1
|
Zhang J, Ding Q, Wang AX, Lin M, Yu N, Moss K, Williamson MA, Miao D, Marchesan JT, Zeng E, Shi W, Sun H, Lei YL, Zhang S. Type I interferon protects against bone loss in periodontitis by mitigating an interleukin (IL)-17-neutrophil axis. Life Sci 2025; 371:123559. [PMID: 40086745 DOI: 10.1016/j.lfs.2025.123559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Type I interferons (IFNs-I), a group of pleiotropic cytokines, critically modulate host response in various inflammatory diseases. However, the role of the IFN-I pathway in periodontitis remains largely unknown. In this report, we describe that the IFN-β levels in the gingival crevicular fluid of human subjects were negatively associated with periodontitis and clinical gingival inflammation. Disruption of IFN-I signaling worsened alveolar bone resorption in a ligature-induced periodontitis murine model. Deficiency of the IFN-I pathway resulted in an exaggerated inflammatory response in myeloid cells and drastically increased the interleukin-17 (IL-17)-mediated neutrophil recruitment in the gingiva. We further identified that the myeloid lineage-specific IFN-I response was essential in safeguarding against periodontal inflammation by suppressing the IL-17-producing γδ T cells in gingiva. IFN-I signaling also directly repressed osteoclastogenesis in monocytes, which are precursor cells for osteoclasts. Therefore, our findings demonstrate that an integral myeloid-specific IFN-I pathway protects against bone loss by keeping the IL-17-neutrophil axis in check and directly inhibiting osteoclast formation in periodontitis.
Collapse
Affiliation(s)
- Jinmei Zhang
- Iowa Institute of Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA; Periodontics Department, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Qiong Ding
- Iowa Institute of Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA; Periodontics Department, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Angela X Wang
- Iowa Institute of Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA; Periodontics Department, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Maoxuan Lin
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ning Yu
- The Forsyth Institute, Cambridge, MA, USA
| | - Kevin Moss
- Department of Biostatistics and Health Data Science, School of Medicine, University of Indiana, Indianapolis, IN, USA
| | - Megumi A Williamson
- Department of Surgical Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, USA
| | - Di Miao
- Iowa Institute of Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA; Periodontics Department, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Julie T Marchesan
- Division of Comprehensive Oral Health, Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erliang Zeng
- Division of Biostatistics and Computational Biology, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Wei Shi
- Division of Biostatistics and Computational Biology, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Hongli Sun
- Iowa Institute of Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA; Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Yu Leo Lei
- Departments of Head and Neck Surgery, Cancer Biology, and Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Shaoping Zhang
- Iowa Institute of Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA, USA; Periodontics Department, University of Iowa College of Dentistry, Iowa City, IA, USA.
| |
Collapse
|
2
|
Wang Y, Zhang R, Wang A, Wang X, Wang X, Zhang J, Liu G, Huang K, Liu B, Hu Y, Pan S, Ruze X, Zhai Q, Xu Y. COPB1 deficiency triggers osteoporosis with elevated iron stores by inducing osteoblast ferroptosis. J Orthop Translat 2025; 51:312-328. [PMID: 40206560 PMCID: PMC11981772 DOI: 10.1016/j.jot.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/25/2024] [Accepted: 01/19/2025] [Indexed: 04/11/2025] Open
Abstract
Background Osteoporosis (OP) is a systemic bone metabolic disease that results from an imbalance between bone formation and bone resorption. The accumulation of iron has been identified as an independent risk factor for osteoporosis. Ferroptosis, a novel form of programmed cell death, is driven by iron-dependent lipid peroxidation. Nevertheless, the precise role of ferroptosis in iron accumulation-induced osteoporosis remains uncertain. Methods We utilized proteomics and ELISA to screen key regulatory molecules related to iron accumulation in osteoporosis populations. HE staining was used to assess osteocyte changes in Hamp knockout (KO) iron accumulation mouse models. Western Blot, qPCR, ALP staining, and Alizarin Red staining were employed to explore the effects of siRNA-mediated gene knockdown on osteogenic differentiation in the MC3T3 cell line. ELISA, micro-CT, von Kossa staining, toluidine blue staining, TRAP staining, and calcein analysis were used to study the bone phenotype of conditional gene knockout mice. RNA-seq, endoplasmic reticulum activity probes, transmission electron microscopy (TEM), Western Blot, co-immunoprecipitation (Co-IP), flow cytometry, and ChIP-seq were employed to investigate the regulatory mechanisms of the target gene in osteogenic differentiation. OVX and Hamp KO mice were used to establish osteoporosis models, and AAV-mediated overexpression was employed to explore the intervention effects of the target gene on osteoporosis. Results The experiments demonstrate that iron accumulation can lead to changes in COPB1 expression levels in bone tissue. Cellular and animal experiments revealed that COPB1 deficiency reduces the osteogenic ability of osteoblasts. Transcriptome analysis and phenotypic experiments revealed that COPB1 deficiency induces ferroptosis and endoplasmic reticulum stress in cells. Further investigation confirmed that COPB1 plays a key role in endoplasmic reticulum stress by inhibits SLC7A11 transcription via ATF6. This reduces cystine uptake, ultimately inducing ferroptosis. Overexpression of COPB1 can restore osteogenic function in both cells and mice. Conclusion This study elucidated the essential role of COPB1 in maintaining bone homeostasis and highlights it as a potential therapeutic target for treating iron accumulation-related osteoporosis. The translational potential of this article Our data elucidate the critical role of COPB1 in maintaining bone homeostasis and demonstrate that COPB1 can directly promote bone formation, making it a potential therapeutic target for the future treatment of osteoporosis.
