteins, specifically recognizing the substrate and modulating tyrosine kinase receptors, signaling proteins, and transcription factors involved in the regulation of osteoblast proliferation, differentiation, survival, and bone formation. In this review, we summarize current progress in the understanding of the function and regulatory effects of E3 ligases on the transcription factors and signaling pathways that regulate osteoblast differentiation and bone formation. A deep understanding of E3 ligase-mediated regulation of osteoblast differentiation provides a scientific rationale for the discovery and development of novel E3-targeting therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Jianlin Shen
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Bowen Fu
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanfang Li
- Department of Pediatric Surgery, Affiliated Hospital of Putian University, Putian, China
| | - Yanjiao Wu
- Department of Orthopedics, Shunde Hospital of Southern Medical University, Guangzhou, China
| | - Hongxun Sang
- Department of Orthopedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Heshi Zhang
- Department of Vessel and Breast, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Haibin Lin
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, China
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Wenhua Huang
- Guangdong Innovation Platform for Translation of 3D Printing Application, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
24
|
Zhao X, Xing J, Li J, Hou R, Niu X, Liu R, Jiao J, Yang X, Li J, Liang J, Zhou L, Wang Q, Chang W, Yin G, Li X, Zhang K. Dysregulated Dermal Mesenchymal Stem Cell Proliferation and Differentiation Interfered by Glucose Metabolism in Psoriasis. Int J Stem Cells 2021; 14:85-93. [PMID: 33632981 PMCID: PMC7904530 DOI: 10.15283/ijsc20073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Background and Objectives Psoriasis is a chronic inflammatory skin disease, which the mechanisms behind its initiation and development are related to many factors. DMSCs (dermal mesenchymal stem cells) represent an important member of the skin microenvironment and play an important role in the surrounding environment and in neighbouring cells, but they are also affected by the microenvironment. We studied the glucose metabolism of DMSCs in psoriasis patients and a control group to reveal the relationship among glucose metabolism, cell proliferation activity,and VEC (vascular endothelial cell) differentiation in vitro, we demonstrated the biological activity and molecular mechanisms of DMSCs in psoriasis. Methods and Results We found that the OCR of DMSCs in psoriatic lesions was higher than that in the control group, and mRNA of GLUT1 and HK2 were up-regulated compared with the control group. The proliferative activity of DMSCs in psoriasis was reduced at an early stage, and mRNA involved in proliferation, JUNB and FOS were expressed at lower levels than those in the control group. The number of blood vessels in psoriatic lesions was significantly higher than that in the control group (p<0.05), which the mRNA of VEC differentiation, CXCL12, CXCR7, HEYL and RGS5 tended to be increased in psoriatic lesions compared to the control group, in addition to Notch3. Conclusions We speculated that DMSCs affected local psoriatic blood vessels through glucose metabolism, and the differentiation of VECs, which resulted in the pathophysiological process of psoriasis.
Collapse
Affiliation(s)
- Xincheng Zhao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuping Niu
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruifeng Liu
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Juanjuan Jiao
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaohong Yang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiannan Liang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Ling Zhou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiang Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenjuan Chang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Guohua Yin
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhua Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Centre Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
25
|
Li Y, Cui C, Xie F, Kiełbasa S, Mei H, van Dinther M, van Dam H, Bauer A, Zhang L, Ten Dijke P. VprBP mitigates TGF-β and Activin signaling by promoting Smurf1-mediated type I receptor degradation. J Mol Cell Biol 2021; 12:138-151. [PMID: 31291647 PMCID: PMC7109606 DOI: 10.1093/jmcb/mjz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/16/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family controls embryogenesis, stem cell differentiation, and tissue homeostasis. However, how post-translation modifications contribute to fine-tuning of TGF-β family signaling responses is not well understood. Inhibitory (I)-Smads can antagonize TGF-β/Smad signaling by recruiting Smurf E3 ubiquitin ligases to target the active TGF-β receptor for proteasomal degradation. A proteomic interaction screen identified Vpr binding protein (VprBP) as novel binding partner of Smad7. Mis-expression studies revealed that VprBP negatively controls Smad2 phosphorylation, Smad2-Smad4 interaction, as well as TGF-β target gene expression. VprBP was found to promote Smad7-Smurf1-TβRI complex formation and induce proteasomal degradation of TGF-β type I receptor (TβRI). Moreover, VprBP appears to stabilize Smurf1 by suppressing Smurf1 poly-ubiquitination. In multiple adult and mouse embryonic stem cells, depletion of VprBP promotes TGF-β or Activin-induced responses. In the mouse embryo VprBP expression negatively correlates with mesoderm marker expression, and VprBP attenuated mesoderm induction during zebrafish embryogenesis. Our findings thereby uncover a novel regulatory mechanism by which Smurf1 controls the TGF-β and Activin cascade and identify VprBP as a critical determinant of embryonic mesoderm induction.
