1
|
Shi Y, Liu J, Cheng Q, Wu S, Song W, Wang K, Chen Z, Li X, Wei Q, Tayier D, Liao B, Yang Z. METTL3/IGF2BP3 mediates ORC6 via N6-methyladenosine modification to promote the progression of pancreatic ductal adenocarcinoma. Gene 2025; 955:149468. [PMID: 40185346 DOI: 10.1016/j.gene.2025.149468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is recognized globally as one of the most lethal tumours, and effective biomarkers to diagnose PDAC early are needed. ORC6, a subunit of the origin recognition complex (ORC), initiates DNA replication and ensures genomic stability. Previous studies have indicated that ORC6 is procarcinogenic in various cancers, yet its role in PDAC remains uninvestigated. METHODS We evaluated the relationships between ORC6 expression and the clinical features of patients with PDAC with the TCGA, GTEx, and GEO databases. The role of ORC6 in PDAC cells was explored by RNA interference in vitro and in vivo. Next, we verified the effect of the METTL3/IGF2BP3/ORC6 axis on PDAC progression by western blotting, RT-qPCR, RNA immunoprecipitation, and methylated RNA immunoprecipitation. Finally, transcriptome analysis was performed to explore the influence of ORC6 on p53 in PDAC cells. RESULTS Elevated ORC6 levels were observed in PDAC cells, which correlated with poorer clinical outcomes. Both in vivo and in vitro experiments demonstrated that ORC6 knockdown suppressed proliferation and promoted apoptosis. Additionally, we demonstrated that METTL3/IGF2BP3 interacted with ORC6 mRNA via N6-methyladenosine modification to improve ORC6 mRNA stability. Transcriptomic analysis and experiments indicated that ORC6 promoted PDAC progression by inhibiting serine-15 phosphorylation in p53. CONCLUSION Our findings validate the role of ORC6 in PDAC and support the hypothesis that the METTL3/IGF2BP3/ORC6/p53 axis may be a novel therapeutic target for PDAC, and inhibiting this axis may be an advantageous therapeutic strategy for curing PDAC.
Collapse
Affiliation(s)
- Yang Shi
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Junwei Liu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China
| | - Qian Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Shuaihui Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Wenjing Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Kunlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Zhinan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Xinyin Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Qifeng Wei
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Dilinigeer Tayier
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Bo Liao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China.
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China.
| |
Collapse
|
2
|
Kalinin A, Zubkova E, Menshikov M. Integrated Stress Response (ISR) Pathway: Unraveling Its Role in Cellular Senescence. Int J Mol Sci 2023; 24:17423. [PMID: 38139251 PMCID: PMC10743681 DOI: 10.3390/ijms242417423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cellular senescence is a complex process characterized by irreversible cell cycle arrest. Senescent cells accumulate with age, promoting disease development, yet the absence of specific markers hampers the development of selective anti-senescence drugs. The integrated stress response (ISR), an evolutionarily highly conserved signaling network activated in response to stress, globally downregulates protein translation while initiating the translation of specific protein sets including transcription factors. We propose that ISR signaling plays a central role in controlling senescence, given that senescence is considered a form of cellular stress. Exploring the intricate relationship between the ISR pathway and cellular senescence, we emphasize its potential as a regulatory mechanism in senescence and cellular metabolism. The ISR emerges as a master regulator of cellular metabolism during stress, activating autophagy and the mitochondrial unfolded protein response, crucial for maintaining mitochondrial quality and efficiency. Our review comprehensively examines ISR molecular mechanisms, focusing on ATF4-interacting partners, ISR modulators, and their impact on senescence-related conditions. By shedding light on the intricate relationship between ISR and cellular senescence, we aim to inspire future research directions and advance the development of targeted anti-senescence therapies based on ISR modulation.
Collapse
Affiliation(s)
- Alexander Kalinin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
| |
Collapse
|
3
|
Sun C, Chang X, MacIsaac HJ, Wen J, Zhao L, Dai Z, Li J. Phytosphingosine inhibits cell proliferation by damaging DNA in human cell lines. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114840. [PMID: 37001191 DOI: 10.1016/j.ecoenv.2023.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Harmful cyanobacterial blooms have caused numerous biosecurity incidents owing to the production of hazardous secondary metabolites such as microcystin. Additionally, cyanobacteria also release many other components that have not been explored. We identified compounds of a toxic mixture exudated from a dominant, blooming species, Microcystis aeruginosa, and found that phytosphingosine (PHS) was one of the bioactive components. Since PHS exhibited toxicity and is deemed a hazardous substance by the European Chemicals Agency, we hypothesized that PHS is a potentially toxic compound in M. aeruginosa exudates. However, the mechanisms of PHS ecotoxicity remain unclear. We assessed the cytotoxicity of PHS using an in vitro cell model in eight human cell lines and observed that the nasopharyngeal carcinoma cell line CNE2 was the most sensitive. We exposed CNE2 cells to 0-25 µmol/L PHS for 24 hr to explore its toxicity and mechanism. PHS exposure resulted in abnormal nuclear morphology, micronuclei, and DNA damage. Moreover, PHS significantly inhibited cell proliferation and arrested cell cycle at S phase. The results of Western blot suggested that PHS increased the expression of DNA damage-related proteins (ATM, p-P53 and P21) and decreased the expression of S phase-related proteins (CDK2, CyclinA2 and CyclinE1), indicating the toxicological mechanism of PHS on CNE2 cells. These data provide evidence that PHS has genetic toxicity and inhibits cell proliferation by damaging DNA. Our study provides evidence that PHS inhibits cell proliferation by damaging DNA. While additional work is required, we propose that PHS been considered as a potentially toxic component in MaE in addition to other well-characterized secondary compounds.
Collapse
Affiliation(s)
- Chunxiao Sun
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Xuexiu Chang
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Hugh J MacIsaac
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Jiayao Wen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Lixing Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Zhi Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Jiaojiao Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
4
|
Induction of premature senescence and a less-fibrogenic phenotype by programmed cell death 4 knockdown in the human hepatic stellate cell line Lieming Xu-2. Hum Cell 2023; 36:583-601. [PMID: 36522523 PMCID: PMC9947070 DOI: 10.1007/s13577-022-00844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Although programmed cell death 4 (PDCD4) was initially reported as a tumor suppressor and has been shown to inhibit cancer cell growth and metastasis, recent studies have demonstrated that loss of PDCD4 expression also induces growth inhibition by inducing apoptosis and/or cellular senescence. At present, the roles of PDCD4 in the activation and profibrogenic properties of myofibroblasts, which are critically involved in organ fibrosis, such as that in the liver, are unclear. We, therefore, investigated the roles of PDCD4 in myofibroblasts using human hepatic stellate cell line Lieming Xu-2 (LX-2). PDCD4 knockdown inhibited LX-2 proliferation and induced a senescent phenotype with increased β-galactosidase staining and p21 expression in a p53-independent manner together with downregulation of the notch signaling mediator RBJ-κ/CSL. During PDCD4 knockdown, alpha smooth muscle actin (α-SMA; an activation marker of myofibroblasts), matrix metalloproteinases MMP-1 and MMP-9, and collagen IV were upregulated, but the expression of collagen1α1 and collagen III was markedly downregulated without any marked change in the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). These results demonstrated that knockdown of PDCD4 induced the cellular senescence phenotype and activated myofibroblasts while suppressing the profibrogenic phenotype, suggesting roles of PDCD4 in cellular senescence and fibrogenesis in the liver.
