1
|
Lee HK, Notario GR, Won SY, Kim JH, Lee SM, Kim HS, Cho SR. Elevated sclerostin levels contribute to reduced bone mineral density in non-ambulatory stroke patients. Bone Rep 2025; 25:101829. [PMID: 40225703 PMCID: PMC11986488 DOI: 10.1016/j.bonr.2025.101829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 04/15/2025] Open
Abstract
Osteoporosis following stroke is a significant impediment to patient recovery. Decreased mechanical loading and locomotion following the onset of paralysis in stroke patients, especially those who are non-ambulatory, contributes greatly to bone loss. Sclerostin, a protein encoded by the SOST gene, accumulates as a result of reduced mechanical loading and inhibits bone formation. This study explores the relationship between mechanical unloading, sclerostin levels, and bone mineral density (BMD) in stroke patients, utilizing three cohorts. Analysis of Cohort 1, consisting of patients with available sclerostin level measurements, found significantly elevated sclerostin levels in non-ambulatory patients compared to ambulatory patients, indicating the influence of ambulatory status on sclerostin regulation. Cohort 2, consisting of patients with BMD measurements, demonstrated that prolonged mechanical unloading in non-ambulatory patients resulted in a greater decline in BMD over time. Analysis in Cohort 3 patients, who had bilateral BMD measurements available, revealed that hemiplegic sides subjected to reduced mechanical loading exhibited lower BMD compared to non-hemiplegic sides. These findings collectively confirm the hypothesis that reduced mechanical loading elevates sclerostin levels and accelerates bone loss. By integrating data across the three cohorts, this study underscores the critical impact of mechanical unloading on bone health, particularly in chronic stroke patients with limited mobility. Our study provides clinical insights for treatments integrating ambulatory status, sclerostin levels, and BMD in chronic stroke patients and highlights an increased need for therapeutics targeting mechanical loading pathways and sclerostin accumulation which can be administered to treat chronic osteoporosis following stroke.
Collapse
Affiliation(s)
- Hye Kyoung Lee
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Geneva Rose Notario
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Won
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Hwan Kim
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Min Lee
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Nursing, Yonsei University College of Nursing, Seoul, Republic of Korea
| | - Ha Seong Kim
- Department of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Seosong Hospital, Incheon, Republic of Korea
| | - Sung-Rae Cho
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Tian X, Yang G, Zheng H, Pi Y, Cao Z, Duan P, Chen Z, Yuan G. The Mdm2-p53 axis links cementocyte survival to cellular cementum volume. J Bone Miner Res 2025; 40:548-560. [PMID: 39903703 DOI: 10.1093/jbmr/zjaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/26/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Cementocytes are terminally differentiated cells embedded in cellular cementum, an important hard tissue covering the apical regions of tooth roots. However, the roles of cementocytes in cellular cementum remain enigmatic. Here, we show that Murine Double Minute 2 (Mdm2), an E3 ubiquitin ligase that plays vital roles in regulating cell proliferation, apoptosis, and differentiation to influence tissue or organ development, is highly expressed in the cementocytes of mice. To investigate the role of cementocyte-expressed Mdm2, Dmp1-Cre;Mdm2flox/flox (Mdm2 cKO)mice were obtained to inactivate Mdm2 in cementocytes. The results showed that Mdm2 was successfully ablated and Mdm2 cKO mice display increased cementocyte apoptosis and reduced cellular cementum volume. p53, the canonical substrate of Mdm2, was accumulated and hyperactivated in the cementocytes of Mdm2 cKO mice and in cultured IDG-CM6 cells (a cementocyte cell line) treated with Nutlin3a, an inhibitor of Mdm2. Further experiments showed that inactivation of 1 allele of p53 significantly rescued the increased cementocyte apoptosis and the decreased cellular cementum volume in Mdm2 cKO mice. Therefore, p53 is targeted by Mdm2 for degradation and mediates the role of Mdm2 in cementocyte survival and cellular cementum volume. Notably, Mdm2 cKO mice exhibited decreased differentiation of cementoblasts (the cell type primarily responsible for cementum deposition) and reduced rate of cellular cementum deposition. Meanwhile, OCCM-30 cells (a cementoblast cell line) showed diminished migration, proliferation, differentiation, and mineralization ability after culture with conditioned medium (CM) from Nutlin3a-pretreated IDG-CM6 cells. Intriguingly, Mdm2 cKO mice displayed significantly increased osteoclast formation and cementum resorption. Meanwhile, in vitro experiments verified that CM from Nutlin3a-pretreated IDG-CM6 cells induced osteoclast differentiation of bone marrow macrophages. Collectively, these results demonstrate that Mdm2-mediated degradation of p53 promotes cementocyte survival, and that cementocytes affect the cell behaviors of cementoblasts and osteoclasts through a paracrine mode to modulate cellular cementum volume.
Collapse
Affiliation(s)
- Xue Tian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huiwen Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Yixing Pi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Peipei Duan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Schmidt C, Woo MS, Alimy AR, Baranowsky A, Krasemann S, Yorgan TA, Beil FT, Schinke T, Keller J, Friese MA, Amling M, Rolvien T. Biphasic bone loss in experimental autoimmune encephalomyelitis. J Bone Miner Res 2025; 40:522-534. [PMID: 39955714 DOI: 10.1093/jbmr/zjaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/30/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS) and a common cause of neurological disabilities in young adults. Although it is known that the peripheral immune landscape is altered in people with MS (pwMS), the impact on other organ systems than the CNS is frequently overlooked. In addition to neurological deficits, pwMS suffer from impaired bone health and increased fracture risk. However, the mechanisms underlying bone loss in pwMS are poorly understood. Here, we investigated the compartment-specific bone microarchitecture as well as cellular and molecular mechanisms of altered bone remodeling in pwMS and the corresponding mouse model of experimental autoimmune encephalomyelitis (EAE). We show that pwMS and EAE mice have reduced bone mineral density characterized by a combined loss of trabecular and cortical bone. Intriguingly, bone loss in EAE followed a biphasic dynamic defined by increased osteocyte apoptosis associated with decreased bone formation in acute EAE and increased bone resorption in the chronic phase, which could be explained by increased CXCL13/CXCR5 signaling. In conclusion, the identified stage-dependent mechanism for bone loss in EAE may help to develop improved strategies for osteoporosis treatment in pwMS.
Collapse
Affiliation(s)
- Constantin Schmidt
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Assil-Ramin Alimy
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur A Yorgan
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Timo Beil
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
4
|
Zhong D, Li X, Yin Z, Chen P, Li Y, Tian J, Wang L, Liu H, Yin K, Zhu L, Kong L, Chen K, Li Y, Hong C, Wang C. Circ-ITCH promotes the ubiquitination degradation of HOXC10 to facilitate osteogenic differentiation in disuse osteoporosis through stabilizing BRCA1 mRNA via IGF2BP2-mediated m 6A modification. J Transl Med 2025; 23:376. [PMID: 40148953 PMCID: PMC11951756 DOI: 10.1186/s12967-024-06050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/25/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) facilitated by mechanical loading is a promising therapy for disuse osteoporosis (DOP), however, it is difficult to implement mechanical loading for a majority of patients. Our study aims to identify circ-ITCH-mediated novel approach to facilitate osteogenic differentiation in DOP. METHODS A rat DOP model and human BM-MSCs under microgravity condition were generated as in vivo and in vitro models of DOP, respectively. The bone mineral density (BMD) and bone parameters were examined in rats. The histological changes of bones and mineralization were monitored by H&E, Alcian blue and Alizarin red S staining. Co-IP was employed to examine the ubiquitination of HOXC10 and the interaction between HOXC10 and BRCA1. The direct associations among circ-ITCH, IGFBP2 and BRCA1 mRNA were assessed by RIP, FISH and RNA pull-down assays. RESULTS Circ-ITCH was downregulated in rat model of DOP and BM-MSCs under microgravity stimulation. Circ-ITCH overexpression promoted osteogenic differentiation in BM-MSCs under microgravity condition. The altered bone parameters, such as BMD, trabecular number (Tb.N), trabecular separation (Tb.Sp), trabecular thickness (Tb.Th), and bone microstructure in DOP rats were rescued by circ-ITCH overexpression. Mechanistically, circ-ITCH enhanced the ubiquitination degradation of HOXC10 through enhancing BRCA1 mRNA stability. Circ-ITCH directly bound to IGF2BP2 protein to stabilize BRCA1 mRNA via m6A modification, thus facilitating osteogenic differentiation in BM-MSCs under microgravity condition. CONCLUSION Circ-ITCH stabilized BRCA1 mRNA via IGF2BP2-mediated m6A modification, thereby facilitating the ubiquitination degradation of HOXC10 to promote osteogenic differentiation in DOP.
Collapse
Affiliation(s)
- Da Zhong
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Yin
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Peng Chen
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Tian
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Long Wang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
- The School of Medicine, Nankai University, Tianjin, China
| | - Hua Liu
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Ke Yin
- The First Affiliated Hospital, Department of Orthopedics, Hengyang Medical School, University of South China, Hengyang, China
| | - Lemei Zhu
- School of Public Health, Changsha Medical University, Changsha, China
| | - Lingyu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Kunli Chen
- Department of Rehabilitation Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yaochun Li
- Department of Rehabilitation Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chungu Hong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, China
| | - Chenggong Wang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Department of Orthopaedics, Xiangya Hospital of Central South University, No. 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
5
|
Zhao W, Qian J, Li J, Su T, Deng X, Fu Y, Liang X, Cui H. From death to birth: how osteocyte death promotes osteoclast formation. Front Immunol 2025; 16:1551542. [PMID: 40165960 PMCID: PMC11955613 DOI: 10.3389/fimmu.2025.1551542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Bone remodeling is a dynamic and continuous process involving three components: bone formation mediated by osteoblasts, bone resorption mediated by osteoclasts, and bone formation-resorption balancing regulated by osteocytes. Excessive osteocyte death is found in various bone diseases, such as postmenopausal osteoporosis (PMOP), and osteoclasts are found increased and activated at osteocyte death sites. Currently, apart from apoptosis and necrosis as previously established, more forms of cell death are reported, including necroptosis, ferroptosis and pyroptosis. These forms of cell death play important role in the development of inflammatory diseases and bone diseases. Increasing studies have revealed that various forms of osteocyte death promote osteoclast formation via different mechanism, including actively secreting pro-inflammatory and pro-osteoclastogenic cytokines, such as tumor necrosis factor alpha (TNF-α) and receptor activator of nuclear factor-kappa B ligand (RANKL), or passively releasing pro-inflammatory damage associated molecule patterns (DAMPs), such as high mobility group box 1 (HMGB1). This review summarizes the established and potential mechanisms by which various forms of osteocyte death regulate osteoclast formation, aiming to provide better understanding of bone disease development and therapeutic target.
Collapse
Affiliation(s)
- Weijie Zhao
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Jiale Qian
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ji Li
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tian Su
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, College of pharmacy, Hainan Medical University, Haikou, China
| | - Xiaozhong Deng
- Department of Pain Treatment, Nanxi Shan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yonghua Fu
- Department of Hand and Foot Microsurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xuelong Liang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hongwang Cui
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Emergency Surgery, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
6
|
Ye T, Yan J, Kan T, Xie G, Zhang Z, Yin W, Zhao B, Yu Z, Chu L. Articular cartilage degeneration and aberrant osteocyte perilacunar/canalicular remodeling in subchondral bone of patients with developmental dysplasia of the hip. BMC Musculoskelet Disord 2025; 26:165. [PMID: 39966795 PMCID: PMC11837434 DOI: 10.1186/s12891-025-08419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a congenital musculoskeletal disease that impairs the hip joint and exacerbates hip osteoarthritis. This study aims to investigate the alterations of osteocytic characteristics including apoptosis, lacuna-canalicular network, and perilacunar/canalicular remodeling (PLR) activity in subchondral bone from DDH patients, and potential relationship of these alterations between the cartilage degeneration and DDH progression. METHODS The femoral head specimens were acquired from 16 patients with hip fractures who received total hip arthroplasty operation, 24 patients with primary hip OA and 25 patients with DDH. The femoral head were scanned by a micro-computed tomography and the volume of interest was used for a micro-finite element analysis. Histological and immunohistochemical staining was used to observe chondrocytes in cartilage and osteocytes in subchondral bone. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to investigate the apoptotic osteocytes in subchondral bone. Ploton silver staining was used to visualize lacunocanalicular network and picrosirius red staining was to visualize collagen fiber orientation in subchondral bone. RESULTS The DDH group showed the highest apoptosis rate of osteocytes and increased PLR activity among the three groups. The micro-finite-element analysis revealed that DDH group had deteriorative microstructural and biomechanical properties of subchondral bone. The histological and immunohistochemical analyses showed that the cartilage degeneration in DDH group was the most severe. Linear regression analysis revealed a significant correlation between osteocytic activity in subchondral bone and cartilage degeneration in DDH. CONCLUSIONS Our findings indicate that the abnormal osteocyte activity in subchondral bone might contribute to the deterioration of subchondral bone structure, which accelerates cartilage degeneration and DDH progression. Targeting subchondral bone remodeling could offer a promising therapeutic strategy for DDH.
