1
|
Li Q, Tong Y, Guo J, Liang X, Shao H, Yang L, Wang J. Vitamin D Receptor Regulates Oxidative Stress and Apoptosis Via the HIF-1α/HO-1 Pathway in Cardiomyocytes. Cell Biochem Biophys 2025:10.1007/s12013-025-01681-x. [PMID: 39934512 DOI: 10.1007/s12013-025-01681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
Acute myocardial infarction (AMI) is a critical cardiovascular disease with high disability and mortality rates, primarily caused by hypoxic injury to myocardial cells. This study investigates the role of the Vitamin D receptor (VDR) in cardiomyocytes under hypoxic conditions. VDR expression was characterized in human and hypoxic cardiomyocytes isolated from mice. To understand the downstream effects of VDR-related pathways, VDR was modulated using shRNA. RXR expression and localization were measured in hypoxic and sh-VDR cardiomyocytes. Oxidative stress and apoptosis levels were assessed and the effect of Vitamin D treatment was evaluated. VDR expression was found to be downregulated in the serum of AMI patients, similar to the hypoxic cardiomyocytes. Knockdown of VDR induced oxidative stress and apoptosis in normoxic cardiomyocytes, which could not be reversed by vitamin D treatment. Knock-down VDR in cardiomyocytes exposed to hypoxic induced apoptosis and reactive oxygen species via the HIF-1α/HO-1 axis. Overexpression VDR alleviated the expression levels of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β. Our results indicated that VDR is crucial in reducing myocardial stress and apoptosis during hypoxic injury.
Collapse
Affiliation(s)
- Qiang Li
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yu Tong
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jiarui Guo
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xi Liang
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Haifeng Shao
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lili Yang
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jian Wang
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|
2
|
Feng Y, Shi M, Zhang Y, Li X, Yan L, Xu J, Liu C, Li M, Bai F, Yuan F, Sun Y, Liu R, Zhao Y, Yang L, Zhang Y, Guo Y, Zhang J, Zhou R, Liu P. Protocatechuic acid relieves ferroptosis in hepatic lipotoxicity and steatosis via regulating NRF2 signaling pathway. Cell Biol Toxicol 2024; 40:104. [PMID: 39589556 PMCID: PMC11599353 DOI: 10.1007/s10565-024-09953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Ferroptosis represents a newly programmed cell death, and the process is usually accompanied with iron-dependent lipid peroxidation. Importantly, ferroptosis is implicated in a myriad of diseases. Recent literature suggests a potential position of ferroptosis in the pathogenesis of metabolic dysfunction-associated fatty liver disease (MAFLD), the most widespread liver ailment worldwide. Intriguingly, several functional genes and metabolic pathways central to ferroptosis are regulated by nuclear factor erythroid-derived 2-like 2 (NRF2). In current work, we aim to identify protocatechuic acid (PCA), a primary metabolite of antioxidant polyphenols, as a potent NRF2 activator and ferroptosis inhibitor in the hepatic lipotoxicity and steatosis models. Herein, both NRF2+/+ and NRF2-/- cell lines and mice were used to analyze the importance of NRF2 in PCA function, and hepatic lipotoxicity and steatosis models were induced by palmitic acid and high-fat diet respectively. Our results indicated that ferroptosis was mitigated by PCA intervention in hepatic cells. Furthermore, PCA exhibited therapeutic efficacy against ferroptosis, as well as hepatic lipotoxicity and steatosis. The protective role of PCA was predominantly mediated through NRF2 activation, potentially elucidating a pivotal mechanism underlying PCA's therapeutic impact on MAFLD. Additionally, the augmented mitochondrial TCA cycle activity observed in hepatic lipotoxicity and steatosis models was ameliorated by PCA, in part via NRF2-dependent pathways, further bolstering PCA's anti-ferroptosis properties. Collectively, our findings underscore PCA's potential in alleviating hepatic ferroptosis, lipotoxicity and steatosis via inducing activation of NRF2 signaling pathway, offering a promising strategy for the therapy of MAFLD as well as related lipid metabolic disorders.
