1
|
Liu H, Da W, Mu J, He X, Li Z, Gong T, Wang J, Min L, Lu M, Tu C. Integration of single-cell and bulk analysis reveals TBXAS1 as a key platelet-related gene causing poor prognosis in osteosarcoma. Front Genet 2024; 15:1519529. [PMID: 39720182 PMCID: PMC11667113 DOI: 10.3389/fgene.2024.1519529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
Background Platelets are associated with poor prognosis in most tumors, but their specific pathogenic mechanism in osteosarcoma is not yet clear. The objective of this study is to conduct an in-depth analysis of how genes closely related to platelet function impact the prognosis of osteosarcoma patients. We hope that through this research, we can uncover the potential mechanisms of these genes in the development and progression of osteosarcoma, thereby providing new therapeutic strategies and theoretical foundations for improving the prognosis of osteosarcoma patients. Method We collected the blood routine test data of patients who were initially diagnosed with osteosarcoma at the Department of Bone Tumors, West China Hospital, from January 2012 to January 2022. By applying the LASSO-COX regression analysis, a statistical method, we found that the platelet count is associated with the prognosis of osteosarcoma patients. To further explore this relationship, we obtained single-cell data and bulk RNA data of osteosarcoma patients from the TARGET database and GEO database, respectively. By analyzing these data, we revealed at the transcriptomic level how platelets contribute to the poor prognosis in osteosarcoma patients. Result Platelets are associated with the prognosis of osteosarcoma patients (HR = 3.9, 95% CI = 1.9-8.1, P < 0.001). Through the analysis of transcriptomic data from the TARGET database and GEO database, we found significant heterogeneity in tumor-specific pathways and immune infiltration under different platelet-related gene expression patterns. Among these, TBXAS1 was identified as a key gene that affects the prognosis of osteosarcoma patients. In addition, single-cell data analysis showed that the platelet-related gene TBXAS1 is mainly enriched in macrophages, and markers of macrophages are significantly associated with poor prognosis in osteosarcoma patients. Conclusion TBXAS1 is a key platelet-related gene that leads to poor prognosis in osteosarcoma, and this gene may affect the prognosis of osteosarcoma patients by interacting with macrophages.
Collapse
Affiliation(s)
- Han Liu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Wacili Da
- Department of Orthopedics Surgery, Orthopeadic Research Institute, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Jianhua Mu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanhong He
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuangzhuang Li
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Taojun Gong
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Wang
- Department of Endocrine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Min
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Minxun Lu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chongqi Tu
- Department of Orthopedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Nakayama T, Saito R, Furuya S, Higuchi Y, Matsuoka K, Takahashi K, Maruyama S, Shoda K, Takiguchi K, Shiraishi K, Kawaguchi Y, Amemiya H, Kawaida H, Tsukiji N, Shirai T, Suzuki-Inoue K, Ichikawa D. Molecular mechanisms driving the interactions between platelet and gastric cancer cells during peritoneal dissemination. Oncol Lett 2024; 28:498. [PMID: 39211304 PMCID: PMC11358723 DOI: 10.3892/ol.2024.14631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Platelets (PLTs) facilitate tumor progression and the spread of metastasis. They also interact with cancer cells in various cancer types. Furthermore, PLTs form complexes with gastric cancer (GC) cells via direct contact and promote their malignant behaviors. The objective of the present study was to explore the molecular mechanisms driving these interactions and to evaluate the potential for preventing peritoneal dissemination by inhibiting PLT activation in GC cells. The present study examined the roles of PLT activation pathways in the increased malignancy of GC cells facilitated by PLT-cancer cells. Transforming growth factor-β receptor kinase inhibitor (TRKI), Src family kinase inhibitor (PP2) and Syk inhibitor (R406) were used to identify the molecules influencing these interactions. Their therapeutic effects were verified via cell experiments and validated using a mouse GC peritoneal dissemination model. Notably, only the PLT activation pathway-related inhibitors TRKI and PP2, but not R406, inhibited the PLT-enhanced migration and invasion of GC cells. In vivo analyses revealed that PLT-enhanced peritoneal dissemination was suppressed by PP2. Overall, the present study revealed the important role of the Srk family in the interactions between PLTs and GC cells, suggesting kinase inhibitors as promising therapeutic agents to mitigate the progression of peritoneal metastasis in patients with GC.
Collapse
Affiliation(s)
- Takashi Nakayama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Ryo Saito
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Shinji Furuya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yudai Higuchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Koichi Matsuoka
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kazunori Takahashi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Suguru Maruyama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Katsutoshi Shoda
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Koichi Takiguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kensuke Shiraishi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yoshihiko Kawaguchi
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hidetake Amemiya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hiromichi Kawaida
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Toshiaki Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
3
|
Tatsuno R, Komohara Y, Pan C, Kawasaki T, Enomoto A, Jubashi T, Kono H, Wako M, Ashizawa T, Haro H, Ichikawa J. Surface Markers and Chemokines/Cytokines of Tumor-Associated Macrophages in Osteosarcoma and Other Carcinoma Microenviornments-Contradictions and Comparisons. Cancers (Basel) 2024; 16:2801. [PMID: 39199574 PMCID: PMC11353089 DOI: 10.3390/cancers16162801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. Prognosis is improving with advances in multidisciplinary treatment strategies, but the development of new anticancer agents has not, and improvement in prognosis for patients with pulmonary metastases has stalled. In recent years, the tumor microenvironment (TME) has gained attention as a therapeutic target for cancer. The immune component of OS TME consists mainly of tumor-associated macrophages (TAMs). They exhibit remarkable plasticity, and their phenotype is influenced by the TME. In general, surface markers such as CD68 and CD80 show anti-tumor effects, while CD163 and CD204 show tumor-promoting effects. Surface markers have potential value as diagnostic and prognostic biomarkers. The cytokines and chemokines produced by TAMs promote tumor growth and metastasis. However, the role of TAMs in OS remains unclear to date. In this review, we describe the role of TAMs in OS by focusing on TAM surface markers and the TAM-produced cytokines and chemokines in the TME, and by comparing their behaviors in other carcinomas. We found contrary results from different studies. These findings highlight the urgency for further research in this field to improve the stalled OS prognosis percentages.
Collapse
Affiliation(s)
- Rikito Tatsuno
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Tomonori Kawasaki
- Department of Pathology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan;
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan;
| | - Takahiro Jubashi
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hiroyuki Kono
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Masanori Wako
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Tomoyuki Ashizawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| |
Collapse
|
4
|
Cheng B, Chen QY, Zhang X, He J, Cui Q, Ma C, Jiao J. Improved Biocompatibility and Angiogenesis of the Bone Titanium Scaffold through ERK1/2 Signaling Mediated by an Attached Strontium Element. Biol Trace Elem Res 2024; 202:1559-1567. [PMID: 37491616 DOI: 10.1007/s12011-023-03772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
The promotion of early osseointegration is crucial for the success of biomedical titanium implants. Physical and chemical modifications to the material surface can significantly compensate for the lack of biocompatibility and early osseointegration of the implant. In this study, we implanted strontium onto titanium plates and analyzed the effect of strontium-doped materials on angiogenesis and biocompatibility in the human bone structure. Our findings demonstrated that strontium-loaded titanium sheet materials effectively promote human umbilical vein endothelial cell (HUVEC) biocompatibility and vascular differentiation ability, as evidenced by proliferation-apoptosis assays, RT-qPCR for vascular neogenesis markers, ELISA for vascular endothelial growth factor (VEGF) levels, and nitric oxide (NO) analysis. Mechanism studies based on RNAseq and Western blotting analysis revealed that strontium can promote titanium material biocompatibility with HUVEC cells and vascular neovascularization ability by activating the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Meanwhile, blocking the ERK1/2 signaling pathway could reverse the promotional effect of vascular formation. Overall, we have successfully fabricated a multifunctional biocompatible bone implant with better histocompatibility and angiogenesis compared to uncoated implants.