Collapse
Affiliation(s)
- Teng Ye
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiren Yan
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyou Kan
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Bone and Joint Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Guoming Xie
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhichang Zhang
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Yin
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bizeng Zhao
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Linyang Chu
- Department of Sports Medicine, National Center for Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Guo Z, Hu Y, Zhou J, Zhang Y, Zhang J, Yang L, Wang S, Wu J, Yang J. Inhibition of osteocyte apoptosis does not prevent iron overload-induced bone resorption and bone loss. Biochem Biophys Res Commun 2025; 743:151152. [PMID: 39673971 DOI: 10.1016/j.bbrc.2024.151152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Iron overload leads to apoptosis and increased expression of receptor activator of nuclear factor kappa-Β ligand (RANKL) in osteocytes, which in turn accelerates osteoclastogenesis. Since osteocytes are the main RANKL producers, we hypothesized that apoptotic osteocytes increase RANKL expression in osteocytes, which in turn stimulates osteoclastogenesis and bone resorption. In this study, alendronate or IG9402, a bisphosphonate (BP) analog which does not inhibit bone resorption, inhibited iron overload-induced osteocyte apoptosis and increased RANKL expression. Both BPs also prevented osteoblast apoptosis but did not inhibit the increase in osteoblastic RANKL. Alendronate, but not IG9402, prevented the increase in osteoclastogenesis and serum levels of the bone resorption marker C-telopeptide of type I collagen (CTX) in iron-overloaded mice. Alendronate also prevented the iron overload-induced reduction in femoral bone mineral density, disruption of bone microstructure, and weakness of bone strength. Although IG9402 did not prevent bone loss due to iron overload, it partially prevented reduction of strength, suggesting that osteocyte viability contributes to the maintenance of bone strength. In conclusion, although osteocyte apoptosis in the presence of iron overload leads to an increase in osteocytic RANKL production. However, blocking these events was not sufficient to inhibit iron overload-induced osteoclastogenesis and bone loss.
Collapse
Affiliation(s)
- Zengfeng Guo
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yawei Hu
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Jianhua Zhou
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Yandong Zhang
- Department of Spine and Joint Surgery, Shenzhen Guangming District People's Hospital, Shenzhen, 518106, Guangdong, China
| | - Junde Zhang
- Department of Spine and Joint Surgery, Shenzhen Guangming District People's Hospital, Shenzhen, 518106, Guangdong, China
| | - Linbo Yang
- Department of Orthopedic Trauma, Dongguan Eighth People's Hospital, Dongguan, 523325, Guangdong, China
| | - Shenghang Wang
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Jiawen Wu
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China.
| | - Jiancheng Yang
- Department of Spine Surgery, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China; Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
8
|
Tawaratsumida H, Iuchi T, Masuda Y, Ide T, Maesako S, Miyazaki T, Ijuin T, Maeda S, Taniguchi N. Zoledronate alleviates subchondral bone collapse and articular cartilage degeneration in a rat model of rotator cuff tear arthropathy. Osteoarthritis Cartilage 2025; 33:101-115. [PMID: 39153568 DOI: 10.1016/j.joca.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE To evaluate the humeral head bone volume of patients with cuff tear arthropathy (CTA) and examine the therapeutic effect of zoledronate in a rat modified model of CTA (mCTA). DESIGN The bone mass in patients with CTA was measured using Hounsfield units from CT images. The mCTA was induced by transecting the rotator cuff, biceps brachii tendon, and superior half of the joint capsule in adult rat shoulders. A single subcutaneous injection of zoledronate was followed by bone histomorphometry and immunohistochemistry of the humeral head, as well as the Murine Shoulder Arthritis Score (MSAS) assessment. RESULTS The humeral head bone volume was decreased in patients with CTA. In the mCTA model, M1 macrophages were increased in the synovium and were decreased by zoledronate treatment. The increased expressions of TNF-α, IL-1β and IL-6 in mCTA synovium and articular cartilage were suppressed in the zoledronate-treated mCTA group. The expression of catabolic enzymes in the articular cartilage and MSAS showed similar results. The zoledronate-treated mCTA group showed a decreased subchondral bone collapse with a decreased RANKL/OPG expression ratio and a suppressed number of osteoclasts compared with the control mCTA group. The enhanced expressions of HMGB1 and S100A9 in the mCTA shoulders were eliminated in the zoledronate-treated mCTA group. CONCLUSIONS The humeral head subchondral bone was decreased in patients with CTA. In the mCTA model, the collapse and osteoarthritic changes were prevented by zoledronate administration. Zoledronate seemed to suppress the number of M1 macrophages in the synovium and osteoclasts in the subchondral bone.
Collapse
Affiliation(s)
- Hiroki Tawaratsumida
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Tomohiro Iuchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Yusuke Masuda
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Locomotory Organ Regeneration, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Takayuki Ide
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Shingo Maesako
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Bone and Joint Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Takasuke Miyazaki
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Toshiro Ijuin
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Shingo Maeda
- Department of Bone and Joint Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| | - Noboru Taniguchi
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Medical Joint Materials, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Locomotory Organ Regeneration, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan; Department of Bone and Joint Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima 890-8520, Japan.
| |
Collapse
|
9
|
Lu S, Fang C. Isosakuranetin inhibits subchondral osteoclastogenesis for attenuating osteoarthritis via suppressing NF-κB/CXCL2 axis. Int Immunopharmacol 2024; 143:113321. [PMID: 39388890 DOI: 10.1016/j.intimp.2024.113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
As the most predominant form of arthritis, osteoarthritis (OA) is featured with irreversible progress and involvement of the whole joint. Since OA onset, abnormal mechanical load initiates excessive osteoclastogenesis, evolving a rapid turnover of subchondral bone, cyst creation, synovitis, cartilage degradation, and ultimately resulting in joint failure. Additionally, aberrant vascularization and nociceptive pain are invoked by osteoclast-induced angiogenesis and sensory innervation in the subchondral bone. Rhizoma anemarrhenae (Zhimu) has been extensively demonstrated to show multiple pharmacological effects including anti-inflammation, anti-aging, and immunomodulation. Herein, Broussonin a (BRA), Markogein (MAN), and Isosakuranetin (ISN) derived from Rhizoma anemarrhenae, were initially discovered for their affinity with Bone marrow mononuclear cell (BMMC) membranes using the Cell membrane chromatography/Time of flight mass spectrometry (CMC/TOFMS) method, while only ISN exerted a significant inhibitory effect on RANKL-induced osteoclastogenesis in BMMC in vitro. Intriguingly, we disclosed that ISN blunted the overactivation of Tartrate-resistant acid phosphatase positive (TRAP+) osteoclasts in subchondral bone in OA mice, as indicated by enhanced bone volume/total volume (BV/TV), trabecular number (Tb.N), and trabeculae thickness (Tb.Th), as well as diminished trabecular pattern factor (Tb.pf). Treatment with ISN also impaired aberrant angiogenesis and nociceptive reaction in the subchondral bone marrow. Moreover, ISN hindered the loss of articular cartilage proteoglycan and lowered the Osteoarthritis Research Society International (OARSI) grade, boosting the expression amount of Aggrecan (ACAN) and Collagen II (COL II) positive cells while reducing Matrix metalloproteinase 13 (MMP-13) positive cells. For mechanisms, We verified that ISN hampered subchondral osteoclastogenesis by blocking nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling and C-X-C Motif Chemokine Ligand 2 (CXCL2) stimulation. Taken together, we reveal that ISN impedes the progression of OA by preventing hyperactivated subchondral osteoclastogenesis via suppressing the NF-κB/CXCL2 axis.
Collapse
Affiliation(s)
- Shuai Lu
- Department of Orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, 201499, China
| | - Chao Fang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
10
|
Zhao D, Tu C, Zhang L, Guda T, Gu S, Jiang JX. Activation of connexin hemichannels enhances mechanosensitivity and anabolism in disused and aged bone. JCI Insight 2024; 9:e177557. [PMID: 39641271 PMCID: PMC11623949 DOI: 10.1172/jci.insight.177557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Mechanical loading, essential for bone health, promotes bone formation and remodeling. However, the positive response diminishes in cases of disuse and aging, leading to bone loss and an increased fracture risk. This study demonstrates that activating hemichannels (HCs) using a connexin 43 (Cx43) antibody, Cx43(M2), in bone osteocytes revitalizes aging and disused bones. Using a hindlimb suspension (HLS) disuse model and a tibial mechanical loading model, we found that Cx43(M2) inhibited bone loss and osteocyte apoptosis induced by unloading in 16-week-old adult mice. Additionally, it enhanced bone mass in response to tibial loading in 22-month-old aged mice. The HC opening released bone anabolic factor prostaglandin E2 (PGE2) and suppressed catabolic factor sclerostin (SOST). This suppressed the increase of cortical bone formation and reduction of bone resorption during unloading and promoted trabecular and cortical bone formation during loading. Cx43(M2)-induced HC opening, coupled with PGE2 release, effectively rescued unloading-induced bone loss and restored the diminished anabolic response of aged bones to mechanical loading. Activating HCs with the Cx43 antibody holds promise as a de novo therapeutic approach, as it can overcome the limitations of existing treatment regimens for treating bone loss and osteoporosis associated with aging and disuse.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
- School of Medicine, Northwest University, Xi’an, China
| | - Chao Tu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lidan Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| |
Collapse
|
11
|
Li Z, Hao L, Chen S, Fu W, Zhang H, Yin Z, Wang Y, Wang J. Forkhead box C1 promotes the pathology of osteoarthritis in subchondral bone osteoblasts via the Piezo1/YAP axis. Cell Signal 2024; 124:111463. [PMID: 39396563 DOI: 10.1016/j.cellsig.2024.111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Subchondral bone sclerosis is a key characteristic of osteoarthritis (OA). Prior research has shown that Forkhead box C1 (FoxC1) plays a role in the synovial inflammation of OA, but its specific role in the subchondral bone of OA has not been explored. Our research revealed elevated expression levels of FoxC1 and Piezo1 in OA subchondral bone tissues. Further experiments on OA subchondral bone osteoblasts with FoxC1 or Piezo1 overexpression showed increased cell proliferation activity, expression of Yes-associated Protein 1 (YAP) and osteogenic markers, and secretion of proinflammatory factors. Mechanistically, the overexpression of FoxC1 through Piezo1 activation, in combination with downstream YAP signaling, led to increased levels of alkaline phosphatase (ALP), collagen type 1 (COL1) A1, RUNX2, Osteocalcin, matrix metalloproteinase (MMP) 3, and MMP9 expression. Notably, inhibition of Piezo1 reversed the regulatory function of FoxC1. The binding of FoxC1 to the targeted area (ATATTTATTTA, residues +612 to +622) and the activation of Piezo1 transcription were verified by the dual luciferase assays. Additionally, Reduced subchondral osteosclerosis and microangiogenesis were observed in knee joints from FoxC1-conditional knockout (CKO) and Piezo1-CKO mice, indicating reduced lesions. Collectively, our study reveals the significant involvement of FoxC1 in the pathologic process of OA subchondral bone via the Piezo1/YAP signaling pathway, potentially establishing a novel therapeutic target.