Collapse
Affiliation(s)
- Yike Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ruizhi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Aifei Wang
- Department of Orthopaedics, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu, China
| | - Xiao Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiongyi Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiajun Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gongwen Liu
- Department of Orthopaedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Kai Huang
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Baoshan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yutong Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Sheng Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xieyidai Ruze
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiaocheng Zhai
- Division of Spine Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Kalinkovich A, Livshits G. The cross-talk between the cGAS-STING signaling pathway and chronic inflammation in the development of musculoskeletal disorders. Ageing Res Rev 2025; 104:102602. [PMID: 39612990 DOI: 10.1016/j.arr.2024.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Musculoskeletal disorders (MSDs) comprise diverse conditions affecting bones, joints, and muscles, leading to pain and loss of function, and are one of the most prevalent and major global health concerns. One of the hallmarks of MSDs is DNA damage. Once accumulated in the cytoplasm, the damaged DNA is sensed by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, which triggers the induction of type I interferons and inflammatory cytokines. Thus, this pathway connects the musculoskeletal and immune systems. Inhibitors of cGAS or STING have shown promising therapeutic effects in the pre-clinical models of several MSDs. Systemic, chronic, low-grade inflammation (SCLGI) underlies the development and maintenance of many MSDs. Failure to resolve SCLGI has been hypothesized to play a critical role in the development of chronic diseases, suggesting that the successful resolution of SCLGI will result in the alleviation of their related symptomatology. The process of inflammation resolution is feasible by specialized pro-resolving mediators (SPMs), which are enzymatically generated from dietary essential polyunsaturated fatty acids (PUFAs). The supplementation of SPMs or their stable, small-molecule mimetics and receptor agonists has revealed beneficial effects in inflammation-related animal models, including arthropathies, osteoporosis, and muscle dystrophy, suggesting a translational potential in MSDs. In this review, we substantiate the hypothesis that the use of cGAS-STING signaling pathway inhibitors together with SCLG-resolving compounds may serve as a promising new therapeutic approach for MSDs.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel; Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
4
|
Huang Y, Zhang M, Zhang J, Liu S, Li D, Qiao Z, Yao H, Shi Q, Zhou X, Ma F. diABZI and poly(I:C) inhibit osteoclastic bone resorption by inducing IRF7 and IFIT3. J Bone Miner Res 2024; 39:1132-1146. [PMID: 38874138 PMCID: PMC11337579 DOI: 10.1093/jbmr/zjae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Type I interferons (IFN-I) are pleiotropic factors endowed with multiple activities that play important roles in innate and adaptive immunity. Although many studies indicate that IFN-I inducers exert favorable effects on broad-spectrum antivirus, immunomodulation, and anti-tumor activities by inducing endogenous IFN-I and IFN-stimulated genes, their function in bone homeostasis still needs further exploration. Here, our study demonstrates 2 distinct IFN-I inducers, diABZI and poly(I:C), as potential therapeutics to alleviate osteolysis and osteoporosis. First, IFN-I inducers suppress the genes that control osteoclast (OC) differentiation and activity in vitro. Moreover, diABZI alleviates bone loss in Ti particle-induced osteolysis and ovariectomized -induced osteoporosis in vivo by inhibiting OC differentiation and function. In addition, the inhibitory effects of IFN-I inducers on OC differentiation are not observed in macrophages derived from Ifnar1-/-mice, which indicate that the suppressive effect of IFN-I inducers on OC is IFNAR-dependent. Mechanistically, RNAi-mediated silencing of IRF7 and IFIT3 in OC precursors impairs the suppressive effect of the IFN-I inducers on OC differentiation. Taken together, these results demonstrate that IFN-I inducers play a protective role in bone turnover by limiting osteoclastogenesis and bone resorption through the induction of OC-specific mediators via the IFN-I signaling pathway.
Collapse
Affiliation(s)
- Yingkang Huang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
| | - Mingchao Zhang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Jun Zhang
- Department of Orthopedics, Zhejiang Provincial People’s Hospital, Hangzhou 310014, Zhejiang, China
| | - Siying Liu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Dapei Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
| | - Zigang Qiao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
| | - Haiping Yao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou Institute of Systems Medicine, Suzhou 215123, Jiangsu, China
| |
Collapse
|
5
|
Alshaweesh J, Dash R, Lee MSJ, Kahyaoglu P, Erci E, Xu M, Matsuo-Dapaah J, Del Rosario Zorrilla C, Aykac K, Ekemen S, Kobiyama K, Ishii KJ, Coban C. MyD88 in osteoclast and osteoblast lineages differentially controls bone remodeling in homeostasis and malaria. Int Immunol 2024; 36:451-464. [PMID: 38642134 PMCID: PMC11319481 DOI: 10.1093/intimm/dxae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Chronic bone loss is an under-recognized complication of malaria, the underlying mechanism of which remains incompletely understood. We have previously shown that persistent accumulation of Plasmodium products in the bone marrow leads to chronic inflammation in osteoblast (OB) and osteoclast (OC) precursors causing bone loss through MyD88, an adaptor molecule for diverse inflammatory signals. However, the specific contribution of MyD88 signaling in OB or OC precursors in malaria-induced bone loss remains elusive. To assess the direct cell-intrinsic role of MyD88 signaling in adult bone metabolism under physiological and infection conditions, we used the Lox-Cre system to specifically deplete MyD88 in the OB or OC lineages. Mice lacking MyD88 primarily in the maturing OBs showed a comparable decrease in trabecular bone density by microcomputed tomography to that of controls after Plasmodium yoelii non-lethal infection. In contrast, mice lacking MyD88 in OC precursors showed significantly less trabecular bone loss than controls, suggesting that malaria-mediated inflammatory mediators are primarily controlled by MyD88 in the OC lineage. Surprisingly, however, depletion of MyD88 in OB, but not in OC, precursors resulted in reduced bone mass with decreased bone formation rates in the trabecular areas of femurs under physiological conditions. Notably, insulin-like growth factor-1, a key molecule for OB differentiation, was significantly lower locally and systemically when MyD88 was depleted in OBs. Thus, our data demonstrate an indispensable intrinsic role for MyD88 signaling in OB differentiation and bone formation, while MyD88 signaling in OC lineages plays a partial role in controlling malaria-induced inflammatory mediators and following bone pathology. These findings may lead to the identification of novel targets for specific intervention of bone pathologies, particularly in malaria-endemic regions.
