1
|
Zaszczyńska A, Zabielski K, Gradys A, Kowalczyk T, Sajkiewicz P. Piezoelectric Scaffolds as Smart Materials for Bone Tissue Engineering. Polymers (Basel) 2024; 16:2797. [PMID: 39408507 PMCID: PMC11479154 DOI: 10.3390/polym16192797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Bone repair and regeneration require physiological cues, including mechanical, electrical, and biochemical activity. Many biomaterials have been investigated as bioactive scaffolds with excellent electrical properties. Amongst biomaterials, piezoelectric materials (PMs) are gaining attention in biomedicine, power harvesting, biomedical devices, and structural health monitoring. PMs have unique properties, such as the ability to affect physiological movements and deliver electrical stimuli to damaged bone or cells without an external power source. The crucial bone property is its piezoelectricity. Bones can generate electrical charges and potential in response to mechanical stimuli, as they influence bone growth and regeneration. Piezoelectric materials respond to human microenvironment stimuli and are an important factor in bone regeneration and repair. This manuscript is an overview of the fundamentals of the materials generating the piezoelectric effect and their influence on bone repair and regeneration. This paper focuses on the state of the art of piezoelectric materials, such as polymers, ceramics, and composites, and their application in bone tissue engineering. We present important information from the point of view of bone tissue engineering. We highlight promising upcoming approaches and new generations of piezoelectric materials.
Collapse
Affiliation(s)
| | | | | | - Tomasz Kowalczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland; (A.Z.); (K.Z.); (A.G.); (P.S.)
| | | |
Collapse
|
2
|
Tabassum A. Effect of dexamethasone on the growth and differentiation of osteoblast-like cells derived from the human alveolar bone. J Taibah Univ Med Sci 2022; 17:707-714. [PMID: 35983438 PMCID: PMC9356365 DOI: 10.1016/j.jtumed.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives This study aimed to investigate the effect of dexamethasone on the growth and differentiation of osteoblast-like cells derived from the human alveolar bone. Methods Bone particles were collected from patients during implant-site preparation. The samples were cultured in a growth medium, and the cells that propagated after two–three weeks were cultured in three types of culture media: group 1, normal medium; group 2, osteogenic medium without dexamethasone; and group 3, osteogenic medium with dexamethasone—for zero, four, seven, and 20 days. DNA and alkaline phosphatase (ALP) measurements and alizarin red/toluidine blue staining were performed. Results DNA levels were significantly higher in group 2 than in group 1 on day 7 (p < 0.001) and in group 3 on days 4, 7, and 20 (p < 0.041, p < 0.006, and p < 0.001, respectively). Further, total ALP levels were significantly higher in group 3 than in groups 1 on day 20 (p < 0.023). A greater amount of matrix mineralisation was observed in group 3 than in groups 1 and 2. Conclusions Human alveolar bone cells exhibit improved osteogenic efficacy in terms of osteogenic differentiation when cultured in the presence of dexamethasone. The cell number (total DNA content) decreased in the presence of dexamethasone; however, an increased differentiation of osteoblast-like cells was observed.
Collapse
|
3
|
Martin-Aragon S, Bermejo-Bescós P, Benedí J, Raposo C, Marques F, Kydonaki EK, Gkiata P, Koutedakis Y, Ntina G, Carrillo AE, Amorim T. A Neuroprotective Bovine Colostrum Attenuates Apoptosis in Dexamethasone-Treated MC3T3-E1 Osteoblastic Cells. Int J Mol Sci 2021; 22:10195. [PMID: 34638536 PMCID: PMC8507997 DOI: 10.3390/ijms221910195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
Glucocorticoid-induced osteoporosis (GIO) is one of the most common secondary forms of osteoporosis. GIO is partially due to the apoptosis of osteoblasts and osteocytes. In addition, high doses of dexamethasone (DEX), a synthetic glucocorticoid receptor agonist, induces neurodegeneration by initiating inflammatory processes leading to neural apoptosis. Here, a neuroprotective bovine colostrum against glucocorticoid-induced neuronal damage was investigated for its anti-apoptotic activity in glucocorticoid-treated MC3T3-E1 osteoblastic cells. A model of apoptotic osteoblastic cells was developed by exposing MC3T3-E1 cells to DEX (0-700 μM). Colostrum co-treated with DEX was executed at 0.1-5.0 mg/mL. Cell viability was measured for all treatment schedules. Caspase-3 activation was assessed to determine both osteoblast apoptosis under DEX exposure and its potential prevention by colostrum co-treatment. Glutathione reduced (GSH) was measured to determine whether DEX-mediated oxidative stress-driven apoptosis is alleviated by colostrum co-treatment. Western blot was performed to determine the levels of p-ERK1/2, Bcl-XL, Bax, and Hsp70 proteins upon DEX or DEX plus colostrum exposure. Colostrum prevented the decrease in cell viability and the increase in caspase-3 activation and oxidative stress caused by DEX exposure. Cells, upon colostrum co-treated with DEX, exhibited higher levels of p-ERK1/2 and lower levels of Bcl-XL, Bax, and Hsp70. Our data support the notion that colostrum may be able to reduce DEX-induced apoptosis possibly via the activation of the ERK pathway and modulation of the Hsp70 system. We provided preliminary evidence on how bovine colostrum, as a complex and multi-component dairy product, in addition to its neuroprotective action, may affect osteoblastic cell survival undergoing apoptosis.
Collapse
Affiliation(s)
- Sagrario Martin-Aragon
- Department of Pharmacology, Pharmacognosy and Botany, Complutense University, 28040 Madrid, Spain
| | - Paloma Bermejo-Bescós
- Department of Pharmacology, Pharmacognosy and Botany, Complutense University, 28040 Madrid, Spain
| | - Juana Benedí
- Department of Pharmacology, Pharmacognosy and Botany, Complutense University, 28040 Madrid, Spain
| | - Carlos Raposo
- Department of Pharmacology, Pharmacognosy and Botany, Complutense University, 28040 Madrid, Spain
- SALURIS, 28040 Madrid, Spain
| | - Franklim Marques
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Eirini K Kydonaki
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Paraskevi Gkiata
- School of Sport and Exercise Sciences, University of Thessaly, Karies, 42100 Trikala, Greece
| | - Yiannis Koutedakis
- School of Sport and Exercise Sciences, University of Thessaly, Karies, 42100 Trikala, Greece
- Faculty of Education, Health and Wellbeing, Wolverhampton University, Walsall WV1 1LY, UK
| | - Georgia Ntina
- BME, Biomechanical Solutions, 43150 Karditsa, Greece
| | - Andres E Carrillo
- Department of Exercise Science, Chatham University, Pittsburgh, PA 15232, USA
- Move-Cor Inc., Pittsburgh, PA 15017, USA
| | - Tânia Amorim
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
4
|
Della Bella E, Buetti-Dinh A, Licandro G, Ahmad P, Basoli V, Alini M, Stoddart MJ. Dexamethasone Induces Changes in Osteogenic Differentiation of Human Mesenchymal Stromal Cells via SOX9 and PPARG, but Not RUNX2. Int J Mol Sci 2021; 22:4785. [PMID: 33946412 PMCID: PMC8124248 DOI: 10.3390/ijms22094785] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 01/10/2023] Open
Abstract
Despite the huge body of research on osteogenic differentiation and bone tissue engineering, the translation potential of in vitro results still does not match the effort employed. One reason might be that the protocols used for in vitro research have inherent pitfalls. The synthetic glucocorticoid dexamethasone is commonly used in protocols for trilineage differentiation of human bone marrow mesenchymal stromal cells (hBMSCs). However, in the case of osteogenic commitment, dexamethasone has the main pitfall of inhibiting terminal osteoblast differentiation, and its pro-adipogenic effect is well known. In this work, we aimed to clarify the role of dexamethasone in the osteogenesis of hBMSCs, with a particular focus on off-target differentiation. The results showed that dexamethasone does induce osteogenic differentiation by inhibiting SOX9 expression, but not directly through RUNX2 upregulation as it is commonly thought. Rather, PPARG is concomitantly and strongly upregulated, leading to the formation of adipocyte-like cells within osteogenic cultures. Limiting the exposure to dexamethasone to the first week of differentiation did not affect the mineralization potential. Gene expression levels of RUNX2, SOX9, and PPARG were simulated using approximate Bayesian computation based on a simplified theoretical model, which was able to reproduce the observed experimental trends but with a different range of responses, indicating that other factors should be integrated to fully understand how dexamethasone influences cell fate. In summary, this work provides evidence that current in vitro differentiation protocols based on dexamethasone do not represent a good model, and further research is warranted in this field.
Collapse
Affiliation(s)
- Elena Della Bella
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (P.A.); (V.B.); (M.A.)
| | - Antoine Buetti-Dinh
- Laboratory of applied microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), 6500 Bellinzona, Switzerland;
- Swiss Institute of Bioinformatics, Quartier Sorge—Batiment Genopode, 1015 Lausanne, Switzerland
| | - Ginevra Licandro
- Dalle Molle Institute for Artificial Intelligence (IDSIA), University of Italian Switzerland (USI), 6928 Manno, Switzerland;
- University of Applied Science and Art of Southern Switzerland (SUPSI), 6928 Manno, Switzerland
| | - Paras Ahmad
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (P.A.); (V.B.); (M.A.)
| | - Valentina Basoli
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (P.A.); (V.B.); (M.A.)
| | - Mauro Alini
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (P.A.); (V.B.); (M.A.)
| | - Martin J. Stoddart
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (E.D.B.); (P.A.); (V.B.); (M.A.)