Collapse
Affiliation(s)
- Zhengyuan Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Lin Hao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Shenghong Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Wenhan Fu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China.
| | - Yin Wang
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, China; Anhui Public Health Clinical Center, Anhui, China.
| | - Jun Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China.
| |
Collapse
|
12
|
Marino S, Bellido T. PTH receptor signalling, osteocytes and bone disease induced by diabetes mellitus. Nat Rev Endocrinol 2024; 20:661-672. [PMID: 39020007 DOI: 10.1038/s41574-024-01014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
Basic, translational and clinical research over the past few decades has provided new understanding on the mechanisms by which activation of the receptor of parathyroid hormone (parathyroid hormone 1 receptor (PTH1R)) regulates bone physiology and pathophysiology. A fundamental change in the field emerged upon the recognition that osteocytes, which are permanent residents of bone and the most abundant cells in bone, are targets of the actions of natural and synthetic ligands of PTH1R (parathyroid hormone and abaloparatide, respectively), and that these cells drive essential actions related to bone remodelling. Among the numerous genes regulated by PTH1R in osteocytes, SOST (which encodes sclerostin, the WNT signalling antagonist and inhibitor of bone formation) has a critical role in bone homeostasis and changes in its expression are associated with several bone pathologies. The bone fragility syndrome induced by diabetes mellitus is accompanied by increased osteocyte apoptosis and changes in the expression of osteocytic genes, including SOST. This Review will discuss advances in our knowledge of the role of osteocytes in PTH1R signalling and the new opportunities to restore bone health in diabetes mellitus by targeting the osteocytic PTH1R-sclerostin axis.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
13
|
Li Z, Liang S, Ke L, Wang M, Gao K, Li D, Xu Z, Li N, Zhang P, Cheng W. Cell life-or-death events in osteoporosis: All roads lead to mitochondrial dynamics. Pharmacol Res 2024; 208:107383. [PMID: 39214266 DOI: 10.1016/j.phrs.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria exhibit heterogeneous shapes and networks within and among cell types and tissues, also in normal or osteoporotic bone tissues with complex cell types. This dynamic characteristic is determined by the high plasticity provided by mitochondrial dynamics and is stemmed from responding to the survival and functional requirements of various bone cells in a specific microenvironments. In contrast, mitochondrial dysfunction, induced by dysregulation of mitochondrial dynamics, may act as a trigger of cell death signals, including common apoptosis and other forms of programmed cell death (PCD). These PCD processes consisting of tightly structured cascade gene expression events, can further influence the bone remodeling by facilitating the death of various bone cells. Mitochondrial dynamics, therefore, drive the bone cells to stand at the crossroads of life and death by integrating external signals and altering metabolism, shape, and signal-response properties of mitochondria. This implies that targeting mitochondrial dynamics displays significant potential in treatment of osteoporosis. Considerable effort has been made in osteoporosis to emphasize the parallel roles of mitochondria in regulating energy metabolism, calcium signal transduction, oxidative stress, inflammation, and cell death. However, the emerging field of mitochondrial dynamics-related PCD is not well understood. Herein, to bridge the gap, we outline the latest knowledge on mitochondrial dynamics regulating bone cell life or death during normal bone remodeling and osteoporosis.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050011, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000, China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300, China.
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Shao Z, Wang B, Gao H, Zhang S. Microenvironmental interference with intra-articular stem cell regeneration influences the onset and progression of arthritis. Front Genet 2024; 15:1380696. [PMID: 38841721 PMCID: PMC11150611 DOI: 10.3389/fgene.2024.1380696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Studies have indicated that the preservation of joint health and the facilitation of damage recovery are predominantly contingent upon the joint's microenvironment, including cell-cell interactions, the extracellular matrix's composition, and the existence of local growth factors. Mesenchymal stem cells (MSCs), which possess the capacity to self-renew and specialize in many directions, respond to cues from the microenvironment, and aid in the regeneration of bone and cartilage, are crucial to this process. Changes in the microenvironment (such as an increase in inflammatory mediators or the breakdown of the extracellular matrix) in the pathological context of arthritis might interfere with stem cell activation and reduce their ability to regenerate. This paper investigates the potential role of joint microenvironmental variables in promoting or inhibiting the development of arthritis by influencing stem cells' ability to regenerate. The present status of research on stem cell activity in the joint microenvironment is also outlined, and potential directions for developing new treatments for arthritis that make use of these intervention techniques to boost stem cell regenerative potential through altering the intra-articular environment are also investigated. This review's objectives are to investigate these processes, offer fresh perspectives, and offer a solid scientific foundation for the creation of arthritic treatment plans in the future.
Collapse
Affiliation(s)
| | | | | | - Shenqi Zhang
- Department of Joint and Sports Medicine, Zaozhuang Municipal Hospital Affiliated to Jining Medical University, Zaozhuang, Shandong, China
| |
Collapse
|
15
|
Weiss MB, Syed SA, Whiteson HZ, Hirani R, Etienne M, Tiwari RK. Navigating Post-Traumatic Osteoporosis: A Comprehensive Review of Epidemiology, Pathophysiology, Diagnosis, Treatment, and Future Directions. Life (Basel) 2024; 14:561. [PMID: 38792583 PMCID: PMC11122478 DOI: 10.3390/life14050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Post-traumatic osteoporosis (PTO) presents a significant challenge in clinical practice, characterized by demineralization and decreased skeletal integrity following severe traumatic injuries. This literature review manuscript addresses the knowledge gaps surrounding PTO, encompassing its epidemiology, pathophysiology, risk factors, diagnosis, treatment, prognosis, and future directions. This review emphasizes the complexity of the etiology of PTO, highlighting the dysregulation of biomineralization processes, inflammatory cytokine involvement, hormonal imbalances, glucocorticoid effects, vitamin D deficiency, and disuse osteoporosis. Moreover, it underscores the importance of multidisciplinary approaches for risk mitigation and advocates for improved diagnostic strategies to differentiate PTO from other musculoskeletal pathologies. This manuscript discusses various treatment modalities, including pharmacotherapy, dietary management, and physical rehabilitation, while also acknowledging the limited evidence on their long-term effectiveness and outcomes in PTO patients. Future directions in research are outlined, emphasizing the need for a deeper understanding of the molecular mechanisms underlying PTO and the evaluation of treatment strategies' efficacy. Overall, this review provides a comprehensive overview of PTO and highlights avenues for future investigation to enhance clinical management and patient outcomes.
Collapse
Affiliation(s)
- Matthew B. Weiss
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (H.Z.W.); (R.H.); (M.E.)
| | - Shoaib A. Syed
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (H.Z.W.); (R.H.); (M.E.)
| | - Harris Z. Whiteson
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (H.Z.W.); (R.H.); (M.E.)
| | - Rahim Hirani
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (H.Z.W.); (R.H.); (M.E.)
- Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY 10595, USA
| | - Mill Etienne
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (H.Z.W.); (R.H.); (M.E.)
- Department of Neurology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA (H.Z.W.); (R.H.); (M.E.)
- Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
16
|
Yokota S, Ishizu H, Miyazaki T, Takahashi D, Iwasaki N, Shimizu T. Osteoporosis, Osteoarthritis, and Subchondral Insufficiency Fracture: Recent Insights. Biomedicines 2024; 12:843. [PMID: 38672197 PMCID: PMC11048726 DOI: 10.3390/biomedicines12040843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The increased incidence of osteoarthritis (OA), particularly knee and hip OA, and osteoporosis (OP), owing to population aging, have escalated the medical expense burden. Osteoarthritis is more prevalent in older women, and the involvement of subchondral bone fragility spotlights its association with OP. Notably, subchondral insufficiency fracture (SIF) may represent a more pronounced condition of OA pathophysiology. This review summarizes the relationship between OA and OP, incorporating recent insights into SIF. Progressive SIF leads to joint collapse and secondary OA and is associated with OP. Furthermore, the thinning and fragility of subchondral bone in early-stage OA suggest that SIF may be a subtype of OA (osteoporosis-related OA, OPOA) characterized by significant subchondral bone damage. The high bone mineral density observed in OA may be overestimated due to osteophytes and sclerosis and can potentially contribute to OPOA. The incidence of OPOA is expected to increase along with population aging. Therefore, prioritizing OP screening, early interventions for patients with early-stage OA, and fracture prevention measures such as rehabilitation, fracture liaison services, nutritional management, and medication guidance are essential.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (S.Y.); (H.I.); (T.M.); (D.T.); (N.I.)
| |
Collapse
|
17
|
Fernandes Da Costa C, Attik N, Gauthier R. Influence of intramedullary pressure on Lacuno-Canalicular fluid flow: A systematic review. Acta Biomater 2024; 178:41-49. [PMID: 38484832 DOI: 10.1016/j.actbio.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
While most of current models investigating bone remodelling are based on matrix deformation, intramedullary pressure also plays a role. Bone remodelling is orchestrated by the Lacuno-Canalicular Network (LCN) fluid-flow. The aim of this review was hence to assess the influence of intramedullary pressure on the fluid circulation within the LCN. Three databases (Science Direct, Web of Science, and PubMed) were used. The first phase of the search returned 731 articles, of which 9 respected the inclusion/exclusion criteria and were included. These studies confirm the association between intramedullary pressure and fluid dynamics in the LCN. Among the included studies, 7 experimental studies using animal models and 2 numerical models were found. The studies were then ranked according to the nature of the applied loading, either axial compression or direct cyclic intramedullary pressure. The current review revealed that there is an influence of intramedullary pressure on LCN fluid dynamics and that this influence depends on the magnitude and the frequency of the applied pressure. Two studies confirmed that the influence was effective even without bone matrix deformation. While intramedullary pressure is closely associated with LCN fluid, there is a severe lack of studies on this topic. STATEMENT OF SIGNIFICANCE: Since the 1990's, numerical models developed to investigate fluid flow in bone submicrometric porous network are based on the flow induced by matrix deformation. Bone fluid flow is known to be involved in cells stimulation and hence directly influences bone remodeling. Different studies have shown that intramedullary pressure is also associated with bone mechanosensitive adaptation. This pressure is developed in bone due to blood circulation and is increased during loading or muscle stimulation. The current article reviews the studies investigating the influence of this pressure on bone porous fluid flow. They show that fluid flow is involved by this pressure even without bone matrix deformation. The current review article highlights the severe lack of studies about this mechanism.
Collapse
Affiliation(s)
- Cassandra Fernandes Da Costa
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69372 CEDEX 08, France; CNRS, INSA Lyon, MATEIS, UMR5510, Université de Lyon, Université Claude Bernard Lyon 1, 7 avenue Jean Capelle, Villeurbanne CEDEX 69621, France
| | - Nina Attik
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69372 CEDEX 08, France; Faculté d'Odontologie, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69372 CEDEX 08, France.
| | - Remy Gauthier
- CNRS, INSA Lyon, MATEIS, UMR5510, Université de Lyon, Université Claude Bernard Lyon 1, 7 avenue Jean Capelle, Villeurbanne CEDEX 69621, France.
| |
Collapse
|
18
|
Zhang Z, Jing Y, Zhang A, Liu J, Yang H, Lou X, Xu L, Liu M, Zhang Y, Gu J. Long non-coding RNA-NONMMMUT004552.2 regulates the unloading-induced bone loss through the miRNA-15b-5p/Syne1 in mice. NPJ Microgravity 2024; 10:37. [PMID: 38521778 PMCID: PMC10960867 DOI: 10.1038/s41526-024-00382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Exercise-induced mechanical loading can increase bone strength whilst mechanical unloading enhances bone-loss. Here, we investigated the role of lncRNA NONMMUT004552.2 in unloading-induced bone-loss. Knockout of lncRNA NONMMUT004552.2 in hindlimb-unloaded mice caused an increase in the bone formation and osteoblast activity. The silencing of lncRNA NONMMUT004552.2 also decreased the osteoblast apoptosis and expression of Bax and cleaved caspase-3, increased Bcl-2 protein expression in MC3T3-E1 cells. Mechanistic investigations demonstrated that NONMMUT004552.2 functions as a competing endogenous RNA (ceRNA) to facilitate the protein expression of spectrin repeat containing, nuclear envelope 1 (Syne1) by competitively binding miR-15b-5p and subsequently inhibits the osteoblast differentiation and bone formation in the microgravity unloading environment. These data highlight the importance of the lncRNA NONMMUT004552.2/miR-15b-5p/Syne1 axis for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Medical Engineering, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Yu Jing
- Department of Haematology, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, 100071, China
| | - Ang Zhang
- Department of Hematology, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - JiShan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Heming Yang
- Department of General Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Xiaotong Lou
- Department of Research, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Liyan Xu
- Department of Blood Transfusion, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Min Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yikun Zhang
- Department of Hematology, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China.
| | - Jianwen Gu
- Department of Neurosurgery, PLA Strategic Support Force Characteristic Medical Center, Beijing, 100101, China.
| |
Collapse
|
19
|
Meas SJ, Daire GM, Friedman MA, DeNapoli R, Ghosh P, Farr JN, Donahue HJ. A comparison of bone microarchitectural and transcriptomic changes in murine long bones in response to hindlimb unloading and aging. Bone 2024; 179:116973. [PMID: 37996046 PMCID: PMC11651238 DOI: 10.1016/j.bone.2023.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Age- and disuse-related bone loss both result in decreases in bone mineral density, cortical thickness, and trabecular thickness and connectivity. Disuse induces changes in the balance of bone formation and bone resorption like those seen with aging. There is a need to experimentally compare these two mechanisms at a structural and transcriptomic level to better understand how they may be similar or different. Bone microarchitecture and biomechanical properties were compared between 6- and 22-month-old C57BL/6 J male control mice and 6-month-old mice that were hindlimb unloaded (HLU) for 3 weeks. Epiphyseal trabecular bone was the compartment most affected by HLU and demonstrated an intermediate bone phenotype between age-matched controls and aged controls. RNA extracted from whole-bone marrow-flushed tibiae was sequenced and analyzed. Differential gene expression analysis additionally included 4-month-old male mice unloaded for 3 weeks compared to age-matched controls. Gene ontology analysis demonstrated that there were age-dependent differences in differentially expressed genes in young adult mice. Genes related to downregulation of cellular processes were most affected in 4-month-old mice after disuse whereas those related to mitochondrial function were most affected in 6-month-old mice. Cell-cycle transition was downregulated with aging. A publicly available dataset (GSE169292) from 3-month female C57BL/6 N mice unloaded for 7 days was included in ingenuity pathway analysis (IPA) with the other datasets. IPA was used to identify the leading canonical pathways and upstream regulators in each HLU age group. IPA identified "Senescence Pathway" as the second leading canonical pathway enriched in mice exposed to HLU. HLU induced activation of the senescence pathway in 3-month and 4-month-old mice but inhibited it in 6-month-old mice. In conclusion, we demonstrate that hindlimb unloading and aging initiate similar changes in bone microarchitecture and gene expression. However, aging is responsible for more significant transcriptome and tissue-level changes compared to hindlimb unloading.