Collapse
Affiliation(s)
- Jalal Alshaweesh
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
| | - Rashmi Dash
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Science (CBMS), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Michelle S J Lee
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
| | - Pinar Kahyaoglu
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Department of Paediatrics, Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Ece Erci
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Department of Paediatrics, Hacettepe University School of Medicine, Ankara 06100, Turkey
| | - Mengling Xu
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Science (CBMS), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Julia Matsuo-Dapaah
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Camila Del Rosario Zorrilla
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Science (CBMS), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Kubra Aykac
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Department of Paediatrics, Hacettepe University School of Medicine, Ankara 06100, Turkey
- Ministry of Health University, Ankara Education and Research Hospital, Paediatric Infectious Diseases Unit, Ankara 06230, Turkey
| | - Suheyla Ekemen
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
| | - Kouji Kobiyama
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
- Division of Vaccine Science, Department of Microbiology and Immunology, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ken J Ishii
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Division of Vaccine Science, Department of Microbiology and Immunology, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, The Institute of Medical Science (IMSUT), The University of Tokyo, Tokyo 108-8639, Japan
- International Vaccine Design Center, IMSUT, The University of Tokyo, Tokyo 108-8639, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo 108-8639, Japan
- Department of Computational Biology and Medical Science (CBMS), Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
6
|
Han B, Xie Q, Liang W, Yin P, Qu X, Hai Y. PLCG2 and IFNAR1: The Potential Biomarkers Mediated by Immune Infiltration and Osteoclast Differentiation of Ankylosing Spondylitis in the Peripheral Blood. Mediators Inflamm 2024; 2024:3358184. [PMID: 38223749 PMCID: PMC10787051 DOI: 10.1155/2024/3358184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/12/2022] [Accepted: 11/28/2023] [Indexed: 01/16/2024] Open
Abstract
Objectives Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease characterized by chronic spinal inflammation, arthritis, gut inflammation, and enthesitis. We aimed to identify the key biomarkers related to immune infiltration and osteoclast differentiation in the pathological process of AS by bioinformatic methods. Methods GSE25101 from the Gene Expression Omnibus was used to obtain AS-associated microarray datasets. We performed bioinformatics analysis using R software to validate different expression levels. The purpose of the GO and KEGG enrichment analyses of DEGs was to exclude key genes. Using weighted correlation network analysis (WGCNA), we examined all expression profile data and identified differentially expressed genes. The objective was to investigate the interaction between genetic and clinical features and to identify the essential relationships underlying coexpression modules. The CIBERSORT method was used to make a comparison of the immune infiltration in whole blood between the AS group and the control group. The WGCNA R program from Bioconductor was used to identify hub genes. RNA extraction reverse transcription and quantitative polymerase chain reaction were conducted in the peripheral blood collected from six AS patients and six health volunteers matched by age and sex. Results 125 DEGs were identified, consisting of 36 upregulated and 89 downregulated genes that are involved in the cell cycle and replication processes. In the WGCNA, modules of MCODE with different algorithms were used to find 33 key genes that were related to each other in a strong way. Immune infiltration analysis found that naive CD4+ T cells and monocytes may be involved in the process of AS. PLCG2 and IFNAR1 genes were obtained by screening genes meeting the conditions of immune cell infiltration and osteoclast differentiation in AS patients among IGF2R, GRN, SH2D1A, LILRB3, IFNAR1, PLCG2, and TNFRSF1B. The results demonstrated that the levels of PLCG2 mRNA expression in AS were considerably higher than those in healthy individuals (P=0.003). IFNAR1 mRNA expression levels were considerably lower in AS than in healthy individuals (P < 0.0001). Conclusions Dysregulation of PLCG2 and IFNAR1 are key factors in disease occurrence and development of AS through regulating immune infiltration and osteoclast differentiation. Explaining the differences in immune infiltration and osteoclast differentiation between AS and normal samples will contribute to understanding the development of spondyloarthritis.
Collapse
Affiliation(s)
- Bo Han
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chao-Yang District, Beijing 100020, China
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, China
- Department of Orthopaedics, Capital Medical University, Beijing, China
| | - Qiaobo Xie
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Capital Institute of Pediatrics, Beijing 100020, China
| | - Weishi Liang
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chao-Yang District, Beijing 100020, China
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, China
- Department of Orthopaedics, Capital Medical University, Beijing, China
| | - Peng Yin
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chao-Yang District, Beijing 100020, China
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, China
- Department of Orthopaedics, Capital Medical University, Beijing, China
| | - Xianjun Qu
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yong Hai
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, GongTiNanLu 8#, Chao-Yang District, Beijing 100020, China
- Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China
- Clinical Center for Spinal Deformity, Capital Medical University, Beijing, China
- Department of Orthopaedics, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Lei J, Zhang W, Ma L, He Y, Liang H, Zhang X, Li G, Feng X, Tan L, Yang C. Sonodynamic amplification of cGAS-STING activation by cobalt-based nanoagonist against bone and metastatic tumor. Biomaterials 2023; 302:122295. [PMID: 37666101 DOI: 10.1016/j.biomaterials.2023.122295] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The therapeutic effect of cancer immunotherapy is restrained by limited patient response rate caused by 'cold' tumors with an intrinsically immunosuppressive tumor microenvironment (TME). Activating stimulator of interferon genes (STING) confers promising antitumor immunity even in 'cold' tumors, but the further promotion of STING agonists is hindered by undesirable toxicity, low specificity and lack of controllability. Herein, an ultrasound-controllable cGAS-STING amplifying nanoagonist was constructed by coordinating mitochondria-targeting ligand triphenylphosphonium (TPP) to sonodynamic cobalt organic framework nanosheets (TPP@CoTCPP). The Co ions specifically amplify STING activation only when cytosolic mitochondrial DNA leakage is caused by sonocatalysis-induced ROS production and sensed by cGAS. A series of downstream innate immune proinflammatory responses induced by local cGAS-STING pathway activation under spatiotemporal ultrasound stimulation efficiently prime the antitumor T-cell response against bone metastatic tumor, a typical immunosuppressive tumor. We also found that the coordination of TPP augments the sonodynamic effect of CoTCPP nanosheets by reducing the band gap, improving O2 adsorption and enhancing electron transfer. Overall, our study demonstrates that the targeted and amplified cGAS-STING activation in cancer cell controlled by spatiotemporal ultrasound irradiation boosts high-efficiency sonodynamic-ionicimmunotherapy against immunosuppressive tumor.
Collapse
Affiliation(s)
- Jie Lei
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Weifeng Zhang
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Liang Ma
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Yaqi He
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Huaizhen Liang
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Xiaoguang Zhang
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Gaocai Li
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Xiaobo Feng
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| | - Lei Tan
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| | - Cao Yang
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| |
Collapse
|
8
|
Kwon Y, Yang J, Park OJ, Park C, Kim J, Lee D, Yun CH, Han SH. Lipoteichoic acid inhibits osteoclast differentiation and bone resorption via interruption of gelsolin-actin dissociation. J Cell Physiol 2023; 238:2425-2439. [PMID: 37642258 DOI: 10.1002/jcp.31099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Bone resorption can be caused by excessive differentiation and/or activation of bone-resorbing osteoclasts. While microbe-associated molecular patterns can influence the differentiation and activation of bone cells, little is known about the role of lipoteichoic acid (LTA), a major cell wall component of Gram-positive bacteria, in the regulation of bone metabolism. In this study, we investigated the effect of LTA on bone metabolism using wild-type Staphylococcus aureus and the LTA-deficient mutant strain. LTA-deficient S. aureus induced higher bone loss and osteoclast differentiation than wild-type S. aureus. LTA isolated from S. aureus (SaLTA) inhibited osteoclast differentiation from committed osteoclast precursors in the presence of various osteoclastogenic factors by downregulating the expression of NFATc1. Remarkably, SaLTA attenuated the osteoclast differentiation from committed osteoclast precursors of TLR2-/- or MyD88-/- mice and from the committed osteoclast precursors transfected with paired immunoglobulin-like receptor B-targeting siRNA. SaLTA directly interacted with gelsolin, interrupting the gelsolin-actin dissociation which is a critical process for osteoclastogenesis. Moreover, SaLTA suppressed the mRNA expression of dendritic cell-specific transmembrane protein, ATPase H+ transporting V0 subunit D2, and Integrin, which encode proteins involved in cell-cell fusion of osteoclasts. Notably, LTAs purified from probiotics, including Bacillus subtilis, Enterococcus faecalis, and Lactobacillus species, also suppressed Pam2CSK4- or RANKL-induced osteoclast differentiation. Taken together, these results suggest that LTAs have anti-resorptive activity through the inhibition of osteoclastogenesis by interfering with the gelsolin-actin dissociation and may be used as effective therapeutic agents for the prevention or treatment of inflammatory bone diseases.
