1
|
Frazzini S, Rossi L. Anticancer Properties of Macroalgae: A Comprehensive Review. Mar Drugs 2025; 23:70. [PMID: 39997194 PMCID: PMC11857751 DOI: 10.3390/md23020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
In recent years, the exploration of bioactive molecules derived from natural sources has gained interest in several application fields. Among these, macroalgae have garnered significant attention due to their functional properties, which make them interesting in therapeutic applications, including cancer treatment. Cancer constitutes a significant global health burden, and the side effects of existing treatment modalities underscore the necessity for the exploration of novel therapeutic models that, in line with the goal of reducing drug treatments, take advantage of natural compounds. This review explores the anticancer properties of macroalgae, focusing on their bioactive compounds and mechanisms of action. The key findings suggest that macroalgae possess a rich array of bioactive compounds, including polysaccharides (e.g., fucoidans and alginates), polyphenols (e.g., phlorotannins), and terpenoids, which exhibit diverse anticancer activities, such as the inhibition of cell proliferation, angiogenesis, induction of apoptosis, and modulation of the immune system. This review provides an overview of the current understanding of macroalgae's anticancer potential, highlighting the most promising compounds and their mechanisms of action. While preclinical studies have shown promising results, further research is necessary to translate these findings into effective clinical applications.
Collapse
Affiliation(s)
- Sara Frazzini
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, via dell’Università 6, 26900 Lodi, Italy;
| | | |
Collapse
|
2
|
Sahu SK, Prabhakar PK, Vyas M. Therapeutical potential of natural products in treatment of pancreatic cancer: a review. Mol Biol Rep 2025; 52:179. [PMID: 39888508 DOI: 10.1007/s11033-025-10287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Pancreatic cancer remains as global health challenge, ranking as the seventh leading cause of cancer-related deaths worldwide with high mortality rates and a low five-year survival rate. Despite advancements in conventional therapies, including surgery, chemotherapy, and radiation, the overall survival rates for pancreatic cancer patients have shown minimal improvement. Consequently, there is an urgent need for alternative therapeutic strategies. The search for effective treatments has increasingly turned towards natural products, which offer a diverse array of bioactive compounds with potential anticancer properties. All the natural products, derived from plants, marine organisms, and microorganisms, have emerged as promising candidates in cancer treatment. The review explores the potential role of various natural compounds such as polyphenols, alkaloids, terpenoids, and flavonoids in pancreatic cancer management. With over 60% of cancer medications in clinical trials having natural origins, the review underscores the importance of exploring these compounds for their chemopreventive potential. It covers the epidemiological, molecular pathways influenced by these natural products (such as apoptosis, cell cycle regulation and signaling pathways) and therapeutic aspects aims to contribute to the ongoing efforts in understanding and addressing the complexities of pancreatic cancer. Overall, this review highlights the urgency of developing novel therapeutic strategies and incorporating natural compounds into current treatment modalities to improve outcomes for pancreatic cancer patients.
Collapse
Affiliation(s)
- Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Pranav Kumar Prabhakar
- Research and Development Cell, Parul University, P.O. Limda, Dist. Vadodara, Ta.Waghodia, Gujarat, 391760, India
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
3
|
Shin HC, Rosenfeld C, Guttendorf RJ, Wade SB, Park YJ, Kim JH, Kim SH, Lee BH, Hwang HJ. A Pharmacokinetic and Bioavailability Study of Ecklonia cava Phlorotannins Following Intravenous and Oral Administration in Sprague-Dawley Rats. Mar Drugs 2024; 22:500. [PMID: 39590780 PMCID: PMC11595589 DOI: 10.3390/md22110500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
This study examines the pharmacokinetics and bioavailability of phlorotannins from Ecklonia cava in rats following intravenous and oral administration. Known for their potent antioxidant, anti-inflammatory and many other bioactivities, these phlorotannins, particularly dieckol, 8,8'-bieckol, and phlorofucofuroeckol-A (PFF-A), were analyzed using high-performance liquid chromatography coupled with tandem mass spectrometry. Intravenous administration at 10 mg/kg allowed detectability in plasma for up to 36 h for dieckol and 8,8'-bieckol, but only 2 h for PFF-A. Oral administration at doses of 100 mg/kg and 1000 mg/kg showed limited detectability, indicating low bioavailability and rapid clearance, particularly for PFF-A. The pharmacokinetic data suggest non-linear increases in the maximum plasma concentration (Cmax) and area under the curve (AUC) with increasing doses, pointing to significant challenges in achieving systemic availability of these eckols through oral administration. This study underscores the necessity for advanced formulation strategies and alternative routes of administration to enhance systemic bioavailability. At the same time, this result also suggests their effects may be through non-systemic pathways such as gut microbiome modulation or lipid-rich tissue targeting. The findings lay a crucial foundation for the further development of Ecklonia cava phlorotannins as therapeutic agents, offering insights into their pharmacokinetic behavior and informing enhancements in future clinical utility.