Collapse
Affiliation(s)
- Steven J Meas
- Virginia Commonwealth University, Richmond, VA 23284, USA.
| | | | | | | | - Preetam Ghosh
- Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Joshua N Farr
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
20
|
Arora D, Taneja Y, Sharma A, Dhingra A, Guarve K. Role of Apoptosis in the Pathogenesis of Osteoarthritis: An Explicative Review. Curr Rheumatol Rev 2024; 20:2-13. [PMID: 37670694 DOI: 10.2174/1573397119666230904150741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/29/2023] [Accepted: 07/20/2023] [Indexed: 09/07/2023]
Abstract
Apoptosis is a complex regulatory, active cell death process that plays a role in cell development, homeostasis, and ageing. Cancer, developmental defects, and degenerative diseases are all pathogenic disorders caused by apoptosis dysregulation. Osteoarthritis (OA) is by far the most frequently diagnosed joint disease in the aged, and it is characterized by the ongoing breakdown of articular cartilage, which causes severe disability. Multiple variables regulate the anabolic and catabolic pathways of the cartilage matrix, which either directly or indirectly contribute to cartilage degeneration in osteoarthritis. Articular cartilage is a highly specialized tissue made up of an extracellular matrix of cells that are tightly packed together. As a result, chondrocyte survival is crucial for the preservation of an optimal cartilage matrix, and chondrocyte characteristics and survival compromise may result in articular cartilage failure. Inflammatory cytokines can either promote or inhibit apoptosis, the process of programmed cell death. Pro-apoptotic cytokines like TNF-α can induce cell death, while anti-apoptotic cytokines like IL-4 and IL-10 protect against apoptosis. The balance between these cytokines plays a critical role in determining cell fate and has implications for tissue damage and disease progression. Similarly, they contribute to the progression of OA by disrupting the metabolic balance in joint tissues by promoting catabolic and anabolic pathways. Their impact on cell joints, as well as the impacts of cell signalling pathways on cytokines and inflammatory substances, determines their function in osteoarthritis development. Apoptosis is evident in osteoarthritic cartilage; however, determining the relative role of chondrocyte apoptosis in the aetiology of OA is difficult, and the rate of apoptotic chondrocytes in osteoarthritic cartilage is inconsistent. The current study summarises the role of apoptosis in the development of osteoarthritis, the mediators, and signalling pathways that trigger the cascade of events, and the other inflammatory features involved.
Collapse
Affiliation(s)
- Deepshi Arora
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, 135001, India
| | - Yugam Taneja
- Zeon Lifesciences, Paonta Sahib, Himachal Pradesh, 173025, India
| | - Anjali Sharma
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, 135001, India
| | - Ashwani Dhingra
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, 135001, India
| | - Kumar Guarve
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, 135001, India
| |
Collapse
|
21
|
Freitas L, Bezerra A, Resende-Coelho A, Gomez-Lazaro M, Maciel L, Amorim T, Fernandes RJ, Fonseca H. Impact of Long-Term Swimming Exercise on Rat Femur Bone Quality. Biomedicines 2023; 12:35. [PMID: 38255142 PMCID: PMC10813774 DOI: 10.3390/biomedicines12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Considering the conflicting evidence regarding the potential long-term detrimental effect of swimming during growth on femur quality and fracture risk, our aim was to investigate the effect of eight months of swimming on femur quality. Twenty male eight-week-old Wistar rats were assigned into a swimming (SW; n = 10; 2 h/day, 5 days/week) or active control group (CG; n = 10, housed with running wheel) for eight months. Plasma osteocalcin and C-terminal telopeptide of type I collagen concentrations (ELISA) were assessed at baseline, four, and eight months of protocol. Femur structure (micro-computed tomography), biomechanical properties (three-point bending), and cellular density (histology) were determined after the protocol. SW displayed a lower uncoupling index, suggesting higher bone resorption, lower empty lacunae density, cortical and trabecular femur mass, femur length and cortical thickness, and higher cortical porosity than CG (p < 0.05). Although both biomarkers' concentrations decreased in both groups throughout the experiment (p < 0.001), there were no significant differences between groups (p > 0.05). No differences were also found regarding biomechanical properties, bone marrow adiposity, and osteocyte and osteoclast densities (p > 0.05). Long-term swimming was associated with unbalanced bone turnover and compromised femur growth, lower femur mass, and deteriorated cortical bone microarchitecture. However, femur trabecular microarchitecture and biomechanical properties were not affected by swimming.
Collapse
Affiliation(s)
- Laura Freitas
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.B.); (A.R.-C.); (L.M.); (H.F.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Andrea Bezerra
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.B.); (A.R.-C.); (L.M.); (H.F.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Ana Resende-Coelho
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.B.); (A.R.-C.); (L.M.); (H.F.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal;
| | - Leonardo Maciel
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.B.); (A.R.-C.); (L.M.); (H.F.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Postgraduate Nursing Program, Federal University of Sergipe, São Cristovão 49100-000, Brazil
- Department of Physiotherapy, Federal University of Sergipe, Lagarto 49400-000, Brazil
| | - Tânia Amorim
- Fame Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 421-00 Trikala, Greece;
| | - Ricardo J. Fernandes
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal;
- Porto Biomechanics Laboratory (LABIOMEP), Faculty of Sport, University of Porto, 4050-313 Porto, Portugal
| | - Hélder Fonseca
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.B.); (A.R.-C.); (L.M.); (H.F.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| |
Collapse
|
22
|
Fonte C, Jacob P, Vanet A, Ghislin S, Frippiat JP. Hindlimb unloading, a physiological model of microgravity, modifies the murine bone marrow IgM repertoire in a similar manner as aging but less strongly. Immun Ageing 2023; 20:64. [PMID: 37986079 PMCID: PMC10659048 DOI: 10.1186/s12979-023-00393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND The spaceflight environment is an extreme environment that affects the immune system of approximately 50% of astronauts. With planned long-duration missions, such as the deployment of the Lunar Gateway and possible interplanetary missions, it is mandatory to determine how all components of the immune system are affected, which will allow the establishment of countermeasures to preserve astronaut health. However, despite being an important component of the immune system, antibody-mediated humoral immunity has rarely been investigated in the context of the effects of the space environment. It has previously been demonstrated that 30 days aboard the BION-M1 satellite and 21 days of hindlimb unloading (HU), a model classically used to mimic the effects of microgravity, decrease murine B lymphopoiesis. Furthermore, modifications in B lymphopoiesis reported in young mice subjected to 21 days of HU were shown to be similar to those observed in aged mice (18-22 months). Since the primary antibody repertoire composed of IgM is created by V(D) J recombination during B lymphopoiesis, the objective of this study was to assess the degree of similarity between changes in the bone marrow IgM repertoire and in the V(D)J recombination process in 2.5-month-old mice subjected to 21 days of HU and aged (18 months) mice. RESULTS We found that in 21 days, HU induced changes in the IgM repertoire that were approximately 3-fold less than those in aged mice, which is a rapid effect. Bone remodeling and epigenetics likely mediate these changes. Indeed, we previously demonstrated a significant decrease in tibial morphometric parameters from day 6 of HU and a progressive reduction in these parameters until day 21 of HU, and it has been shown that age and microgravity induce epigenetic changes. CONCLUSION These data reveal novel immune changes that are akin to advanced aging and underline the importance of studying the effects of spaceflight on antibody-mediated humoral immunity.
Collapse
Affiliation(s)
- Coralie Fonte
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France
| | - Pauline Jacob
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France
| | - Anne Vanet
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Stéphanie Ghislin
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France
| | - Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, UR 7300 SIMPA, Faculty of Medicine, Lorraine University, Vandoeuvre-lès, Nancy, France.
| |
Collapse
|
23
|
Lu Z, Xie L, Liu W, Li Z, Chen Y, Yu G, Shi B. A bibliometric analysis of intra-articular injection therapy for knee osteoarthritis from 2012 to 2022. Medicine (Baltimore) 2023; 102:e36105. [PMID: 37986287 PMCID: PMC10659632 DOI: 10.1097/md.0000000000036105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Knee osteoarthritis (KOA) is the most common joint disease worldwide and, with the progression of an aging population, is one of the most important causes of disability worldwide. Its main symptoms include articular cartilage damage, periarticular pain, swelling, and stiffness. Intra-articular (IA) injections offer many advantages over systemic administration and surgical treatment, including direct action on the target joint to improve local bioavailability, reduce systemic toxicity, and lower costs. This study analyzed KOA intra-articular injection treatment and its hot literature and research horizons using bibliometric methodologies and graphical tools to aid future research. We performed a bibliometric analysis of 2360 publications in the Web of Science core collection using CiteSpace software. The United States (28.26% of publications) and China (18%) had the biggest publications. Rush University was the most active institution, but Boston University had the greatest citation/publication rate (65.77), suggesting a high literature standard. The majority of publications were in Osteoarthritis and cartilage. Bannuru RR was the most referenced author, while Filardo, Giuseppe was the most productive author. Studies in platelet-rich plasma (PRP), mesenchymal stem cells (MSCs), and microsphere formulation are likely to be future research hotspots. The current scientometric study provides an overview of KOA intra-articular injection therapy studies from 2012 to 2022. This study outlines the current research hotspots and potential future research hotspots in the field of intra-articular injection treatment for KOA and may serve as a resource for researchers interested in this topic.
Collapse
Affiliation(s)
- Zhiyong Lu
- Shandong First Medical University (Shandong Academy of Medical Sciences), Shandong Province, China
| | - Liangyu Xie
- Shandong First Medical University (Shandong Academy of Medical Sciences), Shandong Province, China
| | - Wenbo Liu
- Shandong First Medical University (Shandong Academy of Medical Sciences), Shandong Province, China
| | - Ziteng Li
- Shandong University of Traditional Chinese Medicine, Shandong Province, China
| | - Yuanzhen Chen
- Shandong First Medical University (Shandong Academy of Medical Sciences), Shandong Province, China
| | - Gongchang Yu
- Shandong First Medical University (Shandong Academy of Medical Sciences), Shandong Province, China
| | - Bin Shi
- Shandong First Medical University (Shandong Academy of Medical Sciences), Shandong Province, China
| |
Collapse
|
24
|
Yan M, Zhang Y, Niu W, Liu K, Xue L, Zhou K. Reactive oxygen species-mediated endoplasmic reticulum stress contributes to osteocyte death induced by orthodontic compressive force. Microsc Res Tech 2023; 86:1529-1541. [PMID: 37382312 DOI: 10.1002/jemt.24382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
During orthodontic tooth movement (OTM), osteocytes, the most mechanosensitive cells in alveolar bone, suffer the heavy orthodontic force and initiate alveolar bone resorption on the compression side. However, the inherent mechanisms of compressive force-induced osteocyte death are not fully understood. In this study, we established an OTM model on Sprague-Dawley rats by inserting coil springs to investigate osteocyte damage on the compression side of alveolar bone. We then applied compressive force on the MLO-Y4 osteocyte-like cell line in vitro to explore whether the reactive oxygen species (ROS)-mediated endoplasmic reticulum stress (ERS) pathway is involved in compressive force-induced osteocyte death. We found that the orthodontic force caused apparent alveolar bone loss, osteocyte death, and elevated serum sclerostin and receptor activator of NF-κB ligand (RANKL) levels in rats. In vitro, compressive force inhibited cell viability but increased the LDH leakage and loss of mitochondrial membrane potential in MLO-Y4 cells. Simultaneously, it activated protein kinase RNA-like endoplasmic reticulum kinase (PERK), eukaryotic translation initiation factor 2 (eIF2α), and their downstream pro-apoptotic ERS signaling proteins and caused significant osteocyte apoptosis, which can be blocked by ERS inhibitor salubrinal. Moreover, the compressive force elevated intracellular ROS levels, while the ROS scavenger N-acetyl-L-cysteine (NAC) alleviated ERS and apoptosis in loaded osteocytes. These results suggest that the orthodontic compressive force induced osteocyte apoptosis via the ROS-mediated ERS pathway. This study first proposes the ERS pathway as a new potential pathway for regulating the rate of OTM based on osteocyte death. RESEARCH HIGHLIGHTS: The orthodontic force increases osteocyte death in rat alveolar bone. The compressive force causes osteocyte apoptosis by the endoplasmic reticulum stress (ERS) pathway in vitro. The ROS scavenger NAC blocked compressive force-induced ERS and osteocyte apoptosis.