Collapse
Affiliation(s)
- Yihao Li
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Chao Cui
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Feng Xie
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Szymon Kiełbasa
- Department of Human Genetics, Leiden Genome Technology Centre, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Hailiang Mei
- Sequence Analysis Support Core, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Maarten van Dinther
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Hans van Dam
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Andreas Bauer
- Novartis Institutes for BioMedical Research, Inc., Novartis Campus, Forum 2.5.01.30, CH-4056, Basel, Switzerland
| | - Long Zhang
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands.,MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands.,MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Xiong A, He Y, Gao L, Li G, Weng J, Kang B, Wang D, Zeng H. Smurf1-targeting miR-19b-3p-modified BMSCs combined PLLA composite scaffold to enhance osteogenic activity and treat critical-sized bone defects. Biomater Sci 2020; 8:6069-6081. [PMID: 33000773 DOI: 10.1039/d0bm01251c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past few years, tissue-engineering technology provided a new direction for bone defects therapy, which involved developing applicable biological materials composite with seed cells to repair bone defects tissue. However, as one of the commonest seed cells for tissue engineering, BMSCs (bone marrow mesenchymal stem cells), are still lacking an efficient and accurate differentiation ability into functional osteoblast. Given these facts, the development of a novel tissue engineering technology integrated BMSCs and scaffold materials have become an urgent need for bone defects repair. In this work, we found that miR-19b-3p could suppress the expression of Smurf1 which is a negative regulator of osteogenesis. By employing lentivirus pLVTHM-miR-19b-3p transfected BMSCs, we verified that miR-19b-3p could promote BMSCs osteogenic differentiation via suppressing Smurf1 expression. Furthermore, we designed a new porous PLLA/POSS scaffold combined with BMSCs for tissue engineering. In vitro experiment showed that miR-19b-3p modified BMSCs facilitated the expansion and proliferation of BMSCs when culturing with the PLLA/POSS scaffold. We established rats calvarial critical-sized defect model, after transplanting the BMSCs/PLLA/POSS for 3 month, the pathology, immunohistochemical and Micro-CT results showed that miR-19b-BMSCs/PLLA/POSS significantly facilitated the osteogenesis differentiation, enhanced the bone density of defect area and accelerated the repair of bone defect. We elucidated the mechanism that miR-19b-3p suppressed the expression of Smurf1 and provided a novel tissue engineering strategy for using microRNA gene-modified BMSCs combined with PLLA/POSS scaffold in bone tissue engineering.
Collapse
Affiliation(s)
- Ao Xiong
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Huang S, Li Y, Wu P, Xiao Y, Duan N, Quan J, Du W. microRNA-148a-3p in extracellular vesicles derived from bone marrow mesenchymal stem cells suppresses SMURF1 to prevent osteonecrosis of femoral head. J Cell Mol Med 2020; 24:11512-11523. [PMID: 32871042 PMCID: PMC7576243 DOI: 10.1111/jcmm.15766] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicle (EV)-associated microRNAs (miRNAs) have been found as the important biomarkers participating in the development of osteonecrosis of the femoral head (ONFH). Consequently, this study sought to examine the underlying mechanism of bone marrow mesenchymal stem cell (BMSC)-derived EVs containing miR-148a-3p in ONFH. The ONFH rat models were established. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were applied to detect miR-148a-3p, Smad ubiquitination regulatory factor 1 (SMURF1), SMAD7 and B-cell CLL/lymphoma 2 (BCL2) expression, followed by determination of relationship between miR-148a-3p and SMURF1. BMSCs were isolated from normal rats and ONFH rats, and EVs were extracted from BMSCs of normal rats. BMSCs from ONFH rats were treated with mimic, inhibitor, small interfering RNA or EVs from miR-148a-3p mimic-treated BMSCs from normal rats (BMSC-EV-miR-148a-3p mimic). Cell Counting Kit-8 and alizarin red staining were utilized to detect cell viability and osteogenic differentiation of BMSCs. ONFH rats were injected with BMSC-EV-miR-148a-3p mimic to explore the function of BMSC-EV-delivered miR-148a-3p in vivo. miR-148a-3p was down-regulated in BMSCs and EVs from ONFH rats following decreased BMSCs viability and osteogenic differentiation. SMURF1 was a target gene of miR-148a-3p, and resulted in ubiquitination and degradation of SMAD7 to decreased BCL2 expression. The proliferation and differentiation of BMSCs were promoted by BMSC-EV-miR-148a-3p mimic or SMURF1 silencing. Additionally, BMSC-EV-miR-148a-3p mimic increased cell proliferation and osteogenic response, diminished SMURF1 expression, and elevated SMAD7 and BCL2 expression in ONFH rats. Collectively, miR-148a-3p overexpressed in BMSC-EVs promoted SMAD7 and BCL2 expression by inhibiting SMURF1, thus alleviating ONFH.
Collapse
Affiliation(s)
- Shengxiang Huang
- Department of Orthopedics, Hunan Children's Hospital, Changsha, China
| | - Yaochun Li
- Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Panfeng Wu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Yongbing Xiao
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Ningbo Duan
- Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Quan
- Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, China
| | - Wei Du
- Department of Rehabilitation, Xiangya Hospital of Central South University, Changsha, China.,Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
28
|
Lee DS, Roh SY, Choi H, Park JC. NFI-C Is Required for Epiphyseal Chondrocyte Proliferation during Postnatal Cartilage Development. Mol Cells 2020; 43:739-748. [PMID: 32759468 PMCID: PMC7468589 DOI: 10.14348/molcells.2020.2272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/01/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022] Open
Abstract
Stringent regulation of the chondrocyte cell cycle is required for endochondral bone formation. During the longitudinal growth of long bones, mesenchymal stem cells condense and differentiate into chondrocytes. Epiphyseal chondrocytes sequentially differentiate to form growth- plate cartilage, which is subsequently replaced with bone. Although the importance of nuclear factor 1C (Nfic) in hard tissue formation has been extensively studied, knowledge regarding its biological roles and molecular mechanisms in this process remains insufficient. Herein, we demonstrated that Nfic deficiency affects femoral growth-plate formation. Chondrocyte proliferation was downregulated and the number of apoptotic cell was increased in the growth plates of Nfic-/- mice. Further, the expression of the cell cycle inhibitor p21 was upregulated in the primary chondrocytes of Nfic-/- mice, whereas that of cyclin D1 was downregulated. Our findings suggest that Nfic may contribute to postnatal chondrocyte proliferation by inhibiting p21 expression and by increasing the stability of cyclin D1 protein.