Collapse
Affiliation(s)
- Hyeon-Cheol Shin
- Phloronol Inc., 490 Post Street, Suite 1700, San Francisco, CA 94102, USA;
- Center for Molecular Intelligence, The State University of New York Korea, Incheon 21985, Republic of Korea
| | - Clint Rosenfeld
- MPI Research Inc., 54943 North Main Street, Mattawan, MI 49071, USA;
- Charles River, 54943 North Main Street, Mattawan, MI 49071, USA
| | | | - Susan B. Wade
- Phloronol Inc., 490 Post Street, Suite 1700, San Francisco, CA 94102, USA;
| | - Yong Ju Park
- Botamedi Inc., Cheomdan-ro 8-gil, Jeju 63309, Republic of Korea; (Y.J.P.); (J.H.K.); (S.H.K.)
- DA-JUNG Research & Development Center, 371, Jangsu-ro, Jincheon-gun 27819, Republic of Korea
| | - Ju Hee Kim
- Botamedi Inc., Cheomdan-ro 8-gil, Jeju 63309, Republic of Korea; (Y.J.P.); (J.H.K.); (S.H.K.)
- Hepatall Inc., 96, Cheomdan-ro 8-gil, Jeju 63309, Republic of Korea
| | - Seong Ho Kim
- Botamedi Inc., Cheomdan-ro 8-gil, Jeju 63309, Republic of Korea; (Y.J.P.); (J.H.K.); (S.H.K.)
| | - Bong Ho Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea;
| | - Hye Jeong Hwang
- Center for Molecular Intelligence, The State University of New York Korea, Incheon 21985, Republic of Korea
| |
Collapse
|
4
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
5
|
Silva M, Avni D, Varela J, Barreira L. The Ocean's Pharmacy: Health Discoveries in Marine Algae. Molecules 2024; 29:1900. [PMID: 38675719 PMCID: PMC11055030 DOI: 10.3390/molecules29081900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Non-communicable diseases (NCDs) represent a global health challenge, constituting a major cause of mortality and disease burden in the 21st century. Addressing the prevention and management of NCDs is crucial for improving global public health, emphasizing the need for comprehensive strategies, early interventions, and innovative therapeutic approaches to mitigate their far-reaching consequences. Marine organisms, mainly algae, produce diverse marine natural products with significant therapeutic potential. Harnessing the largely untapped potential of algae could revolutionize drug development and contribute to combating NCDs, marking a crucial step toward natural and targeted therapeutic approaches. This review examines bioactive extracts, compounds, and commercial products derived from macro- and microalgae, exploring their protective properties against oxidative stress, inflammation, cardiovascular, gastrointestinal, metabolic diseases, and cancer across in vitro, cell-based, in vivo, and clinical studies. Most research focuses on macroalgae, demonstrating antioxidant, anti-inflammatory, cardioprotective, gut health modulation, metabolic health promotion, and anti-cancer effects. Microalgae products also exhibit anti-inflammatory, cardioprotective, and anti-cancer properties. Although studies mainly investigated extracts and fractions, isolated compounds from algae have also been explored. Notably, polysaccharides, phlorotannins, carotenoids, and terpenes emerge as prominent compounds, collectively representing 42.4% of the investigated compounds.