Collapse
Affiliation(s)
- Yeongkag Kwon
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Radiation Fusion Technology Research Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Jihyun Yang
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Chaeyeon Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jiseon Kim
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Wang Y, Ren L, Xu L, Wang J, Zhai J, Zhu G. Radiation Induces Bone Microenvironment Disruption by Activating the STING-TBK1 Pathway. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1316. [PMID: 37512126 PMCID: PMC10386124 DOI: 10.3390/medicina59071316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Background and Objectives: Damage to normal bone tissue following therapeutic irradiation (IR) represents a significant concern, as IR-induced bone microenvironment disruption can cause bone loss and create a more favorable environment for tumor metastases. The aim of the present study was to explore the cellular regulatory mechanism of IR-induced bone microenvironment disruption to effectively prevent radiotherapy-associated adverse effects in the future. Materials and Methods: In this study, a mouse model of local IR was established via local irradiation of the left hind limb of BALB/c mice with 12 Gy X-rays, and an in vitro osteocyte (OCY) model was established by exposing osteocyte-like MLO-Y4 cells to 2, 4, and 8 Gy irradiation to analyze multicellular biological injuries and cellular senescence. Small interfering RNA (siRNA) transfection at the cellular level and a selective antagonist intervention C-176 at the animal level were used to explore the potential role of the stimulator of interferon genes (STING) on IR-induced bone microenvironment disruption. Results: The results showed that 12 Gy local IR induces multicellular dysfunction, manifested as ascension of OCYs exfoliation, activation of osteoclastogenesis, degeneration of osteogenesis and fate conversion of adipogenesis, as well as cellular senescence and altered senescence-associated secretory phenotype (SASP) secretion. Furthermore, the expression of STING was significantly elevated, both in the primary OCYs harvested from locally irradiated mice and in vitro irradiated MLO-Y4 cells, accompanied by the markedly upregulated levels of phosphorylated TANK-binding kinase 1 (P-TBK1), RANKL and sclerostin (SOST). STING-siRNA transfection in vitro restored IR-induced upregulated protein expression of P-TBK1 and RANKL, as well as the mRNA expression levels of inflammatory cytokines, such as IL-1α, IL-6 and NF-κB, accompanied by the alleviation of excessive osteoclastogenesis. Finally, administration of the STING inhibitor C-176 mitigated IR-induced activation of osteoclastogenesis and restraint of osteogenesis, ameliorating the IR-induced biological damage of OCYs, consistent with the inhibition of P-TBK1, RANKL and SOST. Conclusions: The STING-P-TBK1 signaling pathway plays a crucial role in the regulation of the secretion of inflammatory cytokines and osteoclastogenesis potential in IR-induced bone microenvironment disruption. The selective STING antagonist can be used to intervene to block the STING pathway and, thereby, repair IR-induced multicellular biological damage and mitigate the imbalance between osteoclastogenesis and osteoblastgenesis.
Collapse
Affiliation(s)
- Yuyang Wang
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200051, China
| | - Li Ren
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| | - Linshan Xu
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| | - Jianping Wang
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| | - Jianglong Zhai
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| | - Guoying Zhu
- Institute of Radiation Medicine, Fudan University, 2094 Xietu Road, Shanghai 200032, China
| |
Collapse
|
10
|
Song C, Hu Z, Xu D, Bian H, Lv J, Zhu X, Zhang Q, Su L, Yin H, Lu T, Li Y. STING signaling in inflammaging: a new target against musculoskeletal diseases. Front Immunol 2023; 14:1227364. [PMID: 37492580 PMCID: PMC10363987 DOI: 10.3389/fimmu.2023.1227364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Stimulator of Interferon Gene (STING) is a critical signaling linker protein that plays a crucial role in the intrinsic immune response, particularly in the cytoplasmic DNA-mediated immune response in both pathogens and hosts. It is also involved in various signaling processes in vivo. The musculoskeletal system provides humans with morphology, support, stability, and movement. However, its aging can result in various diseases and negatively impact people's lives. While many studies have reported that cellular aging is a leading cause of musculoskeletal disorders, it also offers insight into potential treatments. Under pathological conditions, senescent osteoblasts, chondrocytes, myeloid cells, and muscle fibers exhibit persistent senescence-associated secretory phenotype (SASP), metabolic disturbances, and cell cycle arrest, which are closely linked to abnormal STING activation. The accumulation of cytoplasmic DNA due to chromatin escape from the nucleus following DNA damage or telomere shortening activates the cGAS-STING signaling pathway. Moreover, STING activation is also linked to mitochondrial dysfunction, epigenetic modifications, and impaired cytoplasmic DNA degradation. STING activation upregulates SASP and autophagy directly and indirectly promotes cell cycle arrest. Thus, STING may be involved in the onset and development of various age-related musculoskeletal disorders and represents a potential therapeutic target. In recent years, many STING modulators have been developed and used in the study of musculoskeletal disorders. Therefore, this paper summarizes the effects of STING signaling on the musculoskeletal system at the molecular level and current understanding of the mechanisms of endogenous active ligand production and accumulation. We also discuss the relationship between some age-related musculoskeletal disorders and STING, as well as the current status of STING modulator development.