Collapse
Affiliation(s)
- Dong-Seol Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
- These authors contributed equally to this work
| | - Song Yi Roh
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
- These authors contributed equally to this work
| | - Hojae Choi
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
- Present address: Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral Health, A.T. Still University, Mesa, AZ 8506, USA
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
29
|
Brigant B, Demont Y, Ouled-Haddou H, Metzinger-Le Meuth V, Testelin S, Garçon L, Metzinger L, Rochette J. TRIM37 is highly expressed during mitosis in CHON-002 chondrocytes cell line and is regulated by miR-223. Bone 2020; 137:115393. [PMID: 32353567 DOI: 10.1016/j.bone.2020.115393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Multiple molecular disorders can affect mechanisms regulating proliferation and differentiation of growth plate chondrocytes. Mutations in the TRIM37 gene cause the Mulibrey nanism, a heritable growth disorder. Since chondrocytes are instrumental in long bone growth that is deficient in nanism, we hypothesized that TRIM37 defect could contribute to dysregulation of the chondrocyte cell cycle. Western blotting, confocal microscopy and imaging flow cytometry determined TRIM37 expression in CHON-002 cell lineage. We showed that TRIM37 is expressed during mitosis of chondrocytes and directly impacted their proliferation. During the chondrocyte cell cycle, TRIM37 was present in both nucleus and cytoplasm. During M phase we observed an increase of the TRIM37-Tubulin co-localization in comparison with G1, S and G2 phases. TRIM37 knock down inhibited proliferation, together with cell cycle anomalies and increased autophagy, while overexpression accordingly enhanced cell proliferation. We demonstrated that microRNA-223 directly targets TRIM37, and suggest that miR-223 regulates TRIM37 gene expression during the cell cycle. In summary, our results give clues to explain why TRIM37 deficiency in chondrocytes impacts bone growth. Modulating TRIM37 using miR-223 could be an approach to increase chondrogenesis.
Collapse
Affiliation(s)
- Benjamin Brigant
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Yohann Demont
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Hakim Ouled-Haddou
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | | | - Sylvie Testelin
- Maxillo-Facial Surgery Department, Centre Hospitalo-Universitaire d'Amiens, Avenue Laennec, 80000 Amiens, France; EA CHIMERE, université de Picardie-Jules-Verne, Avenue Laennec, 80000 Amiens, France; Facing Faces Institute, Avenue Laennec, 80000 Amiens, France
| | - Loïc Garçon
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Laurent Metzinger
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Jacques Rochette
- HEMATIM EA4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The clinical significance, target pathways, recent successes, and challenges that preclude translation of RNAi bone regenerative approaches are overviewed. RECENT FINDINGS RNA interference (RNAi) is a promising new therapeutic approach for bone regeneration by stimulating or inhibiting critical signaling pathways. However, RNAi suffers from significant delivery challenges. These challenges include avoiding nuclease degradation, achieving bone tissue targeting, and reaching the cytoplasm for mRNA inhibition. Many drug delivery systems have overcome stability and intracellular localization challenges but suffer from protein adsorption that results in clearance of up to 99% of injected dosages, thus severely limiting drug delivery efficacy. While RNAi has myriad promising attributes for use in bone regenerative applications, delivery challenges continue to plague translation. Thus, a focus on drug delivery system development is critical to provide greater delivery efficiency and bone targeting to reap the promise of RNAi.
Collapse
Affiliation(s)
- Dominic W Malcolm
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuchen Wang
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Clyde Overby
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, 308 Robert B. Goergen Hall, Rochester, NY, 14627, USA.
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Materials Science Program, University of Rochester, Rochester, NY, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
31
|
Wang H, Zhang H, Srinivasan V, Tao J, Sun W, Lin X, Wu T, Boyce BF, Ebetino FH, Boeckman RK, Xing L. Targeting Bortezomib to Bone Increases Its Bone Anabolic Activity and Reduces Systemic Adverse Effects in Mice. J Bone Miner Res 2020; 35:343-356. [PMID: 31610066 PMCID: PMC10587833 DOI: 10.1002/jbmr.3889] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/15/2019] [Accepted: 09/07/2019] [Indexed: 12/20/2022]
Abstract
Bortezomib (Btz) is a proteasome inhibitor approved by the FDA to treat multiple myeloma. It also increases bone volume by promoting osteoblast differentiation and inhibiting osteoclastogenesis in mice. However, Btz has severe systemic adverse effects, which would limit its use as a bone anabolic agent. Here, we designed and synthesized a bone-targeted form of Btz by conjugating it to a bisphosphonate (BP) with no antiresorptive activity. We report that BP-Btz inhibited osteoclast formation and bone resorption and stimulated osteoblast differentiation in vitro similar to Btz. In vivo, BP-Btz increased bone volume more effectively than Btz in three mouse models: untreated wild-type mice, mice with ovariectomy, and aged mice with tibial factures. Importantly, BP-Btz had significantly less systemic side effects than Btz, including less thymic cell death, sympathetic nerve damage, and thrombocytopenia, and it improved survival rates in aged mice. Thus, BP-Btz represents a novel anabolic agent to treat conditions, such as postmenopausal and age-related bone loss. Bone targeting is an attractive approach to repurpose approved drugs to treat skeletal diseases. © 2019 American Society for Bone and Mineral Research. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hua Wang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Institute of Stomatology, Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Jianguo Tao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Wen Sun
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Xi Lin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Tao Wu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Bone Disease, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Frank H Ebetino
- Department of Chemistry, University of Rochester, Rochester, NY, USA
- BioVinc, Pasadena, CA, USA
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
32
|
Baloghova N, Lidak T, Cermak L. Ubiquitin Ligases Involved in the Regulation of Wnt, TGF-β, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis. Genes (Basel) 2019; 10:genes10100815. [PMID: 31623112 PMCID: PMC6826584 DOI: 10.3390/genes10100815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
The Wnt, TGF-β, and Notch signaling pathways are essential for the regulation of cellular polarity, differentiation, proliferation, and migration. Differential activation and mutual crosstalk of these pathways during animal development are crucial instructive forces in the initiation of the body axis and the development of organs and tissues. Due to the ability to initiate cell proliferation, these pathways are vulnerable to somatic mutations selectively producing cells, which ultimately slip through cellular and organismal checkpoints and develop into cancer. The architecture of the Wnt, TGF-β, and Notch signaling pathways is simple. The transmembrane receptor, activated by the extracellular stimulus, induces nuclear translocation of the transcription factor, which subsequently changes the expression of target genes. Nevertheless, these pathways are regulated by a myriad of factors involved in various feedback mechanisms or crosstalk. The most prominent group of regulators is the ubiquitin-proteasome system (UPS). To open the door to UPS-based therapeutic manipulations, a thorough understanding of these regulations at a molecular level and rigorous confirmation in vivo are required. In this quest, mouse models are exceptional and, thanks to the progress in genetic engineering, also an accessible tool. Here, we reviewed the current understanding of how the UPS regulates the Wnt, TGF-β, and Notch pathways and we summarized the knowledge gained from related mouse models.