Collapse
Affiliation(s)
- Mélanie Silva
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
| | - Dorit Avni
- MIGAL Galilee Institute, Kiryat Shmona 1106000, Israel;
| | - João Varela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Luísa Barreira
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
6
|
Xiang F, Luo F. Stem cell factor modulates HIF-1α levels and diminishes 5-FU sensitivity in 5-FU resistant pancreatic cells by altering the anabolic glucose metabolism. J Biochem Mol Toxicol 2023; 37:e23487. [PMID: 37718545 DOI: 10.1002/jbt.23487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023]
Abstract
Resistance to chemotherapy in cancer leads to poor therapeutic outcomes and also leads to challenges in treatment. The present work evaluated the mechanism involved in the resistance of 5-flurouracil (5-FU) in pancreatic cancer. At least 14 different pancreatic cancer (PC) cell lines were used for the study. For in vivo study female nude mice were selected. Patient-derived tumor xenograft samples were obtained from patients. The study involved, study for glucose uptake, fluorescence-activated cell sorting for glucose transporter, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide for cell survival, Picto-micrography for clonogenic assay, glutamine uptake assay, extracellular acidification and oxygen consumption rate, carbon dioxide release assay and lactate assay were also done. In addition to this, quantitative real-time polymerase chain reaction analysis for expression of genes, chromatin immunoprecipitation assay, western blot for protein expression, and immunohistochemical analysis in tumor sections, the tumors were studied by imaging for hypoxia and localization of TKT and CTPS-2. Also, patient-derived xenograft tumors were engrafted in nude mice, followed by a glucose uptake assay. We reported that elevated glycolytic flux causes dependence on glucose in cancer cells and, at the same time, increases pyrimidine biosynthesis. It was also found that stem cell factor-mediated stabilization of hypoxia-inducible factor-1a (HIF-1α) modulates the resistance in PC. Targeting HIF-1α in combination with 5-FU, strongly reduced the tumor burden. The study concludes that stem cell factor modulates HIF-1α and decreases the sensitivity in 5-FU resistant pancreatic cancer cells by targeting glucose metabolism. Deceased expression levels of CTPS-2 and TKT, which are regulators of pyrimidine biosynthesis could better the chance of survival in patients of pancreatic cancer receiving treatment of 5-FU.
Collapse
Affiliation(s)
- Fu Xiang
- Department of General Surgery, Dalian Medical University, Dalian, Liaoning, China
| | - Fuwen Luo
- Department of Acute Abdominal Surgery, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Jo MH, Kim YT, Park SJ. Dieckol Inhibits Autophagic Flux and Induces Apoptotic Cell Death in A375 Human Melanoma Cells via Lysosomal Dysfunction and Mitochondrial Membrane Impairment. Int J Mol Sci 2022; 23:ijms232214149. [PMID: 36430634 PMCID: PMC9696613 DOI: 10.3390/ijms232214149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Dieckol is a natural brown algal-derived polyphenol and its cytotoxic potential against various types of cancer cells has been studied. However, the effects of dieckol on autophagy in cancer cells remain unknown. Here, we show that dieckol inhibits the growth of A375 human melanoma cells by inducing apoptotic cell death, which is associated with lysosomal dysfunction and the inhibition of autophagic flux. Dieckol induces autophagosome accumulation by inhibiting autophagosome-lysosome fusion. Moreover, dieckol not only triggers lysosomal membrane permeabilization, followed by an increase in lysosomal pH and the inactivation of cathepsin B and D, but also causes the loss of mitochondrial membrane potential. Importantly, a cathepsin D inhibitor partially relieved dieckol-induced mitochondrial membrane impairment and caspase-mediated apoptosis. Collectively, our findings indicate that dieckol is a novel autophagy inhibitor that induces apoptosis-mediated cell death via lysosomal dysfunction and mitochondrial membrane impairment in A375 human melanoma cells. This suggests the novel potential value of dieckol as a chemotherapeutic drug candidate for melanoma treatment.