- Department of Orthopedics and Trauma Surgery, Medical Center—Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
5
|
de Araujo Bastos Santana L, Oliveira Junior PH, Damia C, Dos Santos Tavares D, Dos Santos EA. Bioactivity in SBF versus trace element effects: The isolated role of Mg 2+ and Zn 2+ in osteoblast behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111320. [PMID: 33254959 DOI: 10.1016/j.msec.2020.111320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/23/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
The bioactivity assay originally proposed by Kokubo is one of the most commonly used tests to indirectly evaluate the biocompatibility of bioactive glasses. However, extensive evidence has shown that trace elements present in biomaterials may stimulate cellular behavior in different ways even when no apatite formation is observed, i.e., in biomaterials with low or no bioactivity. To further elucidate this topic, we designed three different SiO2-rich bioglass compositions in which CaO was partially replaced by ZnO and MgO, two oxides known to affect bioactivity as well as osteoblastic behavior. The physicochemical changes induced by the presence of oxides and their effects on biological behavior, as well as the adhesion, proliferation and differentiation of human osteoblast-like osteosarcoma cells (MG-63), were followed by a bioactivity assay in simulated body fluid (SBF). The insertion of ZnO or MgO decreased the glass transition (Tg) and crystallization (Tc) temperatures as a function of the increase in nonbonding oxygens, which was directly reflected in the higher solubility. The release of Mg2+ ions from the MgO-containing samples inhibited the bioactivity in SBF, inducing high cell adhesion and proliferation and moderate ALP activity. The release of Zn2+ also inhibited the bioactivity in SBF but, in contrast to the release of Mg2+, induced low cell adhesion and proliferation and high ALP activity compared to the control.
Collapse
Affiliation(s)
- Lucas de Araujo Bastos Santana
- Department of Materials Science and Engineering, Federal University of Sergipe, Av. Marechal Rondon, s/n, São Cristóvão, 49100-000 Sergipe, Brazil
| | - Paulo Henrique Oliveira Junior
- Department of Materials Science and Engineering, Federal University of Sergipe, Av. Marechal Rondon, s/n, São Cristóvão, 49100-000 Sergipe, Brazil
| | - Chantal Damia
- Université de Limoges, CNRS, IRCER UMR 7315, F-87000 Limoges, France
| | | | - Euler Araujo Dos Santos
- Department of Materials Science and Engineering, Federal University of Sergipe, Av. Marechal Rondon, s/n, São Cristóvão, 49100-000 Sergipe, Brazil.
| |
Collapse
|
6
|
Kim BB, Kim M, Park YH, Ko Y, Park JB. Short-term application of dexamethasone on stem cells derived from human gingiva reduces the expression of RUNX2 and β-catenin. J Int Med Res 2017; 45:993-1006. [PMID: 28459354 PMCID: PMC5536397 DOI: 10.1177/0300060517701035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022] Open
Abstract
Objective Next-generation sequencing was performed to evaluate the effects of short-term application of dexamethasone on human gingiva-derived mesenchymal stem cells. Methods Human gingiva-derived stem cells were treated with a final concentration of 10-7 M dexamethasone and the same concentration of vehicle control. This was followed by mRNA sequencing and data analysis, gene ontology and pathway analysis, quantitative real-time polymerase chain reaction of mRNA, and western blot analysis of RUNX2 and β-catenin. Results In total, 26,364 mRNAs were differentially expressed. Comparison of the results of dexamethasone versus control at 2 hours revealed that 7 mRNAs were upregulated and 25 mRNAs were downregulated. The application of dexamethasone reduced the expression of RUNX2 and β-catenin in human gingiva-derived mesenchymal stem cells. Conclusion The effects of dexamethasone on stem cells were evaluated with mRNA sequencing, and validation of the expression was performed with qualitative real-time polymerase chain reaction and western blot analysis. The results of this study can provide new insights into the role of mRNA sequencing in maxillofacial areas.
Collapse
Affiliation(s)
- Bo-Bae Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Minji Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - Youngkyung Ko
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
7
|
Pérez-Campo FM, May T, Zauers J, Sañudo C, Delgado-Calle J, Arozamena J, Berciano MT, Lafarga M, Riancho JA. Generation and characterization of two immortalized human osteoblastic cell lines useful for epigenetic studies. J Bone Miner Metab 2017; 35:150-160. [PMID: 27038990 DOI: 10.1007/s00774-016-0753-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
Different model systems using osteoblastic cell lines have been developed to help understand the process of bone formation. Here, we report the establishment of two human osteoblastic cell lines obtained from primary cultures upon transduction of immortalizing genes. The resulting cell lines had no major differences to their parental lines in their gene expression profiles. Similar to primary osteoblastic cells, osteocalcin transcription increased following 1,25-dihydroxyvitamin D3 treatment and the immortalized cells formed a mineralized matrix, as detected by Alizarin Red staining. Moreover, these human cell lines responded by upregulating ALPL gene expression after treatment with the demethylating agent 5-aza-2'-deoxycytidine (AzadC), as shown before for primary osteoblasts. We further demonstrate that these cell lines can differentiate in vivo, using a hydroxyapatite/tricalcium phosphate composite as a scaffold, to produce bone matrix. More importantly, we show that these cells respond to demethylating treatment, as shown by the increase in SOST mRNA levels, the gene encoding sclerostin, upon treatment of the recipient mice with AzadC. This also confirms, in vivo, the role of DNA methylation in the regulation of SOST expression previously shown in vitro. Altogether our results show that these immortalized cell lines constitute a particularly useful model system to obtain further insight into bone homeostasis, and particularly into the epigenetic mechanisms regulating sclerostin production.
Collapse
Affiliation(s)
- Flor M Pérez-Campo
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL Universidad de Cantabria, 39008, Santander, Cantabria, Spain
- Department of Molecular Biology, University of Cantabria, IDIVAL, Santander, Spain
| | | | | | - Carolina Sañudo
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL Universidad de Cantabria, 39008, Santander, Cantabria, Spain
| | - Jesús Delgado-Calle
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL Universidad de Cantabria, 39008, Santander, Cantabria, Spain
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Roudebush Veterans Administration Medical Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jana Arozamena
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL Universidad de Cantabria, 39008, Santander, Cantabria, Spain
| | - María T Berciano
- Department of Anatomy and Cell Biology, University of Cantabria, IDIVAL, Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, University of Cantabria, IDIVAL, Santander, Spain
| | - José A Riancho
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL Universidad de Cantabria, 39008, Santander, Cantabria, Spain.
| |
Collapse
|
8
|
Cetinkaya BO, Acikgoz G, Keles GC, Ayas B, Korkmaz A. The Effect of Cyclosporin A on Alveolar Bone in Rats Subjected to Experimental Periodontal Disease. Toxicol Pathol 2016; 34:716-22. [PMID: 17162529 DOI: 10.1080/01926230600826269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cyclosporine A (CsA), broadly used in organ transplantation, may contribute to pathogenesis of osteoporosis. The aim of this study was to investigate the effects of CsA on alveolar bone in rats subjected or not to experimental periodontal disease using biochemical, radiographic, and histometric analysis. Forty Wistar rats were divided into 4 equal groups: Group I (Control), Group II (CsA was injected subcutaneously in a daily dose of 10 mg/kg), Group III (Ligature was placed around the mandibular molars), Group IV (Ligature+CsA). After 60 days, rats were decapitated, serum alkaline phosphatase and calcium levels were measured. Radiographic-alveolar bone loss (ABL), histometric-ABL, and percentage of new alveolar bone formation (NABF%) were determined on mandibular molars. Significant increase in serum alkaline phosphatase levels ( p < 0.001), no significant difference in calcium levels were observed ( p > 0.05) in Group IV compared to Group III. Radiographic and histometric-ABL were significantly less ( p < 0.001), NABF% was significantly greater ( p < 0.05) in Group IV than in Group III. No significant difference in any of the parameters between Group II and Group I was found. It can be concluded that in the presence of periodontal disease, CsA treatment may bring out an imbalance in the alveolar bone homeostasis by decreasing resorption and stimulating formation of alveolar bone in rats.
Collapse
Affiliation(s)
- Burcu Ozkan Cetinkaya
- Faculty of Dentistry, Department of Periodontology, Ondokuzmayis University, Samsun 55139, Turkey.
| | | | | | | | | |
Collapse
|
9
|
The influence of dexamethasone administered prenatally on cartilage of newborn spiny mouse (Acomys cahirinus) offspring. J Dev Orig Health Dis 2015; 7:298-305. [DOI: 10.1017/s2040174415007874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Considering the negative effects of glucocorticoid treatment, especially during fetal development it is important to investigate effectors decreasing such disadvantages. The aim of this study was to investigate the effect of prenatally administered dexamethasone (Dex), a synthetic glucocorticoid, on the histomorphometry of the femur in the offspring of spiny mice. The study was performed on 24 pregnant spiny mice. The time of the experiment included the prenatal period between the 20th day of gestation until birth (pregnancy lasts on average of 36–38 days). The mice from the experimental group received dexamethasone per os in a dose of 125 mg/kg birth weight daily. At the end, the newborns from the experimental and control group were weighted and euthanized. Maternal Dex treatment resulted in a 17% decrease in birth weight in newborns. Dex administration significantly reduced the thickness of the hypertrophy zone of the growth plate by 34% and total thickness by 8,7%. In addition, Dex decreased the number of cells in the articular cartilage by 27% and significantly decreased their diameter by 5%. Dex also affected the structure and spatial distribution of thick and thin collagen fibers, lowering the proportion of thin fibers compared with the control group. Moreover, Dex treatment considerably lowered the amount of proteoglycans in articular and growth cartilages. Exposure to glucocorticoids in pregnant spiny mice affects cartilage development by accelerating maturity of collagen fibers and growth plate, presumably along with further disruption of longitudinal growth of long bones.