Collapse
Affiliation(s)
- Nikol Baloghova
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Tomas Lidak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Lukas Cermak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| |
Collapse
|
33
|
Fan Y, Zhao L, Xie W, Yi D, He S, Chen D, Huang J. Serum miRNAs are potential biomarkers for the detection of disc degeneration, among which miR-26a-5p suppresses Smad1 to regulate disc homeostasis. J Cell Mol Med 2019; 23:6679-6689. [PMID: 31338931 PMCID: PMC6787501 DOI: 10.1111/jcmm.14544] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022] Open
Abstract
Disc degeneration is a common clinical condition in which damaged discs cause chronic pain; however, a laboratory diagnosis method for its detection is not available. As circulating miRNAs have potential as biomarkers, their application in disc degeneration has not been explored. Here, we prepared serum miRNAs from a mouse disc degeneration model and performed miRNA‐Seq and quantitative PCR to characterize disc degeneration–associated miRNAs. We identified three miRNAs, including miR‐26a‐5p, miR‐122‐5p and miR‐215‐5p, undergoing perturbation during the pathogenesis of disc degeneration. Specifically, the levels of miR‐26a‐5p in the serum demonstrated steady increases in the model of disc degeneration, compared with those in the pre‐injury samples of younger age or compared with normal controls of the same age but without disc degeneration, whereas the miRNAs miR‐122‐5p and miR‐215‐5p exhibited lower expression in post‐injury samples than in their counterparts without the surgery. Moreover, we found that miR‐26a‐5p targets Smad1 expression, and Smad1 negatively regulates Vegfa expression in disc cells, and thus, miR‐26a‐5p promotes disc degeneration. In summary, we established a method that consistently profiles circulating miRNAs and identified multiple miRNAs as promising biomarkers for disc degeneration, among which miR‐26a‐5p enhances VEGF expression during disc degeneration through targeting Smad1 signalling.
Collapse
Affiliation(s)
- Yunshan Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Wanqing Xie
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Dan Yi
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Shisheng He
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
34
|
Huang J, Zhao L, Fan Y, Liao L, Ma PX, Xiao G, Chen D. The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression. Nat Commun 2019; 10:2876. [PMID: 31253842 PMCID: PMC6599052 DOI: 10.1038/s41467-019-10753-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/24/2019] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a common, painful disease. Currently OA is incurable, and its etiology largely unknown, partly due to limited understanding of OA as a whole-joint disease. Here we report that two homologous microRNAs, miR-204 and miR-211, maintain joint homeostasis to suppress OA pathogenesis. Specific knockout of miR-204/-211 in mesenchymal progenitor cells (MPCs) results in Runx2 accumulation in multi-type joint cells, causing whole-joint degeneration. Specifically, miR-204/-211 loss-of-function induces matrix-degrading proteases in articular chondrocytes and synoviocytes, stimulating articular cartilage destruction. Moreover, miR-204/-211 ablation enhances NGF expression in a Runx2-dependent manner, and thus hyper-activates Akt signaling and MPC proliferation, underlying multiplex non-cartilaginous OA conditions including synovial hyperplasia, osteophyte outgrowth and subchondral sclerosis. Importantly, miR-204/-211-deficiency-induced OA is largely rescued by Runx2 insufficiency, confirming the miR-204/-211-Runx2 axis. Further, intraarticular administration of miR-204-expressing adeno-associated virus significantly decelerates OA progression. Collectively, miR-204/-211 are essential in maintaining healthy homeostasis of mesenchymal joint cells to counteract OA pathogenesis. Osteoarthritis involves whole-joint tissue degeneration. Here, the authors show that miR-204 and miR-211 in mesenchymal joint cells regulate their proliferation, catabolic and osteogenic responses, and that disease progression is ameliorated by intra-articular miR-204 delivery in mice.