Collapse
Affiliation(s)
- Chenyu Song
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhuoyi Hu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Dingjun Xu
- Department of Orthopaedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Zhejiang, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xuanxuan Zhu
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Qiang Zhang
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Heng Yin
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Tong Lu
- Department of Critical Care Medicine, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
11
|
MacLauchlan S, Kushwaha P, Tai A, Chen J, Manning C, Swarnkar G, Abu-Amer Y, Fitzgerald KA, Sharma S, Gravallese EM. STING-dependent interferon signatures restrict osteoclast differentiation and bone loss in mice. Proc Natl Acad Sci U S A 2023; 120:e2210409120. [PMID: 37023130 PMCID: PMC10104545 DOI: 10.1073/pnas.2210409120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/14/2023] [Indexed: 04/07/2023] Open
Abstract
Stimulator of interferon genes (STING) is a key mediator of type-I interferon (IFN-I) signaling in response to a variety of stimuli, but the contribution of STING to homeostatic processes is not fully characterized. Previous studies showed that ligand activation of STING limits osteoclast differentiation in vitro through the induction of IFNβ and IFN-I interferon-stimulated genes (ISGs). In a disease model (SAVI) driven by the V154M gain-of-function mutation in STING, fewer osteoclasts form from SAVI precursors in response to receptor activator of NF-kappaB ligand (RANKL) in an IFN-I-dependent manner. Due to the described role of STING-mediated regulation of osteoclastogenesis in activation settings, we sought to determine whether basal STING signaling contributes to bone homeostasis, an unexplored area. Using whole-body and myeloid-specific deficiency, we show that STING signaling prevents trabecular bone loss in mice over time and that myeloid-restricted STING activity is sufficient for this effect. STING-deficient osteoclast precursors differentiate with greater efficiency than wild types. RNA sequencing of wild-type and STING-deficient osteoclast precursor cells and differentiating osteoclasts reveals unique clusters of ISGs including a previously undescribed ISG set expressed in RANKL naïve precursors (tonic expression) and down-regulated during differentiation. We identify a 50 gene tonic ISG signature that is STING dependent and shapes osteoclast differentiation. From this list, we identify interferon-stimulated gene 15 (ISG15) as a tonic STING-regulated ISG that limits osteoclast formation. Thus, STING is an important upstream regulator of tonic IFN-I signatures shaping the commitment to osteoclast fates, providing evidence for a nuanced and unique role for this pathway in bone homeostasis.
Collapse
Affiliation(s)
- Susan MacLauchlan
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Priyanka Kushwaha
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Albert Tai
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Jia Chen
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Catherine Manning
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Gaurav Swarnkar
- Department of Orthopedics and Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Yousef Abu-Amer
- Department of Orthopedics and Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Katherine A. Fitzgerald
- Department of Medicine, Program in Innate Immunity, University of Massachusetts Chan Medical School, Worcester, MA01655
| | - Shruti Sharma
- Department of Immunology, Tufts University School of Medicine, Boston, MA02111
| | - Ellen M. Gravallese
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| |
Collapse
|
12
|
Yu ZC, Fu R, Li Y, Zhao DY, Jiang H, Han D. The STING inhibitor C-176 attenuates osteoclast-related osteolytic diseases by inhibiting osteoclast differentiation. FASEB J 2023; 37:e22867. [PMID: 36906288 DOI: 10.1096/fj.202201600r] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/11/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
Inflammatory osteolysis occurs primarily in the context of osteoarthritis, aseptic inflammation, prosthesis loosening, and other conditions. An excessive immune inflammatory response causes excessive activation of osteoclasts, leading to bone loss and bone destruction. The signaling protein stimulator of interferon gene (STING) can regulate the immune response of osteoclasts. C-176 is a furan derivative that can inhibit activation of the STING pathway and exert anti-inflammatory effects. The effect of C-176 on osteoclast differentiation is not yet clear. In this study, we found that C-176 could inhibit STING activation in osteoclast precursor cells and inhibit osteoclast activation induced by nuclear factor κB ligand receptor activator in a dose-dependent manner. After treatment with C-176, the expression of the osteoclast differentiation marker genes nuclear factor of activated T-cells c1(NFATc1), cathepsin K, calcitonin receptor, and V-ATPase a3 decreased. In addition, C-176 reduced actin loop formation and bone resorption capacity. The WB results showed that C-176 downregulated the expression of the osteoclast marker protein NFATc1 and inhibited activation of the STING-mediated NF-κB pathway. We also found that C-176 could inhibit the phosphorylation of mitogen-activated protein kinase signaling pathway factors induced by RANKL. Moreover, we verified that C-176 could reduce LPS-induced bone absorption in mice, reduce joint destruction in knee arthritis induced by meniscal instability, and protect against cartilage matrix loss in ankle arthritis induced by collagen immunity. In summary, our findings demonstrated that C-176 could inhibit the formation and activation of osteoclasts and could be used as a potential therapeutic agent for inflammatory osteolytic diseases.
Collapse
Affiliation(s)
- Zhen-Cheng Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Li
- Department of Burns & Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dan-Yang Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Florian DC, Bennett NE, Odziomek M, Baljon JJ, Wehbe M, Merkel AR, Fischer MA, Savona MR, Rhoades JA, Guelcher SA, Wilson JT. Nanoparticle STING Agonist Reprograms the Bone Marrow to an Antitumor Phenotype and Protects Against Bone Destruction. CANCER RESEARCH COMMUNICATIONS 2023; 3:223-234. [PMID: 36968140 PMCID: PMC10035525 DOI: 10.1158/2767-9764.crc-22-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/23/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
When breast cancer metastasizes to bone, treatment options are limited. Failure to treat bone metastases is thought to be due to therapy-resistant features of the bone marrow microenvironment. Using a murine model of bone metastatic mammary carcinoma, we demonstrate that systemic delivery of polymer nanoparticles loaded with cyclic dinucleotide (CDN) agonists of stimulator of interferon genes (STING) inhibited tumor growth and bone destruction after 7 days of treatment. Each dose of STING-activating nanoparticles trafficked to the bone marrow compartment and was retained within the tumor microenvironment for over 24 hours, enhancing antitumor immunity through proinflammatory cytokine production and early T-cell activation. While acquired resistance mechanisms, including increased levels of immunosuppressive cytokines and the infiltration of regulatory T cells, ultimately limited antitumor efficacy after 2 weeks of treatment, bone protective effects remained. Overall, these studies demonstrate that STING pathway activation, here enabled using a nanomedicine approach to enhance CDN delivery to bone metastatic sites, can reprogram the immune contexture of the bone marrow to an antitumor phenotype that inhibits bone colonization of metastatic breast cancer cells and protects from tumor-mediated bone destruction. Significance Bone metastases are difficult to treat due to the inaccessibility of the bone marrow compartment and the immunosuppressive microenvironment that protects resident stem cells. Packaging a STING agonist into a nanoparticle that enables systemic administration and drug accumulation at tumor sites overcomes both barriers to stymie metastatic breast cancer growth.