Collapse
|
10
|
Fontanetti PA, Nervegna MT, Vermouth NT, Mandalunis PM. Prenatal Exposure to Continuous Constant Light Alters Endochondral Ossification of the Tibiae of Rat Pups. Cells Tissues Organs 2015; 200:278-86. [DOI: 10.1159/000433520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 11/19/2022] Open
|
11
|
Hwang SY, Foley J, Numaga-Tomita T, Petranka JG, Bird GS, Putney JW. Deletion of Orai1 alters expression of multiple genes during osteoclast and osteoblast maturation. Cell Calcium 2012; 52:488-500. [PMID: 23122304 DOI: 10.1016/j.ceca.2012.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 01/08/2023]
Abstract
Store-operated Ca(2+) entry (SOCE) is a major Ca(2+) influx pathway in most non-excitable cell types and Orai1 was recently identified as an essential pore-subunit of SOCE channels. Here we investigate the physiological role of Orai1 in bone homeostasis using Orai1-deficient mice (Orai1(-/-)). Orai1(-/-) mice developed osteopenia with decreased bone mineral density and trabecular bone volume. To identify the nature and origin of the bone defect, bone-resorbing osteoclasts and bone-forming osteoblasts from Orai1(-/-) mice were examined. Orai1-mediated SOCE was completely abolished in Orai1(-/-) osteoclast precursor cells and osteoclastogenesis in vitro from Orai1(-/-) mice was impaired due to a defect in cell fusion of pre-osteoclasts. Also, resorption activity in vitro was comparable but the size of pits formed by Orai1(-/-) osteoclasts was smaller. We next assessed the role of Orai1 in osteoblast differentiation and function by using a pre-osteoblast cell line, as well as primary osteoblasts from wild-type and Orai1(-/-) mice. SOCE in MC3T3-E1 pre-osteoblastic cells was inactivated by lentiviral overexpression of a pore-dead Orai1 mutant. Lack of SOCE in MC3T3-E1 had no effect on alkaline phosphatase staining and expression but substantially inhibited mineralized nodule formation. Consistent with this finding, Orai1-mediated SOCE was markedly reduced in Orai1(-/-) osteoblast precursor cells and osteoblastogenesis in vitro from Orai1(-/-) stromal cells showed impaired mineral deposition but no change in differentiation. This indicates that Orai1 is involved in the function but not in the differentiation of osteoblasts. Together, these results suggest that Orai1 plays a critical role in bone homeostasis by regulating both osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Sung-Yong Hwang
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
12
|
Esmail MY, Sun L, Yu L, Xu H, Shi L, Zhang J. Effects of PEMF and glucocorticoids on proliferation and differentiation of osteoblasts. Electromagn Biol Med 2012; 31:375-81. [DOI: 10.3109/15368378.2012.662196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mohammed Y. Esmail
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
Xi'an, China
| | - Lijun Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
Xi'an, China
| | - Liyin Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
Xi'an, China
| | - Hao Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
Xi'an, China
| | - Liang Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
Xi'an, China
| | - Jianbao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University
Xi'an, China
| |
Collapse
|
13
|
Abstract
Bone is a dynamic tissue. Skeletal bone integrity is maintained through bone modeling and remodeling. The mechanisms underlying this bone mass regulation are complex and interrelated. An imbalance in the regulation of bone remodeling through bone resorption and bone formation results in bone loss. Chronic inflammation influences bone mass regulation. Inflammation-related bone disorders share many common mechanisms of bone loss. These mechanisms are ultimately mediated through the uncoupling of bone remodeling. Cachexia, physical inactivity, pro-inflammatory cytokines, as well as iatrogenic factors related to effects of immunosuppression are some of the common mechanisms. Recently, cytokine signaling through the central nervous system has been investigated for its potential role in bone mass dysregulation in inflammatory conditions. Growing research on the molecular mechanisms involved in inflammation-induced bone loss may lead to more selective therapeutic targeting of these pathological signaling pathways.
Collapse
|
14
|
Oliveira JM, Kotobuki N, Tadokoro M, Hirose M, Mano JF, Reis RL, Ohgushi H. Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation. Bone 2010; 46:1424-35. [PMID: 20152952 DOI: 10.1016/j.bone.2010.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/19/2010] [Accepted: 02/03/2010] [Indexed: 11/20/2022]
Abstract
Recently, our group has proposed a combinatorial strategy in tissue engineering principles employing carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles (CMCht/PAMAM) towards the intracellular release and regimented supply of dexamethasone (Dex) aimed at controlling stem cell osteogenic differentiation in the absence of typical osteogenic inducers, in vivo. In this work, we have investigated if the Dex-loaded CMCht/PAMAM dendrimer nanoparticles could play a crucial role in the regulation of osteogenesis, in vivo. Macroporous hydroxyapatite (HA) scaffolds were seeded with rat bone marrow stromal cells (RBMSCs), whose cells were expanded in MEM medium supplemented with 0.01 mg ml(-1) Dex-loaded CMCht/PAMAM dendrimer nanoparticles and implanted subcutaneously on the back of rats for 2 and 4 weeks. HA porous ceramics without RBMSCs and RBMSCs/HA scaffold constructs seeded with cells expanded in the presence and absence of 10(-8) M Dex were used as controls. The effect of initial cell number seeded in the HA scaffolds on the bone-forming ability of the constructs was also investigated. Qualitative and quantitative new bone formation was evaluated in a non-destructive manner using micro-computed tomography analyses of the explants. Haematoxylin and Eosin stained implant sections were also used for the histomorphometrical analysis. Toluidine blue staining was carried out to investigate the synthesis of proteoglycan extracellular matrix. In addition, alkaline phosphatase and osteocalcin levels in the explants were also quantified, since these markers denote osteogenic differentiation. At 4 weeks post-implantation results have shown that the novel Dex-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles may be beneficial as an intracellular nanocarrier, supplying Dex in a regimented manner and promoting superior ectopic de novo bone formation.
Collapse
Affiliation(s)
- J M Oliveira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, Taipas, Guimarães, Portugal
| | | | | | | | | | | | | |
Collapse
|
15
|
Migliaccio S, Brama M, Malavolta N. Management of glucocorticoids-induced osteoporosis: role of teriparatide. Ther Clin Risk Manag 2009; 5:305-10. [PMID: 19536312 PMCID: PMC2697534 DOI: 10.2147/tcrm.s3940] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids (GC)-induced osteoporosis (GIOP) is the most common cause of secondary osteoporosis, which leads to an increased fracture risk in patients. The normal bone turnover depends on a balance between osteoblasts and osteoclasts activity and GC can cause a rapid bone loss, decreasing bone formation and increasing bone resorption. The decreased bone formation is mainly due to the GC-induced apoptosis of both osteoblasts and osteocytes, while the increased bone resorption is due to the increased life-span of pre-existing osteoclasts. Bisphosphonates are clearly effective in preventing and treating GIOP but anabolic therapeutic strategies are the new promising therapeutic alternative. Experimental and clinical studies indicate that teriparatide, the active (1–34) parathyroid hormone (PTH) molecule, is efficacious for the treatment of GIOP, being able to induce an increase in bone mass in these patients. Intermittent administration of human PTH (1–34) stimulates bone formation by increasing osteoblast number. Additionally, human PTH (1–34) modulates the level and/or activity of locally produced growth factors and cytokines. Teriparatide has been demonstrated in several clinical studies to significantly decrease the incidence of fractures in patients affected by GIOP. It has recently received an indication for GIOP and its label indication has also been expanded.
Collapse
Affiliation(s)
- Silvia Migliaccio
- Dipartimento di Fisiopatologia Medica, Policlinico Umberto I, Università degli Studi Sapienza di Roma, Italy
| | | | | |
Collapse
|
16
|
Normal and osteoporotic human osteoblast behaviour after 1,25-dihydroxy-vitamin D3 stimulation. Rheumatol Int 2008; 29:667-72. [DOI: 10.1007/s00296-008-0755-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 10/19/2008] [Indexed: 11/30/2022]
|
17
|
Spreafico A, Frediani B, Capperucci C, Chellini F, Paffetti A, D'Ambrosio C, Bernardini G, Mini R, Collodel G, Scaloni A, Marcolongo R, Santucci A. A proteomic study on human osteoblastic cells proliferation and differentiation. Proteomics 2006; 6:3520-32. [PMID: 16705754 DOI: 10.1002/pmic.200500858] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Changes in expression profiles for 17 proteins were ascertained in human mature osteoblasts compared to pre-osteoblasts (differentiation markers). A differential approach was used to highlight proteomic changes between human osteosarcoma cells and mature osteoblasts, showing a relative over-expression of 8 proteins (proliferation and tumor indicators), as well as under-expression of proteins also found down-regulated in pre-osteoblasts (specific markers of osteoblast differentiation). Our findings confirmed the differences between cell lines and primary human cell cultures and suggested caution on the use of osteosarcoma to study anti-osteoporotic drugs in humans.
Collapse
Affiliation(s)
- Adriano Spreafico
- Dipartimento di Medicina Clinica e Scienze Immunologiche, Policlinico Le Scotte, Università degli Studi di Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Osteoporosis is increasingly recognized as a complication of chronic childhood illnesses, particularly when glucocorticoids (GCs) are necessary for treatment. Elucidation of the mechanisms leading to bone fragility in these settings requires disentanglement of the relative contributions of myriad risk factors, including disease activity, muscle weakness, immobilization, delayed growth and puberty, compromised nutrition, and osteotoxic medications. Over the years, bone mass and density evaluations by dual energy X-ray absorptiometry (DXA) have become popular for assessing bone health in children; however, such measurements are difficult to interpret because of the confounding effect of bone size and the lack of DXA-based densitometric criteria for defining osteoporosis in childhood. Recently, a new diagnostic approach for evaluation of densitometric data in children has been suggested, driven by Frost's mechanostat theory. A diagnostic algorithm based on the mechanostat theory of bone-muscle development is proposed for the characterization of bone disease in children with chronic illness. In addition to DXA-based assessments, techniques such as peripheral quantitative computerized tomography and ilial histomorphometry, for which there are pediatric reference data, are gaining ground in the characterization of skeletal changes due to chronic illness. Although these diagnostic techniques expand our understanding of osteoporosis in children, they do not replace clinical assessment. Concrete clinical evidence for GC-induced bone fragility can be seen in spinal changes due to vertebral compression, with spinal morphometry emerging as an essential, but frequently overlooked, tool in the evaluation of children's bone health. Presently, osteoporosis treatment in the chronic illness setting remains experimental and should be restricted to clinical studies. Following an understanding of the natural history of GC-induced osteoporosis in children, randomized, placebo-controlled prevention and intervention trials will be the next step toward the development of clinical practice guidelines.