Collapse
Affiliation(s)
- Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yunshan Fan
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Lifan Liao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Peter X Ma
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Guozhi Xiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
35
|
Zhao L, Huang J, Fan Y, Li J, You T, He S, Xiao G, Chen D. Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis. Ann Rheum Dis 2019; 78:676-682. [PMID: 30842121 PMCID: PMC6621547 DOI: 10.1136/annrheumdis-2018-214724] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/21/2019] [Accepted: 02/12/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Osteoarthritis (OA) is a painful and debilitating disease and it is associated with aberrant upregulation of multiple factors, including matrix metalloproteinase 13 (MMP13), interleukin-1β (IL-1β) and nerve growth factor (NGF). In this study, we aimed to use the CRISPR/Cas9 technology, a highly efficient gene-editing tool, to study whether the ablation of OA-associated genes has OA-modifying effects. METHODS We performed intra-articular injection of adeno-associated virus, which expressed CRISPR/Cas9 components to target each of the genes encoding MMP13, IL-1β and NGF, in a surgically induced OA mouse model. We also tested triple ablations of NGF, MMP13 and IL-1β. RESULTS Loss-of-function of NGF palliates pain but worsens joint damage in the surgically induced OA model. Ablation of MMP13 or IL-1β reduces the expression of cartilage-degrading enzymes and attenuates structural deterioration. Targeting both MMP13 and IL-1β significantly mitigates the adverse effects of NGF blockade on the joints. CONCLUSIONS CRISPR-mediated ablation of NGF alleviates OA pain, and deletion of MMP13-1β or IL-1β attenuates structural damage in a post-traumatic OA model. Multiplex ablations of NGF, MMP13 and IL-1β provide benefits on both pain management and joint structure maintenance. Our results suggest that CRISPR-based gene editing is useful for the identification of promising drug targets and the development of feasible therapeutic strategies for OA treatment.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Yunshan Fan
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Tianming You
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Shisheng He
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guozhi Xiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
36
|
Rauch A, Haakonsson AK, Madsen JGS, Larsen M, Forss I, Madsen MR, Van Hauwaert EL, Wiwie C, Jespersen NZ, Tencerova M, Nielsen R, Larsen BD, Röttger R, Baumbach J, Scheele C, Kassem M, Mandrup S. Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nat Genet 2019; 51:716-727. [PMID: 30833796 DOI: 10.1038/s41588-019-0359-1] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Mesenchymal (stromal) stem cells (MSCs) constitute populations of mesodermal multipotent cells involved in tissue regeneration and homeostasis in many different organs. Here we performed comprehensive characterization of the transcriptional and epigenomic changes associated with osteoblast and adipocyte differentiation of human MSCs. We demonstrate that adipogenesis is driven by considerable remodeling of the chromatin landscape and de novo activation of enhancers, whereas osteogenesis involves activation of preestablished enhancers. Using machine learning algorithms for in silico modeling of transcriptional regulation, we identify a large and diverse transcriptional network of pro-osteogenic and antiadipogenic transcription factors. Intriguingly, binding motifs for these factors overlap with SNPs related to bone and fat formation in humans, and knockdown of single members of this network is sufficient to modulate differentiation in both directions, thus indicating that lineage determination is a delicate balance between the activities of many different transcription factors.
Collapse
Affiliation(s)
- Alexander Rauch
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anders K Haakonsson
- Molecular Endocrinology and Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jesper G S Madsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mette Larsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Isabel Forss
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Martin R Madsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Elvira L Van Hauwaert
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christian Wiwie
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Naja Z Jespersen
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
| | - Michaela Tencerova
- Molecular Endocrinology and Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ronni Nielsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Bjørk D Larsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Camilla Scheele
- Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Moustapha Kassem
- Molecular Endocrinology and Stem Cell Research Unit (KMEB), Department of Endocrinology and Metabolism, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Susanne Mandrup
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
37
|
Abstract
Aging is a high risk factor for the development of osteoporosis, a multifactorial age-related progressive disease characterized by reduced bone mass and increased risk of fractures. At the cellular level, the mesenchymal stem cell pool in the bone marrow niche shows a biased differentiation into adipogenesis at the cost of osteogenesis. This differentiation shift leads to decreased bone formation, contributing to the etiology of osteoporosis. This review will focus on the most recent/relevant molecular findings driving this functional impairment of mesenchymal stem cells in the aging process.
Collapse
Affiliation(s)
- Arantza Infante
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, 48903, Barakaldo, Spain
| | - Clara I Rodríguez
- Stem Cells and Cell Therapy Laboratory, BioCruces Bizkaia Health Research Institute, Cruces University Hospital, 48903, Barakaldo, Spain.
| |
Collapse
|
38
|
Guo YC, Wang MY, Zhang SW, Wu YS, Zhou CC, Zheng RX, Shao B, Wang Y, Xie L, Liu WQ, Sun NY, Jing JJ, Ye L, Chen QM, Yuan Q. Ubiquitin-specific protease USP34 controls osteogenic differentiation and bone formation by regulating BMP2 signaling. EMBO J 2018; 37:embj.201899398. [PMID: 30181118 DOI: 10.15252/embj.201899398] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 02/05/2023] Open
Abstract
The osteogenic differentiation of mesenchymal stem cells (MSCs) is governed by multiple mechanisms. Growing evidence indicates that ubiquitin-dependent protein degradation is critical for the differentiation of MSCs and bone formation; however, the function of ubiquitin-specific proteases, the largest subfamily of deubiquitylases, remains unclear. Here, we identify USP34 as a previously unknown regulator of osteogenesis. The expression of USP34 in human MSCs increases after osteogenic induction while depletion of USP34 inhibits osteogenic differentiation. Conditional knockout of Usp34 from MSCs or pre-osteoblasts leads to low bone mass in mice. Deletion of Usp34 also blunts BMP2-induced responses and impairs bone regeneration. Mechanically, we demonstrate that USP34 stabilizes both Smad1 and RUNX2 and that depletion of Smurf1 restores the osteogenic potential of Usp34-deficient MSCs in vitro Taken together, our data indicate that USP34 is required for osteogenic differentiation and bone formation.
Collapse
Affiliation(s)
- Yu-Chen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meng-Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shi-Wen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun-Shu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen-Chen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ri-Xin Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei-Qing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning-Yuan Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun-Jun Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Deubiquitinating Enzymes and Bone Remodeling. Stem Cells Int 2018; 2018:3712083. [PMID: 30123285 PMCID: PMC6079350 DOI: 10.1155/2018/3712083] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/29/2018] [Indexed: 02/05/2023] Open
Abstract
Bone remodeling, which is essential for bone homeostasis, is controlled by multiple factors and mechanisms. In the past few years, studies have emphasized the role of the ubiquitin-dependent proteolysis system in regulating bone remodeling. Deubiquitinases, which are grouped into five families, remove ubiquitin from target proteins and are involved in several cell functions. Importantly, a number of deubiquitinases mediate bone remodeling through regulating differentiation and/or function of osteoblast and osteoclasts. In this review, we review the functions and mechanisms of deubiquitinases in mediating bone remodeling.