Collapse
Affiliation(s)
- Bingkun Cheng
- Department of Oral and Maxillofacial Surgery, Handan Central Hospital, Handan, HeBei, China
| | - Qing Yong Chen
- Department of Stomatology, Handan Central Hospital, Handan, HeBei, China
| | - Xueqiang Zhang
- Department of Oral and Maxillofacial Surgery, Handan Central Hospital, Handan, HeBei, China
| | - Jiahuan He
- Department of Stomatology, Handan Central Hospital, Handan, HeBei, China
| | - Qingqing Cui
- Department of Oral and Maxillofacial Surgery, Handan Central Hospital, Handan, HeBei, China
| | - Chao Ma
- Department of Oral and Maxillofacial Surgery, Handan Central Hospital, Handan, HeBei, China
| | - Jianjun Jiao
- Department of Oral and Maxillofacial Surgery, Handan Central Hospital, Handan, HeBei, China.
| |
Collapse
|
5
|
Tatsuno R, Ichikawa J, Komohara Y, Pan C, Kawasaki T, Enomoto A, Aoki K, Hayakawa K, Iwata S, Jubashi T, Haro H. Pivotal role of IL-8 derived from the interaction between osteosarcoma and tumor-associated macrophages in osteosarcoma growth and metastasis via the FAK pathway. Cell Death Dis 2024; 15:108. [PMID: 38302407 PMCID: PMC10834992 DOI: 10.1038/s41419-024-06487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
The prognosis of osteosarcoma (OS) has remained stagnant over the past two decades, requiring the exploration of new therapeutic targets. Cytokines, arising from tumor-associated macrophages (TAMs), a major component of the tumor microenvironment (TME), have garnered attention owing to their impact on tumor growth, invasion, metastasis, and resistance to chemotherapy. Nonetheless, the precise functional role of TAMs in OS progression requires further investigation. In this study, we investigated the interaction between OS and TAMs, as well as the contribution of TAM-produced cytokines to OS advancement. TAMs were observed to be more prevalent in lung metastases compared with that in primary tumors, suggesting their potential support for OS progression. To simulate the TME, OS and TAMs were co-cultured, and the cytokines resulting from this co-culture could stimulate OS proliferation, migration, and invasion. A detailed investigation of cytokines in the co-culture conditioned medium (CM) revealed a substantial increase in IL-8, establishing it as a pivotal cytokine in the process of enhancing OS proliferation, migration, and invasion through the focal adhesion kinase (FAK) pathway. In an in vivo model, co-culture CM promoted OS proliferation and lung metastasis, effects that were mitigated by anti-IL-8 antibodies. Collectively, IL-8, generated within the TME formed by OS and TAMs, accelerates OS proliferation and metastasis via the FAK pathway, thereby positioning IL-8 as a potential novel therapeutic target in OS.
Collapse
Affiliation(s)
- Rikito Tatsuno
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi, Japan
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi, Japan.
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomonori Kawasaki
- Department of Pathology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kaoru Aoki
- Physical Therapy Division, School of Health Sciences, Shinshu University, Nagano, Japan
| | - Keiko Hayakawa
- Department of Orthopaedic Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology and Rehabilitation, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Jubashi
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi, Japan
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
6
|
Todosenko N, Khlusov I, Yurova K, Khaziakhmatova O, Litvinova L. Signal Pathways and microRNAs in Osteosarcoma Growth and the Dual Role of Mesenchymal Stem Cells in Oncogenesis. Int J Mol Sci 2023; 24:ijms24108993. [PMID: 37240338 DOI: 10.3390/ijms24108993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The major challenges in Osteosarcoma (OS) therapy are its heterogeneity and drug resistance. The development of new therapeutic approaches to overcome the major growth mechanisms of OS is urgently needed. The search for specific molecular targets and promising innovative approaches in OS therapy, including drug delivery methods, is an urgent problem. Modern regenerative medicine focuses on harnessing the potential of mesenchymal stem cells (MSCs) because they have low immunogenicity. MSCs are important cells that have received considerable attention in cancer research. Currently, new cell-based methods for using MSCs in medicine are being actively investigated and tested, especially as carriers for chemotherapeutics, nanoparticles, and photosensitizers. However, despite the inexhaustible regenerative potential and known anticancer properties of MSCs, they may trigger the development and progression of bone tumors. A better understanding of the complex cellular and molecular mechanisms of OS pathogenesis is essential to identify novel molecular effectors involved in oncogenesis. The current review focuses on signaling pathways and miRNAs involved in the development of OS and describes the role of MSCs in oncogenesis and their potential for antitumor cell-based therapy.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, 2, Moskovskii Trakt, 634050 Tomsk, Russia
| |
Collapse
|
7
|
Deng D, Li X, Qi T, Dai Y, Liu N, Li H. A novel platelet risk score for stratifing the tumor immunophenotypes, treatment responses and prognosis in bladder carcinoma: results from real-world cohorts. Front Pharmacol 2023; 14:1187700. [PMID: 37214475 PMCID: PMC10192868 DOI: 10.3389/fphar.2023.1187700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Although the durable efficacy of immune checkpoint inhibitors (ICIs) in BLCA has been confirmed in numerous studies, not all patients benefit from their application in the clinic. Platelets are increasingly being found to be closely associated with cancer progression and metastasis; however, their comprehensive role in BLCA remains unclear. Methods: We comprehensively explored platelet expression patterns in BLCA patients using an integrated set of 244 related genes. Correlations between these platelet patterns with tumor microenvironment (TME) subtypes, immune characteristics and immunotherapy efficacies were explored. In addition, a platelet risk score (PRS) was generated for individual prognosis and verified the ability to predict prognosis, precise TME phenotypes, and immunotherapy efficacies. Results: Genes were clustered into two patterns that represented different TME phenotypes and had the ability to predict immunotherapy efficacy. We constructed a PRS that could predict individual prognosis with satisfactory accuracy using TCGA-BLCA. The results remained consistent when PRS was validated in the GSE32894 and Xiangya cohort. Moreover, we found that our PRS was positively related to tumor-infiltrating lymphocytes (TILs) in the TCGA-BLCA and Xiangya cohort. As expected, patients with higher PRS exhibited more sensitive to immunotherapy than patients with lower PRS. Finally, we discovered that a high PRS indicated a basal subtype of BLCA, whereas a low PRS indicated a luminal subtype. Conclusion: Platelet-related genes could predict TME phenotypes in BLCA. We constructed a PRS that could predict the TME, prognosis, immunotherapy efficacy, and molecular subtypes in BLCA.