Collapse
|
5
|
Komuczki D, Stadermann A, Bentele M, Unsoeld A, Grillari J, Mueller MM, Paul A, Fischer S. High cysteine concentrations in cell culture media lead to oxidative stress and reduced bioprocess performance of recombinant CHO cells. Biotechnol J 2022; 17:e2200029. [PMID: 35876277 DOI: 10.1002/biot.202200029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Cysteine is considered an essential amino acid in the cultivation of Chinese hamster ovary (CHO) cells. An optimized cysteine supply during fed-batch cultivation supports the protein production capacity of recombinant CHO cell lines. However, we observed that CHO production cell lines seeded at low cell densities in chemically defined media enriched with, cysteine greater than 2.5 mM resulted in markedly reduced cell growth during passaging, hampering seed train performance and scale-up. To investigate the underlying mechanism, seeding cell densities and initial cysteine concentrations ranging from low to high cysteine concentrations were varied followed by an analysis of cell culture performance. Additionally, cell cycle analysis, intracellular quantification of reactive oxygen species (ROS) as well as transcriptomic analyses by next-generation sequencing were carried out. Our results demonstrate that CHO cells seeded at low cell densities at high initial cysteine concentrations encountered increased oxidative stress leading to a p21-mediated cell cycle arrest in the G1/S phase. The resulting oxidative stress caused redox imbalance in the endoplasmic reticulum and activation of the unfolded protein response as well as the major antioxidant nuclear factor-like 2 response pathways. We were able to identify potential signature genes related to oxidative stress and the inhibition of the pentose phosphate pathway. Finally, we present that seeding cells at a higher concentration counteract oxidative stress in cysteine-enriched cell culture media. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Daniel Komuczki
- Institute of Bioprocess Sciences and Engineering (IBSE), University of Natural Resources and Life Sciences, Muthgasse 18, AT-1190, Vienna, Austria.,Upstream Development, Bioprocess and Analytical Development, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Anna Stadermann
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Maximilian Bentele
- Upstream Development, Bioprocess and Analytical Development, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Andreas Unsoeld
- Cell Culture Media Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Johannes Grillari
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, Vienna, AT-1190, Austria.,Ludwig Boltzmann Institute for Traumatology. The Research Center in Cooperation with AUVA, Donaueschingenstrasse 13, Vienna, AT-1200, Austria
| | - Markus M Mueller
- Upstream Development, Bioprocess and Analytical Development, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Albert Paul
- Upstream Development, Bioprocess and Analytical Development, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| | - Simon Fischer
- Cell Line Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Strasse 65, D-88397 Biberach a. d. Riss, Germany
| |
Collapse
|
6
|
Conversion of a Non-Cancer-Selective Promoter into a Cancer-Selective Promoter. Cancers (Basel) 2022; 14:cancers14061497. [PMID: 35326649 PMCID: PMC8946048 DOI: 10.3390/cancers14061497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The rat progression elevated gene-3 (PEG-3) promoter displays cancer-selective expression, whereas the rat growth arrest and DNA damage inducible gene-34 (GADD34) promoter lacks cancer specificity. PEG-3 and GADD34 minimal promoters display strong sequence homology except for two single point mutations. Since mutations are prevalent in many gene promoters resulting in significant alterations in promoter specificity and activity, we have explored the relevance of these two nucleotide alterations in determining cancer-selective gene expression. We demonstrate that these two point mutations are required to transform a non-cancer-specific promoter (pGADD) into a cancer-selective promoter (pGAPE). Additionally, we found GATA2 transcription factor binding sites in the GAPE-Prom, which regulates pGAPE activity selectively in cancer cells. This newly created pGAPE has all the necessary elements making it an appropriate genetic tool to noninvasively deliver imaging agents to follow tumor growth and progression to metastasis and for generating conditionally replicating adenoviruses that can express and deliver their payload exclusively in cancer. Abstract Progression-elevated gene-3 (PEG-3) and rat growth arrest and DNA damage-inducible gene-34 (GADD34) display significant sequence homology with regulation predominantly transcriptional. The rat full-length (FL) and minimal (min) PEG-3 promoter display cancer-selective expression in rodent and human tumors, allowing for cancer-directed regulation of transgenes, viral replication and in vivo imaging of tumors and metastases in animals, whereas the FL- and min-GADD34-Prom lack cancer specificity. Min-PEG-Prom and min-GADD34-Prom have identical sequences except for two single-point mutation differences (at −260 bp and +159 bp). Engineering double mutations in the min-GADD34-Prom produce the GAPE-Prom. Changing one base pair (+159) or both point mutations in the min-GADD34-Prom, but not the FL-GADD34-Prom, results in cancer-selective transgene expression in diverse cancer cells (including prostate, breast, pancreatic and neuroblastoma) vs. normal counterparts. Additionally, we identified a GATA2 transcription factor binding site, promoting cancer specificity when both min-PEG-Prom mutations are present in the GAPE-Prom. Taken together, introducing specific point mutations in a rat min-GADD34-Prom converts this non-cancer-specific promoter into a cancer-selective promoter, and the addition of GATA2 with existing AP1 and PEA3 transcription factors enhances further cancer-selective activity of the GAPE-Prom. The GAPE-Prom provides a genetic tool to specifically regulate transgene expression in cancer cells.
Collapse
|
7
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Yang T, He R, Li G, Liang J, Zhao L, Zhao X, Li L, Wang P. Growth arrest and DNA damage-inducible protein 34 (GADD34) contributes to cerebral ischemic injury and can be detected in plasma exosomes. Neurosci Lett 2021; 758:136004. [PMID: 34098025 DOI: 10.1016/j.neulet.2021.136004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Growth arrest and DNA damage-inducible protein 34 (GADD34), one of the key effectors of negative feedback loops, is induced by stress and subsequently attempts to restore homeostasis. It plays a critical role in response to DNA damage and endoplasmic reticulum stress. GADD34 has opposing effects on different stimulus-induced cell apoptosis events in many nervous system diseases, but its role in ischemic stroke is unclear. In this study, we evaluated the role of GADD34 and its distribution in a rat cerebral ischemic model. The results showed that GADD34 was increased in the cortex and contributed to brain injury in ischemic rats. Furthermore, treatment with a GADD34 inhibitor reduced the infarct volume, improved functional outcomes, and inhibited neuronal apoptosis in the cortical penumbra after ischemia. The role of GADD34 in ischemic stroke was associated with the dephosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and phosphorylation of p53. In addition, the GADD34 level was increased in plasma exosomes of cerebral ischemic rats. These findings indicate that GADD34 could be a potential therapeutic target and biomarker for ischemic stroke.
Collapse
Affiliation(s)
- Tianhui Yang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ruyi He
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Gongzhe Li
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jia Liang
- Institution of Life Science, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Liang Zhao
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xing Zhao
- Department of Ophthalmology and Otolaryngology, Liaoning Provincial Corps Hospital of Chinese People's Armed Police Forces, Shenyang, Liaoning, China
| | - Liyang Li
- Department of Ophthalmology and Otolaryngology, Liaoning Provincial Corps Hospital of Chinese People's Armed Police Forces, Shenyang, Liaoning, China
| | - Peng Wang
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
9
|
Targeting Germ Cell Tumors with the Newly Synthesized Flavanone-Derived Compound MLo1302 Efficiently Reduces Tumor Cell Viability and Induces Apoptosis and Cell Cycle Arrest. Pharmaceutics 2021; 13:pharmaceutics13010073. [PMID: 33430420 PMCID: PMC7826804 DOI: 10.3390/pharmaceutics13010073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Less toxic treatment strategies for testicular germ cell tumor (TGCT) patients are needed, as overtreatment is a concern due to the long-term side effects of platin-based chemotherapy. Although clinical benefit from classical hypomethylating agents has to date been limited, TGCTs show an abnormal DNA methylome indicating the potential of treating TGCTs with hypomethylating drugs. We tested, for the first time in TGCT cell lines, a new synthetic flavonoid compound (MLo1302) from the 3-nitroflavanone family of DNA methyltransferase (DNMT) inhibitors. We show that MLo1302 reduces cell viability (including of cisplatin resistant cell line NCCIT-R), with IC50s (inhibitory concentration 50) within the nanomolar range for NCCIT and NTERA-2 cells, and proved its cytotoxic effect. Exposure to MLo1302 reduced DNMT protein expression, similar to decitabine, and showed a partial effect in cell differentiation, reducing protein expression of pluripotency markers. RT2 profiler expression array indicated several dysregulated targets, related to activation of apoptosis, differentiation, and cell cycle arrest. We validated these data by showing increased apoptosis, increased protein expression of cleaved caspase 8 and activated caspase 2, and reduced proliferation (BrdU assay), with increase in CDKN1A and decrease in MIB-1 expression. Therefore, synthetic drugs designed to target DNA methylation in cells may uncover effective treatments for TGCT patients.
Collapse
|
10
|
Cao M, Zhu B, Sun Y, Zhao X, Qiu G, Fu W, Jiang H. TBX3 deficiency accelerates apoptosis in cardiomyoblasts through regulation of P21 expression. Life Sci 2019; 239:117040. [PMID: 31704448 DOI: 10.1016/j.lfs.2019.117040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 01/22/2023]
Abstract
Congenital heart disease (CHD) is the most common birth defect in newborns. There is increasing evidence that apoptosis and remodeling of the cardiomyoblasts are the major pathology of CHD. Previous research found that T-box transcription factor 3 (TBX3) was compulsory for the regulation of proliferation, cell cycle arrest and apoptosis in various cells. Hence, TBX3 might be involved in the treatment of CHD. The primary aim of this study was to study the effects of TBX3 on apoptosis in aged cardiomyoblasts and investigate the latent mechanism. In the present study, we found TBX3 knockdown induced proliferation inhibition, cell cycle arrest and apoptosis accompanied by mitochondrial dysfunction in cardiomyoblasts at passage 10 to 15. Apoptosis-inducing effects of TBX3 silence could be neutralized by silencing P21 using specific siRNA. In addition, the mRNA and protein expression levels of TBX3 in the heart tissues of sporadic type CHD donors were obviously down-regulated. In conclusion, we demonstrated that TBX3 deficiency accelerated apoptosis via directly regulating P21 expression in senescent cardiomyoblasts.
Collapse
Affiliation(s)
- Meiling Cao
- Department of Neonatology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Binlu Zhu
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuanyuan Sun
- Department of Medical Genetics, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xueqi Zhao
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Guangrong Qiu
- Department of Medical Genetics, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, People's Republic of China
| | - Weineng Fu
- Department of Medical Genetics, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, People's Republic of China
| | - Hongkun Jiang
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
11
|
Søgaard CK, Moestue SA, Rye MB, Kim J, Nepal A, Liabakk NB, Bachke S, Bathen TF, Otterlei M, Hill DK. APIM-peptide targeting PCNA improves the efficacy of docetaxel treatment in the TRAMP mouse model of prostate cancer. Oncotarget 2018; 9:11752-11766. [PMID: 29545934 PMCID: PMC5837745 DOI: 10.18632/oncotarget.24357] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022] Open
Abstract
Docetaxel is the chemotherapeutic choice for metastatic hormone-refractory prostate cancer, however, it only marginally improves the survival rate. The purpose of the present study was to examine if a peptide targeting the cellular scaffold protein PCNA could improve docetaxel's efficacy. We found that docetaxel given in combination with a cell penetrating peptide containing the AlkB homolog 2 PCNA interacting motif (APIM-peptide), reduced the prostate volume and limited prostate cancer regrowth in vivo in the immunocompetent transgenic adenocarcinoma model of prostate cancer (TRAMP). In accordance with this, we found that the APIM-peptide enhanced the efficacy of docetaxel in vitro. Gene expression analysis on prostate cancer cell lines indicated that the combination of docetaxel and APIM-peptide alters expression of genes involved in cellular signaling, apoptosis, and prostate cancer development. These changes were not detected in single agent treated cells. Our results suggest that targeting PCNA and thereby affecting multiple cellular pathways simultaneously has the potential to improve docetaxel therapy of advanced prostate cancer.