Collapse
Affiliation(s)
- Yetong Feng
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengjiao Shi
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Yi Zhang
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Xinyan Li
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Liangwen Yan
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Jiayi Xu
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Chenyue Liu
- Department of Medical Image, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Li
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Fengyun Bai
- Shaanxi Dongtai Pharmaceutical Co., LTD, Xianyang, China
| | - Fenyue Yuan
- Shaanxi Dongtai Pharmaceutical Co., LTD, Xianyang, China
| | - Ying Sun
- Shaanxi Dongtai Pharmaceutical Co., LTD, Xianyang, China
| | - Rongrong Liu
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Yaping Zhao
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Lan Yang
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yinggang Zhang
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Ying Guo
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China
| | - Jian Zhang
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Rui Zhou
- Department of General Surgery, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Pengfei Liu
- International Joint Research Center On Cell Stress and Disease Diagnosis and Therapy, National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, The Second, Xi'an, China.
- Key Laboratory of Environment and Genes Related To Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Obeme-Nmom JI, Abioye RO, Reyes Flores SS, Udenigwe CC. Regulation of redox enzymes by nutraceuticals: a review of the roles of antioxidant polyphenols and peptides. Food Funct 2024; 15:10956-10980. [PMID: 39465304 DOI: 10.1039/d4fo03549f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Redox enzymes are essential components of the cellular defence system against oxidative stress, which is a common factor in various diseases. Therefore, understanding the role of bioactive nutraceuticals in modulating the activity of these enzymes holds immense therapeutic potential. This paper provides a comprehensive review of the regulation of redox enzymes in cell and animal models by food-derived bioactive nutraceuticals, focusing on polyphenols and peptides. Specifically, this paper discusses the regulation of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), NAPDH oxidase, xanthine oxidase (XO), myeloperoxidase (MPO), and haem oxygenase (HO) in cell and animal models. Polyphenols, which are abundant in fruits, vegetables, and beverages, have diverse antioxidant properties, including direct scavenging of reactive oxygen species and regulation of transcription factors such as nuclear factor erythroid 2-related factor 2, which leads to the increased expression of the redoxenzymes SOD, HO, and GPx. Similarly, bioactive peptides from various food proteins can enhance antioxidative enzyme activity by regulating gene expression and directly activating the enzyme CAT. In other cases, an antioxidative response requires the downregulation or inhibition of the redox enzymes XO, MPO, and NAPDH oxidase. This paper highlights the potential of bioactive nutraceuticals in mitigating oxidative stress-related diseases and their mechanisms in modulating the redox enzyme expression or activity. Furthermore, the review highlights the need for further research to uncover new therapeutic strategies using nutraceuticals for enhancing cellular antioxidant defence mechanisms and improving health outcomes.