Collapse
Affiliation(s)
- Min-Hee Jo
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Yong-Tae Kim
- Department of Food Science & Biotechnology, Kunsan National University, Gunsan 54150, Republic of Korea
- Correspondence: (Y.-T.K.); (S.J.P.)
| | - Sun Joo Park
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
- Correspondence: (Y.-T.K.); (S.J.P.)
| |
Collapse
|
8
|
Silva A, Cassani L, Grosso C, Garcia-Oliveira P, Morais SL, Echave J, Carpena M, Xiao J, Barroso MF, Simal-Gandara J, Prieto MA. Recent advances in biological properties of brown algae-derived compounds for nutraceutical applications. Crit Rev Food Sci Nutr 2022; 64:1283-1311. [PMID: 36037006 DOI: 10.1080/10408398.2022.2115004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increasing demand for nutraceuticals in the circular economy era has driven the research toward studying bioactive compounds from renewable underexploited resources. In this regard, the exploration of brown algae has shown significant growth and maintains a great promise for the future. One possible explanation could be that brown algae are rich sources of nutritional compounds (polyunsaturated fatty acids, fiber, proteins, minerals, and vitamins) and unique metabolic compounds (phlorotannins, fucoxanthin, fucoidan) with promising biological activities that make them good candidates for nutraceutical applications with increased value-added. In this review, a deep description of bioactive compounds from brown algae is presented. In addition, recent advances in biological activities ascribed to these compounds through in vitro and in vivo assays are pointed out. Delivery strategies to overcome some drawbacks related to the direct application of algae-derived compounds (low solubility, thermal instability, bioavailability, unpleasant organoleptic properties) are also reviewed. Finally, current commercial and legal statuses of ingredients from brown algae are presented, considering future therapeutical and market perspectives as nutraceuticals.
Collapse
Affiliation(s)
- Aurora Silva
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Lucia Cassani
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Stephanie L Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Javier Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Maria Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - M Fatima Barroso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, Ourense Campus, Universidade de Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
9
|
Fares Amer N, Luzzatto Knaan T. Natural Products of Marine Origin for the Treatment of Colorectal and Pancreatic Cancers: Mechanisms and Potential. Int J Mol Sci 2022; 23:ijms23148048. [PMID: 35887399 PMCID: PMC9323154 DOI: 10.3390/ijms23148048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal cancer refers to malignancy of the accessory organs of digestion, and it includes colorectal cancer (CRC) and pancreatic cancer (PC). Worldwide, CRC is the second most common cancer among women and the third most common among men. PC has a poor prognosis and high mortality, with 5-year relative survival of approximately 11.5%. Conventional chemotherapy treatments for these cancers are limited due to severe side effects and the development of drug resistance. Therefore, there is an urgent need to develop new and safe drugs for effective treatment of PC and CRC. Historically, natural sources—plants in particular—have played a dominant role in traditional medicine used to treat a wide spectrum of diseases. In recent decades, marine natural products (MNPs) have shown great potential as drugs, but drug leads for treating various types of cancer, including CRC and PC, are scarce. To date, marine-based drugs have been used against leukemia, metastatic breast cancer, soft tissue sarcoma, and ovarian cancer. In this review, we summarized existing studies describing MNPs that were found to have an effect on CRC and PC, and we discussed the potential mechanisms of action of MNPs as well as future prospects for their use in treating these cancers.