Collapse
Affiliation(s)
- Dingshan Deng
- Department of Urology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaowen Li
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Tiezheng Qi
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuanqing Dai
- Department of Urology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Neng Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huihuang Li
- Department of Urology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Cai Z, Li Z, Wei Q, Yang F, Li T, Ke C, He Y, Wang J, Ni B, Lin M, Li L. MiR-24-3p regulates the differentiation of adipose-derived stem cells toward pericytes and promotes fat grafting vascularization. FASEB J 2023; 37:e22935. [PMID: 37086094 DOI: 10.1096/fj.202202037rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Adipose-derived stem cells (ADSCs) enhance fat graft survival by promoting neovascularization. The mechanism that promotes ADSCs differentiation toward pericytes was not known. We treated ADSCs with conditional medium (CM) from endothelial cells (ECs) or human recombinant transforming growth factor β (TGF-β) to induce differentiation into pericytes. Pericytes markers, including platelet-derived growth factor receptor β (PDGFRβ), alpha-smooth muscle actin (α-SMA), and desmin, were examined. Pericytes differentiation markers, migration, and their association with ECs were examined in ADSCs transfected with miR-24-3p mimics and inhibitors. Bioinformatics target prediction platforms and luciferase assays were used to investigate whether PDGFRβ was directly targeted by miR-24-3p. In vivo, fat mixed with ADSCs transfected with miR-24-3p mimics or inhibitors was implanted subcutaneously on the lower back region of nude mice. Fat grafts were harvested and analyzed at 2, 4, 6, and 8 weeks. Results showed that endogenous TGF-β derived from CM from EC or human recombinant TGF-β promoted migration, association with ECs, and induced expression of pericyte markers (PDGFRβ, α-SMA, Desmin) in ADSCs. MiR-24-3p directly targeted PDGFRβ in ADSCs by lucifer reporter assays. Inhibition of miR-24-3p promoted pericytes differentiation, migration, and association with ECs in ADSCs. Inhibition of miR-24-3p in ADSCs promoted survival, integrity, adipocyte viability, vascularization, pericytes association with ECs, and reduced fibrosis, whereas overexpression of miR-24-3p in ADSCs yielded the opposite results. Collectively, TGF-β released by ECs induced ADSCs differentiation toward pericytes through miR-24-3p. Downregulation of miR-24-3p in ADSCs induced survival, integrity, adipocyte viability, vascularization, pericytes association with ECs, and reduced fibrosis after fat grafting.
Collapse
Affiliation(s)
- Zhongming Cai
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zihao Li
- Department of First Clinical Medical School, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qing Wei
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Fangfang Yang
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tian Li
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chen Ke
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yucang He
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jingping Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Binting Ni
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ming Lin
- Department of Obstetrics and Gynecology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Liqun Li
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
9
|
Kapteijn MY, Zwaan S, Ter Linden E, Laghmani EH, van den Akker RFP, Rondon AMR, van der Zanden SY, Neefjes J, Versteeg HH, Buijs JT. Temozolomide and Lomustine Induce Tissue Factor Expression and Procoagulant Activity in Glioblastoma Cells In Vitro. Cancers (Basel) 2023; 15:cancers15082347. [PMID: 37190275 DOI: 10.3390/cancers15082347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Glioblastoma (GBM) patients have one of the highest risks of venous thromboembolism (VTE), which is even further increased upon treatment with chemotherapy. Tissue factor (TF) is the initiator of the extrinsic coagulation pathway and expressed by GBM cells. In this study, we aimed to examine the effect of routinely used chemotherapeutic agents Temozolomide (TMZ) and Lomustine (LOM) on TF procoagulant activity and expression in GBM cells in vitro. Three human GBM cell lines (U-251, U-87, U-118) were exposed to 100 µM TMZ or 30 µM LOM for 72 h. TF procoagulant activity was assessed via an FXa generation assay and TF gene and protein expression through qPCR and Western blotting. The externalization of phosphatidylserine (PS) was studied using Annexin V flow cytometry. Treatment with TMZ and LOM resulted in increased procoagulant activity in all cell lines. Furthermore, both agents induced procoagulant activity in the supernatant and tumor-cell-secreted extracellular vesicles. In line, TF gene and protein expression were increased upon TMZ and LOM treatment. Additionally, PS externalization and induction of inflammatory-associated genes were observed. Overall, the chemotherapeutic modalities TMZ and LOM induced procoagulant activity and increased TF gene and protein expression in all GBM cell lines tested, which may contribute to the increased VTE risk observed in GBM patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Maaike Y Kapteijn
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis & Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Shanna Zwaan
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis & Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Esther Ter Linden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - El Houari Laghmani
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis & Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Rob F P van den Akker
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis & Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Araci M R Rondon
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis & Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sabina Y van der Zanden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis & Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis & Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
10
|
Arguinchona LM, Zagona-Prizio C, Joyce ME, Chan ED, Maloney JP. Microvascular significance of TGF-β axis activation in COVID-19. Front Cardiovasc Med 2023; 9:1054690. [PMID: 36684608 PMCID: PMC9852847 DOI: 10.3389/fcvm.2022.1054690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
As 2023 approaches, the COVID-19 pandemic has killed millions. While vaccines have been a crucial intervention, only a few effective medications exist for prevention and treatment of COVID-19 in breakthrough cases or in unvaccinated or immunocompromised patients. SARS-CoV-2 displays early and unusual features of micro-thrombosis and immune dysregulation that target endothelial beds of the lungs, skin, and other organs. Notably, anticoagulation improves outcomes in some COVID-19 patients. The protein transforming growth factor-beta (TGF-β1) has constitutive roles in maintaining a healthy microvasculature through its roles in regulating inflammation, clotting, and wound healing. However, after infection (including viral infection) TGF-β1 activation may augment coagulation, cause immune dysregulation, and direct a path toward tissue fibrosis. Dysregulation of TGF-β signaling in immune cells and its localization in areas of microvascular injury are now well-described in COVID-19, and such events may contribute to the acute respiratory distress syndrome and skin micro-thrombosis outcomes frequently seen in severe COVID-19. The high concentration of TGF-β in platelets and in other cells within microvascular thrombi, its ability to activate the clotting cascade and dysregulate immune pathways, and its pro-fibrotic properties all contribute to a unique milieu in the COVID-19 microvasculature. This unique environment allows for propagation of microvascular clotting and immune dysregulation. In this review we summarize the physiological functions of TGF-β and detail the evidence for its effects on the microvasculature in COVID-19. In addition, we explore the potential role of existing TGF-β inhibitors for the prevention and treatment of COVID-19 associated microvascular thrombosis and immune dysregulation.