Collapse
Affiliation(s)
- Joy I Obeme-Nmom
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Raliat O Abioye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Samanta S Reyes Flores
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemical, Food and Environmental Engineering, University of the Americas Puebla, San Andrés Cholula 72810, Puebla, Mexico
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- University Research Chair in Food Properties and Nutrient Bioavailability, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
4
|
Chakraborty P, Dewanjee S. Unrevealing the mechanisms behind the cardioprotective effect of wheat polyphenolics. Arch Toxicol 2024; 98:3543-3567. [PMID: 39215839 DOI: 10.1007/s00204-024-03850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases pose a major threat to both life expectancy and quality of life worldwide, and a concerning level of disease burden has been attained, particularly in middle- and low-income nations. Several drugs presently in use lead to multiple adverse events. Thus, it is urgently needed to develop safe, affordable, and effective management of cardiovascular diseases. Emerging evidence reveals a positive association between polyphenol consumption and cardioprotection. Whole wheat grain and allied products are good sources of polyphenolic compounds bearing enormous cardioprotective potential. Polyphenolic extract of the entire wheat grain contains different phenolic compounds viz. ferulic acid, caffeic acid, chlorogenic acid, p-coumaric acid, sinapic acid, syringic acid, vanillic acid, apigenin, quercetin, luteolin, etc. which exert cardioprotection by reducing oxidative stress and interfering with different toxicological processes. The antioxidant capacity has been thought to exert the cardioprotective mechanism of wheat grain polyphenolics, which predominantly suppresses oxidative stress, inflammation and fibrosis by downregulating several pathogenic signaling events. However, the combined effect of polyphenolics appears to be more prominent than that of a single molecule, which might be attained due to the synergy resulting in multimodal cardioprotective benefits from multiple phenolics. The current article covers the bioaccessibility and possible effects of wheat-derived polyphenolics in protecting against several cardiovascular disorders. This review discusses the mechanistic pharmacology of individual wheat polyphenols on the cardiovascular system. It also highlights the comparative superiority of polyphenolic extracts over a single phenolic.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
5
|
Wang H, Han J, Dmitrii G, Zhang XA. Potential Targets of Natural Products for Improving Cardiac Ischemic Injury: The Role of Nrf2 Signaling Transduction. Molecules 2024; 29:2005. [PMID: 38731496 PMCID: PMC11085255 DOI: 10.3390/molecules29092005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Myocardial ischemia is the leading cause of health loss from cardiovascular disease worldwide. Myocardial ischemia and hypoxia during exercise trigger the risk of sudden exercise death which, in severe cases, will further lead to myocardial infarction. The Nrf2 transcription factor is an important antioxidant regulator that is extensively engaged in biological processes such as oxidative stress, inflammatory response, apoptosis, and mitochondrial malfunction. It has a significant role in the prevention and treatment of several cardiovascular illnesses, since it can control not only the expression of several antioxidant genes, but also the target genes of associated pathological processes. Therefore, targeting Nrf2 will have great potential in the treatment of myocardial ischemic injury. Natural products are widely used to treat myocardial ischemic diseases because of their few side effects. A large number of studies have shown that the Nrf2 transcription factor can be used as an important way for natural products to alleviate myocardial ischemia. However, the specific role and related mechanism of Nrf2 in mediating natural products in the treatment of myocardial ischemia is still unclear. Therefore, this review combs the key role and possible mechanism of Nrf2 in myocardial ischemic injury, and emphatically summarizes the significant role of natural products in treating myocardial ischemic symptoms, thus providing a broad foundation for clinical transformation.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Gorbachev Dmitrii
- General Hygiene Department, Samara State Medical University, Samara 443000, Russia;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.)
| |
Collapse
|
6
|