Collapse
Affiliation(s)
- Caroline K Søgaard
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Siver A Moestue
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Laboratory Medicine, Women's and Children's Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Pharmacy, Faculty of Health Sciences, Nord University, Namsos, Norway
| | - Morten B Rye
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jana Kim
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Radiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anala Nepal
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nina-Beate Liabakk
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Siri Bachke
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Radiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,APIM Therapeutics A/S, Trondheim, Norway.,Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Deborah K Hill
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Radiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
12
|
Wang H, Xu G, Huang Z, Li W, Cai H, Zhang Y, Xiong D, Liu G, Wang S, Xue Z, Luo Q. LRP6 targeting suppresses gastric tumorigenesis via P14 ARF-Mdm2-P53-dependent cellular senescence. Oncotarget 2017; 8:111597-111607. [PMID: 29340077 PMCID: PMC5762345 DOI: 10.18632/oncotarget.22876] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/15/2017] [Indexed: 12/17/2022] Open
Abstract
NLRP6, a member of the Nod-like receptor family, protects against chemically induced intestinal injury and colitis-associated colon cancer. However, the cellular mechanisms involved in this NLRP6-mediated protection remain unclear. Here, we show that NLRP6 was down-regulated in approximately 75% of primary gastric cancer cases and exhibited significant associations with advanced clinical-stage lymph node metastasis and poor overall survival. Functional studies established that ectopic overexpression or down-regulation of NLRP6 inhibited cancer cell proliferation by inducing cell cycle arrest at the G1 phase via P21 and Cyclin D1 both in vitro and in vivo. Activation of the P14ARF-P53 pathway played a crucial role in the observed cellular senescence. We further demonstrated that ectopic overexpression of NLRP6 combined with inactivation of NF-κB(p65) and Mdm2 activates P14ARF-P53 to promote the senescence of gastric cancer cells. These findings indicate that NLRP6 functions as a negative regulator of gastric cancer and offer a potential new option for preventing gastric cancer.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Guoxing Xu
- Department of Endoscopy Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Zhengjie Huang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China.,Department of Gastrointestinal Surgery, First Clinical Medical College of Fujian Medical University, Fuzhou 350004, China
| | - Weizheng Li
- Department of Cancer Prevention, Diagnosis and Treatment, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Huali Cai
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Yunda Zhang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Disheng Xiong
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Gang Liu
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Shengjie Wang
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Zengfu Xue
- Department of Cancer Prevention, Diagnosis and Treatment, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| | - Qi Luo
- Department of Gastrointestinal Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361003, Fujian, China
| |
Collapse
|
13
|
Hussmann M, Janke K, Kranz P, Neumann F, Mersch E, Baumann M, Goepelt K, Brockmeier U, Metzen E. Depletion of the thiol oxidoreductase ERp57 in tumor cells inhibits proliferation and increases sensitivity to ionizing radiation and chemotherapeutics. Oncotarget 2016; 6:39247-61. [PMID: 26513173 PMCID: PMC4770770 DOI: 10.18632/oncotarget.5746] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/08/2015] [Indexed: 12/21/2022] Open
Abstract
Rapidly growing tumor cells must synthesize proteins at a high rate and therefore depend on an efficient folding and quality control system for nascent secretory proteins in the endoplasmic reticulum (ER). The ER resident thiol oxidoreductase ERp57 plays an important role in disulfide bond formation. Lentiviral, doxycycline-inducible ERp57 knockdown was combined with irradiation and treatment with chemotherapeutic agents. The knockdown of ERp57 significantly enhanced the apoptotic response to anticancer treatment in HCT116 colon cancer cells via a p53-dependent mechanism. Instead of a direct interaction with p53, depletion of ERp57 induced cell death via a selective activation of the PERK branch of the Unfolded Protein Response (UPR). In contrast, apoptosis was reduced in MDA-MB-231 breast cancer cells harboring mutant p53. Nevertheless, we observed a strong reduction of proliferation in response to ERp57 knockdown in both cell lines regardless of the p53 status. Depletion of ERp57 reduced the phosphorylation activity of the mTOR-complex1 (mTORC1) as demonstrated by reduction of p70S6K phosphorylation. Our data demonstrate that ERp57 is a promising target for anticancer therapy due to synergistic p53-dependent induction of apoptosis and p53-independent inhibition of proliferation.
Collapse
Affiliation(s)
- Melanie Hussmann
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Kirsten Janke
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Philip Kranz
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Fabian Neumann
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Evgenija Mersch
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Melanie Baumann
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Kirsten Goepelt
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Ulf Brockmeier
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| | - Eric Metzen
- Institut für Physiologie, Universität Duisburg-Essen, D45122 Essen, Germany
| |
Collapse
|
14
|
Linton MF, Babaev VR, Huang J, Linton EF, Tao H, Yancey PG. Macrophage Apoptosis and Efferocytosis in the Pathogenesis of Atherosclerosis. Circ J 2016; 80:2259-2268. [PMID: 27725526 DOI: 10.1253/circj.cj-16-0924] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrophage apoptosis and the ability of macrophages to clean up dead cells, a process called efferocytosis, are crucial determinants of atherosclerosis lesion progression and plaque stability. Environmental stressors initiate endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR). Unresolved ER stress with activation of the UPR initiates apoptosis. Macrophages are resistant to apoptotic stimuli, because of activity of the PI3K/Akt pathway. Macrophages express 3 Akt isoforms, Akt1, Akt2 and Akt3, which are products of distinct but homologous genes. Akt displays isoform-specific effects on atherogenesis, which vary with different vascular cell types. Loss of macrophage Akt2 promotes the anti-inflammatory M2 phenotype and reduces atherosclerosis. However, Akt isoforms are redundant with regard to apoptosis. c-Jun NH2-terminal kinase (JNK) is a pro-apoptotic effector of the UPR, and the JNK1 isoform opposes anti-apoptotic Akt signaling. Loss of JNK1 in hematopoietic cells protects macrophages from apoptosis and accelerates early atherosclerosis. IκB kinase α (IKKα, a member of the serine/threonine protein kinase family) plays an important role in mTORC2-mediated Akt signaling in macrophages, and IKKα deficiency reduces macrophage survival and suppresses early atherosclerosis. Efferocytosis involves the interaction of receptors, bridging molecules, and apoptotic cell ligands. Scavenger receptor class B type I is a critical mediator of macrophage efferocytosis via the Src/PI3K/Rac1 pathway in atherosclerosis. Agonists that resolve inflammation offer promising therapeutic potential to promote efferocytosis and prevent atherosclerotic clinical events. (Circ J 2016; 80: 2259-2268).
Collapse
Affiliation(s)
- MacRae F Linton
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center
| | | | | | | | | | | |
Collapse
|
15
|
Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst) 2016; 42:63-71. [PMID: 27156098 DOI: 10.1016/j.dnarep.2016.04.008] [Citation(s) in RCA: 797] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/13/2022]
Abstract
An appropriate control over cell cycle progression depends on many factors. Cyclin-dependent kinase (CDK) inhibitor p21 (also known as p21(WAF1/Cip1)) is one of these factors that promote cell cycle arrest in response to a variety of stimuli. The inhibitory effect of P21 on cell cycle progression correlates with its nuclear localization. P21 can be induced by both p53-dependent and p53-independent mechanisms. Some other important functions attributed to p21 include transcriptional regulation, modulation or inhibition of apoptosis. These functions are largely dependent on direct p21/protein interactions and also on p21 subcellular localizations. In addition, p21 can play a role in DNA repair by interacting with proliferating cell nuclear antigen (PCNA). In this review, we will focus on the multiple functions of p21 in cell cycle regulation, apoptosis and gene transcription after DNA damage and briefly discuss the pathways and factors that have critical roles in p21 expression and activity.
Collapse
Affiliation(s)
- Ansar Karimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasin Ahmadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Otsuka R, Harada N, Aoki S, Shirai K, Nishitsuji K, Nozaki A, Hatakeyama A, Shono M, Mizusawa N, Yoshimoto K, Nakaya Y, Kitahata H, Sakaue H. C-terminal region of GADD34 regulates eIF2α dephosphorylation and cell proliferation in CHO-K1 cells. Cell Stress Chaperones 2016; 21:29-40. [PMID: 26318739 PMCID: PMC4679745 DOI: 10.1007/s12192-015-0633-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022] Open
Abstract
GADD34 is a member of a growth arrest and DNA damage (GADD)-inducible gene family. Here, we established a novel Chinese hamster ovary (CHO)-K1-derived cell line, CHO-K1-G34M, which carries a nonsense mutation (termed the Q525X mutation) in the GADD34 gene. The Q525X mutant protein lacks the C-terminal 66 amino acids required for GADD34 to bind to and activate protein phosphatase 1 (PP1). We investigated the effects of GADD34 with or without the Q525X mutation on the phosphorylation status of PP1 target proteins, including the α subunit of eukaryotic initiation factor 2 (eIF2α) and glycogen synthase kinase 3β (GSK3β). CHO-K1-G34M cells had higher levels of eIF2α phosphorylation compared to the control CHO-K1-normal cells both in the presence and absence of endoplasmic reticulum stress. Overexpression of the wild-type GADD34 protein in CHO-K1-normal cells largely reduced eIF2α phosphorylation, while overexpression of the Q525X mutant did not produce similar reductions. Meanwhile, neither wild type nor Q525X mutation of GADD34 affected the GSK3β phosphorylation status. GADD34 also did not affect the canonical Wnt signaling pathway downstream of GSK3β. Cell proliferation rates were higher, while expression levels of the cyclin-dependent kinase inhibitor p21 were lower in CHO-K1-G34M cells compared to the CHO-K1-normal cells. The GADD34 Q525X mutant had a reduced ability to inhibit cell proliferation and enhance p21 expression of the CHO-K1-normal cells compared to the wild-type GADD34 protein. These results suggest that the GADD34 protein C-terminal plays important roles in regulating not only eIF2α dephosphorylation but also cell proliferation in CHO-K1 cells.