Collapse
Affiliation(s)
- Leanne M Ward
- Department of Pediatrics, University of Ottawa and Division of Endocrinology, Children's Hospital of Eastern Ontario, Ottawa, Canada.
| |
Collapse
|
19
|
Rao LG, Murray TM, Wylie JN, McBroom RJ, Sutherland MK. Long-term culture in dexamethasone unmasks an abnormal phenotype in osteoblasts isolated from osteoporotic subjects. J Endocrinol Invest 2005; 28:919-27. [PMID: 16419495 DOI: 10.1007/bf03345324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have shown that osteoblastic cells derived from trabecular bone explants of osteoporotic subjects (OP cells) exhibited an altered alkaline phosphatase (ALP) response to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] compared to control (CON) cells. Our hypothesis that OP cells have other intrinsic abnormalities was investigated using our cell models representing two different stages of differentiation. OP and CON cells were cultured in the absence (-DEX) or presence (+DEX) of 10 nM dexamethasone (DEX) in 10% fetal calf serum (FCS) prior to exposure to serum-free medium containing 1 nM of PTH and/or 17-beta estradiol (E2). Both OP and CON cells responded to DEX with a two-fold increase in basal ALP activity. While E2 or PTH+E2 had no effect on OP cells, both treatments inhibited ALP activity in CON cells (p<0.05). OP and CON cells grown in DEX also expressed PTH-stimulated adenylate cyclase (AC) activities higher than those of (-DEX) cells. OP+DEX cells, however, exhibited activities which were 8-fold higher than those of CON+DEX cells (p<0.001). In OP+DEX cells, E2 stimulated basal AC activity (p<0.05) but did not affect PTH-stimulated activity. In contrast, in CON+DEX cells, E2 had no effect on basal activity but inhibited PTH-stimulated AC activity (p<0.001). Osteocalcin production was 4-fold lower in OP+DEX cells compared to OP-DEX and CON cells (p<0.05) while osteocalcin mRNA levels were significantly lower in OP+DEX and CON+/-DEX cells compared to OP-DEX cells (p<0.05). E2 did not affect osteocalcin protein or mRNA levels in either OP or CON cells. No differences in mRNA levels were found for estrogen receptor-alpha (ER-a) in OP+/-DEX cells whereas these levels were significantly higher in CON+DEX compared to CON-DEX cells (p<0.05). These results indicate that DEX amplified the differences between OP and CON cells and confirm the presence of intrinsic osteoblastic abnormalities in patients with osteoporosis that persist in culture.
Collapse
Affiliation(s)
- L G Rao
- Calcium Research Laboratory, suite 2022, St. Michael's Hospital, 38 Shuter Street, Toronto, Ontario, Canada M5B 1A6.
| | | | | | | | | |
Collapse
|
20
|
Beloti MM, Rosa AL. Osteoblast differentiation of human bone marrow cells under continuous and discontinuous treatment with dexamethasone. Braz Dent J 2005; 16:156-61. [PMID: 16475612 DOI: 10.1590/s0103-64402005000200013] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dexamethasone (Dex) has been shown to induce osteoblast differentiation in several cell culture systems. This study investigated the effect of continuous and discontinuous treatment with Dex on osteoblast differentiation of human bone marrow stromal cells (BMSC). Primary culture and first passage were cultured in media with or without Dex 10-7 M. During the culture period, cells were incubated at 37ºC in humidified atmosphere of 5% CO2 and 95% air. At 7, 14, and 21 days, cell proliferation, cell viability, total protein content, alkaline phosphatase (ALP) activity and bone-like formation were evaluated. Data were compared by two-way analysis of variance. Dex did not affect cell viability and total protein content, but reduced cell number. ALP activity and bone-like formation increased when only first passage or both primary culture and first passage were treated with Dex, in comparison to the groups that did not have contact with Dex after first passage. The results of this study indicate that, for human BMSC, continuous presence of Dex did not appear to be required for development of the osteoblast phenotype, but Dex must be present after first passage to allow osteoblast differentiation expressed by reduced cell proliferation and increased ALP activity and bone-like formation.
Collapse
Affiliation(s)
- Márcio Mateus Beloti
- Department of Oral and Maxillofacial Surgery and Periodontology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
| | | |
Collapse
|
21
|
Murray TM, Rao LG, Divieti P, Bringhurst FR. Parathyroid hormone secretion and action: evidence for discrete receptors for the carboxyl-terminal region and related biological actions of carboxyl- terminal ligands. Endocr Rev 2005; 26:78-113. [PMID: 15689574 DOI: 10.1210/er.2003-0024] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PTH is a major systemic regulator of the concentrations of calcium, phosphate, and active vitamin D metabolites in blood and of cellular activity in bone. Intermittently administered PTH and amino-terminal PTH peptide fragments or analogs also augment bone mass and currently are being introduced into clinical practice as therapies for osteoporosis. The amino-terminal region of PTH is known to be both necessary and sufficient for full activity at PTH/PTHrP receptors (PTH1Rs), which mediate the classical biological actions of the hormone. It is well known that multiple carboxyl-terminal fragments of PTH are present in blood, where they comprise the major form(s) of circulating hormone, but these fragments have long been regarded as inert by-products of PTH metabolism because they neither bind to nor activate PTH1Rs. New in vitro and in vivo evidence, together with older observations extending over the past 20 yr, now points strongly to the existence of novel large carboxyl-terminal PTH fragments in blood and to receptors for these fragments that appear to mediate unique biological actions in bone. This review traces the development of this field in the context of the evolution of our understanding of the "classical" receptor for amino-terminal PTH and the now convincing evidence for these receptors for carboxyl-terminal PTH. The review summarizes current knowledge of the structure, secretion, and metabolism of PTH and its circulating fragments, details available information concerning the pharmacology and actions of carboxyl-terminal PTH receptors, and frames their likely biological and clinical significance. It seems likely that physiological parathyroid regulation of calcium and bone metabolism may involve receptors for circulating carboxy-terminal PTH ligands as well as the action of amino-terminal determinants within the PTH molecule on the classical PTH1R.
Collapse
Affiliation(s)
- Timothy M Murray
- Department of Medicine, University of Toronto, and the Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
22
|
Ahlström M, Pekkinen M, Huttunen M, Lamberg-Allardt C. Dexamethasone down-regulates cAMP-phosphodiesterase in human osteosarcoma cells. Biochem Pharmacol 2004; 69:267-75. [PMID: 15627479 DOI: 10.1016/j.bcp.2004.09.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 09/17/2004] [Indexed: 11/17/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is an important second messenger in the hormonal regulation of bone metabolism. cAMP is inactivated by the cyclic nucleotide phosphodiesterases (PDEs), a superfamily of enzymes divided into 11 known families, designated PDE1-11. Interference with the cAMP signaling pathway has been suggested as one mechanism causing glucocorticoid induced osteoporosis. We speculated that glucocorticoids could affect the cAMP pathway by a down-regulation of PDE-mediated cAMP hydrolysis. The main cAMP hydrolysing enzyme families of human MG-63 and SaOS-2 osteosarcoma cells were identified as PDE1 and PDE4 by assaying the PDE activity of Q-sepharose fractions and cell homogenates with selective inhibitors. Treatment with the glucocorticoid dexamethasone (Dex) decreased cAMP-PDE activity by up to 50%, without affecting cGMP-PDE activity. Dex treatment reduced the sensitivity of the total cAMP-PDE activity towards the PDE4 selective PDE inhibitor rolipram. Forskolin stimulated cAMP accumulation was increased 30-60-fold in the presence of rolipram. Treatment with Dex did not affect the basal or forskolin stimulated cAMP accumulation, but treatment resulted in a reduced effect of rolipram on cAMP accumulation. Expression of the following cAMP-PDE subtypes were detected by reverse transcriptase PCR (RT-PCR): PDE1A, PDE1C, PDE2A, PDE3A, PDE4A, PDE4B, PDE4C, PDE4D, PDE7A, PDE7B, PDE8A, PDE10A and PDE11A. Using semi-quantitative RT-PCR, we detected a 50-70% decrease in the mRNA of PDE4A and PDE4B subtypes following Dex treatment. Further analysis revealed that Dex reduced the PDE4A4 and PDE4B1 isoforms. PDE4A1 PDE4A, PDE4A7, PDE4A10, PDE4B2 were also expressed, but Dex did not affect the transcription of these isoforms. We conclude that Dex treatment could affect the cAMP signaling pathway of human osteosarcoma cells by reducing type 4 cAMP-phosphodiesterase (PDE4).
Collapse
Affiliation(s)
- Mikael Ahlström
- Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 66, Helsinki 00014, Finland.
| | | | | | | |
Collapse
|
23
|
Frediani B, Spreafico A, Capperucci C, Chellini F, Gambera D, Ferrata P, Baldi F, Falsetti P, Santucci A, Bocchi L, Marcolongo R. Long-term effects of neridronate on human osteoblastic cell cultures. Bone 2004; 35:859-69. [PMID: 15454093 DOI: 10.1016/j.bone.2004.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 05/08/2004] [Accepted: 06/03/2004] [Indexed: 01/06/2023]
Abstract
UNLABELLED Bisphosphonates (BPs) are widely used in the treatment of a variety of bone-related diseases, particularly where the bone turnover is skewed in favor of osteolysis. The mechanisms by which BPs reduce bone resorption directly acting on osteoclasts are now largely clarified even at molecular level. Researches concerning the BP's effects on osteoblast have instead shown variable results. Many in vitro studies have reported positive effects on osteoblasts proliferation and mineralization for several BPs; however, the observed effects differ, depending on the variety of different model system that has been used. OBJECTIVES We have investigated if neridronate, an aminobisphosphonate suitable for pulsatory parenteral administration, could have an effect on human osteoblastic proliferation and differentiation in vitro. METHODS We have investigated whether prolonged addition of neridronate (from 10(-3) to 10(-11) M) to different human osteoblasts cultures, obtained from 14 different bone specimens, could affect the cells number, the endogenous cellular alkaline phosphatase (ALKP) activity, and the formation of mineralized nodules. RESULTS Our results show that neridronate does not negatively affect in vitro the viability, proliferation, and cellular activity of normal human osteoblasts even after a long period addition of the drug (20 days) at concentrations equal or lower than 10(-5) mol/l (therapeutic dose). In addition, neridronate seems to enhance the differentiation of cultured osteoblasts in mature bone-forming cells. A maximum increase of alkaline phosphatase activity (+50% after 10 days; P < 0.01) and mineralized nodules (+48% after 20 days; P < 0.05) was observed in cultures treated with neridronate 10(-8) M. CONCLUSIONS These results encourage the use of neridronate in long-term therapy of demineralizing metabolic bone disorders.