Saad KM, Salles ÉL, Naeini SE, Baban B, Abdelmageed ME, Abdelaziz RR, Suddek GM, Elmarakby AA. Reno-protective effect of protocatechuic acid is independent of sex-related differences in murine model of UUO-induced kidney injury. Pharmacol Rep 2024; 76:98-111. [PMID: 38214881 DOI: 10.1007/s43440-023-00565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Obstructive nephropathy is a condition often caused by urinary tract obstruction either anatomical (e.g., tumors), mechanical (e.g., urolithiasis), or compression (e.g., pregnancy) and can progress to chronic kidney disease (CKD). Studies have shown sexual dimorphism in CKD, where males were found to have a more rapid decline in kidney function following kidney injury compared to age-matched females. Protocatechuic acid (PCA), an anti-oxidant and anti-inflammatory polyphenolic compound, has demonstrated promising effects in mitigating drug-induced kidney injuries. The current study aims to explore sexual dimorphism in kidney injury after unilateral ureteral obstruction (UUO) and assess whether PCA treatment can mitigate kidney injury in both sexes. METHODS UUO was induced in 10-12 weeks old male and female C57BL/6J mice. Mice were categorized into four groups (n = 6-8/group); Sham, Sham plus PCA (100 mg/kg, I.P daily), UUO, and UUO plus PCA. RESULTS After 2 weeks of induction of UUO, markers of kidney oxidative stress (TBARs), inflammation (IL-1α and IL-6), tubular injury (neutrophil gelatinase-associated lipocalin, NGAL and urinary kidney injury molecule-1, KIM-1), fibrosis (Masson's trichrome staining, collagen IV expression, MMP-2 and MMP-9) and apoptosis (TUNEL+ cells, active caspase-1 and caspase-3) were significantly elevated in both males and females relative to their sham counterparts. Males exhibited significantly greater kidney oxidative stress, inflammation, fibrosis, and apoptosis after induction of UUO when compared to females. PCA treatment significantly attenuated UUO-induced kidney injury, inflammation, fibrosis, and apoptosis in both sexes. CONCLUSION Our findings suggest a differential gender response to UUO-induced kidney injury with males being more sensitive to UUO-induced kidney inflammation, fibrosis, and apoptosis than age-matched females. Importantly, PCA treatment reduced UUO-induced kidney injury in a sex-independent manner which might be attributed to its anti-oxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Karim M Saad
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
| | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed A Elmarakby
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, 1450 Laney Walker Blvd, CL2126, Augusta, GA, 30912, USA.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
7
|
Ruvira S, Rodríguez-Rodríguez P, Ramiro-Cortijo D, Martín-Trueba M, Martín-Cabrejas MA, Arribas SM. Cocoa Shell Extract Reduces Blood Pressure in Aged Hypertensive Rats via the Cardiovascular Upregulation of Endothelial Nitric Oxide Synthase and Nuclear Factor (Erythroid-Derived 2)-like 2 Protein Expression. Antioxidants (Basel) 2023; 12:1698. [PMID: 37760002 PMCID: PMC10525428 DOI: 10.3390/antiox12091698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Cocoa shell is a by-product of cocoa manufacturing. We obtained an aqueous extract (CSE) rich in polyphenols and methylxanthines with antioxidant and vasodilatory properties. We aimed to evaluate the effects of CSE supplementation in aged hypertensive rats on blood pressure and the mechanism implicated. Eighteen-month-old male and female rats exposed to undernutrition during the fetal period who developed hypertension, with a milder form in females, were used (MUN rats). Systolic blood pressure (SBP; tail-cuff plethysmography) and a blood sample were obtained before (basal) and after CSE supplementation (250 mg/kg; 2 weeks, 5 days/week). Plasma SOD, catalase activity, GSH, carbonyls, and lipid peroxidation were assessed (spectrophotometry). In hearts and aortas from supplemented and non-supplemented age-matched rats, we evaluated the protein expression of SOD-2, catalase, HO-1, UCP-2, total and phosphorylated Nrf2 and e-NOS (Western blot), and aorta media thickness (confocal microscopy). MUN males had higher SBP compared with females, which was reduced via CSE supplementation with a significant difference for group, sex, and interaction effect. After supplementation with plasma, GSH, but not catalase or SOD, was elevated in males and females. Compared with non-supplemented rats, CSE-supplemented males and females exhibited increased aorta e-NOS and Nrf2 protein expression and cardiac phosphorylated-Nrf2, without changes in SOD-2, catalase, HO-1, or UCP-2 in cardiovascular tissues or aorta remodeling. In conclusion, CSE supplementation induces antihypertensive actions related to the upregulation of e-NOS and Nrf2 expression and GSH elevation and a possible direct antioxidant effect of CSE bioactive components. Two weeks of supplementation may be insufficient to increase antioxidant enzyme expression.