Collapse
Affiliation(s)
- David C. Florian
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Natalie E. Bennett
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mateusz Odziomek
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jessalyn J. Baljon
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Mohamed Wehbe
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
| | - Alyssa R. Merkel
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
| | - Melissa A. Fischer
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
| | - Michael R. Savona
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
| | - Julie A. Rhoades
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Tennessee
| | - Scott A. Guelcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - John T. Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
14
|
Gao Z, Gao Z, Zhang H, Hou S, Zhou Y, Liu X. Targeting STING: From antiviral immunity to treat osteoporosis. Front Immunol 2023; 13:1095577. [PMID: 36741390 PMCID: PMC9891206 DOI: 10.3389/fimmu.2022.1095577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
The cGAS-STING signaling pathway can trigger innate immune responses by detecting dsDNA from outside or within the host. In addition, the cGAS-STING signaling pathway has emerged as a critical mediator of the inflammatory response and a new target for inflammatory diseases. STING activation leads to dimerization and translocation to the endoplasmic reticulum Golgi intermediate compartment or Golgi apparatus catalyzed by TBK1, triggers the production of IRF3 and NF-κB and translocates to the nucleus to induce a subsequent interferon response and pro-inflammatory factor production. Osteoporosis is a degenerative bone metabolic disease accompanied by chronic sterile inflammation. Activating the STING/IFN-β signaling pathway can reduce bone resorption by inhibiting osteoclast differentiation. Conversely, activation of STING/NF-κB leads to the formation of osteoporosis by increasing bone resorption and decreasing bone formation. In addition, activation of STING inhibits the generation of type H vessels with the capacity to osteogenesis, thereby inhibiting bone formation. Here, we outline the mechanism of action of STING and its downstream in osteoporosis and discuss the role of targeting STING in the treatment of osteoporosis, thus providing new ideas for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongguo Gao
- Department of Medical Laboratory Technology, School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hao Zhang
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shoubo Hou
- Department of General Practice, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Yunhua Zhou, ; Xiangjie Liu,
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Yunhua Zhou, ; Xiangjie Liu,
| |
Collapse
|
15
|
Bjelić D, Finšgar M. Bioactive coatings with anti-osteoclast therapeutic agents for bone implants: Enhanced compliance and prolonged implant life. Pharmacol Res 2022; 176:106060. [PMID: 34998972 DOI: 10.1016/j.phrs.2022.106060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022]
Abstract
The use of therapeutic agents that inhibit bone resorption is crucial to prolong implant life, delay revision surgery, and reduce the burden on the healthcare system. These therapeutic agents include bisphosphonates, various nucleic acids, statins, proteins, and protein complexes. Their use in systemic treatment has several drawbacks, such as side effects and insufficient efficacy in terms of concentration, which can be eliminated by local treatment. This review focuses on the incorporation of osteoclast inhibitors (antiresorptive agents) into bioactive coatings for bone implants. The ability of bioactive coatings as systems for local delivery of antiresorptive agents to achieve optimal loading of the bioactive coating and its release is described in detail. Various parameters such as the suitable concentrations, release times, and the effects of the antiresorptive agents on nearby cells or bone tissue are discussed. However, further research is needed to support the optimization of the implant, as this will enable subsequent personalized design of the coating in terms of the design and selection of the coating material, the choice of an antiresorptive agent and its amount in the coating. In addition, therapeutic agents that have not yet been incorporated into bioactive coatings but appear promising are also mentioned. From this work, it can be concluded that therapeutic agents contribute to the biocompatibility of the bioactive coating by enhancing its beneficial properties.
Collapse
Affiliation(s)
- Dragana Bjelić
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
16
|
Ou L, Zhang A, Cheng Y, Chen Y. The cGAS-STING Pathway: A Promising Immunotherapy Target. Front Immunol 2021; 12:795048. [PMID: 34956229 PMCID: PMC8695770 DOI: 10.3389/fimmu.2021.795048] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
With the continuous development of immunotherapy, researchers have paid more attention to the specific immune regulatory mechanisms of various immune responses in different diseases. As a novel and vital innate immune signal pathway, the cGAS-STING signal pathway activated by nucleic acid substances, interplays with other immune responses, by which it participates in regulating cancer, autoimmune and inflammatory diseases, microbial and parasitic infectious diseases, and other diseases. With the exception of its role in innate immunity, the growing list of researches demonstrated expanding roles of the cGAS-STING signal pathway in bridging the innate immunity (macrophage polarization) with the adaptive immunity (T lymphocytes differentiation). Macrophages and T lymphocytes are the most representative cells of innate immunity and adaptive immunity, respectively. Their polarization or differentiation are involved in the pathogenesis and progression of various diseases. Here we mainly summarized recent advanced discoveries of how the cGAS-STING signal pathway regulated macrophages polarization and T lymphocytes differentiation in various diseases and vaccine applications, providing a promising direction for the development and clinical application of immunotherapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Liang Ou
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Ao Zhang
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Yuxing Cheng
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Chen X, He W, Sun M, Yan Y, Pang Y, Chai G. STING inhibition accelerates the bone healing process while enhancing type H vessel formation. FASEB J 2021; 35:e21964. [PMID: 34694030 DOI: 10.1096/fj.202100069rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
The stimulator of interferon genes (STING), one of the critical factors of innate immunity, is indicated to be closely related to angiogenesis. This study examined STING's role in angiogenesis and the formation of type H vessels, a specific subtype of bone vessels that regulates bone healing. Different concentrations of 2',3'-cGAMP, and H-151 or C-176 were applied to activate or inhibit STING, respectively. Human umbilical vein endothelial cells were used to examine the effect of STING on angiogenesis in vitro; cell viability, cell migration, and quantitative real-time polymerase chain reactions were performed. Also, the metatarsal experiment was applied as ex vivo proof. Bone fracture or defect mice models were used to examine the effect of STING in vivo; the bone healing process was evaluated by radiography weekly and by μCT on the 14th day after surgery. The formation of type H vessels (CD31hi Emcnhi endothelial cells) and osteogenesis (OCN-positive cells) was assessed using the cryosection and paraffin section. STING activation inhibited angiogenesis both in vitro and ex vivo and slowed down the bone healing process in vivo. Histological analysis showed an increased callus formation, fewer type H vessels, and almost no callus mineralization in the STING activation group compared to the control group. By contrast, H-151 (a hsSTING inhibitor) promoted angiogenesis at a low dose. Moreover, inhibition of mmSTING by C-176 enhanced type H vessels' formation, implying osteogenesis promotion in bone healing (higher bone volume density and more OCN-positive cells). Our data suggested that STING inhibition accelerates the bone healing process while enhancing type H vessel formation.