Collapse
Affiliation(s)
- Ryo Otsuka
- Department of Dental Anesthesiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8504, Japan
| | - Nagakatsu Harada
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan.
| | - Shouhei Aoki
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | - Kanna Shirai
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | - Ayane Nozaki
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | - Adzumi Hatakeyama
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | - Masayuki Shono
- Support Center for Advanced Medical Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | - Noriko Mizusawa
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8504, Japan
| | - Katsuhiko Yoshimoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8504, Japan
| | - Yutaka Nakaya
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| | - Hiroshi Kitahata
- Department of Dental Anesthesiology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8504, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15, Kuramoto-cho, Tokushima City, 770-8503, Japan
| |
Collapse
|
17
|
Chen N, Nishio N, Ito S, Tanaka Y, Sun Y, Isobe KI. Growth arrest and DNA damage-inducible protein (GADD34) enhanced liver inflammation and tumorigenesis in a diethylnitrosamine (DEN)-treated murine model. Cancer Immunol Immunother 2015; 64:777-89. [PMID: 25832002 PMCID: PMC11029570 DOI: 10.1007/s00262-015-1690-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/22/2015] [Indexed: 12/19/2022]
Abstract
Growth arrest and DNA damage-inducible protein (GADD34/Ppp1r15a) is induced by various stimuli including DNA damage and ER stress. DNA damage and oncogene activation, accompanied by tumor-specific DNA repair defects and a failure to stall the cell cycle, are early markers of hepatocellular carcinoma (HCC). However, whether GADD34 accounts for regulating HCC tumorigenesis remains elusive. Here, we demonstrated that GADD34 expression was upregulated in the liver of mice after exposure to a carcinogen, diethylnitrosamine (DEN). In both acute and chronic DEN treatment models, GADD34 deficiency not only decreased oncogene expression, but also reduced hepatic damage. Moreover, loss of GADD34 attenuated immune cell infiltration, pro-inflammatory cytokine expression and hepatic compensatory proliferation. Finally, GADD34-deficient mice showed impaired hepatocarcinogenesis. Thus, the process of DEN-induced HCC proceeded as follows. First, DEN treatment induced DNA damage in hepatocytes, resulting in elevated expression of GADD34 in the liver. The increased expression of GADD34 augmented hepatic necrosis followed by elevated expression of interleukin (IL)-1β and monocyte chemoattractant protein 1. This process promoted immune cell infiltration and Kupffer cell/macrophage activation followed by production of reactive oxygen species and pro-tumorigenic cytokines such as IL-6 and tumor necrosis factor-α. The pro-tumorigenic cytokines stimulated compensatory proliferation of surviving and mutant hepatocytes. Together with oncogene c-Myc expression, these processes led to HCC. Our results suggest therapeutic opportunities for HCC by targeting GADD34-related pathways.
Collapse
Affiliation(s)
- Nana Chen
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Naomi Nishio
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Sachiko Ito
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Yuriko Tanaka
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Yang Sun
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| | - Ken-ichi Isobe
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550 Japan
| |
Collapse
|
18
|
Stamper BD, Garcia ML, Nguyen DQ, Beyer RP, Bammler TK, Farin FM, Kavanagh TJ, Nelson SD. p53 Contributes to Differentiating Gene Expression Following Exposure to Acetaminophen and Its Less Hepatotoxic Regioisomer Both In Vitro and In Vivo. GENE REGULATION AND SYSTEMS BIOLOGY 2015; 9:1-14. [PMID: 26056430 PMCID: PMC4454132 DOI: 10.4137/grsb.s25388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/06/2015] [Accepted: 04/14/2015] [Indexed: 01/20/2023]
Abstract
The goal of the present study was to compare hepatic toxicogenomic signatures across in vitro and in vivo mouse models following exposure to acetaminophen (APAP) or its relatively nontoxic regioisomer 3′-hydroxyacetanilide (AMAP). Two different Affymetrix microarray platforms and one Agilent Oligonucleotide microarray were utilized. APAP and AMAP treatments resulted in significant and large changes in gene expression that were quite disparate, and likely related to their different toxicologic profiles. Ten transcripts, all of which have been implicated in p53 signaling, were identified as differentially regulated at all time-points following APAP and AMAP treatments across multiple microarray platforms. Protein-level quantification of p53 activity aligned with results from the transcriptomic analysis, thus supporting the implicated mechanism of APAP-induced toxicity. Therefore, the results of this study provide good evidence that APAP-induced p53 phosphorylation and an altered p53-driven transcriptional response are fundamental steps in APAP-induced toxicity.
Collapse
Affiliation(s)
| | | | - Duy Q Nguyen
- School of Pharmacy, Pacific University, Hillsboro, OR, USA
| | - Richard P Beyer
- Department of Environmental and Occupational Health Sciences, University Of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University Of Washington, Seattle, WA, USA
| | - Frederico M Farin
- Department of Environmental and Occupational Health Sciences, University Of Washington, Seattle, WA, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University Of Washington, Seattle, WA, USA
| | - Sidney D Nelson
- Department of Medicinal Chemistry, University Of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Soliman E, Henderson KL, Danell AS, Van Dross R. Arachidonoyl-ethanolamide activates endoplasmic reticulum stress-apoptosis in tumorigenic keratinocytes: Role of cyclooxygenase-2 and novel J-series prostamides. Mol Carcinog 2015; 55:117-30. [PMID: 25557612 DOI: 10.1002/mc.22257] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 11/12/2022]
Abstract
Non-melanoma skin cancer and other epithelial tumors overexpress cyclooxygenase-2 (COX-2), differentiating them from normal cells. COX-2 metabolizes arachidonic acid to prostaglandins including, the J-series prostaglandins, which induce apoptosis by mechanisms including endoplasmic reticulum (ER) stress. Arachidonoyl-ethanolamide (AEA) is a cannabinoid that causes apoptosis in diverse tumor types. Previous studies from our group demonstrated that AEA was metabolized by COX-2 to J-series prostaglandins. Thus, the current study examines the role of COX-2, J-series prostaglandins, and ER stress in AEA-induced apoptosis. In tumorigenic keratinocytes that overexpress COX-2, AEA activated the PKR-like ER kinase (PERK), inositol requiring kinase-1 (IRE1), and activating transcription factor-6 (ATF6) ER stress pathways and the ER stress apoptosis-associated proteins, C/EBP homologous protein-10 (CHOP10), caspase-12, and caspase-3. Using an ER stress inhibitor, it was determined that ER stress was required for AEA-induced apoptosis. To evaluate the role of COX-2 in ER stress-apoptosis, HaCaT keratinocytes with low endogenous COX-2 expression were transfected with COX-2 cDNA or an empty vector and AEA-induced ER stress-apoptosis occurred only in the presence of COX-2. Moreover, LC-MS analysis showed that the novel prostaglandins, 15-deoxyΔ(12,14) PGJ2 -EA and Δ(12) PGJ2 /PGJ2-EA, were synthesized from AEA. These findings suggest that AEA will be selectively toxic in tumor cells that overexpress COX-2 due to the metabolism of AEA by COX-2 to J-series prostaglandin-ethanolamides (prostamides). Hence, AEA may be an ideal topical agent for the elimination of malignancies that overexpress COX-2.
Collapse
Affiliation(s)
- Eman Soliman
- Brody School of Medicine, Pharmacology and Toxicology, East Carolina University, Greenville, NC
| | - Kate L Henderson
- Department of Chemistry, East Carolina University, Greenville, NC
| | - Allison S Danell
- Department of Chemistry, East Carolina University, Greenville, NC
| | - Rukiyah Van Dross
- Brody School of Medicine, Pharmacology and Toxicology, East Carolina University, Greenville, NC
| |
Collapse
|
20
|
Gong H, Feng L. Computational analysis of the roles of ER-Golgi network in the cell cycle. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 4:S3. [PMID: 25522186 PMCID: PMC4290691 DOI: 10.1186/1752-0509-8-s4-s3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND ER-Golgi network plays an important role in the processing, sorting and transport of proteins, and it's also a site for many signaling pathways that regulate the cell cycle. Accumulating evidence suggests that, the stressed ER and malfunction of Golgi apparatus are associated with the pathogenesis of cancer and Alzheimer's disease (AD). Our previous work discovered and verified that altering the expression levels of target SNARE and GEF could modulate the size of Golgi apparatus. Moreover, Golgi's structure and size undergo dramatic changes during the development of several diseases. It is of importance to investigate the roles of ER-Golgi network in the cell cycle progression and some diseases. RESULTS In this work, we first develop a computational model to study the ER stress-induced and Golgi-related apoptosis-survival signaling pathways. Then, we propose and apply both asynchronous and synchronous model checking methods, which extend our previous verification technique, to automatically and formally analyze the ER-Golgi-regulated signaling pathways in the cell cycle progression through verifying some computation tree temporal logic formulas. CONCLUSIONS The proposed asynchronous and synchronous verification technique has advantages for large network analysis and verification over traditional simulation methods. Using the model checking method, we verified several Alzheimer's disease and cancer-related properties, and also identified important proteins (NFκB, ATF4, ASK1 and TRAF2) in the ER-Golgi network, which might be responsible for the pathogenesis of cancer and AD. Our studies indicate that targeting the ER stress-induced and Golgi-related pathways might serve as potent therapeutic targets for the treatment of cancer and Alzheimer's disease.