Collapse
Affiliation(s)
- Bruno Frediani
- Rheumatology Unit, Department of Clinical Medicine and Immunological Sciences, University of Siena, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Siggelkow H, Schmidt E, Hennies B, Hüfner M. Evidence of downregulation of matrix extracellular phosphoglycoprotein during terminal differentiation in human osteoblasts. Bone 2004; 35:570-6. [PMID: 15268910 DOI: 10.1016/j.bone.2004.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 03/10/2004] [Accepted: 03/30/2004] [Indexed: 10/26/2022]
Abstract
Matrix extracellular phosphoglycoprotein (MEPE) is an extracellular matrix protein that was first detected in tumor-induced osteomalacia (TIO). Investigations in mice revealed that MEPE is expressed in bone and teeth in a maturation-dependent manner, reaching its maximum during mineralization. However, from knockout experiments, although it has become clear that MEPE might function as a mineralization inhibitor, the exact mechanism of action is still unclear. Even less is known about the regulation of MEPE in men. Therefore, we have studied the time- and maturation-dependent expression of MEPE in two human osteoblast culture systems, the osteosarcoma cell line HOS 58 and primary trabecular osteoblasts. Cells were cultured for up to 29 days, and the influence of beta-glycerophosphate (bGP), ascorbate, transforming growth factor beta (TGF-beta), BMP-2, and dexamethasone was studied. HOS 58 cells showed no significant effect on MEPE gene expression up to 5.0 mM, but a significant inhibition was revealed at 10 and 20 mM, when osteocalcin (OC) expression was maximal. Under the same conditions, primary human osteoblasts showed no effect on MEPE gene expression. However, when cultured in the presence of 5 mM beta-glycerophosphate, ascorbate, and dexamethasone for 29 days, which are similar conditions to those described by Owen in his differentiation model in rat osteoblasts, a progressive inhibition of MEPE gene expression to 20% of the maximum was observed. Increasing osteocalcin expression indicated advancing differentiation. In conclusion, in contrast to the results in mice, when MEPE was maximally expressed during mineralization, in the human system, this factor seems to be maximally active in the proliferation and early matrix maturation phase. It was, however, strongly suppressed, associated with the mineralization phase.
Collapse
Affiliation(s)
- H Siggelkow
- Department of Gastroenterology and Endocrinology, Georg-August-University, Göttingen, Germany.
| | | | | | | |
Collapse
|
25
|
Hernández MV, Guañabens N, Alvarez L, Monegal A, Peris P, Riba J, Ercilla G, Martínez de Osaba MJ, Muñoz-Gómez J. Immunocytochemical evidence on the effects of glucocorticoids on type I collagen synthesis in human osteoblastic cells. Calcif Tissue Int 2004; 74:284-93. [PMID: 14583839 DOI: 10.1007/s00223-002-1095-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Accepted: 05/29/2003] [Indexed: 10/26/2022]
Abstract
The effects of glucocorticoids on DNA synthesis and cellular function were assessed in cultures of human osteoblastic cells by using indirect immunoperoxidase staining with a type I antiprocollagen antibody and by measuring procollagen type I N and C propeptides (PINP, PICP) in the culture medium by radiometric methods. Likewise, we analyzed the correlation between intracellular immunostaining and procollagen propeptides released into the culture medium, as well as the correlation between PINP and PICP. Human osteoblasts were cultured with and without addition of dexamethasone (DEX) at two supraphysiological concentrations, 10(-6) M and 10(-7) M, for 24 and 48 h. Treatment with DEX at 10(-6) M was associated with a significant decrease in the percentage of cells showing intracellular type I procollagen immunoreactivity at 24 and 48 h ( P < 0.05). Similar effects were observed with 10(-7) M DEX. Dexamethasone 10(-6) M and 10(-7) M also induced significant decreases in PINP and PICP values after 24 and 48 h of treatment ( P < 0.05). The decrease in intracellular procollagen immunoreactivity and propeptide secretion was not associated with a reduction in DNA synthesis. A highly significant correlation was observed between the values of PINP and PICP in the culture medium as well as between the values of intracellular immunostaining and PINP and PICP ( P < 0.001). In conclusion, our results suggest that supraphysiological doses of glucocorticoids produce a direct inhibition on osteoblastic function through their effect on type I procollagen synthesis. Immunoperoxidase detection of type I intracellular procollagen as well as the quantification of PINP and PICP in the culture medium are reliable methods of assessing osteoblast function.
Collapse
Affiliation(s)
- M V Hernández
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Olkku A, Bodine PVN, Linnala-Kankkunen A, Mahonen A. Glucocorticoids induce glutamine synthetase expression in human osteoblastic cells: a novel observation in bone. Bone 2004; 34:320-9. [PMID: 14962810 DOI: 10.1016/j.bone.2003.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Revised: 08/28/2003] [Accepted: 09/26/2003] [Indexed: 01/12/2023]
Abstract
Glucocorticoids have marked effects on bone metabolism, and continued exposure of skeletal tissue to excessive amounts of these steroids results in osteoporosis. Therefore, in the present proteomic study, we characterized the potential effects of glucocorticoids on protein expression in human osteoblastic cells. Using two-dimensional gel electrophoresis and mass spectrometry, we identified an increased expression of glutamine synthetase (GS) in dexamethasone (Dex)-treated human MG-63 osteosarcoma cells. GS is an enzyme catalyzing the conversion of glutamate and ammonia to glutamine. Intracellular and extracellular glutamate levels may be important in cell signalling mediated by glutamate transporters and receptors which have recently been found in bone cells. The induction of GS protein by Dex was accompanied by an increase in mRNA level and enzyme activity. Dex induction of GS was also mediated by glucocorticoid receptors (GRs) because it was blocked by the GR antagonist RU-38486. In addition, Dex induction of GS expression was partially blocked by cyclohexamide indicating that it at least partly required new protein synthesis. GS induction by Dex was not associated with apoptosis as determined by Bax/Bcl-2 ratio and DNA staining. In addition to MG-63 cells, Dex induction of GS was also observed in human G-292 osteosarcoma cells as well as conditionally immortalized human preosteoblastic (HOB-03-C5) and mature osteoblastic (HOB-03-CE6) cells. However, in two other human osteosarcoma cell lines, SaOS-2 and U2-OS, GS expression was not affected by Dex. This observation may be explained by the lower levels of GR protein in these cells. In summary, this is the first report of the regulation of GS expression by glucocorticoids in bone cells. The role of GS in bone cell metabolism and glucocorticoid action on the skeleton is not yet known, but as a modulator of intracellular glutamate and glutamine levels, it may have an important role in these processes.
Collapse
Affiliation(s)
- A Olkku
- Department of Medical Biochemistry, University of Kuopio, Kuopio, Finland.
| | | | | | | |
Collapse
|
27
|
Murata H, Tanaka H, Taguchi T, Shiigi E, Mizokami H, Sugiyama T, Kawai S. Dexamethasone induces human spinal ligament derived cells toward osteogenic differentiation. J Cell Biochem 2004; 92:715-22. [PMID: 15211569 DOI: 10.1002/jcb.20090] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ossification of spinal ligament is characterized by heterotopic bone formation in the spinal ligaments that are normally composed of fibrous tissues. The pathogenesis of ossification of spinal ligament has been suggested to be associated with osteogenic differentiation of the spinal ligament cells. In order to address this hypothesis, cells derived from human spinal ligament were investigated for their osteogenic potential by the treatment of dexamethasone in vitro. Yellow ligaments were obtained from patients with spinal disorders except ossification of spinal ligament during surgery, and the adhering tissues were removed completely. Most of the ligament cells treated with vehicle exhibited a fibroblast-like spindle shape, while the dexamethasone-treated cells acquired a polygonal morphology. Growth of the ligament cells was suppressed by dexamethasone at a high concentration. Some of the vehicle treated-cells were alkaline phosphatase-positive, and dexamethasone increased the alkaline phosphatase-positive cells and alkaline phosphatase activity in the cells. Northern blot analysis demonstrated that mRNAs expression of pro-alpha1(I) collagen and alkaline phosphatase were promoted by dexamethasone. Analysis by reverse transcription-polymerase chain reaction showed that expression of osteocalcin mRNA was detected in the dexamethasone-treated cells but not in the vehicle-treated cells, and dexamethasone-induced osteocalcin mRNA expression was promoted by 1,25-dihydroxyvitamin D(3). Finally, mineralization of extracellular matrix in the cells was induced by the presence of dexamethasone and 1,25-dihydroxyvitamin D(3). These results suggest for the first time that dexamethasone has a possible involvement in the osteoblastic differentiation of human spinal ligament cells.
Collapse
Affiliation(s)
- Hidenori Murata
- Department of Orthopedic Surgery, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Tuli R, Seghatoleslami MR, Tuli S, Wang ML, Hozack WJ, Manner PA, Danielson KG, Tuan RS. A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. Mol Biotechnol 2003. [PMID: 12611268 DOI: 10.1385/mb: 23: 1: 37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In vitro cultures of primary, human trabecular bone-derived cells represent a useful system for investigation of the biology of osteoblasts. Our recent discovery of the multilineage mesenchymal differentiation potential of trabecular bone-derived cells suggests the potential application of these cells as mesenchymal progenitors for tissue repair and regeneration. Such applications are crucially dependent on efficient cell-isolation protocols to yield cells that optimally proliferate and differentiate. In this study, we describe a simple, high-yield procedure, requiring minimal culture expansion, for the isolation of mesenchymal progenitor cells from human trabecular bone. Moreover, these cells retain their ability to differentiate along multiple mesenchymal lineages through successive subculturing. Cell populations isolated and cultured as described here allow the efficient acquisition of a clinically significant number of cells, which may be used as the cell source for tissue-engineering applications.
Collapse
Affiliation(s)
- Richard Tuli
- Cartilage Biology and Orthopedics Branch, 50 South Drive, Rm 1503, MSC 8022, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tuli R, Seghatoleslami MR, Tuli S, Wang ML, Hozack WJ, Manner PA, Danielson KG, Tuan RS. A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. Mol Biotechnol 2003; 23:37-49. [PMID: 12611268 DOI: 10.1385/mb:23:1:37] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In vitro cultures of primary, human trabecular bone-derived cells represent a useful system for investigation of the biology of osteoblasts. Our recent discovery of the multilineage mesenchymal differentiation potential of trabecular bone-derived cells suggests the potential application of these cells as mesenchymal progenitors for tissue repair and regeneration. Such applications are crucially dependent on efficient cell-isolation protocols to yield cells that optimally proliferate and differentiate. In this study, we describe a simple, high-yield procedure, requiring minimal culture expansion, for the isolation of mesenchymal progenitor cells from human trabecular bone. Moreover, these cells retain their ability to differentiate along multiple mesenchymal lineages through successive subculturing. Cell populations isolated and cultured as described here allow the efficient acquisition of a clinically significant number of cells, which may be used as the cell source for tissue-engineering applications.