Collapse
Affiliation(s)
- Lauren M. Arguinchona
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Caterina Zagona-Prizio
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Megan E. Joyce
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Edward D. Chan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States,National Jewish Health, Denver, CO, United States
| | - James P. Maloney
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,*Correspondence: James P. Maloney,
| |
Collapse
|
11
|
Zeng J, Peng Y, Wang D, Ayesha K, Chen S. The interaction between osteosarcoma and other cells in the bone microenvironment: From mechanism to clinical applications. Front Cell Dev Biol 2023; 11:1123065. [PMID: 37206921 PMCID: PMC10189553 DOI: 10.3389/fcell.2023.1123065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Osteosarcoma is a primary bone tumor with a high mortality rate. The event-free survival rate has not improved significantly in the past 30 years, which brings a heavy burden to patients and society. The high heterogeneity of osteosarcoma leads to the lack of specific targets and poor therapeutic effect. Tumor microenvironment is the focus of current research, and osteosarcoma is closely related to bone microenvironment. Many soluble factors and extracellular matrix secreted by many cells in the bone microenvironment have been shown to affect the occurrence, proliferation, invasion and metastasis of osteosarcoma through a variety of signaling pathways. Therefore, targeting other cells in the bone microenvironment may improve the prognosis of osteosarcoma. The mechanism by which osteosarcoma interacts with other cells in the bone microenvironment has been extensively investigated, but currently developed drugs targeting the bone microenvironment have poor efficacy. Therefore, we review the regulatory effects of major cells and physical and chemical properties in the bone microenvironment on osteosarcoma, focusing on their complex interactions, potential therapeutic strategies and clinical applications, to deepen our understanding of osteosarcoma and the bone microenvironment and provide reference for future treatment. Targeting other cells in the bone microenvironment may provide potential targets for the development of clinical drugs for osteosarcoma and may improve the prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Jin Zeng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yi Peng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Khan Ayesha
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Shijie Chen,
| |
Collapse
|
12
|
Todosenko N, Yurova K, Khaziakhmatova O, Malashchenko V, Khlusov I, Litvinova L. Heparin and Heparin-Based Drug Delivery Systems: Pleiotropic Molecular Effects at Multiple Drug Resistance of Osteosarcoma and Immune Cells. Pharmaceutics 2022; 14:pharmaceutics14102181. [PMID: 36297616 PMCID: PMC9612132 DOI: 10.3390/pharmaceutics14102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
One of the main problems of modern health care is the growing number of oncological diseases both in the elderly and young population. Inadequately effective chemotherapy, which remains the main method of cancer control, is largely associated with the emergence of multidrug resistance in tumor cells. The search for new solutions to overcome the resistance of malignant cells to pharmacological agents is being actively pursued. Another serious problem is immunosuppression caused both by the tumor cells themselves and by antitumor drugs. Of great interest in this context is heparin, a biomolecule belonging to the class of glycosaminoglycans and possessing a broad spectrum of biological activity, including immunomodulatory and antitumor properties. In the context of the rapid development of the new field of “osteoimmunology,” which focuses on the collaboration of bone and immune cells, heparin and delivery systems based on it may be of intriguing importance for the oncotherapy of malignant bone tumors. Osteosarcoma is a rare but highly aggressive, chemoresistant malignant tumor that affects young adults and is characterized by constant recurrence and metastasis. This review describes the direct and immune-mediated regulatory effects of heparin and drug delivery systems based on it on the molecular mechanisms of (multiple) drug resistance in (onco) pathological conditions of bone tissue, especially osteosarcoma.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Vladimir Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
| | - Igor Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236001 Kaliningrad, Russia
- Correspondence:
| |
Collapse
|
13
|
Shu Y, Peng J, Feng Z, Hu K, Li T, Zhu P, Cheng T, Hao L. Osteosarcoma subtypes based on platelet-related genes and tumor microenvironment characteristics. Front Oncol 2022; 12:941724. [PMID: 36212395 PMCID: PMC9539847 DOI: 10.3389/fonc.2022.941724] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Osteosarcoma is a common metastatic tumor in children and adolescents. Because of its easy metastasis, patients often show a poor prognosis. Recently, researchers have found that platelets are closely related to metastasis of a variety of malignant tumors, but the role of platelets related characteristics in osteosarcoma is still unknown. The purpose of this study is to explore the characteristics of platelet-related subtypes and cell infiltration in tumor microenvironment. METHODS We collected osteosarcoma cohorts from TCGA and GEO databases, and explored the molecular subtypes mediated by platelet-related genes and the related TME cell infiltration according to the expression of platelet-related genes in osteosarcoma. In addition, we also explored the differentially expressed genes (DEGs) among different molecular subtypes and established a protein-protein interaction network (PPI). Then we constructed a platelet scoring model by Univariate cox regression and least absolute shrinkage and selection operator (Lasso) cox regression model to quantify the characteristics of platelet in a single tumor. RT-PCR was used to investigate the expression of six candidate genes in osteosarcoma cell lines and normal osteoblast lines. Finally, we also predicted potential drugs with therapeutic effects on platelet-related subtypes. RESULTS We found that platelet-related genes (PRGs) can distinguish osteosarcoma into two different platelet-related subtypes, C1 and C2. And the prognosis of the C2 subtype was significantly worse than that of C1 subtype. The results of ESTIMATE analysis and GO/KEGG enrichment showed that the differences between different subtypes were mainly concentrated in immune response pathways, and the immune response of C2 was inhibited relative to C1. We further studied the relationship between platelet-related subtypes and immune cell infiltration. We found that the distribution of most immune cells in C1 subtype was higher than that in C2 subtype, and there was a correlation between C1 subtype and more immune cells. Finally, we screened the PRGs related to the prognosis of osteosarcoma through Univariate Cox regression, established independent prognostic platelet characteristics consisting of six genes to predict the prognosis of patients with OS, and predicted the drugs that may be used in the treatment of osteosarcoma. RT-PCR was used to verify the expression of candidate genes in osteosarcoma cells. CONCLUSION Platelet scoring model is a significant biomarker, which is of great significance to determine the prognosis, molecular subtypes, characteristics of TME cell infiltration and therapy in patients with OS.
Collapse
Affiliation(s)
- Yuan Shu
- Departments of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jie Peng
- Departments of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zuxi Feng
- Departments of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Kaibo Hu
- Departments of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ting Li
- Departments of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Peijun Zhu
- Departments of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Tao Cheng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People’s Hospital, Shanghai, China
| | - Liang Hao
- Departments of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
You J, Zhang Y, Zhou Y. Strontium Functionalized in Biomaterials for Bone Tissue Engineering: A Prominent Role in Osteoimmunomodulation. Front Bioeng Biotechnol 2022; 10:928799. [PMID: 35875505 PMCID: PMC9298737 DOI: 10.3389/fbioe.2022.928799] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
With the development of bone tissue engineering bio-scaffold materials by adding metallic ions to improve bone healing have been extensively explored in the past decades. Strontium a non-radioactive element, as an essential osteophilic trace element for the human body, has received widespread attention in the medical field due to its superior biological properties of inhibiting bone resorption and promoting osteogenesis. As the concept of osteoimmunology developed, the design of orthopedic biomaterials has gradually shifted from “immune-friendly” to “immunomodulatory” with the aim of promoting bone healing by modulating the immune microenvironment through implanted biomaterials. The process of bone healing can be regarded as an immune-induced procedure in which immune cells can target the effector cells such as macrophages, neutrophils, osteocytes, and osteoprogenitor cells through paracrine mechanisms, affecting pathological alveolar bone resorption and physiological bone regeneration. As a kind of crucial immune cell, macrophages play a critical role in the early period of wound repair and host defense after biomaterial implantation. Despite Sr-doped biomaterials being increasingly investigated, how extracellular Sr2+ guides the organism toward favorable osteogenesis by modulating macrophages in the bone tissue microenvironment has rarely been studied. This review focuses on recent knowledge that the trace element Sr regulates bone regeneration mechanisms through the regulation of macrophage polarization, which is significant for the future development of Sr-doped bone repair materials. We will also summarize the primary mechanism of Sr2+ in bone, including calcium-sensing receptor (CaSR) and osteogenesis-related signaling pathways.