Collapse
|
21
|
Lane DJR, Mills TM, Shafie NH, Merlot AM, Saleh Moussa R, Kalinowski DS, Kovacevic Z, Richardson DR. Expanding horizons in iron chelation and the treatment of cancer: role of iron in the regulation of ER stress and the epithelial-mesenchymal transition. Biochim Biophys Acta Rev Cancer 2014; 1845:166-81. [PMID: 24472573 DOI: 10.1016/j.bbcan.2014.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/14/2014] [Indexed: 12/19/2022]
Abstract
Cancer is a major public health issue and, despite recent advances, effective clinical management remains elusive due to intra-tumoural heterogeneity and therapeutic resistance. Iron is a trace element integral to a multitude of metabolic processes, including DNA synthesis and energy transduction. Due to their generally heightened proliferative potential, cancer cells have a greater metabolic demand for iron than normal cells. As such, iron metabolism represents an important "Achilles' heel" for cancer that can be targeted by ligands that bind and sequester intracellular iron. Indeed, novel thiosemicarbazone chelators that act by a "double punch" mechanism to both bind intracellular iron and promote redox cycling reactions demonstrate marked potency and selectivity in vitro and in vivo against a range of tumours. The general mechanisms by which iron chelators selectively target tumour cells through the sequestration of intracellular iron fall into the following categories: (1) inhibition of cellular iron uptake/promotion of iron mobilisation; (2) inhibition of ribonucleotide reductase, the rate-limiting, iron-containing enzyme for DNA synthesis; (3) induction of cell cycle arrest; (4) promotion of localised and cytotoxic reactive oxygen species production by copper and iron complexes of thiosemicarbazones (e.g., Triapine(®) and Dp44mT); and (5) induction of metastasis and tumour suppressors (e.g., NDRG1 and p53, respectively). Emerging evidence indicates that chelators can further undermine the cancer phenotype via inhibiting the epithelial-mesenchymal transition that is critical for metastasis and by modulating ER stress. This review explores the "expanding horizons" for iron chelators in selectively targeting cancer cells.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas M Mills
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nurul H Shafie
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rayan Saleh Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
22
|
MacNeil AJ, Jiao SC, McEachern LA, Yang YJ, Dennis A, Yu H, Xu Z, Marshall JS, Lin TJ. MAPK kinase 3 is a tumor suppressor with reduced copy number in breast cancer. Cancer Res 2013; 74:162-72. [PMID: 24233520 DOI: 10.1158/0008-5472.can-13-1310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancers are initiated as a result of changes that occur in the genome. Identification of gains and losses in the structure and expression of tumor-suppressor genes and oncogenes lies at the root of the understanding of cancer cell biology. Here, we show that the mitogen-activated protein kinase (MAPK) MKK3 suppresses the growth of breast cancer, in which it varies in copy number. A pervasive loss of MKK3 gene copy number in patients with breast cancer is associated with an impairment of MKK3 expression and protein level in malignant tissues. To assess the functional role of MKK3 in breast cancer, we showed in an animal model that MKK3 activity is required for suppression of tumor growth. Active MKK3 enhanced expression of the cyclin-dependent kinase inhibitors p21(Cip1/Waf1) and p27(Kip1), leading to increased cell-cycle arrest in G1 phase of the cell cycle. Our results reveal the functional significance of MKK3 as a tumor suppressor and improve understanding of the dynamic role of the MAPK pathway in tumor progression.
Collapse
Affiliation(s)
- Adam J MacNeil
- Authors' Affiliations: Departments of Microbiology and Immunology, Pediatrics, Physiology and Biophysics, and Pathology, Dalhousie University; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada; Department of Medical Oncology, General Hospital of the People's Liberation Army, Beijing; and Institute of Zoonosis, College of Animal Sciences and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu B, Cong R, Peng B, Zhu B, Dou G, Ai H, Zhang X, Wang Z, Xu X. CtIP is required for DNA damage-dependent induction of P21. Cell Cycle 2013; 13:90-5. [PMID: 24196441 PMCID: PMC3925741 DOI: 10.4161/cc.26810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA endonuclease CtIP is involved in both DNA double-strand break (DSB) repair and transcriptional repression/activation. The cyclin-dependent kinase inhibitor P21, which is induced at transcription level in response to a variety of stresses, controls G₁/S transition. In this report, we found that CtIP bound to the P21 promoter, and this binding was enhanced in response to DNA damage. Concomitantly, ectopic expression of CtIP increased P21 promoter activity, and this increment was enhanced upon camptothecin treatment. Conversely, DNA damage failed to induce P21 gene expression in CtIP-deficient cells. Taken together, our data demonstrate that CtIP is required for DNA damage-induced P21 induction.
Collapse
Affiliation(s)
- Bo Liu
- Beijing Key laboratory of DNA Damage Response; Capital Normal University; College of Life Sciences; Beijing, China
| | - Rixin Cong
- Beijing Key laboratory of DNA Damage Response; Capital Normal University; College of Life Sciences; Beijing, China
| | - Bin Peng
- Beijing Key laboratory of DNA Damage Response; Capital Normal University; College of Life Sciences; Beijing, China
| | - Bingtao Zhu
- Beijing Key laboratory of DNA Damage Response; Capital Normal University; College of Life Sciences; Beijing, China
| | - Gelin Dou
- Beijing Key laboratory of DNA Damage Response; Capital Normal University; College of Life Sciences; Beijing, China
| | - Haiyan Ai
- Beijing Key laboratory of DNA Damage Response; Capital Normal University; College of Life Sciences; Beijing, China
| | - Xiaodong Zhang
- College of Life Sciences; Wuhan University; Wuhan, Hubei, China
| | - Zhenghe Wang
- Department of Genetics and Case Comprehensive Cancer Center; Case Western Reserve University; Cleveland, OH USA
| | - Xingzhi Xu
- Beijing Key laboratory of DNA Damage Response; Capital Normal University; College of Life Sciences; Beijing, China
| |
Collapse
|
24
|
Tarnok A, Darzynkiewicz Z. New insights into cell cycle and DNA damage response machineries through high-resolution AMICO quantitative imaging cytometry. Cell Prolif 2013; 46:497-500. [PMID: 23952744 DOI: 10.1111/cpr.12050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/28/2013] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Progress in biology and medicine research is being driven by development of new instrumentation and associated methodologies which open analytical capabilities that expand understanding of complexity of biological systems. Application of cytometry, which is now widely used in so many disciplines of biology, is the best example of such a progress. METHODOLOGY Recent publications push the envelope in expanding capabilities of cytometry by introducing a high resolution imaging cytometry defined as Automated Microscopy for Image CytOmetry (AMICO). This instrumentation is utilized to further elucidate mechanisms of the cell cycle progression and also the DNA damage response. This approach is going beyond the presently possible analytical technologies regarding throughput and depth of information. CONCLUSIONS The possibility of multiparametric analysis combined with the high resolution mapping of individual constituents of cell cycle and DNA damage response machineries provides new tools to probe molecular mechanism of these processes. The capability of analysis of proximity of these constituents to each other offered by AMICO is a novel and potentially important approach that can be used to elucidate mechanisms of other biological processes.
Collapse
Affiliation(s)
- A Tarnok
- Department of Paediatric Cardiology, Cardiac Centre, and Translational Centre for Regenerative Medicine (TRM), Universität Leipzig, 04289, Leipzig, Germany
| | | |
Collapse
|
25
|
Gu L, Johno H, Nakajima S, Yoshitomi T, Takahashi S, Kitamura M. Intervention in Genotoxic Stress–Induced Senescence by Cordycepin Through Activation of eIF2α and Suppression of Sp1. Toxicol Sci 2013; 134:345-54. [DOI: 10.1093/toxsci/kft111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
26
|
Lin HP, Jiang SS, Chuu CP. Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells. PLoS One 2012; 7:e31286. [PMID: 22347457 PMCID: PMC3274546 DOI: 10.1371/journal.pone.0031286] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/05/2012] [Indexed: 12/21/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21(Cip1). Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer.
Collapse
Affiliation(s)
- Hui-Ping Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
| | - Shih Sheng Jiang
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
- Graduate Program for Aging, China Medical University, Taichung, Taiwan
| |
Collapse
|
27
|
Abstract
The ability to respond to perturbations in endoplasmic reticulum (ER) function is a fundamentally important property of all cells, but ER stress can also lead to apoptosis. In settings of chronic ER stress, the associated apoptosis may contribute to pathophysiological processes involved in a number of prevalent diseases, including neurodegenerative diseases, diabetes, atherosclerosis and renal disease. The molecular mechanisms linking ER stress to apoptosis are the topic of this review, with emphases on relevance to pathophysiology and integration and complementation among the various apoptotic pathways induced by ER stress.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Anatomy & Cell Biology, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
28
|
Dietary phenethyl isothiocyanate alters gene expression in human breast cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011. [PMID: 20953429 PMCID: PMC2952307 DOI: 10.1155/2011/462525] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 11/05/2009] [Accepted: 08/31/2010] [Indexed: 11/18/2022]
Abstract
Phenethyl isothiocyanate (PEITC), a component in cruciferous vegetables, can block chemical carcinogenesis in animal models. Our objective was to determine the effect of treatment with PEITC on gene expression changes in MCF-7 human breast cancer cells in order to evaluate potential mechanisms involved in its chemopreventive effects. MCF-7 cells were treated for 48 hours with either PEITC (3 μM) or the vehicle. Total RNA was extracted from cell membrane preparations, and labeled cDNA's representing the mRNA pool were reverse-transcribed directly from total RNA isolated for use in the microarray hybridizations. Two specific human GE Array Kits (Superarray Inc.) that both contain 23 marker genes, related to signal transduction pathways or cancer/tumor suppression, plus 2 housekeeping genes (β-actin and GAPDH), were utilized. Arrays from treated and control cells (n = 4 per group) were evaluated using a Student's t-test. Gene expression was significantly induced for tumor protein p53 (p53), cyclin-dependent kinase inhibitor 1C (p57 Kip2), breast cancer Type 2 early onset (BRCA2), cAMP responsive element binding protein 2 (ATF-2), interleukin 2 (IL-2), heat shock 27 KD protein (hsp27), and CYP19 (aromatase). Induction of p57 Kip2, p53, BRCA2, IL-2, and ATF-2 would be expected to decrease cellular proliferation and increase tumor suppression and/or apoptosis. PEITC treatment produced significant alterations in some genes involved in tumor suppression and cellular proliferation/apoptosis that may be important in explaining the chemopreventive effects of PEITC.