Collapse
|
40
|
Synthesis and characterization of zinc-silibinin complexes: A potential bioactive compound with angiogenic, and antibacterial activity for bone tissue engineering. Colloids Surf B Biointerfaces 2018; 167:134-143. [DOI: 10.1016/j.colsurfb.2018.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 11/27/2022]
|
41
|
Chen Y, Huang Q, Liu W, Zhu Q, Cui CP, Xu L, Guo X, Wang P, Liu J, Dong G, Wei W, Liu CH, Feng Z, He F, Zhang L. Mutually exclusive acetylation and ubiquitylation of the splicing factor SRSF5 control tumor growth. Nat Commun 2018; 9:2464. [PMID: 29942010 PMCID: PMC6018636 DOI: 10.1038/s41467-018-04815-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/18/2018] [Indexed: 12/30/2022] Open
Abstract
Most tumor cells take up more glucose than normal cells. Splicing dysregulation is one of the molecular hallmarks of cancer. However, the role of splicing factor in glucose metabolism and tumor development remains poorly defined. Here, we show that upon glucose intake, the splicing factor SRSF5 is specifically induced through Tip60-mediated acetylation on K125, which antagonizes Smurf1-mediated ubiquitylation. SRSF5 promotes the alternative splicing of CCAR1 to produce CCAR1S proteins, which promote tumor growth by enhancing glucose consumption and acetyl-CoA production. Conversely, upon glucose starvation, SRSF5 is deacetylated by HDAC1, and ubiquitylated by Smurf1 on the same lysine, resulting in proteasomal degradation of SRSF5. The CCAR1L proteins accumulate to promote apoptosis. Importantly, SRSF5 is hyperacetylated and upregulated in human lung cancers, which correlates with increased CCAR1S expression and tumor progression. Thus, SRSF5 responds to high glucose to promote cancer development, and SRSF5-CCAR1 axis may be valuable targets for cancer therapeutics.
Collapse
Affiliation(s)
- Yuhan Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,Affiliated BaYi Children's Hospital, PLA Army General Hospital, National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, Beijing, 100700, China
| | - Qingyang Huang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wen Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Qiong Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Liang Xu
- Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xing Guo
- Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ping Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200072, China
| | - Jingwen Liu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Guanglong Dong
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhichun Feng
- Affiliated BaYi Children's Hospital, PLA Army General Hospital, National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, Beijing, 100700, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China. .,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China. .,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China. .,School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
42
|
Rajalakshmi S, Vimalraj S, Saravanan S, Raj Preeth D, Shairam M, Anuradha D. Synthesis and characterization of silibinin/phenanthroline/neocuproine copper(II) complexes for augmenting bone tissue regeneration: an in vitro analysis. J Biol Inorg Chem 2018; 23:753-762. [DOI: 10.1007/s00775-018-1566-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/03/2018] [Indexed: 02/04/2023]
|
43
|
Hu F, Zhu Q, Sun B, Cui C, Li C, Zhang L. Smad ubiquitylation regulatory factor 1 promotes LIM‐homeobox gene 9 degradation and represses testosterone production in Leydig cells. FASEB J 2018; 32:4627-4640. [DOI: 10.1096/fj.201701480r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fan Hu
- Department of Geriatric EndocrinologyChinese People's Liberation Army General HospitalNational Clinical Research Center for Geriatric DiseasesBeijingChina
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center of Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Qiong Zhu
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center of Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Banruo Sun
- Department of Geriatric EndocrinologyChinese People's Liberation Army General HospitalNational Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Chunping Cui
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center of Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Chunlin Li
- Department of Geriatric EndocrinologyChinese People's Liberation Army General HospitalNational Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Lingqiang Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center of Protein SciencesBeijing Institute of LifeomicsBeijingChina
| |
Collapse
|
44
|
Singh PNP, Shea CA, Sonker SK, Rolfe RA, Ray A, Kumar S, Gupta P, Murphy P, Bandyopadhyay A. Precise spatial restriction of BMP signaling in developing joints is perturbed upon loss of embryo movement. Development 2018; 145:dev.153460. [PMID: 29467244 DOI: 10.1242/dev.153460] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 02/09/2018] [Indexed: 12/16/2022]
Abstract
Dynamic mechanical loading of synovial joints is necessary for normal joint development, as evidenced in certain clinical conditions, congenital disorders and animal models where dynamic muscle contractions are reduced or absent. Although the importance of mechanical forces on joint development is unequivocal, little is known about the molecular mechanisms involved. Here, using chick and mouse embryos, we observed that molecular changes in expression of multiple genes analyzed in the absence of mechanical stimulation are consistent across species. Our results suggest that abnormal joint development in immobilized embryos involves inappropriate regulation of Wnt and BMP signaling during definition of the emerging joint territories, i.e. reduced β-catenin activation and concomitant upregulation of pSMAD1/5/8 signaling. Moreover, dynamic mechanical loading of the developing knee joint activates Smurf1 expression; our data suggest that Smurf1 insulates the joint region from pSMAD1/5/8 signaling and is essential for maintenance of joint progenitor cell fate.