Collapse
Affiliation(s)
- Ming Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Yun Zhang
- College of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Wanting Niu
- Department of STEM, Regis College, Weston, Massachusetts, USA
| | - Kezhou Liu
- School of Automation, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Lingyun Xue
- School of Automation, Hangzhou Dianzi University, Hangzhou, People's Republic of China
| | - Kexin Zhou
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
25
|
Messner M, Jacob R, Hagewood J, Broadfoot J, Chandler K, Medawar N, Prahad S, Naranje S. Bone remodeling and cortical thinning distal to the femoral stem: a retrospective review. Arch Orthop Trauma Surg 2023; 143:6461-6467. [PMID: 37055631 DOI: 10.1007/s00402-023-04860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/25/2023] [Indexed: 04/15/2023]
Abstract
INTRODUCTION There is a paucity of information on the bone remodeling that occurs distal to the femoral stem following total hip arthroplasty as most previous studies have focused on proximal changes. In this study, we report the cortical thinning that occur distal to the femoral stem after primary total hip arthroplasty. METHODS A retrospective review was performed at one institution over a 5-year period. 156 primary total hip arthroplasty procedures were included. The Cortical Thickness Index (CTI) was measured on both operative and non-operative hips at 1 cm, 3 cm and 5 cm below the prosthetic stem tip on anteroposterior radiographic images pre-operatively as well as at 6 months, 12 months and 24 months post-operatively. The difference in average CTI was measured using paired t-tests. RESULTS There were statistically significant decreases in CTI distal to the femoral stem at 12 months and 24 months (-1.3% and -2.8%, respectively). Greater losses were seen in female patients, patients older than 75, and patients with BMI less than 35 at 6 months postoperative. There were no differences in CTI at any time point on the non-operative side. CONCLUSION The current study demonstrates that patients undergo bone loss as measured by CTI distal to the stem in the first 2 years following total hip arthroplasty. Comparison to the contralateral non-operative side confirms that this change is greater than expected for the natural aging process. A greater understanding of these changes will help optimize post-operative management and direct future innovations in implant design.
Collapse
Affiliation(s)
- Mitchell Messner
- Departmentof Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Roshan Jacob
- Departmentof Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob Hagewood
- Departmentof Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jackson Broadfoot
- Departmentof Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kelly Chandler
- Departmentof Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nick Medawar
- Departmentof Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sri Prahad
- Departmentof Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sameer Naranje
- Departmentof Orthopaedic Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
26
|
Egashira K, Ino Y, Nakai Y, Ohira T, Akiyama T, Moriyama K, Yamamoto Y, Kimura M, Ryo A, Saito T, Inaba Y, Hirano H, Kumagai K, Kimura Y. Identification of gravity-responsive proteins in the femur of spaceflight mice using a quantitative proteomic approach. J Proteomics 2023; 288:104976. [PMID: 37482271 DOI: 10.1016/j.jprot.2023.104976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Although the microgravity (μ-g) environment that astronauts encounter during spaceflight can cause severe acute bone loss, the molecular mechanism of this bone loss remains unclear. To investigate the gravity-response proteins involved in bone metabolism, it is important to comprehensively determine which proteins exhibit differential abundance associated with mechanical stimuli. However, comprehensive proteomic analysis using small bone samples is difficult because protein extraction in mineralized bone tissue is inefficient. Here, we established a high-sensitivity analysis system for mouse bone proteins using data-independent acquisition mass spectrometry. This system successfully detected 40 proteins in the femoral diaphysis showing differential abundance between mice raised in a μ-g environment, where the bone mass was reduced by gravity unloading, and mice raised in an artificial 1-gravity environment on the International Space Station. Additionally, 22 proteins, including noncollagenous bone matrix proteins, showed similar abundance between the two groups in the mandible, where bone mass was unaltered due to mastication stimuli, suggesting that these proteins are responsive to mechanical stimuli. One of these proteins, SPARCL1, is suggested to promote osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand. We expect these findings to lead to new insights into the mechanisms of bone metabolism induced by mechanical stimuli. SIGNIFICANCE: We aimed to investigate the gravity-response proteins involved in bone metabolism. To this end, we established a comprehensive analysis system for mouse bone proteins using data-independent acquisition mass spectrometry, which is particularly useful in comprehensively analyzing the bone proteome using small sample volumes. In addition, a comprehensive proteomic analysis of the femoral diaphysis and mandible, which exhibit different degrees of bone loss in mice raised on the International Space Station, identified proteins that respond to mechanical stimuli. SPARCL1, a mechanical stimulus-responsive protein, was consequently suggested to be involved in osteoclast differentiation associated with bone remodeling. Our findings represent an important step toward elucidating the molecular mechanism of bone metabolism induced by mechanical stimuli.
Collapse
Affiliation(s)
- Kenji Egashira
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan; R&D Headquarters, LION Corporation, Tokyo 132-0035, Japan
| | - Yoko Ino
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| | - Yusuke Nakai
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| | - Takashi Ohira
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan; Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Tomoko Akiyama
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| | - Kayano Moriyama
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| | - Yu Yamamoto
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan; R&D Headquarters, LION Corporation, Tokyo 132-0035, Japan
| | - Mitsuo Kimura
- R&D Headquarters, LION Corporation, Tokyo 132-0035, Japan
| | - Akihide Ryo
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| | - Tomoyuki Saito
- Yokohama Brain and Spine Center, Yokohama 235-0012, Japan
| | - Yutaka Inaba
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama 236-0004, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| | - Ken Kumagai
- Department of Orthopaedic Surgery, Yokohama City University, Yokohama 236-0004, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
27
|
He MC, Tian JQ, He XM, Yang P, Lin TY, Zhang QW, He W, Wei QS. Mechanical properties of trabeculae and osteocyte morphology change significantly in different areas of the necrotic femoral head. Front Cell Dev Biol 2023; 11:1250070. [PMID: 37822871 PMCID: PMC10562544 DOI: 10.3389/fcell.2023.1250070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Background: Osteonecrosis of the femoral head is a complex hip ailment. The precise changes in bone tissue during the disease's onset remain unclear. It is vital to assess both the quantity and quality of the trabecular state in a necrotic femoral head. Aim: This study aims to identify and compare the ultrastructural changes in osteocyte morphology and nanomechanical characteristics within various regions of necrotic femoral heads. Methods: Between December 2016 and May 2023, we gathered ten necrotic femoral heads from patients and five femoral heads from cadavers. The samples from the necrotic femoral heads were categorized into three areas: necrotic, sclerotic, and normal. Our assessment methods encompassed hematoxylin and eosin staining, sclerostin (SOST) immunohistochemistry, micro-computed tomography, nanoindentation, and acid-etched scanning electron microscopy. These techniques enabled us to examine the SOST expression, trabecular microstructure, micromechanical properties of trabeculae, and modifications in osteocyte morphology at the ultrastructural level. Results: The protein level of SOST was found to be lower in the sclerotic area. In the necrotic area, decreased values of bone volume fraction, trabecular thickness, and trabecular number and an increased value of trabecular separation were found. Conversely, in the sclerotic area, higher mean values of bone volume fraction, trabecular number, and trabecular thickness and lower trabecular separation indicated significant changes in the structural characteristics of trabeculae. Compared with the healthy area, the elastic modulus and hardness in the sclerotic area were significantly higher than those in the necrotic, normal, and control areas, while those in necrotic areas were significantly lower than those in the healthy area. The number of osteocytes tended to increase in the sclerotic area with more canalicular cells compared to the healthy area and control group. Conclusion: These results imply that the stress distribution within the sclerotic area could potentially lead to enhanced trabecular quality and quantity. This effect is also reflected in the increased count of osteocytes and their canaliculars. It is plausible that the sclerotic trabecular bone plays a pivotal role in the repair of necrotic femoral heads.
Collapse
Affiliation(s)
- Min-Cong He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Qing Tian
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ming He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Yang
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian-Ye Lin
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Wen Zhang
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiu-Shi Wei
- The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
28
|
Abstract
Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Qi-ling Yuan
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Xianjie Wan
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| |
Collapse
|
29
|
Chen X, GUO Y, LU J, QIN L, HU T, ZENG X, WANG X, ZHANG A, ZHUANG Y, ZHONG H, GUO C. Acupotomy ameliorates subchondral bone absorption and mechanical properties in rabbits with knee osteoarthritis by regulating bone morphogenetic protein 2-Smad1 pathway. J TRADIT CHIN MED 2023; 43:734-743. [PMID: 37454258 PMCID: PMC10320461 DOI: 10.19852/j.cnki.jtcm.20230404.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/13/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To investigate the effects of acupotomy on the subchondral bone absorption and mechanical properties in rabbits with knee osteoarthritis (KOA). METHODS The rabbits were divided into blank control, model, acupotomy and electroacupuncture (EA) groups, with 12 rabbits in each. Modified Videman's method was used to prepare KOA model. The acupotomy and EA group were given indicated intervention for 3 weeks. The behavior of rabbits in each group was recorded. Subsequently, cartilage-subchondral bone units were obtained and morphological changes were observed by optical microscope and micro computed tomography. Compression test was used to detect the mechanical properties of subchondral bone, Western blot and real-time polymerase chain reaction (RT-PCR) were applied to detect the expression of bone morphogenetic protein 2-Smad1 (BMP2-Smad1) pathway in subchondral bone. RESULTS Compared with the control group, rabbits in the KOA group showed lameness, knee pain, and cartilage degradation; the subchondral bone showed active resorption, the mechanical properties decreased significantly and the BMP2-Smad1 pathway downregulated significantly. Both acupotomy and EA intervention could increase the thickness of trabecular bone (Tb. Th), the bone volume fraction (BV/TV) and the thickness of subchondral bone plate, reduce the separation of trabecular bone (Tb. Sp), improve the maximum load and elastic modulus of subchondral bone, and effectively delay cartilage degeneration in KOA rabbits. This process may be achieved through upregulation the related proteins of BMP2-Smad1 pathway. The maximum load and elastic modulus of subchondral bone in the acupotomy group were slightly better than those in the EA group. CONCLUSIONS Acupotomy could effectively protect cartilage by inhibiting abnormal bone resorption and improving mechanical properties of subchondral bone thorough the related proteins of BMP2-Smad1 pathway in KOA rabbits.