Collapse
|
29
|
Ringer L, Sirajuddin P, Yenugonda VM, Ghosh A, Divito K, Trabosh V, Patel Y, Brophy A, Grindrod S, Lisanti MP, Rosenthal D, Brown ML, Avantaggiati ML, Rodriguez O, Albanese C. VMY-1-103, a dansylated analog of purvalanol B, induces caspase-3-dependent apoptosis in LNCaP prostate cancer cells. Cancer Biol Ther 2010; 10:320-5. [PMID: 20574155 PMCID: PMC3040852 DOI: 10.4161/cbt.10.4.12208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 05/03/2010] [Indexed: 11/19/2022] Open
Abstract
The 2,6,9-trisubstituted purine group of cyclin dependent kinase inhibitors have the potential to be clinically relevant inhibitors of cancer cell proliferation. We have recently designed and synthesized a novel dansylated analog of purvalanol B, termed VMY-1-103, that inhibited cell cycle progression in breast cancer cell lines more effectively than did purvalanol B and allowed for uptake analyses by fluorescence microscopy. ErbB-2 plays an important role in the regulation of signal transduction cascades in a number of epithelial tumors, including prostate cancer (PCa). Our previous studies demonstrated that transgenic expression of activated ErbB-2 in the mouse prostate initiated PCa and either the overexpression of ErbB-2 or the addition of the ErbB-2/ErbB-3 ligand, heregulin (HRG), induced cell cycle progression in the androgen-responsive prostate cancer cell line, LNCaP. In the present study, we tested the efficacy of VMY-1-103 in inhibiting HRG-induced cell proliferation in LNCaP prostate cancer cells. At concentrations as low as 1 μM, VMY-1-103 increased both the proportion of cells in G(1) and p21(CIP1) protein levels. At higher concentrations (5 μM or 10 μM), VMY-1-103 induced apoptosis via decreased mitochondrial membrane polarity and induction of p53 phosphorylation, caspase-3 activity and PARP cleavage. Treatment with 10 μM Purvalanol B failed to either influence proliferation or induce apoptosis. Our results demonstrate that VMY-1-103 was more effective in inducing apoptosis in PCa cells than its parent compound, purvalanol B, and support the testing of VMY-1-103 as a potential small molecule inhibitor of prostate cancer in vivo.
Collapse
Affiliation(s)
- Lymor Ringer
- Lombardi Comprehensive Cancer Center and Department of Oncology; Georgetown University Medical Center; Washington, DC USA
| | - Paul Sirajuddin
- Lombardi Comprehensive Cancer Center and Department of Oncology; Georgetown University Medical Center; Washington, DC USA
| | - Venkata Mahidhar Yenugonda
- Lombardi Comprehensive Cancer Center and Department of Oncology; Georgetown University Medical Center; Washington, DC USA
- Drug Discovery Program; Georgetown University Medical Center; Washington, DC USA
| | - Anup Ghosh
- Lombardi Comprehensive Cancer Center and Department of Oncology; Georgetown University Medical Center; Washington, DC USA
| | - Kyle Divito
- Drug Discovery Program; Georgetown University Medical Center; Washington, DC USA
| | - Valerie Trabosh
- Drug Discovery Program; Georgetown University Medical Center; Washington, DC USA
| | - Yesha Patel
- Lombardi Comprehensive Cancer Center and Department of Oncology; Georgetown University Medical Center; Washington, DC USA
| | - Amanda Brophy
- Lombardi Comprehensive Cancer Center and Department of Oncology; Georgetown University Medical Center; Washington, DC USA
| | - Scott Grindrod
- Lombardi Comprehensive Cancer Center and Department of Oncology; Georgetown University Medical Center; Washington, DC USA
- Drug Discovery Program; Georgetown University Medical Center; Washington, DC USA
| | - Michael P Lisanti
- Kimmel Cancer Center; Thomas Jefferson University; Philadelphia, PA USA
| | - Dean Rosenthal
- Lombardi Comprehensive Cancer Center and Department of Oncology; Georgetown University Medical Center; Washington, DC USA
- Drug Discovery Program; Georgetown University Medical Center; Washington, DC USA
| | - Milton L Brown
- Lombardi Comprehensive Cancer Center and Department of Oncology; Georgetown University Medical Center; Washington, DC USA
- Drug Discovery Program; Georgetown University Medical Center; Washington, DC USA
| | - Maria Laura Avantaggiati
- Lombardi Comprehensive Cancer Center and Department of Oncology; Georgetown University Medical Center; Washington, DC USA
| | - Olga Rodriguez
- Lombardi Comprehensive Cancer Center and Department of Oncology; Georgetown University Medical Center; Washington, DC USA
| | - Chris Albanese
- Lombardi Comprehensive Cancer Center and Department of Oncology; Georgetown University Medical Center; Washington, DC USA
- Department of Pathology; Georgetown University Medical Center; Washington, DC USA
| |
Collapse
|
30
|
Jung YS, Qian Y, Chen X. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal 2010; 22:1003-12. [PMID: 20100570 PMCID: PMC2860671 DOI: 10.1016/j.cellsig.2010.01.013] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/16/2010] [Indexed: 02/06/2023]
Abstract
p21(Waf1/Cip1/Sdi1) was originally identified as an inhibitor of cyclin-dependent kinases, a mediator of p53 in growth suppression and a marker of cellular senescence. p21 is required for proper cell cycle progression and plays a role in cell death, DNA repair, senescence and aging, and induced pluripotent stem cell reprogramming. Although transcriptional regulation is considered to be the initial control point for p21 expression, there is growing evidence that post-transcriptional and post-translational regulations play a critical role in p21 expression and activity. This review will briefly discuss the activity of p21 and focus on current knowledge of the determinants that control p21 transcription, mRNA stability and translation, and protein stability and activity.
Collapse
Affiliation(s)
- Yong-Sam Jung
- Center for Comparative Oncology, University of California, Davis, California 95616, USA
| | - Yingjuan Qian
- Center for Comparative Oncology, University of California, Davis, California 95616, USA
| | - Xinbin Chen
- Center for Comparative Oncology, University of California, Davis, California 95616, USA
| |
Collapse
|
31
|
Chano T, Ikebuchi K, Ochi Y, Tameno H, Tomita Y, Jin Y, Inaji H, Ishitobi M, Teramoto K, Nishimura I, Minami K, Inoue H, Isono T, Saitoh M, Shimada T, Hisa Y, Okabe H. RB1CC1 activates RB1 pathway and inhibits proliferation and cologenic survival in human cancer. PLoS One 2010; 5:e11404. [PMID: 20614030 PMCID: PMC2894861 DOI: 10.1371/journal.pone.0011404] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 06/09/2010] [Indexed: 11/18/2022] Open
Abstract
RB1-inducible coiled-coil 1 (RB1CC1, also known as FIP200) plays a role in the enhancement of the RB1 pathway through the direct binding to a GC-rich region 201bp upstream (from the initiation ATG) of the RB1 promoter. Here, we identified hSNF5 and p53 as the binding partners of RB1CC1 by immunoprecipitation and immunofluorescence assays. Interaction between these molecules and the RB1 pathway was analyzed by the assays of chromatin immunoprecipitation, luciferase-reporter, reverse transcription-polymerase chain reaction and immunoblot. The tumor growth suppression by RB1CC1 was evaluated by flow cytometry or by a cell growth assay. The nuclear RB1CC1 complex involving hSNF5 and/or p53 activated transcription of RB1, p16 and p21, and suppressed tumor cell growth. Furthermore, nuclear RB1CC1 expression significantly correlated with those of RB1 and p16 in breast cancer tissue in vivo, and the Ki-67 proliferation index was dependent on p53 as well as RB1CC1. The present study indicates that RB1CC1 together with hSNF5 and/or p53 enhances the RB1 pathway through transcriptional activation of RB1, p16 and p21. Evaluation of RB1CC1 expression combined with RB1 and p53 status is expected to provide useful information in clinical practice and future therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Muus U, Hose C, Yao W, Kosakowska-Cholody T, Farnsworth D, Dyba M, Lountos GT, Waugh DS, Monks A, Burke TR, Michejda CJ. Development of antiproliferative phenylmaleimides that activate the unfolded protein response. Bioorg Med Chem 2010; 18:4535-41. [PMID: 20472436 DOI: 10.1016/j.bmc.2010.04.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/19/2010] [Accepted: 04/20/2010] [Indexed: 11/16/2022]
Abstract
The current paper presents the synthesis and evaluation of a series of maleimides that were designed to inhibit the Cdc25 phosphatase by alkylation of catalytically essential cysteine residues. Although in HepB3 cell culture assays the analogues did exhibit antiproliferative IC(50) values ranging from sub-micromolar to greater than 100 microM, inhibition of Cdc25 through cysteine alkylation could not be demonstrated. It was also found that analysis using fluorescence activated cell sorting (FACS) following treatment with the most potent analogue (1t) did not provide data consistent with inhibition at one specific point in the cell cycle, as would be expected if Cdc25A were inhibited. Further studies with a subset of analogues resulted in a correlation of antiproliferative potencies with activation of the unfolded protein response (UPR). The UPR is a regulatory pathway that temporarily suspends protein production when misfolding of proteins occurs within the endoplastic reticulum (ER). In addition, ER chaperones that promote proper refolding become up-regulated. If cellular damage cannot be resolved by these mechanisms, then the UPR can initiate apoptosis. The current study indicates that these maleimide analogues lead to UPR activation, which is predictive of the selective antiproliferative activity of the series.