Collapse
Affiliation(s)
- Pratik Narendra Pratap Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Claire A Shea
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Shashank Kumar Sonker
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Rebecca A Rolfe
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Ayan Ray
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sandeep Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Pankaj Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Paula Murphy
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
45
|
Mixed-ligand copper(II) complex of quercetin regulate osteogenesis and angiogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:187-194. [PMID: 29208278 DOI: 10.1016/j.msec.2017.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 07/28/2017] [Accepted: 09/27/2017] [Indexed: 11/20/2022]
Abstract
Copper(II) complex of quercetin Cu+Q, mixed ligand complexes, quercetin-Cu(II)-phenanthroline [Cu+Q(PHt)] and quercetin-Cu(II)-neocuproine [Cu+Q(Neo)] have been synthesized and characterized. From the FT-IR spectroscopic studies, it was evident that C-ring of quercetin is involved in the metal chelation in all the three copper complexes. C-ring chelation was further proven by UV-Visible spectra and the presence of Cu(II) from EPR spectroscopic investigations. These complexes were found to have osteogenic and angiogenic properties, observed through in vitro osteoblast differentiation and chick embryo angiogenesis assay. In osteoblast differentiation, quercetin-Cu(II) complexes treatment increased calcium deposition and alkaline phosphatase activity (ALP) activity at the cellular level and stimulated Runx2 mRNA and protein, ALP mRNA and type 1 collagen mRNA expression at the molecular level. Among the complexes, Q+Cu(PHt) showed more effects on osteoblast differentiation when compared to that of other two copper complexes. Additionally, Q+Cu(Neo) showed more effect compared to Q+Cu. Furthermore, the effect of these complexes on osteoblast differentiation was confirmed by the expression of osteoblast specific microRNA, pre-mir-15b. The chick embryo angiogenesis assay showed that angiogenic parameters such as blood vessel length, size and junctions were stimulated by these complexes. Thus, the present study demonstrated that quercetin copper(II) complexes exhibit as a pharmacological agent for the orthopedic application.
Collapse
|
46
|
Zhu W, He X, Hua Y, Li Q, Wang J, Gan X. The E3 ubiquitin ligase WWP2 facilitates RUNX2 protein transactivation in a mono-ubiquitination manner during osteogenic differentiation. J Biol Chem 2017; 292:11178-11188. [PMID: 28500134 DOI: 10.1074/jbc.m116.772277] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/29/2017] [Indexed: 11/06/2022] Open
Abstract
Poly-ubiquitination-mediated RUNX2 degradation is an important cause of age- and inflammation-related bone loss. NEDD4 family E3 ubiquitin protein ligases are thought to be the major regulators of RUNX2 poly-ubiquitination. However, we observed a mono-ubiquitination of RUNX2 that was catalyzed by WWP2, a member of the NEDD4 family of E3 ubiquitin ligases. WWP2 has been reported to catalyze the mono-ubiquitination of Goosecoid in chondrocytes, facilitating craniofacial skeleton development. In this study, we found that osteogenic differentiation of mesenchymal stem cells promoted WWP2 expression and nuclear accumulation. Knockdown of Wwp2 in mesenchymal stem cells and osteoblasts led to significant deficiencies of osteogenesis, including decreased mineral deposition and down-regulation of osteogenic marker genes. Co-immunoprecipitation experiments showed the interaction of WWP2 with RUNX2 in vitro and in vivo Mono-ubiquitination by WWP2 leads to RUNX2 transactivation, as evidenced by the wild type of WWP2, but not its ubiquitin ligase-dead mutant, augmenting RUNX2-reponsive reporter activity. Moreover, deletion of WWP2-dependent mono-ubiquitination resulted in striking defects of RUNX2 osteoblastic activity. In addition, ectopic expression of the constitutively active type 1A bone morphogenetic protein receptor enhanced WWP2-dependent RUNX2 ubiquitination and transactivation, demonstrating a regulatory role of bone morphogenetic protein signaling in the WWP2-RUNX2 axis. Taken together, our results provide evidence that WWP2 serves as a positive regulator of osteogenesis by augmenting RUNX2 transactivation in a non-proteolytic mono-ubiquitination manner.
Collapse
Affiliation(s)
- Wei Zhu
- From the Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xinyu He
- From the Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yue Hua
- From the Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qian Li
- From the Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiyong Wang
- From the Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoqing Gan
- From the Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
47
|
Liu J, Li X, Zhang H, Gu R, Wang Z, Gao Z, Xing L. Ubiquitin E3 ligase Itch negatively regulates osteoblast function by promoting proteasome degradation of osteogenic proteins. Bone Joint Res 2017; 6:154-161. [PMID: 28298321 PMCID: PMC5376659 DOI: 10.1302/2046-3758.63.bjr-2016-0237.r1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/17/2017] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Ubiquitin E3 ligase-mediated protein degradation regulates osteoblast function. Itch, an E3 ligase, affects numerous cell functions by regulating ubiquitination and proteasomal degradation of related proteins. However, the Itch-related cellular and molecular mechanisms by which osteoblast differentiation and function are elevated during bone fracture repair are as yet unknown. METHODS We examined the expression levels of E3 ligases and NF-κB members in callus samples during bone fracture repair by quantitative polymerase chain reaction (qPCR) and the total amount of ubiquitinated proteins by Western blot analysis in wild-type (WT) mice. The expression levels of osteoblast-associated genes in fracture callus from Itch knockout (KO) mice and their WT littermates were examined by qPCR. The effect of NF-κB on Itch expression in C2C12 osteoblast cells was determined by a chromatin immunoprecipitation (ChIP) assay. RESULTS The expression levels of WW Domain Containing E3 Ubiquitin Protein Ligase 1 (Wwp1), SMAD Specific E3 Ubiquitin Protein Ligase 1 (Smurf1), SMAD Specific E3 Ubiquitin Protein Ligase 2 (Smurf2) and Itch were all significantly increased in the fracture callus of WT mice, which was associated with elevated expression of NF-κB members and total ubiquitinated proteins. Callus tissue isolated from Itch KO mice expressed higher levels of osteoblast-associated genes, including Runx2, a positive regulator of osteoblast differentiation, but osteoclast-associated genes were not increased. Both NF-κB RelA and RelB proteins were found to bind to the NF-κB binding site in the mouse Itch promoter. CONCLUSIONS Our findings indicate that Itch depletion may have a strong positive effect on osteoblast differentiation in fracture callus. Thus, ubiquitin E3 ligase Itch could be a potential target for enhancing bone fracture healing.Cite this article: J. Liu, X. Li, H. Zhang, R. Gu, Z. Wang, Z. Gao, L. Xing. Ubiquitin E3 ligase Itch negatively regulates osteoblast function by promoting proteasome degradation of osteogenic proteins. Bone Joint Res 2017;6:154-161. DOI: 10.1302/2046-3758.63.BJR-2016-0237.R1.
