1
|
Hartery SA, Kirby BJ, Walker EC, Kaufmann M, Jones G, St-Arnaud R, Sims NA, Kovacs CS. Loss of maternal calcitriol reversibly alters early offspring growth and skeletal development in mice. J Bone Miner Res 2024; 39:595-610. [PMID: 38477809 PMCID: PMC11206081 DOI: 10.1093/jbmr/zjae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Ablation of Cyp27b1 eliminates calcitriol but does not disturb fetal mineral homeostasis or skeletal development. However, independent of fetal genotypes, maternal loss of Cyp27b1 altered fetal mineral and hormonal levels compared to offspring of WT dams. We hypothesized that these maternal influences would alter postnatal skeletal development. Cyp27b1 null and WT females were mated to bear only Cyp27b1+/- offspring. Forty-eight hours after birth, pups were cross-fostered to dams of the same or opposite genotype that bore them. Maternal and offspring samples were collected on days 21 (weaning) and 42. Offspring measurements included minerals and hormones, BMC by DXA, ash weight and mineral content, gene expression, 3-point bending tests, and microCT. Maternal lactational behavior was evaluated. Milk was analyzed for nutritional content. At day 21, offspring fostered by nulls, independent of birth dam, had ~20% lower weight, BMC, ash weight, and ash calcium than pups fostered by WT dams. Adjustment for body weight accounted for the lower BMC but not the lower ash weight and ash calcium. Hormones and serum/urine minerals did not differ across offspring groups. Offspring fostered by nulls had shorter femurs and lower cortical thickness, mean polar moment of inertia, cortical area, trabecular bone volume, and trabecular number. Dam lactational behaviors and milk nutritional content did not differ between groups. At day 42, body weight, ash weight, lengths, BMC, and tibial bone strength were no longer different between pups fostered by null vs WT dams. In summary, pups fostered by Cyp27b1 nulls, regardless of birth dam, have proportionately smaller skeletons at 21 d, impaired microstructure, but normal mineral homeostasis. The skeletal effects are largely recovered by day 42 (3 wk after weaning). In conclusion, maternal loss of calcitriol impairs early postnatal cortical bone growth and trabecular bone mass, but affected offspring catch up after weaning.
Collapse
Affiliation(s)
- Sarah A Hartery
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3V6, Canada
| | - Beth J Kirby
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3V6, Canada
| | - Emma C Walker
- St. Vincent’s Institute of Medical Research, the University of Melbourne, Melbourne, 3065, Australia
| | - Martin Kaufmann
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
| | - Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
| | - René St-Arnaud
- Shriners Hospitals for Children – Canada and McGill University, Montréal, Quebec, H4A 0A9, Canada
| | - Natalie A Sims
- St. Vincent’s Institute of Medical Research, the University of Melbourne, Melbourne, 3065, Australia
| | - Christopher S Kovacs
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3V6, Canada
| |
Collapse
|
2
|
Bennin D, Hartery SA, Kirby BJ, Maekawa AS, St-Arnaud R, Kovacs CS. Loss of 24-hydroxylated catabolism increases calcitriol and fibroblast growth factor 23 and alters calcium and phosphate metabolism in fetal mice. JBMR Plus 2024; 8:ziae012. [PMID: 38577520 PMCID: PMC10993470 DOI: 10.1093/jbmrpl/ziae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/23/2024] [Accepted: 01/18/2024] [Indexed: 04/06/2024] Open
Abstract
Calcitriol circulates at low levels in normal human and rodent fetuses, in part due to increased 24-hydroxylation of calcitriol and 25-hydroxyvitamin D by 24-hydroxylase (CYP24A1). Inactivating mutations of CYP24A1 cause high postnatal levels of calcitriol and the human condition of infantile hypercalcemia type 1, but whether the fetus is disturbed by the loss of CYP24A1 is unknown. We hypothesized that loss of Cyp24a1 in fetal mice will cause high calcitriol, hypercalcemia, and increased placental calcium transport. The Cyp24a1+/- mice were mated to create pregnancies with wildtype, Cyp24a1+/-, and Cyp24a1 null fetuses. The null fetuses were hypercalcemic, modestly hypophosphatemic (compared to Cyp24a1+/- fetuses only), with 3.5-fold increased calcitriol, 4-fold increased fibroblast growth factor 23 (FGF23), and unchanged parathyroid hormone. The quantitative RT-PCR confirmed the absence of Cyp24a1 and 2-fold increases in S100g, sodium-calcium exchanger type 1, and calcium-sensing receptor in null placentas but not in fetal kidneys; these changes predicted an increase in placental calcium transport. However, placental 45Ca and 32P transport were unchanged in null fetuses. Fetal ash weight and mineral content, placental weight, crown-rump length, and skeletal morphology did not differ among the genotypes. Serum procollagen 1 intact N-terminal propeptide and bone expression of sclerostin and Blgap were reduced while calcitonin receptor was increased in nulls. In conclusion, loss of Cyp24a1 in fetal mice causes hypercalcemia, modest hypophosphatemia, and increased FGF23, but no alteration in skeletal development. Reduced incorporation of calcium into bone may contribute to the hypercalcemia without causing a detectable decrease in the skeletal mineral content. The results predict that human fetuses bearing homozygous or compound heterozygous inactivating mutations of CYP24A1 will also be hypercalcemic in utero but with normal skeletal development.