Collapse
Affiliation(s)
- Jiaqian You
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanmin Zhou
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
15
|
Mai S, Inkielewicz-Stepniak I. Pancreatic Cancer and Platelets Crosstalk: A Potential Biomarker and Target. Front Cell Dev Biol 2021; 9:749689. [PMID: 34858977 PMCID: PMC8631477 DOI: 10.3389/fcell.2021.749689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Platelets have been recognized as key players in hemostasis, thrombosis, and cancer. Preclinical and clinical researches evidenced that tumorigenesis and metastasis can be promoted by platelets through a wide variety of crosstalk between cancer cells and platelets. Pancreatic cancer is a devastating disease with high morbidity and mortality worldwide. Although the relationship between pancreatic cancer and platelets in clinical diagnosis is described, the interplay between pancreatic cancer and platelets, the underlying pathological mechanism and pathways remain a matter of intensive study. This review summaries recent researches in connections between platelets and pancreatic cancer. The existing data showed different underlying mechanisms were involved in their complex crosstalk. Typically, pancreatic tumor accelerates platelet aggregation which forms thrombosis. Furthermore, extracellular vesicles released by platelets promote communication in a neoplastic microenvironment and illustrate how these interactions drive disease progression. We also discuss the advantages of novel model organoids in pancreatic cancer research. A more in-depth understanding of tumor and platelets crosstalk which is based on organoids and translational therapies may provide potential diagnostic and therapeutic strategies for pancreatic cancer progression.
Collapse
Affiliation(s)
- Shaoshan Mai
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
16
|
Ehara H, Tatsumi K, Takafuji Y, Kawao N, Ishida M, Okada K, Mackman N, Kaji H. Role of tissue factor in delayed bone repair induced by diabetic state in mice. PLoS One 2021; 16:e0260754. [PMID: 34855855 PMCID: PMC8638858 DOI: 10.1371/journal.pone.0260754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Background Tissue factor (TF) is the primary activator of the extrinsic coagulation protease cascade. Although TF plays roles in various pathological states, such as thrombosis, inflammatory diseases, cancer, and atherosclerosis, its involvement in bone metabolism remains unknown. Materials and methods The present study examined the roles of TF in delayed bone repair induced by a diabetic state in mice using wild-type (WT) and low TF-expressing (LTF) male mice. A diabetic state was induced by intraperitoneal injections of streptozotocin (STZ). Results A prolonged diabetic state significantly reduced total and trabecular bone mineral densities (BMD) as well as cortical bone thickness in WT and LTF mice; these BMD parameters were similar between WT and LTF mice treated with or without STZ. The diabetic state induced in WT mice delayed the repair of the femur following injury. The diabetic state induced in LTF mice was associated with further delays in bone repair. In in vitro experiments, TF significantly decreased receptor activator of nuclear factor-κB ligand-induced osteoclast formation and osteoclastogenic gene expression in RAW264.7 cells. However, it did not affect the gene expression levels of runt-related transcription factor 2 and osterix as well as alkaline phosphatase activity in mouse primary osteoblasts. Conclusion Low TF state was associated with enhanced bone repair delay induced by diabetic state in mice. The TF-induced suppression of bone remodeling may be a contributing factor to the protective effects of TF against delayed bone repair in a diabetic state.
Collapse
Affiliation(s)
- Hiroki Ehara
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Nara, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Nigel Mackman
- Department of Medicine, Division of Hematology, UNC Blood Research Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- * E-mail:
| |
Collapse
|
17
|
Fujimaki T, Ando T, Hata T, Takayama Y, Ohba T, Ichikawa J, Takiyama Y, Tatsuno R, Koyama K, Haro H. Exogenous parathyroid hormone attenuates ovariectomy-induced skeletal muscle weakness in vivo. Bone 2021; 151:116029. [PMID: 34111645 DOI: 10.1016/j.bone.2021.116029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Osteoporosis commonly affects the elderly and is associated with significant morbidity and mortality. Loss of bone mineral density induces muscle atrophy and increases fracture risk. However, muscle lipid content and droplet size are increased by aging and mobility impairments, inversely correlated with muscle function, and a cause of reduced motor function. Teriparatide, the synthetic form of human parathyroid hormone (PTH) 1-34, has been widely used to treat osteoporosis. Although PTH positively affects muscle differentiation in vitro, the precise function and mechanisms of muscle mass and power preservation are still poorly understood, especially in vivo. In this study, we investigated the effect of PTH on skeletal muscle atrophy and dysfunction using an ovariectomized murine model. Eight-week-old female C57BL/6J mice were ovariectomized or sham-operated. Within each surgical group, the mice were divided into PTH injection or control subgroups. Motor function was evaluated based on grip strength, treadmill running, and lactic acid concentration. PTH receptor was expressed in skeletal muscle cells and myoblasts. PTH inhibited ovariectomy-induced bone loss but not uterine atrophy or increased body weight; PTH not only abolished ovariectomy-induced reduction in grip strength and maximum running speed, but also significantly reduced the ovariectomy-induced increase in lactic acid concentration (compared with that observed in the vehicle control). PTH also abrogated the ovariectomy-induced reduction in the oxidative capacity of muscle fibers, their cross-sectional area, and intramyocellular lipid content, and induced cell proliferation, cell migration, and muscle differentiation, while reducing lipid secretion by C2C12 myoblasts via the Wnt/β-catenin pathway. PTH significantly ameliorated muscle weakness and attenuated exercise-induced lactate levels in ovariectomized mice. Our in vitro study demonstrated that PTH/Wnt signaling regulated the proliferation, migration, and differentiation of myoblasts and also reduced lipid secretion in myoblasts. Thus, PTH could regulate several aspects of muscle function and physiology, and may represent a novel therapeutic strategy for patients with osteoporosis.
Collapse
Affiliation(s)
- Taro Fujimaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takashi Ando
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Takanori Hata
- Department of Neurology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihiro Takayama
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tetsuro Ohba
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshihisa Takiyama
- Department of Neurology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Rikito Tatsuno
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Katsuhiro Koyama
- Graduate School Department of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
18
|
Shijie L, Zhen P, Kang Q, Hua G, Qingcheng Y, Dongdong C. Deregulation of CLTC interacts with TFG, facilitating osteosarcoma via the TGF-beta and AKT/mTOR signaling pathways. Clin Transl Med 2021; 11:e377. [PMID: 34185412 PMCID: PMC8214859 DOI: 10.1002/ctm2.377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/05/2023] Open
Abstract
Although the treatment of osteosarcoma has improved, the overall survival rate of this common type of osseous malignancies has not changed for four decades. Thus, new targets for better therapeutic regimens are urgently needed. In this study, we found that high expression of clathrin heavy chain (CLTC) was an independent prognostic factor for tumor-free survival (HzR, 3.049; 95% CI, 1.476-6.301) and overall survival (HzR, 2.469; 95% CI, 1.005-6.067) of patients with osteosarcoma. Down-regulation of CLTC resulted in tumor-suppressive effects in vitro and in vivo. Moreover, we found that CLTC was transcriptionally regulated by a transcription factor-specificity protein 1 (SP1), which binds to the CLTC promoter at the -320 to -314-nt and +167 to +173-nt loci. Mechanistic investigations further revealed that CLTC elicited its pro-tumor effects by directly binding to and stabilizing trafficking from the endoplasmic reticulum to the Golgi regulator (TFG). Importantly, overexpression of TFG rescued both the tumor-suppressive effect and inhibition of the TGF-β and AKT/mTOR pathways caused by CLTC down-regulation, which indicated that the activity of CLTC was TFG-dependent. Immunohistochemistry analysis confirmed that CLTC expression was positively correlated with TFG expression. These findings collectively highlight CLTC as a new prognostic biomarker for patients with osteosarcoma, and the interruption of the SP1/CLTC/TFG axis may serve as a novel therapeutic strategy for osteosarcoma.