Collapse
Affiliation(s)
- Xiaojun Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wenxin He
- Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mengzhe Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yingjie Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yichuan Pang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gang Chai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Zhang B, Chen G, Chen X, Yang X, Fan T, Sun C, Chen Z. Integrating Bioinformatic Strategies with Real-World Data to Infer Distinctive Immunocyte Infiltration Landscape and Immunologically Relevant Transcriptome Fingerprints in Ossification of Ligamentum Flavum. J Inflamm Res 2021; 14:3665-3685. [PMID: 34354364 PMCID: PMC8331123 DOI: 10.2147/jir.s318009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Ossification of the ligamentum flavum (OLF) is a multifactorial disease characterized by an insidious and debilitating process of abnormal bone formation in ligamentum tissues. However, its definite pathogenesis has not been fully elucidated. Potential links between the immune system and various forms of heterotopic ossification have been discussed for many years, whereas no research investigated the immune effects on the initiation and development of OLF. Therefore, we attempt to shed light on this issue. Methods A series of bioinformatic algorithms were integrated to evaluate the immune score and the immunocyte infiltration patterns between OLF and normal samples, screen OLF-related and immune-related differentially expressed genes (OIDEGs), and analyze their biological functions. Correlation analysis inferred OIDEGs-related differentially expressed lncRNAs (OIDELs) and infiltrating immune cells (OIICs) to construct an immunoregulatory network. Results Differential immune score and immune cell infiltration were determined between two groups, and 10 OIDEGs with diverse biological function annotations were identified and verified. A lncRNA-gene-immunocyte regulatory network further revealed 10 OIDEGs, 41 OIDELs and 7 OIICs that were highly correlated. Among them, CD1E and STAT3 were predicted as hub genes whether at the expression level or interaction level. cDCs emerged as having the most prominent differences and the highest degree of connectivity. FO393414.3, AC096734.1, LINC01137 and DLX6-AS1 with the greatest number of OIDEGs were thought to be more likely to participate in immunoregulation of OLF. Conclusion This is the first research to preliminarily elucidate OLF-related immunocyte infiltration landscape and immune-associated transcriptome signatures based on bioinformatic strategies and real-world data, which may provide compelling insights into the pathogenesis and therapeutic targets of OLF.
Collapse
Affiliation(s)
- Baoliang Zhang
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Guanghui Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Xi Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Xiaoxi Yang
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Tianqi Fan
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Chuiguo Sun
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| | - Zhongqiang Chen
- Peking University Third Hospital, Department of Orthopaedics, Beijing, 100191, People's Republic of China.,Engineering Research Center of Bone and Joint Precision Medicine, Beijing, 100191, People's Republic of China.,Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, People's Republic of China
| |
Collapse
|
19
|
Wang K, Donnelly CR, Jiang C, Liao Y, Luo X, Tao X, Bang S, McGinnis A, Lee M, Hilton MJ, Ji RR. STING suppresses bone cancer pain via immune and neuronal modulation. Nat Commun 2021; 12:4558. [PMID: 34315904 PMCID: PMC8316360 DOI: 10.1038/s41467-021-24867-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with advanced stage cancers frequently suffer from severe pain as a result of bone metastasis and bone destruction, for which there is no efficacious treatment. Here, using multiple mouse models of bone cancer, we report that agonists of the immune regulator STING (stimulator of interferon genes) confer remarkable protection against cancer pain, bone destruction, and local tumor burden. Repeated systemic administration of STING agonists robustly attenuates bone cancer-induced pain and improves locomotor function. Interestingly, STING agonists produce acute pain relief through direct neuronal modulation. Additionally, STING agonists protect against local bone destruction and reduce local tumor burden through modulation of osteoclast and immune cell function in the tumor microenvironment, providing long-term cancer pain relief. Finally, these in vivo effects are dependent on host-intrinsic STING and IFN-I signaling. Overall, STING activation provides unique advantages in controlling bone cancer pain through distinct and synergistic actions on nociceptors, immune cells, and osteoclasts.
Collapse
Affiliation(s)
- Kaiyuan Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Yihan Liao
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Michael Lee
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Matthew J Hilton
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
20
|
Kwon Y, Park C, Lee J, Park DH, Jeong S, Yun CH, Park OJ, Han SH. Regulation of Bone Cell Differentiation and Activation by Microbe-Associated Molecular Patterns. Int J Mol Sci 2021; 22:ijms22115805. [PMID: 34071605 PMCID: PMC8197933 DOI: 10.3390/ijms22115805] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota has emerged as an important regulator of bone homeostasis. In particular, the modulation of innate immunity and bone homeostasis is mediated through the interaction between microbe-associated molecular patterns (MAMPs) and the host pattern recognition receptors including Toll-like receptors and nucleotide-binding oligomerization domains. Pathogenic bacteria such as Porphyromonas gingivalis and Staphylococcus aureus tend to induce bone destruction and cause various inflammatory bone diseases including periodontal diseases, osteomyelitis, and septic arthritis. On the other hand, probiotic bacteria such as Lactobacillus and Bifidobacterium species can prevent bone loss. In addition, bacterial metabolites and various secretory molecules such as short chain fatty acids and cyclic nucleotides can also affect bone homeostasis. This review focuses on the regulation of osteoclast and osteoblast by MAMPs including cell wall components and secretory microbial molecules under in vitro and in vivo conditions. MAMPs could be used as potential molecular targets for treating bone-related diseases such as osteoporosis and periodontal diseases.
Collapse
Affiliation(s)
- Yeongkag Kwon
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Chaeyeon Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Jueun Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Dong Hyun Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Sungho Jeong
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
- Correspondence: (O.-J.P.); (S.H.H.); Tel.: +82-2-880-2312 (O.-J.P.); +82-2-880-2310 (S.H.H.)
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea; (Y.K.); (C.P.); (J.L.); (D.H.P.); (S.J.)
- Correspondence: (O.-J.P.); (S.H.H.); Tel.: +82-2-880-2312 (O.-J.P.); +82-2-880-2310 (S.H.H.)
| |
Collapse
|
21
|
Pu F, Chen F, Liu J, Zhang Z, Shao Z. Immune Regulation of the cGAS-STING Signaling Pathway in the Tumor Microenvironment and Its Clinical Application. Onco Targets Ther 2021; 14:1501-1516. [PMID: 33688199 PMCID: PMC7935450 DOI: 10.2147/ott.s298958] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/19/2021] [Indexed: 12/25/2022] Open
Abstract
As a DNA receptor in the cytoplasm, cyclic GMP-AMP synthase (cGAS) contributes to the recognition of abnormal DNA in the cytoplasm and contributes to the stimulator of interferon genes (STING) signaling pathway. cGAS could mediate the expression of interferon-related genes, inflammatory-related factors, and downstream chemokines, thus initiating the immune response. The STING protein is a key effector downstream of the DNA receptor pathway. It is widely expressed across cell types such as immune cells, tumor cells, and stromal cells and plays a role in signal transduction for cytoplasmic DNA sensing and immunity. STING agonists, as novel agonists, are used in preclinical research and in the treatment of various tumors via clinical trials and have displayed attractive application prospects. Studying the cGAS-STING signaling pathway will deepen our understanding of tumor immunity and provide a basis for the research and development of antitumor drugs.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
22
|
Gong Y, Chang C, Liu X, He Y, Wu Y, Wang S, Zhang C. Stimulator of Interferon Genes Signaling Pathway and its Role in Anti-tumor Immune Therapy. Curr Pharm Des 2021; 26:3085-3095. [PMID: 32520678 DOI: 10.2174/1381612826666200610183048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
Stimulator of interferon genes is an important innate immune signaling molecule in the body and is involved in the innate immune signal transduction pathway induced by pathogen-associated molecular patterns or damage-associated molecular patterns. Stimulator of interferon genes promotes the production of type I interferon and thus plays an important role in the innate immune response to infection. In addition, according to a recent study, the stimulator of interferon genes pathway also contributes to anti-inflammatory and anti-tumor reactions. In this paper, current researches on the Stimulator of interferon genes signaling pathway and its relationship with tumor immunity are reviewed. Meanwhile, a series of critical problems to be addressed in subsequent studies are discussed as well.