Collapse
Affiliation(s)
- David Bennin
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, A1B 3V6, Canada
| | - Sarah A Hartery
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, A1B 3V6, Canada
| | - Beth J Kirby
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, A1B 3V6, Canada
| | - Alexandre S Maekawa
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, A1B 3V6, Canada
| | - René St-Arnaud
- Shriners Hospitals for Children–Canada and McGill University, Montréal, Quebec, H4A 0A9, Canada
| | - Christopher S Kovacs
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, A1B 3V6, Canada
| |
Collapse
|
3
|
Jones G, Kaufmann M. Diagnostic Aspects of Vitamin D: Clinical Utility of Vitamin D Metabolite Profiling. JBMR Plus 2021; 5:e10581. [PMID: 34950834 PMCID: PMC8674775 DOI: 10.1002/jbm4.10581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
The assay of vitamin D that began in the 1970s with the quantification of one or two metabolites, 25‐OH‐D or 1,25‐(OH)2D, continues to evolve with the emergence of liquid chromatography tandem mass spectrometry (LC‐MS/MS) as the technique of choice. This highly accurate, specific, and sensitive technique has been adopted by many fields of endocrinology for the measurement of multiple other components of the metabolome, and its advantage is that it not only makes it feasible to assay 25‐OH‐D or 1,25‐(OH)2D but also other circulating vitamin D metabolites in the vitamin D metabolome. In the process, this broadens the spectrum of vitamin D metabolites, which the clinician can use to evaluate the many complex genetic and acquired diseases of calcium and phosphate homeostasis involving vitamin D. Several examples are provided in this review that additional metabolites (eg, 24,25‐(OH)2D3, 25‐OH‐D3‐26,23‐lactone, and 1,24,25‐(OH)3D3) or their ratios with the main forms offer valuable additional diagnostic information. This approach illustrates that biomarkers of disease can also include metabolites devoid of biological activity. Herein, a case is presented that the decision to switch to a LC‐MS/MS technology permits the measurement of a larger number of vitamin D metabolites simultaneously and does not need to lead to a dramatic increase in cost or complexity because the technique uses a highly versatile tandem mass spectrometer with plenty of reserve analytical capacity. Physicians are encouraged to consider adding this rapidly evolving technique aimed at evaluating the wider vitamin D metabolome toward streamlining their approach to calcium‐ and phosphate‐related disease states. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Glenville Jones
- Department of Biomedical and Molecular Sciences Queen's University Kingston Canada
| | - Martin Kaufmann
- Department of Biomedical and Molecular Sciences Queen's University Kingston Canada
| |
Collapse
|
4
|
Kovacs CS, Chaussain C, Osdoby P, Brandi ML, Clarke B, Thakker RV. The role of biomineralization in disorders of skeletal development and tooth formation. Nat Rev Endocrinol 2021; 17:336-349. [PMID: 33948016 DOI: 10.1038/s41574-021-00488-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 02/03/2023]
Abstract
The major mineralized tissues are bone and teeth, which share several mechanisms governing their development and mineralization. This crossover includes the hormones that regulate circulating calcium and phosphate concentrations, and the genes that regulate the differentiation and transdifferentiation of cells. In developing endochondral bone and in developing teeth, parathyroid hormone-related protein (PTHrP) acts in chondrocytes to delay terminal differentiation, thereby increasing the pool of precursor cells. Chondrocytes and (in specific circumstances) pre-odontoblasts can also transdifferentiate into osteoblasts. Moreover, bone and teeth share outcomes when affected by systemic disorders of mineral homeostasis or of the extracellular matrix, and by adverse effects of treatments such as bisphosphonates and fluoride. Unlike bone, teeth have more permanent effects from systemic disorders because they are not remodelled after they are formed. This Review discusses the normal processes of bone and tooth development, followed by disorders that have effects on both bone and teeth, versus disorders that have effects in one without affecting the other. The takeaway message is that bone specialists should know when to screen for dental disorders, just as dental specialists should recognize when a tooth disorder should raise suspicions about a possible underlying bone disorder.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | | - Philip Osdoby
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Maria Luisa Brandi
- Department of Biochemical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Bart Clarke
- Mayo Clinic Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Rochester, MN, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Ryan BA, Kovacs CS. Maternal and fetal vitamin D and their roles in mineral homeostasis and fetal bone development. J Endocrinol Invest 2021; 44:643-659. [PMID: 32772256 DOI: 10.1007/s40618-020-01387-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/02/2020] [Indexed: 01/11/2023]
Abstract
During pregnancy, female physiology adapts to meet the additional mineral demands of the developing fetus. Meanwhile, the fetus actively transports minerals across the placenta and maintains high circulating levels to mineralize the rapidly developing skeleton. Most of this mineral is accreted during the last trimester, including 30 g of calcium, 20 g of phosphate and 0.8 g of magnesium. Given the dependence of calcium homeostasis on vitamin D and calcitriol in the adult and child, it may be expected that vitamin D sufficiency would be even more critical during pregnancy and fetal development. However, the pregnant mother and fetus appear to meet their mineral needs independent of vitamin D. Adaptations in maternal mineral and bone metabolism during pregnancy appear to be invoked independent of maternal vitamin D, while fetal mineral metabolism and skeletal development appear to be protected from vitamin D deficiency and genetic disorders of vitamin D physiology. This review discusses key data from both animal models and human studies to address our current knowledge on the role of vitamin D and calcitriol during pregnancy and fetal development.