Collapse
Affiliation(s)
- Richard Tuli
- Cartilage Biology and Orthopedics Branch, 50 South Drive, Rm 1503, MSC 8022, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Nöth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 2002; 20:1060-9. [PMID: 12382974 DOI: 10.1016/s0736-0266(02)00018-9] [Citation(s) in RCA: 348] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Explant cultures of adult human trabecular bone fragments give rise to osteoblastic cells, that are known to express osteoblast-related genes and mineralize extracellular matrix. These osteoblastic cells have also been shown to undergo adipogenesis in vitro and chondrogenesis in vivo. Here we report the in vitro developmental potential of adult human osteoblastic cells (hOB) derived from explant cultures of collagenase-pretreated trabecular bone fragments. In addition to osteogenic and adipogenic differentiation, these cells are capable of chondrogenic differentiation in vitro in a manner similar to adult human bone marrow-derived mesenchymal progenitor cells. High-density pellet cultures of hOB maintained in chemically defined serum-free medium, supplemented with transforming growth factor-beta1, were composed of morphologically distinct, chondrocyte-like cells expressing mRNA transcripts of collagen types II, IX and X, and aggrecan. The cells within the high-density pellet cultures were surrounded by a sulfated proteoglycan-rich extracellular matrix that immunostained for collagen type II and proteoglycan link protein. Osteogenic differentiation of hOB was verified by an increased number of alkaline phosphatase-positive cells, that expressed osteoblast-related transcripts such as alkaline phosphatase, collagen type I, osteopontin and osteocalcin, and formed mineralized matrix in monolayer cultures treated with ascorbate, beta-glycerophosphate, and bone morphogenetic protein-2. Adipogenic differentiation of hOB was determined by the appearance of intracellular lipid droplets, and expression of adipocyte-specific genes, such as lipoprotein lipase and peroxisome proliferator-activated receptor gamma2, in monolayer cultures treated with dexamethasone, indomethacin, insulin and 3-isobutyl-1-methylxanthine. Taken together, these results show that cells derived from collagenase-treated adult human trabecular bone fragments have the potential to differentiate into multiple mesenchymal lineages in vitro, indicating their developmental plasticity and suggesting their mesenchymal progenitor nature.
Collapse
Affiliation(s)
- Ulrich Nöth
- Departmnent of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
31
|
Siggelkow H, Schenck M, Rohde M, Viereck V, Tauber S, Atkinson MJ, Hüfner M. Prolonged culture of HOS 58 human osteosarcoma cells with 1,25-(OH)2-D3, TGF-beta, and dexamethasone reveals physiological regulation of alkaline phosphatase, dissociated osteocalcin gene expression, and protein synthesis and lack of mineralization. J Cell Biochem 2002; 85:279-94. [PMID: 11948684 DOI: 10.1002/jcb.10122] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cultured rodent osteoblastic cells reiterate the phenotypic differentiation and maturation of osteoblasts seen in vivo. As previously shown, the human osteosarcoma cell line HOS 58 represents a differentiated stage of osteoblast development. The potential of HOS 58 for still further in vitro differentiation suggests the line can serve as a model of osteoblast maturation. Using this cell line, we have investigated the influence of 1,25-(OH)2-D3 (D3), TGF-beta and Dexamethasone (Dex) on proliferation and on the protein and mRNA levels of alkaline phosphatase (AP), procollagen 1 (Col 1), and osteocalcin (Oc), as well as mineralization during 28 days in culture. AP mRNA and protein were highly expressed throughout the culture period with further increase of protein AP activity at constant gene expression levels. A differentiation inhibiting effect of either TGF-beta or Dex was seen. Col 1 was investigated without the use of ascorbic acid and showed only minor changes during culture time or stimulation. The gene expression for Oc increased continually whereas protein synthesis peaked at confluence and decreased thereafter. TGF-beta and Dex treatments decreased Oc mRNA and protein levels. Stimulation by D3 was maximal at day 7 with a decrease thereafter. HOS 58 cells showed no mineralization capacity when stimulated with different agents, as measured by energy-dispersive X-ray microanalysis. This was not due to absence of Cbfa1 expression. In conclusion, the HOS 58 osteosarcoma cell line represents a differentiated cell line with highly expressed and physiologically regulated AP expression during further differentiation in culture. We observed a dissociation between osteocalcin gene expression and protein secretion which may contribute to the lack of mineralization in this cell line.
Collapse
Affiliation(s)
- Heide Siggelkow
- Department for Gastroenterology and Endocrinology, Georg-August-University, Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Human trabecular bone-derived cells (HTBs) have been used for many years as osteoblast progenitors. In this study we tested whether HTBs have stem cell characteristics; that is, whether they are pluripotent and able to self-renew. We show that HTBs readily differentiate into osteoblasts, chondrocytes, and adipocytes if subjected to the appropriate differentiating conditions. Importantly, differentiation into these three lineages is maintained in single cell clones derived by limiting dilution, following expansion over more than 20 cumulative population doublings. We conclude that cultures of HTBs are equivalent to cultures of "mesenchymal stem cells" (MSCs) isolated from bone marrow.
Collapse
Affiliation(s)
- V Sottile
- Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Gao T, Aro HT, Ylänen H, Vuorio E. Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials 2001; 22:1475-83. [PMID: 11374446 DOI: 10.1016/s0142-9612(00)00288-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A chemical exchange of the silica gel layer forming on the surface of bioactive glasses is thought to be the principal reaction for bone-bioactive glass bonding. The contribution of biological molecules on cell-bioactive glass interaction is largely unknown. To further analyze the mechanisms involved in efficient bone bonding to bioactive glass, Saos-2 osteoblastic cells with proven osteogenic phenotype were cultured for 4, 7 and 14 days on two bioactive glasses with different Si contents. Culture plates and dishes made of bioactive (BAG, 53 % SiO2), biocompatible (BCG, 58% SiO2) and control (GO) glasses were extensively conditioned with phosphate buffer and DMEM medium before seeding the cells. Northern hybridization was used for analysis of mRNA levels of collagen type I (Col-I), alkaline phosphatase (ALP) and bone morphogenetic protein-2 (BMP-2). A significant increase was observed in Col-I mRNA levels in cells grown on the two bioactive glasses when compared with those grown on controls at 4 and 7 days (p < 0.04). The mRNA level for ALP in the cultures of bioactive glasses-made plates and dishes was also increased over control at 7 days (p < 0.02) and remained this way between BAG and G0 at 14 days. Striking differences in BMP-2 mRNA levels existed between BAG and G0 plates and dishes at 7 days (p < 0.05). BMP-2 mRNA level in BAG group was higher than in BCG group at 4, 7 and 14 days, but without statistical significance. Saos-2 osteoblastic cells with strong ALP staining were mostly seen on BAG plates under a light microscope. In confocal microscopy, a bright FITC-stained F-actin ring was present in the cytoplasm of cells grown on BAG dish, demonstrating an active functional status. Stimulation of the expression of BMP-2 and other bone mRNAs by bioactive glasses in osteoblastic cells suggests biological involvement of bone related growth factors, peptides and cytokines in bone-bioactive glass bonding.
Collapse
Affiliation(s)
- T Gao
- Department of Medical Biochemistry and Molecular Biology, University of Turku, Finland.
| | | | | | | |
Collapse
|
34
|
Yamanouchi K, Satomura K, Gotoh Y, Kitaoka E, Tobiume S, Kume K, Nagayama M. Bone formation by transplanted human osteoblasts cultured within collagen sponge with dexamethasone in vitro. J Bone Miner Res 2001; 16:857-67. [PMID: 11341330 DOI: 10.1359/jbmr.2001.16.5.857] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To apply osteoblasts to bone reconstruction, we proved that transplanted osteoblasts possessed the differentiated osteoblastic function and formed bonelike tissue in vivo after transplantation. First, we confirmed that dexamethasone (Dex) promoted the expression of osteoblastic phenotype in human osteoblast culture using reverse-transcription-polymerase chain reaction (RT-PCR). These osteoblasts were cultured for 10 days within collagen sponge, which consists of denatured type I collagen, in the presence or absence of 10(-7) M Dex. The osteoblasts along with collagen sponge were transplanted into the trapezius muscles of 8-week-old severe combined immunodeficiency (SCID) mice, and the transplants were harvested at 2, 4, 6, and 8 weeks. At 2 weeks, Dex-treated osteoblasts formed bonelike tissue, the quantity of which increased in a time-dependent manner to 8 weeks. This bonelike tissue was composed of mineralized collagen matrix newly synthesized by the transplanted osteoblasts. This mineralized matrix was separated from the osteoblasts by nonmineralized matrixlike osteoid. Furthermore, many osteocytic cells were observed in this mineralized matrix. A high expression of alkaline phosphatase (ALPase) and osteocalcin was detected in the transplanted cells surrounding the bonelike tissue. In situ hybridization for human-specific alu sequence indicated that newly formed bone was of donor origin. The transplants of nontreated cells failed to form bonelike tissue. The transplants of collagen sponge alone formed no bonelike tissue. These studies indicate that Dex-treated human osteoblasts possess the differentiated osteoblastic function and are able to form bone tissue in vivo. These new findings are of use in facilitating the application of osteoblasts to bone reconstruction.