Collapse
Affiliation(s)
- Xilin Chen
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan GUO
- 2 Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated with Capital Medical University, Beijing 100010, China
| | - Juan LU
- 3 Shenzhen Hospital of Southern Medical University, Shenzhen 518000, China
| | - Luxue QIN
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tingyao HU
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xin ZENG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyue WANG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Anran ZHANG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxin ZHUANG
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Honggang ZHONG
- 4 Institute of Bone Injury, China Academy of Chinese Medical Sciences, Beijing 100010, China
| | - Changqing GUO
- 1 School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
30
|
Peurière L, Mastrandrea C, Vanden-Bossche A, Linossier MT, Thomas M, Normand M, Lafage-Proust MH, Vico L. Hindlimb unloading in C57BL/6J mice induces bone loss at thermoneutrality without change in osteocyte and lacuno-canalicular network. Bone 2023; 169:116640. [PMID: 36526262 DOI: 10.1016/j.bone.2022.116640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Impaired mechanical stimuli during hindlimb unloading (HLU) are believed to exacerbate osteocyte paracrine regulation of osteoclasts. We hypothesized that bone loss and deterioration of the osteocyte lacuno-canalicular network are attenuated in HLU mice housed at thermoneutrality (28 °C) compared with those housed at ambient temperature (22 °C). Following acclimatization, 20-week-old male C57BL/6J mice were submitted to HLU or kept in pair-fed control cages (CONT), for 5 days (5d) or 14d, at 22 °C or 28 °C. In the femur distal metaphysis, thermoneutral CONT mice had higher bone volume (p = 0.0007, BV/TV, in vivo μCT, vs. 14dCONT22) whilst osteoclastic surfaces of CONT and HLU were greater at 22 °C (5dCONT22 + 53 %, 5dHLU22 + 50 %, 14dCONT22 + 186 %, 14dHLU22 + 104 %, vs matching 28 °C group). In the femur diaphysis and at both temperatures, 14dHLU exhibited thinner cortices distally or proximally compared to controls; the mid-diaphysis being thicker at 28 °C than at 22 °C in all groups. Expression of cortical genes for proteolytic enzyme (Mmp13), markers for osteoclastogenic differentiation (MCSF, RANKL), and activity (TRAP, Ctsk) were increased following 22 °C HLU, whereas only Ctsk expression was increased following 28 °C HLU. Expression of cortical genes for apoptosis, senescence, and autophagy were not elevated following HLU at any temperature. Osteocyte density at the posterior mid-diaphysis was similar between groups, as was the proportion of empty lacunae (<0.5 %). However, analysis of the lacuno-canalicular network (LCN, fluorescein staining) revealed unstained areas in the 14dHLU22 group only, suggesting disrupted LCN flow in this group alone. In conclusion, 28 °C housing influences the HLU bone response but does not prevent bone loss. Furthermore, our results do not show osteocyte senescence or death, and at thermoneutrality, HLU-induced bone resorption is not triggered by osteoclastic activators RANKL and MCSF.
Collapse
Affiliation(s)
- Laura Peurière
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France.
| | - Carmelo Mastrandrea
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Arnaud Vanden-Bossche
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Marie-Thérèse Linossier
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Mireille Thomas
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Myriam Normand
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Marie-Hélène Lafage-Proust
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Laurence Vico
- Université Jean Monnet Saint-Étienne, Mines Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| |
Collapse
|
31
|
Buettmann EG, DeNapoli RC, Abraham LB, Denisco JA, Lorenz MR, Friedman MA, Donahue HJ. Reambulation following hindlimb unloading attenuates disuse-induced changes in murine fracture healing. Bone 2023; 172:116748. [PMID: 37001629 DOI: 10.1016/j.bone.2023.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Patients with bone and muscle loss from prolonged disuse have higher risk of falls and subsequent fragility fractures. In addition, fracture patients with continued disuse and/or delayed physical rehabilitation have worse clinical outcomes compared to individuals with immediate weight-bearing activity following diaphyseal fracture. However, the effects of prior disuse followed by physical reambulation on fracture healing cellular processes and adjacent bone and skeletal muscle recovery post-injury remains poorly defined. To bridge this knowledge gap and inform future treatment and rehabilitation strategies for fractures, a preclinical model of fracture healing with a history of prior unloading with and without reambulation was employed. First, skeletally mature male and female C57BL/6J mice (18 weeks) underwent hindlimb unloading by tail suspension (HLU) for 3 weeks to induce significant bone and muscle loss modeling enhanced bone fragility. Next, mice had their right femur fractured by open surgical dissection (stabilized with 24-gauge pin). The, mice were randomly assigned to continued HLU or allowed normal weight-bearing reambulation (HLU + R). Mice given normal cage activity throughout the experiment served as healthy age-matched controls. All mice were sacrificed 4-days (DPF4) or 14-days (DPF14) following fracture to assess healing and uninjured hindlimb musculoskeletal properties (6-10 mice per treatment/biological sex). We found that continued disuse following fracture lead to severely diminished uninjured hindlimb skeletal muscle mass (gastrocnemius and soleus) and femoral bone volume adjacent to the fracture site compared to healthy age-matched controls across mouse sexes. Furthermore, HLU led to significantly decreased periosteal expansion (DPF4) and osteochondral tissue formation by DPF14, and trends in increased osteoclastogenesis (DPF14) and decreased woven bone vascular area (DPF14). In contrast, immediate reambulation for 2 weeks after fracture, even following a period of prolonged disuse, was able to increase hindlimb skeletal tissue mass and increase osteochondral tissue formation, albeit not to healthy control levels, in both mouse sexes. Furthermore, reambulation attenuated osteoclast formation seen in woven bone tissue undergoing disuse. Our results suggest that weight-bearing skeletal loading in both sexes immediately following fracture may improve callus healing and prevent further fall risk by stimulating skeletal muscle anabolism and decreasing callus resorption compared to minimal or delayed rehabilitation regimens.
Collapse
Affiliation(s)
- Evan G Buettmann
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Rachel C DeNapoli
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Lovell B Abraham
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Joe A Denisco
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Madelyn R Lorenz
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Michael A Friedman
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Henry J Donahue
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America.
| |
Collapse
|
32
|
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244:108383. [PMID: 36933702 DOI: 10.1016/j.pharmthera.2023.108383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Denmark, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|
33
|
Bone adaptation and osteoporosis prevention in hibernating mammals. Comp Biochem Physiol A Mol Integr Physiol 2023; 280:111411. [PMID: 36871815 DOI: 10.1016/j.cbpa.2023.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Hibernating bears and rodents have evolved mechanisms to prevent disuse osteoporosis during the prolonged physical inactivity that occurs during hibernation. Serum markers and histological indices of bone remodeling in bears indicate reduced bone turnover during hibernation, which is consistent with organismal energy conservation. Calcium homeostasis is maintained by balanced bone resorption and formation since hibernating bears do not eat, drink, urinate, or defecate. Reduced and balanced bone remodeling protect bear bone structure and strength during hibernation, unlike the disuse osteoporosis that occurs in humans and other animals during prolonged physical inactivity. Conversely, some hibernating rodents show varying degrees of bone loss such as osteocytic osteolysis, trabecular loss, and cortical thinning. However, no negative effects of hibernation on bone strength in rodents have been found. More than 5000 genes in bear bone tissue are differentially expressed during hibernation, highlighting the complexity of hibernation induced changes in bone. A complete picture of the mechanisms that regulate bone metabolism in hibernators still alludes us, but existing data suggest a role for endocrine and paracrine factors such as cocaine- and amphetamine-regulated transcript (CART) and endocannabinoid ligands like 2-arachidonoyl glycerol (2-AG) in decreasing bone remodeling during hibernation. Hibernating bears and rodents evolved the capacity to preserve bone strength during long periods of physical inactivity, which contributes to their survival and propagation by allowing physically activity (foraging, escaping predators, and mating) without risk of bone fracture following hibernation. Understanding the biological mechanisms regulating bone metabolism in hibernators may inform novel treatment strategies for osteoporosis in humans.
Collapse
|
34
|
Bie M, Tang Y, Xia Y, Zhang Q, Tian Y, Cheng C, Li X, Qi X, Kang F. HIF-1α mediates osteoclast-induced disuse osteoporosis via cytoophidia in the femur of mice. Bone 2023; 168:116648. [PMID: 36563716 DOI: 10.1016/j.bone.2022.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Osteoporosis induced by disuse because of bed rest or the aerospace industry has become one of the most common skeletal disorders. However, mechanisms underlying the disuse osteoporosis remain largely unknown. We validated the tail-suspended model in mice and demonstrated that there is bone loss in the trabecular and cortical bones of the femur. Importantly, we showed that genetical deletion of hypoxia-inducible factor-1α (HIF-1α) in osteoclasts ameliorated osteoclastic bone resorption in the trabecular bone whereas pharmacological treatment with HIF-1α inhibitor protected the hindlimb-unloaded mice from disuse-induced osteoporosis in the trabecular and cortical bones. The HIF-1α knockout RAW264.7 cells and RNA-sequencing proved that HIF-1α is vital for osteoclastogenesis and bone resorption because it regulated the level of inosine monophosphate dehydrogenase (IMPDH) and cytidine triphosphate synthetase (CTPS) via cellular myelocytomatosis (c-Myc) oncogene. The IMPDH and CTPS are vital nucleotide metabolic enzymes which have an important functional role in cell metabolism, and they can assemble into intracellular linear or ring-shaped structures to cope with cell stress. Interestingly, both in vitro and in vivo, the IMPDH and CTPS cytoophidia were found in osteoclasts, and the level of HIF-1α correlated with osteoclastogenesis and bone-resorbing activity. Our data revealed that HIF-1α/c-Myc/cytoophidia signalling might be required for osteoclasts to mediate cell metabolism in disuse-induced osteoporosis. Overall, our results revealed a new role of HIF-1α/c-Myc/cytoophidia in supporting osteoclastogenesis and bone resorption and exposed evidence for its role in the pathogenesis of disuse osteoporosis, which might provide promising therapeutic targets.
Collapse
Affiliation(s)
- Miaomiao Bie
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yi Tang
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuxing Xia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Qian Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuanye Tian
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chunan Cheng
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xinzhao Li
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xin Qi
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Feiwu Kang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
35
|
Zhang L, Xu L, Wang Y, Zhang X, Xue T, Sun Q, Tang H, Li M, Cao X, Shi F, Zhang G, Zhang S, Hu Z. Histone methyltransferase Setdb1 mediates osteogenic differentiation by suppressing the expression of miR-212-3p under mechanical unloading. Cell Signal 2023; 102:110554. [PMID: 36476391 DOI: 10.1016/j.cellsig.2022.110554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Emerging evidence indicates that multiple mechanisms are involved in bone loss induced by mechanical unloading. Thus far, few study has established the pathophysiological role of histone modification for osteogenic differentiation under mechanical unloading. Here we demonstrated that the histone H3 lysine 9 (H3K9) methyltransferase Setdb1, which was sensitive to mechanical unloading, was increased during osteogenic differentiation of MC3T3-E1 cells for the first time. Knockdown of Setdb1 significantly blocked osteoblast function in vivo and in vitro. Through bioinformatics analysis of candidate miRNAs regulated by H3K9me3, we further identified that Setdb1 inhibited the expression of miR-212-3p by regulating the formation of H3K9me3 in the promoter region. Mechanically, we revealed that miR-212-3p was upregulated under mechanical unloading and suppressed osteogenic differentiation by directly downregulating High mobility group box 1 protein (Hmgb1) expression. Furthermore, we verified the molecular mechanism of the SETDB1/miR-212-3p/HMGB1 pathway in hFOB cells under mechanical unloading. In summary, these data demonstrate the essential function of the Setdb1/miR-212-3p/Hmgb1 pathway in osteogenic differentiation under mechanical unloading, and present a potential protective strategies against bone loss induced by mechanical unloading.
Collapse
Affiliation(s)
- Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Liqun Xu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China; Department of Gastroenterology, the 940th Hospital of Joint Logistics Support Force of Chinese PLA, 730050, Lanzhou, China
| | - Xiaoyan Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Tong Xue
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Quan Sun
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Hao Tang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Meng Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China; The Medical College of Yan'an University, 716000 Yan'an, Shaanxi, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China.
| | - Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, 710032 Xi'an, Shaanxi, China.
| |
Collapse
|
36
|
Cunningham HC, Orr S, Murugesh DK, Hsia AW, Osipov B, Go L, Wu PH, Wong A, Loots GG, Kazakia GJ, Christiansen BA. Differential bone adaptation to mechanical unloading and reloading in young, old, and osteocyte deficient mice. Bone 2023; 167:116646. [PMID: 36529445 PMCID: PMC10077944 DOI: 10.1016/j.bone.2022.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Mechanical unloading causes rapid loss of bone structure and strength, which gradually recovers after resuming normal loading. However, it is not well established how this adaptation to unloading and reloading changes with age. Clinically, elderly patients are more prone to musculoskeletal injury and longer periods of bedrest, therefore it is important to understand how periods of disuse will affect overall skeletal health of aged subjects. Bone also undergoes an age-related decrease in osteocyte density, which may impair mechanoresponsiveness. In this study, we examined bone adaptation during unloading and subsequent reloading in mice. Specifically, we examined the differences in bone adaptation between young mice (3-month-old), old mice (18-month-old), and transgenic mice that exhibit diminished osteocyte density at a young age (3-month-old BCL-2 transgenic mice). Mice underwent 14 days of hindlimb unloading followed by up to 14 days of reloading. We analyzed trabecular and cortical bone structure in the femur, mechanical properties of the femoral cortical diaphysis, osteocyte density and cell death in cortical bone, and serum levels of inflammatory cytokines. We found that young mice lost ~10% cortical bone volume and 27-42% trabecular bone volume during unloading and early reloading, with modest recovery of metaphyseal trabecular bone and near total recovery of epiphyseal trabecular bone, but no recovery of cortical bone after 14 days of reloading. Old mice lost 12-14% cortical bone volume and 35-50% trabecular bone volume during unloading and early reloading but had diminished recovery of trabecular bone during reloading and no recovery of cortical bone. In BCL-2 transgenic mice, no cortical bone loss was observed during unloading or reloading, but 28-31% trabecular bone loss occurred during unloading and early reloading, with little to no recovery during reloading. No significant differences in circulating inflammatory cytokine levels were observed due to unloading and reloading in any of the experimental groups. These results illustrate important differences in bone adaptation in older and osteocyte deficient mice, suggesting a possible period of vulnerability in skeletal health in older subjects during and following a period of disuse that may affect skeletal health in elderly patients.