Collapse
Affiliation(s)
- Santiago Ruvira
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo 2, 28029 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Ph.D. Program in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 2, 28049 Madrid, Spain
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo 2, 28029 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - David Ramiro-Cortijo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo 2, 28029 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - María Martín-Trueba
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (UAM-CSIC), C/Nicolás Cabrera 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - María A. Martín-Cabrejas
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid (UAM-CSIC), C/Nicolás Cabrera 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arbobispo Morcillo 2, 28029 Madrid, Spain
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
8
|
Borodzicz-Jażdżyk S, Kołodzińska A, Czarzasta K, Wojciechowska M, Główczyńska R, Szczepankiewicz B, Puchalska L, Opolski G, Cudnoch-Jędrzejewska A. Inflammatory Forms of Cardiomyocyte Cell Death in the Rat Model of Isoprenaline-Induced Takotsubo Syndrome. Biomedicines 2023; 11:2060. [PMID: 37509699 PMCID: PMC10377582 DOI: 10.3390/biomedicines11072060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Takotsubo syndrome (TTS) is associated with inflammatory response, therefore the aim of the study was to evaluate the presence and dynamics of inflammatory-associated forms of cell death, necroptosis, and pyroptosis in the female rat model of isoprenaline (ISO)-induced TTS. TTS was induced in female Sprague Dawley rats (n = 36) by ISO 150 mg/kg intraperitoneally. Animals were divided into four groups: TTSO (TTS+ovariectomy; n = 10), TTSP (TTS+sham operation; n = 10), CO (0.9% NaCl+ovariectomy; n = 8), CP (0.9% NaCl+sham operation; n = 8). Histopathological analysis, evaluation of plasma concentration, and myocardial expression of pyroptosis- and necroptosis-associated proteins were performed. TTSO and TTSP groups had higher plasma concentrations of interleukin-1β in comparison with the controls. Low myocardial protein expression of mixed lineage kinase domain-like pseudokinase (MLKL), caspase-1 (Casp-1), and calcium/calmodulin-dependent kinase type II isoform delta (CAMKIIδ) was visible 6 and/or 12 h post-ISO. Twenty-four hours post-ISO, high myocardial and vascular protein expression of CAMKIIδ was visible in TTSO but not TTSP rats, while high myocardial expression of MLKL and Casp-1 was visible both in TTSO and TTSP rats. The course of TTS is associated with activation of inflammatory-associated programmed cell death, necroptosis, and pyroptosis, therefore inflammation may be a primary response occurring simultaneously with cardiomyocyte death in TTS.
Collapse
Affiliation(s)
- Sonia Borodzicz-Jażdżyk
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland
| | - Agnieszka Kołodzińska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland
| | - Katarzyna Czarzasta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Małgorzata Wojciechowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Renata Główczyńska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland
| | - Benedykt Szczepankiewicz
- Department of Pathology, Medical University of Warsaw, 7 Pawińskiego Street, 02-106 Warsaw, Poland
| | - Liana Puchalska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Grzegorz Opolski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
9
|
Microbiota-Derived Natural Products Targeting Cancer Stem Cells: Inside the Gut Pharma Factory. Int J Mol Sci 2023; 24:ijms24054997. [PMID: 36902427 PMCID: PMC10003410 DOI: 10.3390/ijms24054997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cancer stem cells (CSCs) have drawn much attention as important tumour-initiating cells that may also be crucial for recurrence after chemotherapy. Although the activity of CSCs in various forms of cancer is complex and yet to be fully elucidated, opportunities for therapies targeting CSCs exist. CSCs are molecularly distinct from bulk tumour cells, so they can be targeted by exploiting their signature molecular pathways. Inhibiting stemness has the potential to reduce the risk posed by CSCs by limiting or eliminating their capacity for tumorigenesis, proliferation, metastasis, and recurrence. Here, we briefly described the role of CSCs in tumour biology, the mechanisms involved in CSC therapy resistance, and the role of the gut microbiota in cancer development and treatment, to then review and discuss the current advances in the discovery of microbiota-derived natural compounds targeting CSCs. Collectively, our overview suggests that dietary intervention, toward the production of those identified microbial metabolites capable of suppressing CSC properties, is a promising approach to support standard chemotherapy.
Collapse
|