Collapse
Affiliation(s)
- Yuanjin Gong
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Chang Chang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Xi Liu
- Center of Cardiovascular Disease, Inner Mongolia People's Hospital, Hohhot, China
| | - Yan He
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yiqi Wu
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Song Wang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Chongyou Zhang
- Basic Medical College, Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
Lin S, Zhao XL, Wang Z. TANK-binding kinase 1 mediates osteoclast differentiation by regulating NF-κB, MAPK and Akt signaling pathways. Immunol Cell Biol 2020; 99:223-233. [PMID: 32896936 DOI: 10.1111/imcb.12401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/02/2019] [Accepted: 09/06/2020] [Indexed: 12/16/2022]
Abstract
TANK-binding kinase 1 (TBK1) belongs to the noncanonical IκB kinase (IKK) family. The ubiquitously expressed protein is well known to play a pivotal role in innate immune response and inflammation. Although excessive inflammatory activities have been shown to affect osteoclast (OC) differentiation and function, direct relevance of TBK1 in bone turnover is not known. In this work, we specifically altered the TBK1 protein level by knocking down or overexpressing it without affecting its homologous protein IKKε expression, and demonstrated the effect of TBK1 on OC differentiation in bone marrow macrophages (BMMs) and RAW264.7 cells upon induction by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). TBK1 knockdown was found to markedly inhibit the OC differentiation and function, while TBK1 overexpression enhanced OC formation. Downregulation of TBK1 greatly suppressed RANKL-induced gene expression of Mmp9, Atp6v0d2, Acp5, Ctsk andNfatc1 involved in the regulation of OC formation and function in both BMM and RAW264.7 cells. Mechanistic studies indicated that TBK1 affected the NF-κB signaling pathway as well as mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt) activation during OC differentiation. Moreover, the protein level of TNF receptor-associated factor 6 (TRAF6) was increased, and the interaction of TRAF6 with TBK1 was potentiated, by RANKL. Collectively, we provide direct evidence showing that TBK1 effectively mediates OC differentiation and function by regulating NF-κB, MAPKs and Akt signals. A TBK1-targeted therapeutic strategy may be useful for the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Shuai Lin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Li Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Wang J, Wang B, Lv X, Wang L. NIK inhibitor impairs chronic periodontitis via suppressing non-canonical NF-κB and osteoclastogenesis. Pathog Dis 2020; 78:ftaa045. [PMID: 32860691 DOI: 10.1093/femspd/ftaa045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is an inflammatory disease that causes damages to periodontium and alveolar bone. Overactivation and formation of osteoclasts can cause bone destruction, which contributes to periodontitis development. Receptor activator of nuclear factor κB ligand (RANKL)-mediated NF-κB signaling plays an essential role in osteoclasts differentiation. We aimed to study the effects of NIK-SMI1, an NF-κB-inducing kinase (NIK) inhibitor, on the osteoclastogenesis in vitro and periodontitis progression in vivo. A ligature-induced mice model of periodontitis was incorporated to test the potential therapeutic effect of NIK-SMI1 on periodontitis. The target protein and mRNA expression levels were determined by Western blot assay and real-time PCR assay, respectively. We found that the administration of NIK-SMI1 strongly inhibited the RANKL-stimulated non-canonical NF-κB signaling as demonstrated by decreased nuclear p52 expression and activity. Blocking NIK activity also resulted in reduced osteoclasts specific genes expression and enhanced IFN-β expression. NIK-SMI1 treatment resulted in attenuated periodontitis progression and pro-inflammatory cytokines expression in vivo. Our study suggested that NIK-SMI1 exerts beneficial effects on the mitigation of osteoclastogenesis in vitro and periodontitis progression in vivo. Application of NIK-SMI1 may serve as a potential therapeutic approach for periodontitis.
Collapse
Affiliation(s)
- Jiang Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, The Hospital of Stomatology, The Fourth Military Medical University, Shaanxi 710000, China
| | - Bo Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Center, The Hospital of Stomatology, The Fourth Military Medical University, Shaanxi 710000, China
| | - Xin Lv
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, The Hospital of Stomatology, The Fourth Military Medical University, Shaanxi 710000, China
| | - Lei Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, The Hospital of Stomatology, The Fourth Military Medical University, Shaanxi 710000, China
| |
Collapse
|
25
|
Sun X, Xie Z, Hu B, Zhang B, Ma Y, Pan X, Huang H, Wang J, Zhao X, Jie Z, Shi P, Chen Z. The Nrf2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling. Redox Biol 2020; 28:101309. [PMID: 31487581 PMCID: PMC6728880 DOI: 10.1016/j.redox.2019.101309] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 11/30/2022] Open
Abstract
The dysregulation of ROS production and osteoclastogenesis is involved in the progress of osteoporosis. To identify novel and effective targets to treat this disease, it is important to explore the underlying mechanisms. In our study, we firstly tested the effect of the Nrf2 activator RTA-408, a novel synthetic triterpenoid under clinical investigation for many diseases, on osteoclastogenesis. We found that it could inhibit osteoclast differentiation and bone resorption in a time- and dose-dependent manner. Further, RTA-408 enhanced the expression and activity of Nrf2 and significantly suppressed RANKL-induced reactive oxygen species (ROS) production. Nrf2 regulates the STING expression and STING induces the production of IFN-β. Here, we found that RTA-408 could suppress STING expression, but that it does not affect Ifnb1 expression. RANKL-induced degradation of IκBα and the nuclear translocation of P65 was suppressed by RTA-408. Although this compound was not found to influence STING-IFN-β signaling, it suppressed the RANKL-induced K63-ubiquitination of STING via inhibiting the interaction between STING and the E3 ubiquitin ligase TRAF6. Further, adenovirus-mediated STING overexpression rescued the suppressive effect of RTA-408 on NF-κB signaling and osteoclastogenesis. In vivo experiments showed that this compound could effectively attenuate ovariectomy (OVX)-induced bone loss in C57BL/6 mice by inhibiting osteoclastogenesis. Collectively, we show that RTA-408 inhibits NF-κB signaling by suppressing the recruitment of TRAF6 to STING, in addition to attenuating osteoclastogenesis and OVX-induced bone loss in vivo, suggesting that it could be a promising candidate for treating osteoporosis in the future.
Collapse
Affiliation(s)
- Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bin Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Boya Zhang
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xin Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hai Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangde Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Zhijun Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|