Collapse
Affiliation(s)
- Hailey C Cunningham
- University of California Davis Health, Department of Orthopaedic Surgery, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, United States of America
| | - Sophie Orr
- University of California Davis Health, Department of Orthopaedic Surgery, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, United States of America
| | - Deepa K Murugesh
- Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, United States of America
| | - Allison W Hsia
- University of California Davis Health, Department of Orthopaedic Surgery, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, United States of America
| | - Benjamin Osipov
- University of California Davis Health, Department of Orthopaedic Surgery, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, United States of America
| | - Lauren Go
- University of California San Francisco, Department of Radiology & Biomedical Imaging, 185 Berry Street, Bldg B, San Francisco, CA 94158, United States of America
| | - Po Hung Wu
- University of California San Francisco, Department of Radiology & Biomedical Imaging, 185 Berry Street, Bldg B, San Francisco, CA 94158, United States of America
| | - Alice Wong
- University of California Davis, School of Veterinary Medicine, 1285 Veterinary Medicine Dr, Bldg VM3A, Rm 4206, Davis, CA 95616, United States of America
| | - Gabriela G Loots
- University of California Davis Health, Department of Orthopaedic Surgery, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, United States of America; Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, United States of America
| | - Galateia J Kazakia
- University of California San Francisco, Department of Radiology & Biomedical Imaging, 185 Berry Street, Bldg B, San Francisco, CA 94158, United States of America
| | - Blaine A Christiansen
- University of California Davis Health, Department of Orthopaedic Surgery, 2700 Stockton Blvd, Suite 2301, Sacramento, CA 95817, United States of America.
| |
Collapse
|
37
|
Li Z, Li D, Chen R, Gao S, Xu Z, Li N. Cell death regulation: A new way for natural products to treat osteoporosis. Pharmacol Res 2023; 187:106635. [PMID: 36581167 DOI: 10.1016/j.phrs.2022.106635] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Osteoporosis is a common metabolic bone disease that results from the imbalance of homeostasis within the bone. Intra-bone homeostasis is dependent on a precise dynamic balance between bone resorption by osteoclasts and bone formation by mesenchymal lineage osteoblasts, which comprises a series of complex and highly standardized steps. Programmed cell death (PCD) (e.g., apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis) is a cell death process that involves a cascade of gene expression events with tight structures. These events play a certain role in regulating bone metabolism by determining the fate of bone cells. Moreover, existing research has suggested that natural products derived from a wide variety of dietary components and medicinal plants modulate the PCDs based on different mechanisms, which show great potential for the prevention and treatment of osteoporosis, thus revealing the emergence of more acceptable complementary and alternative drugs with lower costs, fewer side effects and more long-term application. Accordingly, this review summarizes the common types of PCDs in the field of osteoporosis. Moreover, from the perspective of targeting PCDs, this review also discussed the roles of currently reported natural products in the treatment of osteoporosis and the involved mechanisms. Based on this, this review provides more insights into new molecular mechanisms of osteoporosis and provides a reference for developing more natural anti-osteoporosis drugs in the future.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Renchang Chen
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Shang Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
38
|
Wang JS, Wein MN. Pathways Controlling Formation and Maintenance of the Osteocyte Dendrite Network. Curr Osteoporos Rep 2022; 20:493-504. [PMID: 36087214 PMCID: PMC9718876 DOI: 10.1007/s11914-022-00753-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the molecular mechanisms involved in osteocyte dendrite formation, summarize the similarities between osteocytic and neuronal projections, and highlight the importance of osteocyte dendrite maintenance in human skeletal disease. RECENT FINDINGS It is suggested that there is a causal relationship between the loss of osteocyte dendrites and the increased osteocyte apoptosis during conditions including aging, microdamage, and skeletal disease. A few mechanisms are proposed to control dendrite formation and outgrowth, such as via the regulation of actin polymerization dynamics. This review addresses the impact of osteocyte dendrites in bone health and disease. Recent advances in multi-omics, in vivo and in vitro models, and microscopy-based imaging have provided novel approaches to reveal the underlying mechanisms that regulate dendrite development. Future therapeutic approaches are needed to target the process of osteocyte dendrite formation.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
39
|
Daphnetin Alleviates Senile and Disuse Osteoporosis by Distinct Modulations of Bone Formation and Resorption. Antioxidants (Basel) 2022; 11:antiox11122365. [PMID: 36552574 PMCID: PMC9774389 DOI: 10.3390/antiox11122365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Senile and disuse osteoporosis have distinct bone turnover status and lack effective treatments. In this study, senescence-accelerated mouse prone 8 (SAMP8) and hindlimb unloading mouse models were used to explore the protective effects of daphnetin on these two types of osteoporosis, and primary osteoblasts and bone marrow monocyte-derived osteoclasts, as well as pre-osteoblast MC3T3-E1, and osteoclast precursor RAW264.7 cells were used to investigate the underlying mechanisms. The results showed that daphnetin administration effectively improved bone remodeling in both senile and disuse osteoporosis, but with different mechanisms. In senile osteoporosis with low bone turnover, daphnetin inhibited NOX2-mediated ROS production in osteoblasts, resulting in accelerated osteogenic differentiation and bone formation, while in disuse osteoporosis with high bone turnover, daphnetin restored SIRT3 expression, maintained mitochondrial homeostasis, and additionally upregulated SOD2 to eliminate ROS in osteoclasts, resulting in attenuation of osteoclast differentiation and bone resorption. These findings illuminated that daphnetin has promising potential for the prevention and treatment of senile and disuse osteoporosis. The different mechanisms may provide clues and basis for targeted prevention and treatment of osteoporosis according to distinct bone turnover status.
Collapse
|
40
|
Wadiura LI, Butylina M, Reinprecht A, Aretin MB, Mischkulnig M, Gleiss A, Pietschmann P, Kerschan-Schindl K. Denosumab for Prevention of Acute Onset Immobilization-Induced Alterations of Bone Turnover: A Randomized Controlled Trial. J Bone Miner Res 2022; 37:2156-2164. [PMID: 36056473 PMCID: PMC10086960 DOI: 10.1002/jbmr.4694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/08/2022]
Abstract
Metabolic bone disease is a devastating condition in critically ill patients admitted to an intensive care unit (ICU). We investigated the effects of early administration of the antiresorptive drug denosumab on bone metabolism in previously healthy patients. Fourteen patients with severe intracerebral or subarachnoid hemorrhage were included in a phase 2 trial. Within 72 hours after ICU admission, they were randomized in a 1:1 ratio to receive denosumab 60 mg or placebo subcutaneously. The primary endpoint was group differences in the percentage change of C-terminal telopeptide of type 1 collagen (CTX-1) levels in serum from denosumab/placebo application to 4 weeks thereafter. Changes in serum levels of bone formation markers and urinary calcium excretion were secondary outcome parameters. Regarding serum levels of CTX-1, changes over time averaged -0.45 ng/mL (95% confidence interval [CI] -0.72, -0.18) for the denosumab group and 0.29 ng/mL (95% CI -0.01, 0.58) for the placebo group. The primary endpoint, the group difference in changes between baseline and secondary measurement, adjusted for baseline serum levels and baseline neurological status, averaged -0.74 ng/mL (95% CI -1.14, -0.34; p = 0.002). The group difference in changes between baseline and secondary osteocalcin measurement averaged -5.60 ng/mL (95% CI -11.2, -0.04; p = 0.049). The group difference in averaged change between baseline and secondary measurement of 24-hour urine calcium excretion was significant (-1.77 mmol/L [95% CI -3.48, -0.06; p = 0.044]). No adverse events could be attributed to the study medication. The investigation proved that a single application of denosumab early after admission to an ICU prevents acute immobilization-associated increase in bone resorption among previously healthy individuals. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lisa Irina Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Maria Butylina
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Andrea Reinprecht
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | | | - Mario Mischkulnig
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Center of Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Katharina Kerschan-Schindl
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Methyltransferase Setdb1 Promotes Osteoblast Proliferation by Epigenetically Silencing Macrod2 with the Assistance of Atf7ip. Cells 2022; 11:cells11162580. [PMID: 36010655 PMCID: PMC9406310 DOI: 10.3390/cells11162580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Bone loss caused by mechanical unloading is a threat to prolonged space flight and human health. Epigenetic modifications play a crucial role in varied biological processes, but the mechanism of histone modification on unloading-induced bone loss has rarely been studied. Here, we discovered for the first time that the methyltransferase Setdb1 was downregulated under the mechanical unloading both in vitro and in vivo so as to attenuate osteoblast proliferation. Furthermore, we found these interesting processes depended on the repression of Macrod2 expression triggered by Setdb1 catalyzing the formation of H3K9me3 in the promoter region. Mechanically, we revealed that Macrod2 was upregulated under mechanical unloading and suppressed osteoblast proliferation through the GSK-3β/β-catenin signaling pathway. Moreover, Atf7ip cooperatively contributed to osteoblast proliferation by changing the localization of Setdb1 under mechanical loading. In summary, this research elucidated the role of the Atf7ip/Setdb1/Macrod2 axis in osteoblast proliferation under mechanical unloading for the first time, which can be a potential protective strategy against unloading-induced bone loss.
Collapse
|
42
|
Baran R, Wehland M, Schulz H, Heer M, Infanger M, Grimm D. Microgravity-Related Changes in Bone Density and Treatment Options: A Systematic Review. Int J Mol Sci 2022; 23:ijms23158650. [PMID: 35955775 PMCID: PMC9369243 DOI: 10.3390/ijms23158650] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
Space travelers are exposed to microgravity (µg), which induces enhanced bone loss compared to the age-related bone loss on Earth. Microgravity promotes an increased bone turnover, and this obstructs space exploration. This bone loss can be slowed down by exercise on treadmills or resistive apparatus. The objective of this systematic review is to provide a current overview of the state of the art of the field of bone loss in space and possible treatment options thereof. A total of 482 unique studies were searched through PubMed and Scopus, and 37 studies met the eligibility criteria. The studies showed that, despite increased bone formation during µg, the increase in bone resorption was greater. Different types of exercise and pharmacological treatments with bisphosphonates, RANKL antibody (receptor activator of nuclear factor κβ ligand antibody), proteasome inhibitor, pan-caspase inhibitor, and interleukin-6 monoclonal antibody decrease bone resorption and promote bone formation. Additionally, recombinant irisin, cell-free fat extract, cyclic mechanical stretch-treated bone mesenchymal stem cell-derived exosomes, and strontium-containing hydroxyapatite nanoparticles also show some positive effects on bone loss.
Collapse
Affiliation(s)
- Ronni Baran
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark;
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Herbert Schulz
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Martina Heer
- IU International University of Applied Sciences, 99084 Erfurt, Germany;
- Institute of Nutrition and Food Sciences, Nutritional Physiology, University of Bonn, 53115 Bonn, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000 Aarhus, Denmark;
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; (M.W.); (H.S.); (M.I.)