Collapse
Affiliation(s)
- Ulrike Muus
- Chemical Biology Laboratory, Molecular Discovery Program, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc Natl Acad Sci U S A 2009; 106:1832-7. [PMID: 19181853 DOI: 10.1073/pnas.0809632106] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diverse cellular stress responses are linked to phosphorylation of serine 51 on the alpha subunit of translation initiation factor 2. The resultant attenuation of protein synthesis and activation of gene expression figure heavily in the adaptive response to stress, but dephosphorylation of eIF2(alphaP), which terminates signaling in this pathway, is less well understood. GADD34 and CReP, the products of the related mammalian genes Ppp1r15a and Ppp1r15b, can recruit phosphatase catalytic subunits of the PPP1 class to eIF2(alphaP), but the significance of their contribution to its dephosphorylation has not been explored systematically. Here we report that unlike Ppp1r15a mutant mice, which are superficially indistinguishable from wild type, Ppp1r15b(-/-) mouse embryos survive gestation but exhibit severe growth retardation and impaired erythropoiesis, and loss of both Ppp1r15 genes leads to early embryonic lethality. These loss-of-function phenotypes are rescued by a mutation, Eif2a(S51A), that prevents regulated phosphorylation of eIF2alpha. These findings reveal that the essential process of eIF2(alphaP) dephosphorylation is the predominant role of PPP1R15 proteins in mammalian development.
Collapse
|
34
|
Imbeault M, Ouellet M, Tremblay MJ. Microarray study reveals that HIV-1 induces rapid type-I interferon-dependent p53 mRNA up-regulation in human primary CD4+ T cells. Retrovirology 2009; 6:5. [PMID: 19146679 PMCID: PMC2637825 DOI: 10.1186/1742-4690-6-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/15/2009] [Indexed: 11/10/2022] Open
Abstract
Background Infection with HIV-1 has been shown to alter expression of a large array of host cell genes. However, previous studies aimed at investigating the putative HIV-1-induced modulation of host gene expression have been mostly performed in established human cell lines. To better approximate natural conditions, we monitored gene expression changes in a cell population highly enriched in human primary CD4+ T lymphocytes exposed to HIV-1 using commercial oligonucleotide microarrays from Affymetrix. Results We report here that HIV-1 influences expression of genes related to many important biological processes such as DNA repair, cellular cycle, RNA metabolism and apoptosis. Notably, expression of the p53 tumor suppressor and genes involved in p53 homeostasis such as GADD34 were up-regulated by HIV-1 at the mRNA level. This observation is distinct from the previously reported p53 phosphorylation and stabilization at the protein level, which precedes HIV-1-induced apoptosis. We present evidence that the HIV-1-mediated increase in p53 gene expression is associated with virus-mediated induction of type-I interferon (i.e. IFN-α and IFN-β). Conclusion These observations have important implications for our understanding of HIV-1 pathogenesis, particularly in respect to the virus-induced depletion of CD4+ T cells.
Collapse
Affiliation(s)
- Michaël Imbeault
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, Québec, Canada.
| | | | | |
Collapse
|
35
|
Nishizuka S, Ramalingam S, Spurrier B, Washburn FL, Krishna R, Honkanen P, Young L, Tsutomu S, Steeg PS, Austin J. Quantitative protein network monitoring in response to DNA damage. J Proteome Res 2008; 7:803-8. [PMID: 18173236 DOI: 10.1021/pr0702971] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conventional molecular biology techniques have identified a large number of cell signaling pathways; however, the importance of these pathways often varies, depending on factors such as treatment type, dose, time after treatment, and cell type. Here, we describe a technique using "reverse-phase" protein lysate microarrays (RPAs) to acquire multiple dimensions of information on protein dynamics in response to DNA damage. Whole-cell lysates from three cellular stress treatments (IR, UV, and ADR) were collected at four doses per treatment, and each, in turn, at 10 time points, resulting in a single-slide RPA consisting of 10,240 features, including replicates. The dynamic molecular profile of 18 unique protein species was compared to phenotypic fate by FACS analysis for corresponding stress conditions. Our initial quantitative results in this new platform confirmed that (1) there is clear stress dose-response effect in p53 protein and (2) a comparison of the rates of increase of p21 and Cyclin D3/p53-Ser15 in response to DNA damage may be associated with the pattern of DNA content. This method, offering a quantitative time-course monitoring of protein expression levels, can provide an experimental reference for developing mathematical models of cell signaling dynamics. Although the present study focuses on the DNA damage-repair pathway, the technique is generally useful to the study of protein signaling.
Collapse
Affiliation(s)
- Satoshi Nishizuka
- Molecular Therapeutics Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yamada T, Ishihara H, Tamura A, Takahashi R, Yamaguchi S, Takei D, Tokita A, Satake C, Tashiro F, Katagiri H, Aburatani H, Miyazaki JI, Oka Y. WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta-cells. Hum Mol Genet 2006; 15:1600-9. [PMID: 16571599 DOI: 10.1093/hmg/ddl081] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Wolfram syndrome, an autosomal recessive disorder associated with diabetes mellitus and optic atrophy, is caused by mutations in the WFS1 gene encoding an endoplasmic reticulum (ER) membrane protein. Herein, we report that pancreatic islets of wfs1-deficient mice exhibit increases in phosphorylation of RNA-dependent protein kinase-like ER kinase, chaperone gene expressions and active XBP1 protein levels, indicating an enhanced ER stress response. We established wfs1-deficient MIN6 clonal beta-cells by crossing wfs1-deficient mice with mice expressing simian virus 40 large T antigen in beta-cells. These cells show essentially the same alterations in ER stress responses as wfs1-deficient islets, which were reversed by re-expression of WFS1 protein or overexpression of GRP78, a master regulator of the ER stress response. In contrast, these changes are not observed in heart, skeletal muscle or brown adipose tissues with WFS1-deficiency. The increased ER stress response was accompanied by reduced BrdU incorporation and increased caspase-3 cleavage, indicating impaired cell cycle progression and accelerated apoptotic processes in the mutant islets. These changes are associated with increased expression of the cell cycle regulator p21(CIP1) in wfs1-deficient islets and clonal beta-cells. Treatment of islets with thapsigargin, an ER stress inducer, caused upregulation of p21(CIP1). In addition, forced expression of p21(CIP1) resulted in reduced MIN6 beta-cell numbers, suggesting the ER stress-induced increase in p21(CIP1) expression to be involved in beta-cell loss in the mutant islets. These data indicate that WFS1-deficiency activates the ER stress response specifically in beta-cells, causing beta-cell loss through impaired cell cycle progression and increased apoptosis.
Collapse
Affiliation(s)
- Takahiro Yamada
- Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang L, Carlson SG, McBurney D, Horton WE. Multiple Signals Induce Endoplasmic Reticulum Stress in Both Primary and Immortalized Chondrocytes Resulting in Loss of Differentiation, Impaired Cell Growth, and Apoptosis. J Biol Chem 2005; 280:31156-65. [PMID: 16000304 DOI: 10.1074/jbc.m501069200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The endoplasmic reticulum is the site of synthesis and folding of secretory proteins and is sensitive to changes in the internal and external environment of the cell. Both physiological and pathological conditions may perturb the function of the endoplasmic reticulum, resulting in endoplasmic reticulum stress. The chondrocyte is the only resident cell found in cartilage and is responsible for synthesis and turnover of the abundant extracellular matrix and may be sensitive to endoplasmic reticulum stress. Here we report that glucose withdrawal, tunicamycin, and thapsigargin induce up-regulation of GADD153 and caspase-12, two markers of endoplasmic reticulum stress, in both primary chondrocytes and a chondrocyte cell line. Other agents such as interleukin-1beta or tumor necrosis factor alpha induced a minimal or no induction of GADD153, respectively. The endoplasmic reticulum stress resulted in decreased chondrocyte growth based on cell counts, up-regulation of p21, and decreased PCNA expression. In addition, perturbation of endoplasmic reticulum function resulted in decreased accumulation of an Alcian Blue positive matrix by chondrocytes and decreased expression of type II collagen at the protein level. Further, quantitative real-time PCR was used to demonstrate a down-regulation of steady state mRNA levels coding for aggrecan, collagen II, and link protein in chondrocytes exposed to endoplasmic reticulum stress-inducing conditions. Ultimately, endoplasmic reticulum stress resulted in chondrocyte apoptosis, as evidenced by DNA fragmentation and annexin V staining. These findings have potentially important implications regarding consequences of endoplasmic reticulum stress in cartilage biology.
Collapse
Affiliation(s)
- Ling Yang
- Department of Anatomy, Northeastern Ohio University College of Medicine, Rootstown, Ohio 44272, USA
| | | | | | | |
Collapse
|
38
|
Su ZZ, Emdad L, Sarkar D, Randolph A, Valerie K, Yacoub A, Dent P, Fisher PB. Potential molecular mechanism for rodent tumorigenesis: mutational generation of Progression Elevated Gene-3 (PEG-3). Oncogene 2005; 24:2247-55. [PMID: 15674324 DOI: 10.1038/sj.onc.1208420] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progression Elevated Gene-3 (PEG-3) was cloned using subtraction hybridization as an upregulated transcript associated with transformation and tumor progression of rat embryo fibroblast cells. PEG-3 is a unique gene facilitating tumor progression by modulating multiple pathways in transformed cells, including genomic stability, angiogenesis and invasion. PEG-3 originates from mutation in the growth arrest and DNA damage inducible gene GADD34. A one base deletion in rat GADD34 results in a frame-shift and premature appearance of a stop-codon resulting in a C-terminally truncated molecule that is PEG-3. We now document that mutation in the GADD34 gene is a frequent event during transformation and/or immortalization of rodent cells. Sequencing of the GADD34 gene in a number of independent rat tumor cell lines revealed that in a majority of these the GADD34 gene is mutated to either PEG-3 or a PEG-3-like gene with similar C-terminal truncations. An important function of GADD34 is to inhibit cell growth, predominantly by apoptosis, and we demonstrate that PEG-3 or C-terminal truncations of human GADD34 resembling PEG-3 prevent growth inhibition by both human and rat GADD34. Phosphorylation of p53 by GADD34 is one mechanism by which it inhibits growth and PEG-3 could prevent GADD34-induced p53 phosphorylation. In contrast, PEG-3 was unable to block other GADD34-induced changes, including eIF2 alpha dephosphorylation, indicating that its effects on GADD34 may be related more to its effect on cell growth rather than a global inhibitor of all GADD34 functions. We hypothesize that mutational generation of PEG-3 or a similar molecule is a critical event during rodent carcinogenesis. The inherent property of PEG-3 to function as a dominant negative of the growth inhibitory property of GADD34 might rescue cells from DNA damage-induced apoptosis leading to growth independence and tumorigenesis.