Collapse
Affiliation(s)
- J Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Boulevard, Changchun, Jilin 130033, China
| | - X Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Centre, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - H Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Centre, 601 Elmwood Ave, Rochester, NY 14642, USA
| | - R Gu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Boulevard, Changchun, Jilin 130033, China
| | - Z Wang
- Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang 050011, China
| | - Z Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Boulevard, Changchun, Jilin 130033, China
| | - L Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Centre, 601 Elmwood Ave, Rochester, NY 14642, USA
| |
Collapse
|
48
|
Lian C, Wu Z, Gao B, Peng Y, Liang A, Xu C, Liu L, Qiu X, Huang J, Zhou H, Cai Y, Su P, Huang D. Melatonin reversed tumor necrosis factor-alpha-inhibited osteogenesis of human mesenchymal stem cells by stabilizing SMAD1 protein. J Pineal Res 2016; 61:317-27. [PMID: 27265199 DOI: 10.1111/jpi.12349] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/03/2016] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor-alpha (TNFα) plays a pivotal role in inflammation-related osteoporosis through the promotion of bone resorption and suppression of bone formation. Numerous drugs have been produced to treat osteoporosis by inhibiting bone resorption, but they offer few benefits to bone formation, which is what is needed by patients with severe bone loss. Melatonin, which can exert both anti-inflammatory and pro-osteogenic effects, shows promise in overcoming TNFα-inhibited osteogenesis and deserves further research. This study demonstrated that melatonin rescued TNFα-inhibited osteogenesis of human mesenchymal stem cells and that the interactions between SMURF1 and SMAD1 mediated the crosstalk between melatonin signaling and TNFα signaling. Additionally, melatonin treatment was found to downregulate TNFα-induced SMURF1 expression and then decrease SMURF1-mediated ubiquitination and degradation of SMAD1 protein, leading to steady bone morphogenetic protein-SMAD1 signaling activity and restoration of TNFα-impaired osteogenesis. Thus, melatonin has prospects for treating osteoporosis caused by inflammatory factors due to its multifaceted functions on regulation of bone formation, bone resorption, and inflammation. Further studies will focus on unveiling the specific mechanisms by which melatonin downregulates SMURF1 expression and confirming the clinical therapeutic value of melatonin in the prevention and therapy of bone loss associated with inflammation.
Collapse
Affiliation(s)
- Chengjie Lian
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zizhao Wu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Caixia Xu
- Research Centre for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Liu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junjun Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hang Zhou
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yifeng Cai
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peiqiang Su
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
49
|
Selective compounds enhance osteoblastic activity by targeting HECT domain of ubiquitin ligase Smurf1. Oncotarget 2016; 8:50521-50533. [PMID: 28881580 PMCID: PMC5584161 DOI: 10.18632/oncotarget.10648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/29/2016] [Indexed: 01/07/2023] Open
Abstract
The HECT-type ubiquitin ligase Smurf1 (Smad ubiquitination regulatory factor-1) plays the prominent role in regulation of bone formation, embryonic development, and tumorigenesis by directing the ubiquitin-proteasomal degradation of specific targets. In contrast with RING-type E3s, the catalytic HECT domain of Smurf1 firstly binds to and then transfers ubiquitin (Ub) molecules onto the substrates. The Smurf1-Ub interaction is required for Smurf1 catalytic ligase activity to promote substrate degradation. However, so far specific regulators or compounds controlling Smurf1-Ub interaction and the ligase activity have not been identified. Here we report two small molecule compounds targeting Ub binding region of HECT domain interrupt Smurf1-Ub contact, inhibit Smurf1 ligase activity and stabilize BMP signal components Smad1/5 protein level. Furthermore, these compounds increase BMP signal responsiveness and enhance osteoblastic activity in cultured cells. These findings provide a novel strategy through targeting Smurf1 ligase activity to potentially treat bone disorders such as osteoporosis.
Collapse
|
50
|
Abstract
Itch or itchy E3 ubiquitin ligase was initially discovered by genetic studies on the mouse coat color changes, and its deletion results in an itchy phenotype with constant skin scratching and multi-organ inflammation. It is a member of the homologous to E6-associated protein C-terminus (HECT)-type family of E3 ligases, with the protein-interacting WW-domains for the recruitment of substrate and the HECT domain for the transfer of ubiquitin to the substrate. Since its discovery, numerous studies have demonstrated that Itch is involved in the control of many aspects of immune responses including T-cell activation and tolerance and T-helper cell differentiation. Itch is also implicated in other biological contexts such as tumorigenesis, development, and stress responses. Many signaling pathways are regulated by Itch-promoted ubiquitylation of diverse target proteins. Itch is also involved in human diseases. Here, we discuss the major progress in understanding the biological significance of Itch-promoted protein ubiquitylation in the immune and other systems and in Itch-mediated regulation of signal transduction.
Collapse
Affiliation(s)
- Daisuke Aki
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Wen Zhang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yun-Cai Liu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.,Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|