Collapse
Affiliation(s)
- Li Shijie
- Department of OrthopedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Pan Zhen
- Department of OrthopedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Qin Kang
- Department of Trauma and Reconstructive SurgeryRWTH Aachen University HospitalAachenGermany
| | - Guo Hua
- Department of OrthopedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yang Qingcheng
- Department of OrthopedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Cheng Dongdong
- Department of OrthopedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| |
Collapse
|
19
|
Birdi HK, Jirovec A, Cortés-Kaplan S, Werier J, Nessim C, Diallo JS, Ardolino M. Immunotherapy for sarcomas: new frontiers and unveiled opportunities. J Immunother Cancer 2021; 9:jitc-2020-001580. [PMID: 33526607 PMCID: PMC7852926 DOI: 10.1136/jitc-2020-001580] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcomas are a rare malignancy of mesenchymal tissues, comprizing a plethora of unique subtypes, with more than 60 types. The sheer heterogeneity of disease phenotype makes this a particularly difficult cancer to treat. Radiotherapy, chemotherapy and surgery have been employed for over three decades and, although effective in early disease (stages I–II), in later stages, where metastatic tumors are present, these treatments are less effective. Given the spectacular results obtained by cancer immunotherapy in a variety of solid cancers and leukemias, there is now a great interest in appliying this new realm of therapy for sarcomas. The widespread use of immunotherapy for sarcoma relies on immuno-profiling of subtypes, immunomonitoring for prognosis, preclinical studies and insight into the safety profile of these novel therapies. Herein, we discuss preclinical and clinical data highlighting how immunotherapy is being used in soft tissue sarcoma and bone sarcomas.
Collapse
Affiliation(s)
- Harsimrat Kaur Birdi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,CI3, University of Ottawa, Ottawa, Ontario, Canada
| | - Anna Jirovec
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,CI3, University of Ottawa, Ottawa, Ontario, Canada
| | - Serena Cortés-Kaplan
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,CI3, University of Ottawa, Ottawa, Ontario, Canada
| | - Joel Werier
- Department of Surgery, University of Ottawa, Ottawa, Ontario, Canada.,Clinical Epidemiology Unit, Ottawa Hospital Reseach Institute, Ottawa, Ontario, Canada
| | - Carolyn Nessim
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Clinical Epidemiology Unit, Ottawa Hospital Reseach Institute, Ottawa, Ontario, Canada
| | - Jean-Simon Diallo
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,CI3, University of Ottawa, Ottawa, Ontario, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,CI3, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Pu F, Li X, Wang S, Huang Y, Wang D. Platelet supernatant with longer storage inhibits tumor cell growth. Transfus Apher Sci 2020; 60:103042. [PMID: 33376060 DOI: 10.1016/j.transci.2020.103042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Platelet transfusion is an essential supportive treatment for cancer patients. Platelets promote metastasis, but their role in tumor growth remains controversial. This study aimed to explore the impact of apheresis platelet supernatants of different storage periods on tumor cell growth, optimize blood transfusion timing, and provide a reference for reducing the risks of platelet transfusion in cancer patients. METHODS Eight human tumor cell lines, including HepG2, HuH7, SMMC-7721, HeLa, HCT116, MCF-7, K562, and Jurkat were cultured. After culturing the platelet supernatant of days 0, 3, 5, and 7 with tumor cells, counting kit 8 (CCK-8), scratch assay, and propidium iodide (PI) were used to evaluate cell proliferation, migration, and cell cycle, respectively. Metabolomics analysis was performed to confirm whether differential metabolites produced during platelet storage are involved in the cancer pathway. RESULTS Platelet supernatants inhibit tumor cell proliferation by blocking the cell cycle at the G0/G1 phase, and their inhibitory effect increases with storage time. However, platelets promote tumor cells to form cytoskeletal connections, thereby promoting migration. Besides, metabonomics analysis of platelet supernatants during different storage periods reveals that upregulated differential metabolites are involved in cancer-related pathways. CONCLUSION The role of platelets in tumor cells is two-sided, that is, they inhibit proliferation while promoting migration. Therefore, additional in-depth studies on the appropriate timing of platelet transfusion are necessary.
Collapse
Affiliation(s)
- Fei Pu
- Department of Blood Transfusion, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China; Department of Blood Transfusion, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaofei Li
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Blood Transfusion, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shufang Wang
- Department of Blood Transfusion, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuanshuai Huang
- Department of Blood Transfusion, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China.
| | - Deqing Wang
- Department of Blood Transfusion, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
21
|
Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. Platelets in aging and cancer-"double-edged sword". Cancer Metastasis Rev 2020; 39:1205-1221. [PMID: 32869161 PMCID: PMC7458881 DOI: 10.1007/s10555-020-09926-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Platelets control hemostasis and play a key role in inflammation and immunity. However, platelet function may change during aging, and a role for these versatile cells in many age-related pathological processes is emerging. In addition to a well-known role in cardiovascular disease, platelet activity is now thought to contribute to cancer cell metastasis and tumor-associated venous thromboembolism (VTE) development. Worldwide, the great majority of all patients with cardiovascular disease and some with cancer receive anti-platelet therapy to reduce the risk of thrombosis. However, not only do thrombotic diseases remain a leading cause of morbidity and mortality, cancer, especially metastasis, is still the second cause of death worldwide. Understanding how platelets change during aging and how they may contribute to aging-related diseases such as cancer may contribute to steps taken along the road towards a "healthy aging" strategy. Here, we review the changes that occur in platelets during aging, and investigate how these versatile blood components contribute to cancer progression.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP, 13083-862, Brazil
| | | | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP, 13083-862, Brazil
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Ando T, Ichikawa J, Fujimaki T, Taniguchi N, Takayama Y, Haro H. Gemcitabine and Rapamycin Exhibit Additive Effect against Osteosarcoma by Targeting Autophagy and Apoptosis. Cancers (Basel) 2020; 12:cancers12113097. [PMID: 33114161 PMCID: PMC7690839 DOI: 10.3390/cancers12113097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
The overall prognosis for sarcoma-based cancer patients has remained largely unchanged over the past 10 years. Because there is no effective anticancer drug for patients with chemoresistant osteosarcoma (OS), novel approaches are needed to improve the prognosis. Here, we investigated whether rapamycin (Rapa) could enhance the anti-tumor effects of gemcitabine (Gem) in OS. Gem dose-dependently killed the OS cells, but exhibited much lower cytotoxicity on osteoblasts. Treatment with a combination Gem and Rapa was much more effective than that of either single agent with respect to reducing cell viability, cell invasion, cell migration, and vascular endothelial growth factor production in vitro. Moreover, the combination of these agents suppressed tumor growth, angiogenesis, and lung metastasis in allograft and xenograft murine models of OS with minimal adverse effects. Overall, the combination therapy prolonged the overall survival of tumor-bearing mice. Mechanistically, Gem induced apoptosis and increased the levels of cleaved caspases, while Rapa induced autophagy and microtubule-associated protein light chain 3 (LC3)-I/LC3-II expression both in vitro and in vivo. Our findings suggest that chemotherapy using Gem combined with Rapa may be a novel and promising therapeutic approach for the treatment of OS.