Collapse
Affiliation(s)
- K Yamanouchi
- First Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Rao LG, Liu LJ, Rawlins MR, McBroom RJ, Murray TM, Reddy GS, Uskokovic MR, Rao DS, Sutherland MK. The biological activities of 1alpha,25-dihydroxyvitamin D3 and its synthetic analog 1alpha,25-dihydroxy-16-ene-vitamin D3 in normal human osteoblastic cells and human osteosarcoma SaOS-2 cells are modulated by 17-beta estradiol and dependent on stage of differentiation. Biol Pharm Bull 2001; 24:242-8. [PMID: 11256478 DOI: 10.1248/bpb.24.242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared the effects of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] and its analog, 1alpha,25-dihydroxy-16-ene-vitamin D3 [1alpha,25(OH)2-16-ene-D3], as well as their interactions with 17-beta estradiol (E2) on osteoblastic function in our human normal (HOB) and osteosarcoma SaOS-2 cell models representing two different stages of differentiation, the more differentiated HOB+DEX cells and SaOS+DEX cells, and the corresponding less differentiated HOB-DEX and SaOS-DEX cells. The differential effects of 1alpha,25(OH)2D3 and 1alpha,25(OH)2-16-ene-D3 and the modulation by E2 on ALP activity in HOB-DEX and HOB+DEX cells were small but significant. The most significant effects were seen in SaOS+DEX cells, in which 1alpha,25(OH)2-16-ene-D3 was 100-fold more potent than 1alpha,25(OH)2D3, the maximal enhancement being exerted at 0.1 nM and 10 nM, respectively. E2 enhanced the stimulatory effects of both compounds, with ALP being increased 2-fold at 0.1 nM (p<0.001). Osteocalcin (OC) production in HOB-DEX cells was stimulated 1.3 to 1.4-fold by 1alpha,25(OH)2D3 and 1alpha,25(OH)2-16-ene-D3 at a concentration of 0.01 nM, with E2 inhibiting the effect of 1alpha,25(OH)2-16-ene-D3. In SaOS-DEX and SaOS+DEX cells, 1alpha,25(OH)2D3 and 1alpha,25(OH)2-16-ene-D3 stimulated OC production 1.6-fold at 0.1 nM with E2 slightly enhancing the effect of 1alpha,25(OH)2D3. Western blot analysis of 1alpha,25(OH)2D3 receptor (VDR) levels showed that in SaOS+DEX cells, the effect of 1alpha,25(OH)2D3 was larger than that of 1alpha,25(OH)2-16-ene-D3. These results show that 1alpha,25(OH)2-16-ene-D3 is biologically active in human osteoblasts.
Collapse
Affiliation(s)
- L G Rao
- St. Michael's Hospital, Department of Medicine, University of Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lecanda F, Cheng SL, Shin CS, Davidson MK, Warlow P, Avioli LV, Civitelli R. Differential regulation of cadherins by dexamethasone in human osteoblastic cells. J Cell Biochem 2000; 77:499-506. [PMID: 10760957 DOI: 10.1002/(sici)1097-4644(20000601)77:3<499::aid-jcb14>3.0.co;2-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human osteoblasts express a repertoire of cadherins, including N-cadherin (N-cad), cadherin-11 (C11), and cadherin-4 (C4). We have previously shown that direct cell-cell adhesion via cadherins is critical for BMP-2-induced osteoblast differentiation. In this study, we have analyzed the regulation of cadherin expression in normal human trabecular bone osteoblasts (HOB), and osteoprogenitor marrow stromal cells (BMC), during exposure to dexamethasone, another inducer of human bone cell differentiation. Dexamethasone inhibited the expression of both C11 and N-cad mRNA in both BMC and HOB, although the effect was much more pronounced on N-cad than on C11. This action of the steroid was dose dependent, was maximal at 10(-7) M concentration, and occurred as early as after 1 day of incubation. By contrast, expression of C4 mRNA and protein was strongly induced by dexamethasone in BMC and was stimulated in HOB. This stimulatory effect lasted for at least 2 weeks of incubation. A cadherin inhibitor, HAV-containing decapeptide only partially ( approximately 50%) prevented dexamethasone-induced stimulation of alkaline phosphatase activity by BMC, which instead was not altered by incubation with a neutralizing antibody against C4. Therefore, the pattern of cadherin regulation by dexamethasone radically differs form that observed with BMP-2. Dexamethasone effects on certain osteoblast differentiated features, such as induction of alkaline phosphatase activity are not strictly dependent on cadherin function.
Collapse
Affiliation(s)
- F Lecanda
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Rao LG, Murray TM. Studies of human osteoblasts in vitro: Estrogen actions and interactions with other hormones at different stages of differentiation. Drug Dev Res 2000. [DOI: 10.1002/(sici)1098-2299(200003)49:3<174::aid-ddr8>3.0.co;2-s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Cheng SL, Lai CF, Fausto A, Chellaiah M, Feng X, McHugh KP, Teitelbaum SL, Civitelli R, Hruska KA, Ross FP, Avioli LV. Regulation of alphaVbeta3 and alphaVbeta5 integrins by dexamethasone in normal human osteoblastic cells. J Cell Biochem 2000; 77:265-76. [PMID: 10723092 DOI: 10.1002/(sici)1097-4644(20000501)77:2<265::aid-jcb9>3.0.co;2-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long-term administration of pharmacological doses of glucocorticoids inhibits bone formation and results in osteoporosis. Since integrin-mediated cell-matrix interactions are essential for osteoblast function, we hypothesized that the detrimental effect of glucocorticoids on bone derived, at least in part, from decreased integrin-matrix interactions. Because alphavbeta3 and alphavbeta5 integrins can interact with several bone matrix proteins, we analyzed the effects of dexamethasone (Dex) on the expression of these integrins in normal human osteoblastic cells. We found adhesion of these cells to osteopontin and vitronectin to be dependent on alphavbeta3 and alphavbeta5, respectively; this ligand specificity was not altered by Dex. The effects of Dex on the adhesion of human osteoblastic cells to osteopontin and vitronectin were biphasic with an increase after 2 days, followed by a decrease after 8 days of treatment. Consistently, surface alphavbeta3 and alphavbeta5 integrins, which were increased after 2 days of Dex treatment, were decreased after 8 days. Similarly, total cellular alphav, beta3, and beta5 proteins, which were increased by Dex early in the culture, were diminished after 8 days. Metabolic labeling studies indicated that Dex exhibited biphasic regulation on the biosynthesis of alphavbeta5, with stimulation observed during the second day of treatment, followed by inhibition during the 8th day of exposure. By contrast, the biosynthesis of alphavbeta3 was inhibited by Dex on day 1 and remained inhibited on day 8. Analysis of the mRNA indicated that alphav and beta5 levels were increased by Dex during early exposure (1-3 days), followed by inhibition after prolonged exposure (>/=7 days). By contrast, Dex decreased beta3 mRNA level at all the time points analyzed. Consistently, Dex decreased beta3 promoter activity after 1 day and persisted over 8-day period. By contrast, Dex stimulated beta5 promoter activity after 1 or 2 days but had no effect after 8 days. To further evaluate mechanism(s) leading to the decreased integrin expression after prolonged Dex treatment, mRNA stability was analyzed. Dex was found to accelerate the degradation of alphav, beta3 and beta5 mRNA after an 8-day treatment. Thus, the regulation of alphavbeta3 was dependent on transcription and posttranscriptional events whereas the expression of alphavbeta5 was dependent mainly on posttranscriptional events after prolonged Dex treatment. In conclusion, Dex exhibited time-dependent regulation on the expression of alphavbeta3 and alphavbeta5 integrins in normal human osteoblastic cells. Short-term exposure to Dex increased the levels of alphavbeta3 and alphavbeta5 on the surface and cell adhesion to osteopontin and vitronectin whereas long-term exposure to Dex decreased the expression of both integrins and inhibited the cell adhesion to matrix proteins.
Collapse
Affiliation(s)
- S L Cheng
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
This article attempts to evaluate the results of several recently published clinical trials of drugs used in the treatment and prevention of glucocorticoid-induced osteoporosis. Despite our lack of understanding regarding the biological mechanisms that lead to glucocorticoid-induced bone loss, effective therapy has been developed. Bisphosphonates have demonstrated significant treatment benefits and should be considered the therapy of choice for both the treatment and prevention of glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- P Boulos
- St. Joseph's Hospital, McMaster University, 501 - 25 Charlton Avenue E, Hamilton, Ontario, L8N 1Y2, Canada
| | | | | |
Collapse
|
40
|
Abstract
Etidronate disodium is an oral bisphosphonate compound known to reduce bone resorption through the inhibition of osteoclastic activity. This article is a review of its efficacy and safety in the treatment and prevention of postmenopausal and corticosteroid-induced osteoporosis. In general, studies of cyclical etidronate therapy (400 mg daily for 2 wk every 3 mo) have found a significant improvement in bone density. These studies have not been powered to study fracture incidence, but a reduced fracture rate has been found in some of the studies reviewed. Studies examining cyclical etidronate in the prevention of osteoporosis indicate it prevents early menopausal bone loss and is free of significant side effects. In both prevention of corticosteroid-induced osteoporosis and treatment of patients who have been on long-term corticosteroid therapy, cyclical etidronate appears to increase bone density and prevent further loss of bone. In summary, a review of available literature pertaining to the use of etidronate in prevention and treatment of primary and secondary osteoporosis has been presented. This review suggests etidronate, used as a cyclical therapy, is a safe and effective therapy. The weight of evidence suggests it is capable of reducing fracture risk in patients with osteoporosis. Increases in bone density at the spine and hip are not as pronounced as with some other bisphosphonates, particularly alendronate, but no direct clinical comparison trials of significant size or duration have been undertaken.
Collapse
Affiliation(s)
- D A Hanley
- Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
41
|
McCarthy TL, Ji C, Chen Y, Kim K, Centrella M. Time- and dose-related interactions between glucocorticoid and cyclic adenosine 3',5'-monophosphate on CCAAT/enhancer-binding protein-dependent insulin-like growth factor I expression by osteoblasts. Endocrinology 2000; 141:127-37. [PMID: 10614631 DOI: 10.1210/endo.141.1.7237] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoid has complex effects on osteoblasts. Several of these changes appear to be related to steroid concentration, duration of exposure, or specific effects on growth factor expression or activity within bone. One important bone growth factor, insulin-like growth factor I (IGF-I), is induced in osteoblasts by hormones such as PGE2 that increase intracellular cAMP levels. In this way, PGE2 activates transcription factor CCAAT/enhancer-binding protein-delta (C/EBPdelta) and enhances its binding to a specific control element found in exon 1 in the IGF-I gene. Our current studies show that preexposure to glucocorticoid enhanced C/EBPdelta and C/EBPbeta expression by osteoblasts and thereby potentiated IGF-I gene promoter activation in response to PGE2. Importantly, this directly contrasts with inhibitory effects on IGF-I expression that result from sustained or pharmacologically high levels of glucocorticoid exposure. Consistent with the stimulatory effect of IGF-I on bone protein synthesis, pretreatment with glucocorticoid sensitized osteoblasts to PGE2, and in this context significantly enhanced new collagen and noncollagen protein synthesis. Therefore, pharmacological levels of glucocorticoid may reduce IGF-I expression by osteoblasts and cause osteopenic disease, whereas physiological transient increases in glucocorticoid may permit or amplify the effectiveness of hormones that regulate skeletal tissue integrity. These events appear to converge on the important role of C/EBPdelta and C/EBPbeta on IGF-I expression by osteoblasts.