Collapse
Affiliation(s)
- Zao-zhong Su
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 2005; 18:3066-77. [PMID: 15601821 PMCID: PMC535917 DOI: 10.1101/gad.1250704] [Citation(s) in RCA: 1588] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unfolded and malfolded client proteins impose a stress on the endoplasmic reticulum (ER), which contributes to cell death in pathophysiological conditions. The transcription factor C/EBP homologous protein (CHOP) is activated by ER stress, and CHOP deletion protects against its lethal consequences. We find that CHOP directly activates GADD34, which promotes ER client protein biosynthesis by dephosphorylating phospho-Ser 51 of the alpha-subunit of translation initiation factor 2 (eIF2alpha) in stressed cells. Thus, impaired GADD34 expression reduces client protein load and ER stress in CHOP(-/-) cells exposed to perturbations that impair ER function. CHOP(-/-) and GADD34 mutant cells accumulate less high molecular weight protein complexes in their stressed ER than wild-type cells. Furthermore, mice lacking GADD34-directed eIF2alpha dephosphorylation, like CHOP(-/-) mice, are resistant to renal toxicity of the ER stress-inducing drug tunicamycin. CHOP also activates ERO1alpha, which encodes an ER oxidase. Consequently, the ER of stressed CHOP(-/-) cells is relatively hypo-oxidizing. Pharmacological and genetic manipulations that promote a hypo-oxidizing ER reduce abnormal high molecular weight protein complexes in the stressed ER and protect from the lethal consequences of ER stress. CHOP deletion thus protects cells from ER stress by decreasing ER client protein load and changing redox conditions within the organelle.
Collapse
Affiliation(s)
- Stefan J Marciniak
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Meinhold-Heerlein I, Bauerschlag D, Hilpert F, Dimitrov P, Sapinoso LM, Orlowska-Volk M, Bauknecht T, Park TW, Jonat W, Jacobsen A, Sehouli J, Luttges J, Krajewski M, Krajewski S, Reed JC, Arnold N, Hampton GM. Molecular and prognostic distinction between serous ovarian carcinomas of varying grade and malignant potential. Oncogene 2005; 24:1053-65. [PMID: 15558012 DOI: 10.1038/sj.onc.1208298] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Profiles of gene transcription have begun to delineate the molecular basis of ovarian cancer, including distinctions between carcinomas of differing histology, tumor progression and patient outcome. However, the similarities and differences among the most commonly diagnosed noninvasive borderline (low malignant potential, LMP) lesions and invasive serous carcinomas of varying grade (G1, G2 and G3) have not yet been explored. Here, we used oligonucleotide arrays to profile the expression of 12,500 genes in a series of 57 predominantly stage III serous ovarian adenocarcinomas from 52 patients, eight with borderline tumors and 44 with adenocarcinomas of varying grade. Unsupervised and supervised analyses showed that LMP lesions were distinct from high-grade serous adenocarcinomas, as might be expected; however, well-differentiated (G1) invasive adenocarcinomas showed a strikingly similar profile to LMP tumors as compared to cancers with moderate (G2) or poor (G3) cellular differentiation, which were also highly similar. Comparative genomic hybridization of an independent cohort of five LMP and 63 invasive carcinomas of varying grade demonstrated LMP and G1 were again similar, exhibiting significantly less chromosomal aberration than G2/G3 carcinomas. A majority of LMP and G1 tumors were characterized by high levels of p21/WAF1, with concomitant expression of cell growth suppressors, gadd34 and BTG-2. In contrast, G2/G3 cancers were characterized by the expression of genes associated with the cell cycle and by STAT-1-, STAT-3/JAK-1/2-induced gene expression. The distinction between the LMP-G1 and G2-G3 groups of tumors was highly correlated to patient outcome (chi(2) for equivalence of death rates=7.681189; P=0.0056, log-rank test). Our results are consistent with the recent demonstration of a poor differentiation molecular 'meta-signature' in human cancer, and underscore a number of cell-cycle- and STAT-associated targets that may prove useful as points of therapeutic intervention for those patients with aggressive disease.
Collapse
Affiliation(s)
- Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, University Hospital of Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Haneda M, Xiao H, Hasegawa T, Kimura Y, Nakashima I, Isobe KI. Regulation of mouse GADD34 gene transcription after DNA damaging agent methylmethane sulfonate. Gene 2004; 336:139-46. [PMID: 15225883 DOI: 10.1016/j.gene.2004.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/23/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
The GADD34 gene is transcriptionally induced by growth arrest and DNA damage. However, the mechanisms underlying the transcriptional regulation are still unclear. We analyzed the promoter of mouse GADD34 gene and the methylmethane sulfonate (MMS)-induced transcriptional regulation of this gene. By introducing genome mutants, which were linked to the luciferase reporter, into NIH3T3 cells, we defined a 100-bp fragment upstream of the transcriptional initiating site as the minimal promoter of the GADD34 gene. Subsequent study revealed that CRE-binding site located in this minimal promoter was critical for MMS-induced transcription of the GADD34 gene. In vitro binding experiments showed that phosphorylated c-Jun was contained in the CRE/DNA complex. Overexpression of the dominant negative form of c-Jun led to a decrease of MMS-responsive promoter activity. From these results, we conclude that the CRE site of the GADD34 promoter is indispensable to the MMS-responsive cis-element that c-Jun is the essential transcription factor for MMS-stimulated regulation of GADD34 gene expression and that the upstream signaling is dependent on JNK.
Collapse
Affiliation(s)
- Masataka Haneda
- Department of Basic Gerontology, National Institute for Longevity Sciences, 36-3 Gengo, Morioka-cho, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Ito T, Tsukumo SI, Suzuki N, Motohashi H, Yamamoto M, Fujii-Kuriyama Y, Mimura J, Lin TM, Peterson RE, Tohyama C, Nohara K. A Constitutively Active Arylhydrocarbon Receptor Induces Growth Inhibition of Jurkat T Cells through Changes in the Expression of Genes Related to Apoptosis and Cell Cycle Arrest. J Biol Chem 2004; 279:25204-10. [PMID: 15069065 DOI: 10.1074/jbc.m402143200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is known to suppress T cell-dependent immune reactions through the activation of the arylhydrocarbon receptor (AhR). Our previous findings suggest that TCDD inhibits the activation and subsequent expansion of T cells following antigen stimulation in mice, leading to a decreased level of T cell-derived cytokines involved in antibody production. In the present study, we investigated the effects of activated AhR on T cells by transiently expressing a constitutively active AhR (CA-AhR) mutant in AhR-null Jurkat T cells. In agreement with our previous findings, CA-AhR markedly inhibited the growth of Jurkat T cells. The inhibited cell growth was found to be concomitant with both an increase in the annexin V-positive apoptotic cells and the accumulation of cells in the G(1) phase. The growth inhibition was also shown to be mediated by both xenobiotic response element (XRE)-dependent and -independent mechanisms, because an A78D mutant of the CA-AhR, which lacks the ability of XRE-dependent transcription, partially inhibited the growth of Jurkat T cells. Furthermore, we demonstrated that CA-AhR induces expression changes in genes related to apoptosis and cell cycle arrest. These expression changes were shown to be solely mediated in an XRE-dependent manner, because the A78D mutant of the CA-AhR did not induce them. To summarize, these results suggest that AhR activation causes apoptosis and cell cycle arrest, especially through expression changes in genes related to apoptosis and cell cycle arrest by the XRE-dependent mechanism, leading to the inhibition of T cell growth.
Collapse
Affiliation(s)
- Tomohiro Ito
- Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Haneda M, Kojima E, Nishikimi A, Hasegawa T, Nakashima I, Isobe KI. Protein phosphatase 1, but not protein phosphatase 2A, dephosphorylates DNA-damaging stress-induced phospho-serine 15 of p53. FEBS Lett 2004; 567:171-4. [PMID: 15178317 DOI: 10.1016/j.febslet.2004.04.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 04/11/2004] [Accepted: 04/14/2004] [Indexed: 10/26/2022]
Abstract
Okadaic acid (OA) is a protein phosphatase (PP) inhibitor and induces hyperphosphorylation of p53. We investigated whether the inhibition of PP1 by OA promotes the phosphorylation of the serine 15 of p53. In vitro dephosphorylation assay showed that PP1 dephosphorylated ultraviolet C (UVC)-induced phospho-ser15 of p53, and that OA treatment inhibited it. One of the PP1 regulators, growth arrest and DNA damage 34 (GADD34), disturbed PP1 binding with p53, interfered with the dephosphorylation of p53 and increased the amount of phospho-p53 after UVC-treatment. This report provides the first evidence that PP1, but not PP2A, dephosphorylates phospho-serine 15 of p53.
Collapse
Affiliation(s)
- Masataka Haneda
- Department of Basic Gerontology, National Institute for Longevity Sciences, 36-3 Gengo, Morioka-cho, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | |
Collapse
|