Collapse
|
23
|
Ichikawa J, Ando T, Kawasaki T, Sasaki T, Shirai T, Tsukiji N, Kimura Y, Aoki K, Hayakawa K, Suzuki-Inoue K, Saitoh M, Haro H. Role of Platelet C-Type Lectin-Like Receptor 2 in Promoting Lung Metastasis in Osteosarcoma. J Bone Miner Res 2020; 35:1738-1750. [PMID: 32479683 DOI: 10.1002/jbmr.4045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/24/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
The overall prognosis of patients with sarcoma-based cancers has changed little in the last 20 years. There is an urgent need to investigate the metastatic potential of these tumors and to develop anti-metastatic drugs. It is becoming increasingly clear that platelets play an important role in the establishment of metastasis of carcinoma cells and could be a useful therapeutic target for patients with carcinoma. However, little is known about the role of platelets in sarcoma progression. Here, we investigated how osteosarcoma progression relates to platelet function to explore the possibility of anti-platelet therapy. We found that, similar to carcinoma cells, podoplanin (also known as Aggrus)-positive osteosarcoma cells induce platelet aggregation and activation. Administration of anti-glycoprotein Ibα (GPIbα, also known as CD42b) antibody reduced the lung metastasis of osteosarcoma. The supernatant from platelets cocultured with osteosarcoma cells contained several growth factors and promoted proliferation, invasiveness, and sphere formation of osteosarcoma cells in vitro. In addition, the development of lung metastasis was highly dependent on direct interaction between osteosarcoma cells and platelets. To explore the therapeutic target, we focused on the interactions between podoplanin on osteosarcoma and C-type lectin-like receptor (CLEC)-2 on platelets. The administration of a depleting antibody against CLEC-2 efficiently suppressed osteosarcoma metastasis into the lung. We also analyzed clinical data from patient samples at primary and metastatic sites. Although GPIbα expression was similar between the two sites, there was a significant increase in podoplanin at the metastatic site compared to that in the primary site, and the level of podoplanin expression in the primary site correlated with patient prognosis. These findings suggest that blockade of interactions between platelets CLEC-2 and osteosarcoma podoplanin represent the most promising therapeutic strategy for preventing the lung metastasis of osteosarcoma. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jiro Ichikawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi, Japan
| | - Takashi Ando
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi, Japan
| | - Tomonori Kawasaki
- Department of Pathology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Tomoyuki Sasaki
- Clinical and Laboratory Medicine, University of Yamanashi, Yamanashi, Japan
| | - Toshiaki Shirai
- Clinical and Laboratory Medicine, University of Yamanashi, Yamanashi, Japan
| | - Nagaharu Tsukiji
- Clinical and Laboratory Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yujiro Kimura
- Biological Chemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kaoru Aoki
- Physical Therapy Division, School of Health Sciences, Shinshu University, Nagano, Japan
| | - Keiko Hayakawa
- Department of Orthopaedic Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Masao Saitoh
- Biological Chemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
24
|
Gu Z, Li Z, Xu R, Zhu X, Hu R, Xue Y, Xu W. miR-16-5p Suppresses Progression and Invasion of Osteosarcoma via Targeting at Smad3. Front Pharmacol 2020; 11:1324. [PMID: 32982740 PMCID: PMC7479212 DOI: 10.3389/fphar.2020.01324] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs are known to regulate carcinogenesis of osteosarcoma. Although, miR-16-5p is known to exert inhibitory effects on several forms of cancers, its effects on the growth and invasion of osteosarcoma have not been studied. Methods We collected human osteosarcoma specimens and adjacent tissues to detect the expression of miR-16-5p by real-time polymerase chain reaction, immunoblotting, and immunohistochemistry. The proliferation, migration, and invasion of MG63 and HOS cells following miR-16-5p overexpression and inhibition were detected with cell counting kit-8, wound healing assay, and Transwell assay, respectively. An expression vector carrying a mutated 3'-untranslated region of mothers against decapentaplegic homolog 3 (Smad3) was constructed. Results The results showed that miR-16-5p expression was downregulated in osteosarcoma tissues and cells as compared with adjacent counterparts, while Smad3 was overexpressed in osteosarcoma cells. The overexpression of miR-16-5p resulted in the inhibition of the proliferation, migration, and invasion of osteosarcoma cells and enhanced the therapeutic effect of cisplatin. These effects were attenuated with miR-16-5p expression inhibition. In cells transfected with miR-16-5p mimic, Smad3 expression decreased, while this effect was absent in the cells carrying mutated Smad3. Conclusions Therefore, miR-16-5p inhibits the growth and invasion of osteosarcoma by targeting Smad3.
Collapse
Affiliation(s)
- Zhijian Gu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhikun Li
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruijun Xu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruixi Hu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yonghua Xue
- Department of Neurosurgery, Putuo District Central Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
25
|
Unruh D, Horbinski C. Beyond thrombosis: the impact of tissue factor signaling in cancer. J Hematol Oncol 2020; 13:93. [PMID: 32665005 PMCID: PMC7362520 DOI: 10.1186/s13045-020-00932-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue factor (TF) is the primary initiator of the coagulation cascade, though its effects extend well beyond hemostasis. When TF binds to Factor VII, the resulting TF:FVIIa complex can proteolytically cleave transmembrane G protein-coupled protease-activated receptors (PARs). In addition to activating PARs, TF:FVIIa complex can also activate receptor tyrosine kinases (RTKs) and integrins. These signaling pathways are utilized by tumors to increase cell proliferation, angiogenesis, metastasis, and cancer stem-like cell maintenance. Herein, we review in detail the regulation of TF expression, mechanisms of TF signaling, their pathological consequences, and how it is being targeted in experimental cancer therapeutics.