Collapse
|
10
|
Baghban N, Khoradmehr A, Nabipour I, Tamadon A, Ullah M. The potential of marine-based gold nanomaterials in cancer therapy: a mini-review. GOLD BULLETIN 2022; 55:53-63. [DOI: 10.1007/s13404-021-00304-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2025]
|
11
|
Matulja D, Vranješević F, Kolympadi Markovic M, Pavelić SK, Marković D. Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. Molecules 2022; 27:molecules27041449. [PMID: 35209235 PMCID: PMC8879422 DOI: 10.3390/molecules27041449] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
Since the middle of the last century, marine organisms have been identified as producers of chemically and biologically diverse secondary metabolites which have exerted various biological activities including anticancer, anti-inflammatory, antioxidant, antimicrobial, antifouling and others. This review primarily focuses on the marine phenolic compounds and their derivatives with potent anticancer activity, isolated and/or modified in the last decade. Reports on the elucidation of their structures as well as biosynthetic studies and total synthesis are also covered. Presented phenolic compounds inhibited cancer cells proliferation or migration, at sub-micromolar or nanomolar concentrations (lamellarins D (37), M (38), K (39), aspergiolide B (41), fradimycin B (62), makulavamine J (66), mayamycin (69), N-acetyl-N-demethylmayamycin (70) or norhierridin B (75)). In addition, they exhibited anticancer properties by a diverse biological mechanism including induction of apoptosis or inhibition of cell migration and invasive potential. Finally, phlorotannins 1–7 and bromophenols 12–29 represent the most researched phenolic compounds, of which the former are recognized as protective agents against UVB or gamma radiation-induced skin damages. Finally, phenolic metabolites were assorted into six main classes: phlorotannins, bromophenols, flavonoids, coumarins, terpenophenolics, quinones and hydroquinones. The derivatives that could not be attributed to any of the above-mentioned classes were grouped in a separate class named miscellaneous compounds.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Filip Vranješević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Maria Kolympadi Markovic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| |
Collapse
|
12
|
Abstract
Cancer remains a major life-threatening disease worldwide. The development of anticancer drugs using natural products obtained from marine organisms has been proposed as an alternative approach. Seaweeds are the mainstay of marine ecosystems; therefore, they are highly enriched with diverse bioactive compounds. In the past decade, a vast number of natural compounds, such as polysaccharides, polyphenols, carotenoids, and terpenoids, have been isolated from seaweeds. Seaweeds have bioactive compounds that show cytotoxicity in various cancer cell lines. These compounds prevent tumor growth by inducing apoptotic cell death and arrest growth by interfering with different kinases and cell cycle pathways. This review discussed the anticancer properties of various bioactive compounds isolated from different types of seaweeds and their therapeutic potential against cancers.
Collapse
|
13
|
Rajan DK, Mohan K, Zhang S, Ganesan AR. Dieckol: a brown algal phlorotannin with biological potential. Biomed Pharmacother 2021; 142:111988. [PMID: 34371307 DOI: 10.1016/j.biopha.2021.111988] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Dieckol [C36H22O18], is a naturally occurring phlorotannin found in some brown algal species. Dieckol is gaining more attention in the scientific community for its potential biological activities. It has been exhibited a broad spectrum of therapeutic functions including anti-bacterial, anti-cancer, anti-oxidant, anti-aging, anti-diabetic, neuroprotective, and other medicinal applications. Distinct emphasis has been given to extraction, purification, and biomedical applications of dieckol. This critical review comprises of in vitro, in vivo, and in silico biological properties of dieckol. An attempt has been made to evaluate the effectiveness, therapeutical application, and mechanism of dieckol against various diseases. The pharmacological significance, current status and the dosage of multifunctional dieckol and its mechanisms have been discussed in this review. Dieckol plays an important role in apoptosis induction via inhibiting the PI3K, AKT, mTOR and FAK signaling molecules. Dieckol remarkably inhibited the lipid accumulation in high fat diet induced animal models. Dieckol, a multifaceted compound will be beneficial in attenuating the action of various diseases and it could be a potential pharmaceutical and nutraceutical compound. Therefore, the combined effects of dieckol with existing drugs and natural compounds will be studied in future to optimize its benefits. Besides limited information on the toxicological action and dosage administration of dieckol on the human was reported to date. Overall, dieckol is a prospective health-promoting compound for the development of a novel drug against numerous diseases.
Collapse
Affiliation(s)
- Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, Tamil Nadu, India.
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode 638316, Tamil Nadu, India.
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, PR China
| | - Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Center, Laimburg 6, I-39040 Post Auer, BZ, Italy
| |
Collapse
|