- Research Group ‘Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt- und Schwerelosigkeitsbedingungen’ (MARS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
43
|
Buettmann EG, Goldscheitter GM, Hoppock GA, Friedman MA, Suva LJ, Donahue HJ. Similarities Between Disuse and Age-Induced Bone Loss. J Bone Miner Res 2022; 37:1417-1434. [PMID: 35773785 PMCID: PMC9378610 DOI: 10.1002/jbmr.4643] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/07/2022]
Abstract
Disuse and aging are known risk factors associated with low bone mass and quality deterioration, resulting in increased fracture risk. Indeed, current and emerging evidence implicate a large number of shared skeletal manifestations between disuse and aging scenarios. This review provides a detailed overview of current preclinical models of musculoskeletal disuse and the clinical scenarios they seek to recapitulate. We also explore and summarize the major similarities between bone loss after extreme disuse and advanced aging at multiple length scales, including at the organ/tissue, cellular, and molecular level. Specifically, shared structural and material alterations of bone loss are presented between disuse and aging, including preferential loss of bone at cancellous sites, cortical thinning, and loss of bone strength due to enhanced fragility. At the cellular level bone loss is accompanied, during disuse and aging, by increased bone resorption, decreased formation, and enhanced adipogenesis due to altered gap junction intercellular communication, WNT/β-catenin and RANKL/OPG signaling. Major differences between extreme short-term disuse and aging are discussed, including anatomical specificity, differences in bone turnover rates, periosteal modeling, and the influence of subject sex and genetic variability. The examination also identifies potential shared mechanisms underlying bone loss in aging and disuse that warrant further study such as collagen cross-linking, advanced glycation end products/receptor for advanced glycation end products (AGE-RAGE) signaling, reactive oxygen species (ROS) and nuclear factor κB (NF-κB) signaling, cellular senescence, and altered lacunar-canalicular connectivity (mechanosensation). Understanding the shared structural alterations, changes in bone cell function, and molecular mechanisms common to both extreme disuse and aging are paramount to discovering therapies to combat both age-related and disuse-induced osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Galen M Goldscheitter
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
44
|
Swain P, Mortreux M, Laws JM, Kyriacou H, De Martino E, Winnard A, Caplan N. Bone deconditioning during partial weight-bearing in rodents - A systematic review and meta-analysis. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:87-103. [PMID: 35940692 DOI: 10.1016/j.lssr.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Space agencies are preparing to send humans to the Moon (16% Earth's gravity) and Mars (38% Earth's gravity), however, there is limited evidence regarding the effects of hypogravity on the skeletal system. A novel rodent partial weight-bearing (PWB) model may provide insight into how human bone responds to hypogravity. The aim of this study was to perform a systematic review investigating the effect of PWB on the structure and function of rodent bone. Five online databases were searched with the following inclusion criteria: population (rodents), intervention (PWB for ≥1-week), control (full weight-bearing), outcomes (bone structure/function), and study design (animal intervention). Of the 2,993 studies identified, eight were included. The main findings were that partial weight-bearing exposure for 21-28 days at 20%, 40%, and 70% of full loading causes: (1) loss of bone mineral density, (2) loss of trabecular bone volume, thickness, number, and increased separation, (3) loss of cortical area and thickness, and 4) reduced bone stiffness and strength. These findings predominately relate the tibia/femur of young/mature female mice, however, their deconditioning response appeared similar, but not identical, to male rats. A dose-response trend was frequently observed between the magnitude of deconditioning and PWB level. The deconditioning patterns in PWB resembled those in rodents and humans exposed to microgravity and microgravity analogs. The present findings suggest that countermeasures against bone deconditioning may be required for humans exploring the Lunar and Martian surfaces.
Collapse
Affiliation(s)
- Patrick Swain
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom.
| | - Marie Mortreux
- Harvard Medical School, Department of Neurology, Beth Israel Deaconess Medical Center Boston, MA, United States
| | - Jonathan M Laws
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Harry Kyriacou
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
45
|
Zhao D, Hua R, Riquelme MA, Cheng H, Guda T, Xu H, Gu S, Jiang JX. Osteocytes regulate bone anabolic response to mechanical loading in male mice via activation of integrin α5. Bone Res 2022; 10:49. [PMID: 35851577 PMCID: PMC9293884 DOI: 10.1038/s41413-022-00222-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Physical mechanical stimulation can maintain and even increase bone mass. Here, we report an important role of osteocytic integrin α5 in regulating the anabolic response of bone to mechanical loading using an Itga5 conditional gene knockout (cKO) mouse model. Integrin α5 gene deletion increased apoptotic osteocytes and reduced cortical anabolic responses to tibial compression including decreased endosteal osteoblasts and bone formation, and increased endosteal osteoclasts and bone resorption, contributing to the decreased bone area fraction and biomechanical properties, leading to an enlarged bone marrow area in cKO mice. Similar disruption of anabolic responses to mechanical loading was also detected in cKO trabecular bone. Moreover, integrin α5 deficiency impeded load-induced Cx43 hemichannel opening, and production and release of PGE2, an anabolic factor, resulting in attenuated effects of the loading on catabolic sclerostin (SOST) reduction and anabolic β-catenin increase. Together, this study shows an indispensable role of integrin α5 in osteocytes in the anabolic action of mechanical loading on skeletal tissue through activation of hemichannels and PGE2-evoked gene expression. Integrin α5 could act as a potential new therapeutic target for bone loss, especially in the elderly population with impeded mechanical sensitivity.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Hongyun Cheng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas, San Antonio, TX, USA
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
46
|
Abstract
Disuse osteoporosis describes a state of bone loss due to local skeletal unloading or systemic immobilization. This review will discuss advances in the field that have shed light on clinical observations, mechanistic insights and options for the treatment of disuse osteoporosis. Clinical settings of disuse osteoporosis include spinal cord injury, other neurological and neuromuscular disorders, immobilization after fractures and bed rest (real or modeled). Furthermore, spaceflight-induced bone loss represents a well-known adaptive process to microgravity. Clinical studies have outlined that immobilization leads to immediate bone loss in both the trabecular and cortical compartments accompanied by relatively increased bone resorption and decreased bone formation. The fact that the low bone formation state has been linked to high levels of the osteocyte-secreted protein sclerostin is one of the many findings that has brought matrix-embedded, mechanosensitive osteocytes into focus in the search for mechanistic principles. Previous basic research has primarily involved rodent models based on tail suspension, spaceflight and other immobilization methods, which have underlined the importance of osteocytes in the pathogenesis of disuse osteoporosis. Furthermore, molecular-based in vitro and in vivo approaches have revealed that osteocytes sense mechanical loading through mechanosensors that translate extracellular mechanical signals to intracellular biochemical signals and regulate gene expression. Osteocytic mechanosensors include the osteocyte cytoskeleton and dendritic processes within the lacuno-canalicular system (LCS), ion channels (e.g., Piezo1), extracellular matrix, primary cilia, focal adhesions (integrin-based) and hemichannels and gap junctions (connexin-based). Overall, disuse represents one of the major factors contributing to immediate bone loss and osteoporosis, and alterations in osteocytic pathways appear crucial to the bone loss associated with unloading.
Collapse
Affiliation(s)
- Tim Rolvien
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany.
| |
Collapse
|
47
|
Yahara Y, Nguyen T, Ishikawa K, Kamei K, Alman BA. The origins and roles of osteoclasts in bone development, homeostasis and repair. Development 2022; 149:275249. [PMID: 35502779 PMCID: PMC9124578 DOI: 10.1242/dev.199908] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying bone development, repair and regeneration are reliant on the interplay and communication between osteoclasts and other surrounding cells. Osteoclasts are multinucleated monocyte lineage cells with resorptive abilities, forming the bone marrow cavity during development. This marrow cavity, essential to hematopoiesis and osteoclast-osteoblast interactions, provides a setting to investigate the origin of osteoclasts and their multi-faceted roles. This Review examines recent developments in the embryonic understanding of osteoclast origin, as well as interactions within the immune environment to regulate normal and pathological bone development, homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Tuyet Nguyen
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
48
|
Murshid SA. Bone permeability and mechanotransduction: Some current insights into the function of the lacunar-canalicular network. Tissue Cell 2022; 75:101730. [PMID: 35032785 DOI: 10.1016/j.tice.2022.101730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Lacunar-canalicular (LC) permeability involves the passage of fluids, nutrients, oxygen, ions, and signalling molecules through bone tissue, facilitating the maintenance of bone vitality and function and responses to various physiological conditions and diseases. LC permeability and fluid flow-shear stress/drag force play important roles in mechanotransduction in bone tissue by inducing mechanical stimuli in osteocytes, modulating cellular functions, and determining bone adaptation. Alterations in LC structure may therefore influence the fluid flow pattern through the LC network, thereby affecting the ability of osteocytes to sense and translate mechanical signals and possibly contributing to bone remodelling. Several bone-health conditions are associated with changes in LC structure and function and may affect mechanotransduction and responses, although the mechanisms underlying these associations are still not fully understood. In this review, recent studies of LC networks, their formation and transfer mechanical stimuli, and changes in structure, functional permeability, and mechanotransduction that result from age, pathology, and mechanical loading are discussed. Additionally, applications of vibration and low-intensity pulsed ultrasound in bone healthcare and regeneration fields are also presented.
Collapse
Affiliation(s)
- Sakhr Ahmed Murshid
- Institute for Globally Distributed Open Research and Education (IGDORE); Ilmajoki Health Public Dental Clinics, Social and Health Care Services in Jalasjärvi, Ilmajoki, Kurikka, Finland.
| |
Collapse
|
49
|
Wu CJ, Liu RX, Huan SW, Tang W, Zeng YK, Zhang JC, Yang J, Li ZY, Zhou Y, Zha ZG, Zhang HT, Liu N. Senescent skeletal cells cross-talk with synovial cells plays a key role in the pathogenesis of osteoarthritis. Arthritis Res Ther 2022; 24:59. [PMID: 35227288 PMCID: PMC8883702 DOI: 10.1186/s13075-022-02747-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) has been recognized as an age-related degenerative disease commonly seen in the elderly that affects the whole “organ” including cartilage, subchondral bone, synovium, and muscles. An increasing number of studies have suggested that the accumulation of senescent cells triggering by various stresses in the local joint contributes to the pathogenesis of age-related diseases including OA. In this review, we mainly focus on the role of the senescent skeletal cells (chondrocytes, osteoblasts, osteoclasts, osteocyte, and muscle cells) in initiating the development and progression of OA alone or through cross-talk with the macrophages/synovial cells. Accordingly, we summarize the current OA-targeted therapies based on the abovementioned theory, e.g., by eliminating senescent skeletal cells and/or inhibiting the senescence-associated secretory phenotype (SASP) that drives senescence. Furthermore, the existing animal models for the study of OA from the perspective of senescence are highlighted to fill the gap between basic research and clinical applications. Overall, in this review, we systematically assess the current understanding of cellular senescence in OA, which in turn might shed light on the stratified OA treatments.
Collapse
Affiliation(s)
- Chong-Jie Wu
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Ri-Xu Liu
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Song-Wei Huan
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Wang Tang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yu-Kai Zeng
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jun-Cheng Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jie Yang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Ying Zhou
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China.,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China. .,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China.
| | - Ning Liu
- Department of Bone and Joint Surgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China. .,Institute of Orthopedic Diseases & The Bone and Joint Disease institute of Guangdong-Hong Kong-Macao Greater Bay Area, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
50
|
Kitaura H, Marahleh A, Ohori F, Noguchi T, Nara Y, Pramusita A, Kinjo R, Ma J, Kanou K, Mizoguchi I. Role of the Interaction of Tumor Necrosis Factor-α and Tumor Necrosis Factor Receptors 1 and 2 in Bone-Related Cells. Int J Mol Sci 2022; 23:ijms23031481. [PMID: 35163403 PMCID: PMC8835906 DOI: 10.3390/ijms23031481] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine expressed by macrophages, monocytes, and T cells, and its expression is triggered by the immune system in response to pathogens and their products, such as endotoxins. TNF-α plays an important role in host defense by inducing inflammatory reactions such as phagocytes and cytocidal systems activation. TNF-α also plays an important role in bone metabolism and is associated with inflammatory bone diseases. TNF-α binds to two cell surface receptors, the 55kDa TNF receptor-1 (TNFR1) and the 75kDa TNF receptor-2 (TNFR2). Bone is in a constant state of turnover; it is continuously degraded and built via the process of bone remodeling, which results from the regulated balance between bone-resorbing osteoclasts, bone-forming osteoblasts, and the mechanosensory cell type osteocytes. Precise interactions between these cells maintain skeletal homeostasis. Studies have shown that TNF-α affects bone-related cells via TNFRs. Signaling through either receptor results in different outcomes in different cell types as well as in the same cell type. This review summarizes and discusses current research on the TNF-α and TNFR interaction and its role in bone-related cells.
Collapse
|