Collapse
Affiliation(s)
- Dusten Unruh
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, 303 East Superior St, Chicago, IL, 60611, USA.,Department of Pathology, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
26
|
Heinhuis KM, In ’t Veld SGJG, Dwarshuis G, van den Broek D, Sol N, Best MG, van Coevorden F, Haas RL, Beijnen JH, van Houdt WJ, Würdinger T, Steeghs N. RNA-Sequencing of Tumor-Educated Platelets, a Novel Biomarker for Blood-Based Sarcoma Diagnostics. Cancers (Basel) 2020; 12:cancers12061372. [PMID: 32471035 PMCID: PMC7352477 DOI: 10.3390/cancers12061372] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcoma is a heterogeneous group of rare malignancies arising from mesenchymal tissues. Recurrence rates are high and methods for early detection by blood-based biomarkers do not exist. Hence, development of blood-based liquid biopsies as disease recurrence monitoring biomarkers would be an important step forward. Recently, it has been shown that tumor-educated platelets (TEPs) harbor specific spliced ribonucleic acid(RNA)-profiles. These RNA-repertoires are potentially applicable for cancer diagnostics. We aim to evaluate the potential of TEPs for blood-based diagnostics of sarcoma patients. Fifty-seven sarcoma patients (active disease), 38 former sarcoma patients (cancer free for ≥3 years) and 65 healthy donors were included. RNA was isolated from platelets and sequenced. Quantified read counts were processed with self-learning particle-swarm optimization-enhanced thromboSeq analysis and subjected to analysis of variance (ANOVA) statistics. Highly correlating spliced platelet messenger RNAs (mRNAs) of sarcoma patients were compared to controls (former sarcoma + healthy donors) to identify a quantitative sarcoma-specific signature measure, the TEP-score. ANOVA analysis identified distinctive platelet RNA expression patterns of 2647 genes (false discovery rate <0.05) in sarcoma patients as compared to controls. The self-learning algorithm reached a diagnostic accuracy of 87% (validation set only; n = 53 samples, area under the curve (AUC): 0.93, 95% confidence interval (CI): 0.86–1). Our data indicates that TEP RNA-based liquid biopsies may enable for sarcoma diagnostics.
Collapse
Affiliation(s)
- Kimberley M. Heinhuis
- Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
| | - Sjors G. J. G. In ’t Veld
- Department of Neurosurgery, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands (G.D.); (M.G.B.)
- Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Govert Dwarshuis
- Department of Neurosurgery, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands (G.D.); (M.G.B.)
- Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Daan van den Broek
- Department of Laboratory Medicine, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
| | - Nik Sol
- Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
- Department of Neurology, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Myron G. Best
- Department of Neurosurgery, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands (G.D.); (M.G.B.)
- Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
- Department of Pathology, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Frits van Coevorden
- Department of Surgical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (F.v.C.); (W.J.v.H.)
| | - Rick L. Haas
- Department of Radiotherapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
| | - Jos H. Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Winan J. van Houdt
- Department of Surgical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; (F.v.C.); (W.J.v.H.)
| | - Tom Würdinger
- Department of Neurosurgery, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands (G.D.); (M.G.B.)
- Brain Tumor Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
- Correspondence: (T.W.); (N.S.); Tel.: +31-204447909 (T.W.); +31-205122446 (N.S.)
| | - Neeltje Steeghs
- Department of Medical Oncology and Clinical Pharmacology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
- Correspondence: (T.W.); (N.S.); Tel.: +31-204447909 (T.W.); +31-205122446 (N.S.)
| |
Collapse
|
27
|
Liu Z, Yu Z, Chang H, Wang Y, Xiang H, Zhang X, Yu B. Strontium‑containing α‑calcium sulfate hemihydrate promotes bone repair via the TGF‑β/Smad signaling pathway. Mol Med Rep 2019; 20:3555-3564. [PMID: 31432182 PMCID: PMC6755234 DOI: 10.3892/mmr.2019.10592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/09/2019] [Indexed: 11/16/2022] Open
Abstract
Calcium phosphate-based bone substitutes have been widely used for bone repair, augmentation and reconstruction in bone implant surgery. While some of these substitutes have shown excellent biological efficacy, there remains a need to improve the performance of the current calcium phosphate-based bone substitutes. Strontium ions (Sr) can promote new osteogenesis, inhibit osteoclast formation and increase osteoconductivity. However, the therapeutic effect and mechanism of strontium-containing α-calcium sulfate hemihydrate (Sr-CaS) remains unclear. The present study created bone injuries in rats and treated the injuries with Sr-CaS. Then Cell Counting Kit-8, soft agar colony formation, flow cytometry, Transwell and Alizarin Red staining assays were performed to assess the bone cells for their proliferation, growth, apoptosis, invasion, and osteogenic differentiation abilities. The bone reconstructive states were measured by the microCT method, hematoxylin and eosin staining and Masson staining. Bone-related factors were analyzed by the reverse transcription-quantitative PCR assay; transforming growth factor (TGF)-β, mothers against decapentaplegic homolog (Smad)2/3 and β-catenin expression was measured by western blot analysis and osteocalcin (OCN) expression was assessed by immunohistochemistry. Sr-CaS did not significantly affect the proliferation and apoptosis of bone marrow stem cells (BMSCs), but did accelerate the migration and osteogenic differentiation of BMSCs in vitro. Sr-CaS promoted bone repair and significantly increased the values for bone mineral density, bone volume fraction, and trabecular thickness, but decreased trabecular spacing in vivo in a concentration-dependent manner. In addition, Sr-CaS dramatically upregulated the expression levels of genes associated with osteogenic differentiation (Runt-related transcription factor 2, Osterix, ALP, OCN and bone sialoprotein) both in vitro and in vivo. Sr-CaS also increased Smad2/3, TGF-β and phosphorylated-β-catenin protein expression in vitro and in vivo. These results indicated that materials that contain 5 or 10% Sr can improve bone defects by regulating the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zewei Yu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hong Chang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yu Wang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Haibo Xiang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xianrong Zhang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bin Yu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
28
|
Wang JS, Wang YG, Zhong YS, Li XD, Du SX, Xie P, Zheng GZ, Han JM. Identification of co-expression modules and pathways correlated with osteosarcoma and its metastasis. World J Surg Oncol 2019; 17:46. [PMID: 30849987 PMCID: PMC6408756 DOI: 10.1186/s12957-019-1587-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 02/20/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Osteosarcoma is the most common bone tumor that occurs in children. METHODS To identify co-expression modules and pathways correlated with osteosarcoma and its clinical characteristics, we performed weighted gene co-expression network analysis (WGCNA) on RNA-seq data of osteosarcoma with 52 samples. Then we performed pathway enrichment analysis on genes from significant modules. RESULTS A total of 5471 genes were included in WGCNA, and 16 modules were identified. Module-trait analysis identified that a module involved in microtubule bundle formation, drug metabolism-cytochrome P450, and IL-17 signaling pathway was negatively correlated with osteosarcoma and positively correlated with metastasis; a module involved in DNA replication was positively correlated with osteosarcoma; a module involved in cell junction was positively correlated with metastasis; and a module involved in heparin binding negatively correlated with osteosarcoma. Moreover, expression levels in four of the top ten differentially expressed genes were validated in another independent dataset. CONCLUSIONS Our analysis might provide insight for molecular mechanisms of osteosarcoma.
Collapse
Affiliation(s)
- Jian-sheng Wang
- Department of Orthopedics Ward II, Shenzhen Children’s Hospital, Shenzhen, 518000 China
| | - Yun-guo Wang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211 China
| | - Yong-sheng Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shenzhen, 518000 China
| | - Xue-dong Li
- Department of Orthopedics, The Third Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518000 China
| | - Shi-xin Du
- Department of Orthopedics, The Third Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518000 China
| | - Peng Xie
- Department of Orthopedics, The Third Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518000 China
| | - Gui-zhou Zheng
- Department of Orthopedics, The Third Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518000 China
| | - Jing-ming Han
- Department of Orthopedics Ward II, Shenzhen Children’s Hospital, Shenzhen, 518000 China
| |
Collapse
|