Collapse
Affiliation(s)
- B A Ryan
- Faculty of Medicine - Endocrinology, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - C S Kovacs
- Faculty of Medicine - Endocrinology, Health Sciences Centre, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
6
|
Sellars KB, Ryan BA, Hartery SA, Kirby BJ, Kovacs CS. Murine Fetal Serum Phosphorus is Set Independent of FGF23 and PTH, Except in the Presence of Maternal Phosphate Loading. Endocrinology 2021; 162:5956315. [PMID: 33150413 PMCID: PMC7737482 DOI: 10.1210/endocr/bqaa202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 01/03/2023]
Abstract
Fibroblast growth factor 23 (FGF23) appears to play no role until after birth, given unaltered phosphate and bone metabolism in Fgf23- and Klotho-null fetuses. However, in those studies maternal serum phosphorus was normal. We studied whether maternal phosphate loading alters fetal serum phosphorus and invokes a fetal FGF23 or parathyroid hormone (PTH) response. C57BL/6 wild-type (WT) female mice received low (0.3%), normal (0.7%), or high (1.65%) phosphate diets beginning 1 week prior to mating to WT males. Fgf23+/- female mice received the normal or high-phosphate diets 1 week before mating to Fgf23+/- males. One day before expected birth, we harvested maternal and fetal blood, intact fetuses, placentas, and fetal kidneys. Increasing phosphate intake in WT resulted in progressively higher maternal serum phosphorus and FGF23 during pregnancy, while PTH remained undetectable. Fetal serum phosphorus was independent of the maternal phosphorus and PTH remained low, but FGF23 showed a small nonsignificant increase with high maternal serum phosphorus. There were no differences in fetal ash weight and mineral content, or placental gene expression. High phosphate intake in Fgf23+/- mice also increased maternal serum phosphorus and FGF23, but there was no change in PTH. WT fetuses remained unaffected by maternal high-phosphate intake, while Fgf23-null fetuses became hyperphosphatemic but had no change in PTH, skeletal ash weight or mineral content. In conclusion, fetal phosphate metabolism is generally regulated independently of maternal serum phosphorus and fetal FGF23 or PTH. However, maternal phosphate loading reveals that fetal FGF23 can defend against the development of fetal hyperphosphatemia.
Collapse
Affiliation(s)
- K Berit Sellars
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Brittany A Ryan
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Sarah A Hartery
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Beth J Kirby
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Christopher S Kovacs
- Faculty of Medicine – Endocrinology, Memorial University of Newfoundland, St. John’s, NL, Canada
- Correspondence: Dr Christopher Kovacs, Health Sciences Centre, 300 Prince Philip Drive, St. John’s, Newfoundland, A1B 3V6, Canada. E-mail:
| |
Collapse
|
7
|
Ryan BA, Kovacs CS. Calciotropic and phosphotropic hormones in fetal and neonatal bone development. Semin Fetal Neonatal Med 2020; 25:101062. [PMID: 31786156 DOI: 10.1016/j.siny.2019.101062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are remarkable differences in bone and mineral metabolism between the fetus and adult. The fetal mineral supply is from active transport across the placenta. Calcium, phosphorus, and magnesium circulate at higher levels in the fetus compared to the mother. These high concentrations enable the skeleton to accrete required minerals before birth. Known key regulators in the adult include parathyroid hormone (PTH), calcitriol, fibroblast growth factor-23, calcitonin, and the sex steroids. But during fetal life, PTH plays a lesser role while the others appear to be unimportant. Instead, PTH-related protein (PTHrP) plays a critical role. After birth, serum calcium falls and phosphorus rises, which trigger an increase in PTH and a subsequent rise in calcitriol. The intestines become the main source of mineral supply while the kidneys reabsorb filtered minerals. This striking developmental switch is triggered by loss of the placenta, onset of breathing, and the drop in serum calcium.
Collapse
Affiliation(s)
- Brittany A Ryan
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Christopher S Kovacs
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|