Collapse
Affiliation(s)
- T L McCarthy
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06520-8041, USA.
| | | | | | | | | |
Collapse
|
42
|
Lian JB, Stein GS, Stein JL, van Wijnen AJ. Regulated expression of the bone-specific osteocalcin gene by vitamins and hormones. VITAMINS AND HORMONES 1999; 55:443-509. [PMID: 9949687 DOI: 10.1016/s0083-6729(08)60941-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- J B Lian
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | |
Collapse
|
43
|
Ishida Y, Heersche JN. Glucocorticoid-induced osteoporosis: both in vivo and in vitro concentrations of glucocorticoids higher than physiological levels attenuate osteoblast differentiation. J Bone Miner Res 1998; 13:1822-6. [PMID: 9844099 DOI: 10.1359/jbmr.1998.13.12.1822] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Y Ishida
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.; Department of Orthopaedic Surgery, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | | |
Collapse
|
44
|
Okazaki Y, Tsurukami H, Nishida S, Okimoto N, Aota S, Takeda S, Nakamura T. Prednisolone prevents decreases in trabecular bone mass and strength by reducing bone resorption and bone formation defect in adjuvant-induced arthritic rats. Bone 1998; 23:353-60. [PMID: 9763147 DOI: 10.1016/s8756-3282(98)00116-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We examined the effects of prednisolone (PSL) administration in normal female Sprague Dawley rats and adjuvant-induced arthritic rats at the age of 6 weeks. Rats were intramuscularly injected with PSL twice a week at doses of 0 (control), 10, 30, 90, or 270 mg/kg body weight (b.w.). In the normal rats, serum osteocalcin level at 14 days and serum carboxyterminal pyridinoline cross-linked telopeptide of type 1 collagen (1CTP) level at 28 days in the 270 mg/kg dose group was lower than the respective value in control animals. The BMC and the trabecular bone formation rate (BFR/BS) of the lumbar body (L-4) in the 270 mg/kg dose group at 14 and 28 days were significantly lower than the values in the control rats. In the arthritic rats, however, serum osteocalcin levels in the PSL-treated groups did not differ compared with arthritic controls. The serum 1CTP levels in all of the PSL-treated groups were significantly reduced at 28 days. The age-dependent increases in the L4 BMC, BMD, and L-3 ultimate compressive load values were maintained. The BFR/BS values in the 90 mg/kg and 270 mg/kg dose groups were significantly higher than those in the arthritic control rats. The trabecular osteoclast number and surface values in all of the PSL-treated groups were significantly lower than the values in arthritic controls. These data demonstrate that PSL administration prevented reduction in bone mass and strength of the lumbar trabecular bone in adjuvant-induced arthritic rats by reducing the increase in bone resorption and the decrease in bone formation at both the local and systemic levels.
Collapse
Affiliation(s)
- Y Okazaki
- Department of Orthopedic Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Shalhoub V, Aslam F, Breen E, van Wijnen A, Bortell R, Stein GS, Stein JL, Lian JB. Multiple levels of steroid hormone-dependent control of osteocalcin during osteoblast differentiation: Glucocorticoid regulation of basal and vitamin D stimulated gene expression. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19980501)69:2<154::aid-jcb6>3.0.co;2-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(199702)64:2%3c295::aid-jcb12%3e3.0.co;2-i] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997. [DOI: 10.1002/(sici)1097-4644(199702)64:2<295::aid-jcb12>3.0.co;2-i] [Citation(s) in RCA: 1625] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
48
|
Jonsson KB, Frost A, Larsson R, Ljunghall S, Ljunggren O. A new fluorometric assay for determination of osteoblastic proliferation: effects of glucocorticoids and insulin-like growth factor-I. Calcif Tissue Int 1997; 60:30-6. [PMID: 9030477 DOI: 10.1007/s002239900182] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A novel fluorometric proliferation assay, AlamarBlue (AB), was used to study the proliferative capacity of isolated human osteoblasts (hOBs). AB is an oxidation-reduction indicator that yields a fluorescent signal in response to metabolic activity. The assay was performed by replacing the experiment media in a microtiter plate with a 10% AB solution and measuring fluorescence after a 3-8-hour incubation. The assay was optimized with respect to incubation time, cell density, and AB concentration. When the results of the AB assay were compared with cell counting in a Bürker chamber there were consistently good correlations (r > 0.9), regardless of the agonist with which the cells were treated. The mean intraassay coefficient of variance (CV) values were 9.9-11.8% in experiments where osteoblasts were treated for 12 days with insulin-like growth factor-I (IGF-I; 100 nM), or dexamethasone (1 micro;M). IGF-I dose dependently, at and above 1 nM, stimulated proliferation of hOBs. This effect was detectable after 3 days and reached 130-140% of untreated controls after 12 days in culture. The effects of dexamethasone (DEX) on the proliferation rate of hOBs were more complex. In short-term cultures, 3 days, DEX dose dependently stimulated proliferation. However, at and above 6 days, DEX exerted a biphasic effect, with stimulation seen at 1-10 nM and a marked inhibition of cell proliferation at and above 100 nM. dexamethasone, hydrocortisone, prednisolone, and deflazacort had almost identical biphasic effects on osteoblastic proliferation in 12 day cultures with a stimulation seen at 1-10 nM, and a marked inhibition down to 50-60% of untreated controls at and above 100 nM. When IGF-I (0. 1-100 nM; 12 day culture) was combined with different doses of DEX, IGF-I still dose dependently stimulated the proliferation rate in hOBs regardless of the amount of DEX added. The stimulatory effect of DEX (10 nM, 12 days culture) was additive to the effect of 100 nM IGF-I. We conclude that AB is an easy and reliable assay for osteoblastic cell proliferation, well suited for large scale studies of cell growth using small amounts of cells, and that IGF-I partly reverses the glucocorticoid-induced inhibition of osteoblastic proliferation.
Collapse
Affiliation(s)
- K B Jonsson
- Department of Internal Medicine, University of Uppsala, S-751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
49
|
King CS, Weir EC, Gundberg CW, Fox J, Insogna KL. Effects of continuous glucocorticoid infusion on bone metabolism in the rat. Calcif Tissue Int 1996; 59:184-91. [PMID: 8694896 DOI: 10.1007/s002239900107] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of continuous administration of supraphysiologic doses of dexamethasone (DEX) on bone metabolism were examined in rats. Adult, male, Sprague Dawley rats were infused with DEX at a constant rate of 16.25 microg/day for 19 days. Despite soft tissue catabolism, DEX treatment led to a significant increase in bone volume in all experiments. This was accompanied by a significant gain in femoral weight and calcium content. These findings were also observed in DEX-treated parathyroidectomized animals indicating that intact parathyroid function was not required for this effect. DEX treatment did not affect mean levels of serum calcium or phosphorus but led to significant declines in circulating levels of PTH and 1,25(OH)2D and in the urinary calcium/creatinine ratio. This latter finding was also observed in PTX animals in which 1,25(OH)2D levels did not change. Serum concentrations of osteocalcin and tartrate-resistant acid phosphatase both declined in a time-dependent manner with DEX treatment suggesting a slowing of bone turnover with the net effect favoring formation. However, histomorphometric findings were variable. Two of three experiments demonstrated a decrease in cellular parameters of formation and resorption and in one experiment, these indices increased. Mineralized surface increased with DEX treatment. We conclude that, in marked contrast to the findings in man and certain other species, DEX treatment increases bone mass in rats. This may in part relate to a relatively greater suppression of resorption vis à vis formation.
Collapse
Affiliation(s)
- C S King
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
50
|
Chaudhary LR, Avioli LV. Regulation of interleukin-8 gene expression by interleukin-1beta, osteotropic hormones, and protein kinase inhibitors in normal human bone marrow stromal cells. J Biol Chem 1996; 271:16591-6. [PMID: 8663179 DOI: 10.1074/jbc.271.28.16591] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Interleukin-8 (IL-8), a potent neutrophil chemotactic peptide that elicits pleiotropic biological effects is secreted in large amounts by normal human osteoblastic and bone marrow osteoprogenitor stromal (HBMS) cells in response to IL-1beta and tumor necrosis factor-alpha. In the present study we investigated the regulation of IL-8 gene expression by IL-1beta, osteotropic hormones, and protein kinase inhibitors in primary cultures of HBMS cells. The treatment of HBMS cells with IL-1beta increased the steady-state levels of IL-8 mRNA in a dose- and time-dependent fashion and was detectable within 1 h, reached maximal by 4 h, and remained elevated at 24 h, whereas parathyroid hormone (10(-7) and 10(-8) M) had no effect on IL-8 mRNA. Both synthetic and natural glucocorticoids dexamethasone (10(-7)-10(-10) M) and hydrocortisone (10(-6)-10(-8) M) inhibited IL-1beta-stimulated IL-8 mRNA expression. The suppressive effect of dexamethasone on IL-1beta-induced IL-8 mRNA was not observed in the presence of cycloheximide (5 microg/ml), indicating that the dexamethasone-mediated repression of IL-8 gene expression also depends on new protein synthesis. Experiments with actinomycin D demonstrated that IL-8 mRNA is long-lived and that glucocorticoids down-regulate IL-8 gene expression mainly by decreasing the mRNA stability in normal HBMS cells. Furthermore, as determined by nuclear run-on analysis, IL-1beta increased the rate of transcription of IL-8 gene and dexamethasone did not affect the IL-1beta-induced transcription of IL-8. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine, HCl (50 microM) and staurosporine (1 microM), potent inhibitors of protein kinase C, and genistein (100 microM), a specific protein tyrosine kinase inhibitor blocked IL-1beta-induced IL-8 gene expression. Because curcumin (20 microM), an inhibitor of c-jun/AP-1 and protein kinases, also blocked IL-1beta-stimulated IL-8 gene expression implicating c-JUN/AP-1 and protein phosphorylation in the induction of IL-8 gene expression by IL-1beta, we conclude that the regulation of IL-8 mRNA by IL-1beta is mediated via protein kinase-dependent signal transduction pathways. Our accumulated results have demonstrated that glucocorticoid suppression of IL-1beta-induced IL-8 mRNA occurs at the levels of post-transcription (mRNA stability) and protein synthesis.
Collapse
Affiliation(s)
- L R Chaudhary
- Department of Internal Medicine, Washington University School of Medicine, Jewish Hospital, St. Louis, Missouri 63110, USA
| | | |
Collapse
|