1
|
de Melo Cordeiro Eulálio M, de Lima AM, Brant RSC, Francisco AF, Santana HM, Paloschi MV, da Silva Setúbal S, da Silva CP, Silva MDS, Boeno CN, Kayano AM, Rita PHS, de Azevedo Calderon L, Soares AM, Salvador DPM, Zuliani JP. Characterization of a novel acidic phospholipase A 2 isolated from the venom of Bothrops mattogrossensis: From purification to structural modeling. Int J Biol Macromol 2025; 292:139217. [PMID: 39732268 DOI: 10.1016/j.ijbiomac.2024.139217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Phospholipases A2 (PLA2s) are highly prevalent in Bothrops snake venom and play a crucial role in inflammatory responses and immune cell activation during envenomation. Despite their significance, the specific role of PLA2s from Bothrops mattogrossensis venom (BmV) in inflammation is not fully understood. This study sought to isolate and characterize a novel acidic PLA2 from BmV, designated BmPLA2-A, and to evaluate its effects on human umbilical vein endothelial cells (HUVECs), with a specific focus on cytotoxicity, adhesion, and detachment. BmPLA2-A was isolated through a multi-step chromatographic procedure, involving cation exchange (CM-Sepharose), hydrophobic interaction (n-butyl-Sepharose-HP), and reversed-phase (C-18) chromatography. SDS-PAGE analysis revealed a single protein band of approximately 15 kDa. The primary structure of BmPLA2-A was determined by LC-MS/MS, while its tertiary structure was modeled using AlphaFold. Enzymatic activity was verified with the synthetic substrate 4N3OBA. Molecular dynamics simulations were conducted to further investigate the catalytic mechanism of BmPLA2-A at the molecular level. In vitro assays on HUVECs revealed that BmPLA2-A neither induce cytokine release (IL-6, IL-8, IL-1β, TNF) nor affected cell viability, adhesion, or detachment. The characteristics of BmPLA2-A are consistent with those of acidic Asp-49 PLA2 enzymes, highlighting its potential involvement in the cytotoxic and inflammatory effects of the venom.
Collapse
Affiliation(s)
- Micaela de Melo Cordeiro Eulálio
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Anderson Maciel de Lima
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | | | - Aleff Ferreira Francisco
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Hallison Mota Santana
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Mauro Valentino Paloschi
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da Silva Setúbal
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Carolina Pereira da Silva
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Milena Daniela Souza Silva
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Charles Nunes Boeno
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Anderson Makoto Kayano
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Center for Research in Tropical Medicine (CEPEM/SESAU-RO), Porto Velho, RO, Brazil
| | | | - Leonardo de Azevedo Calderon
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation, Fiocruz Rondônia, Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Laboratory of Protein Biotechnology and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; National Institute of Science and Technology of Epidemiology of Western Amazon, INCT-EpiAmO, Brazil
| | | | - Juliana Pavan Zuliani
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Department of Medicine, Federal University of Rondonia (UNIR), Porto Velho, RO, Brazil.
| |
Collapse
|
2
|
Rucavado A, Camacho E, Escalante T, Lomonte B, Fernández J, Solano D, Quirós-Gutiérrez I, Ramírez-Vargas G, Vargas K, Argüello I, Navarro A, Abarca C, Segura Á, Florentin J, Kallel H, Resiere D, Neviere R, Gutiérrez JM. A murine experimental model of the pulmonary thrombotic effect induced by the venom of the snake Bothrops lanceolatus. PLoS Negl Trop Dis 2024; 18:e0012335. [PMID: 39356725 PMCID: PMC11472959 DOI: 10.1371/journal.pntd.0012335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/14/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The venom of Bothrops lanceolatus, a viperid species endemic to the Lesser Antillean Island of Martinique, induces thrombosis in a number of patients. Previous clinical observations indicate that thrombotic events are more common in patients bitten by juvenile specimens. There is a need to develop an experimental model of this effect in order to study the mechanisms involved. METHODOLOGY/PRINCIPAL FINDINGS The venoms of juvenile and adult specimens of B. lanceolatus were compared by (a) describing their proteome, (b) assessing their ability to induce thrombosis in a mouse model, and (c) evaluating their in vitro procoagulant activity and in vivo hemostasis alterations. Venom proteomes of juvenile and adult specimens were highly similar, albeit showing some differences. When injected by the intraperitoneal (i.p.) route, the venom of juvenile specimens induced the formation of abundant thrombi in the pulmonary vasculature, whereas this effect was less frequent in the case of adult venom. Thrombosis was not abrogated by the metalloproteinase inhibitor Batimastat. Both venoms showed a weak in vitro procoagulant effect on citrated mouse plasma and bovine fibrinogen. When administered intravenously (i.v.) venoms did not affect classical clotting tests (prothrombin time and activated partial thromboplastin time) but caused a partial drop in fibrinogen concentration. The venom of juvenile specimens induced partial alterations in some rotational thromboelastometry parameters after i.v. injection. When venoms were administered i.p., only minor alterations in classical clotting tests were observed with juvenile venom, and no changes occurred for either venom in rotational thromboelastometry parameters. Both juvenile and adult venoms induced a marked thrombocytopenia after i.p. injection. CONCLUSIONS/SIGNIFICANCE An experimental model of the thrombotic effect induced by B. lanceolatus venom was developed. This effect is more pronounced in the case of venom of juvenile specimens, despite the observation that juvenile and adult venom proteomes are similar. Adult and juvenile venoms do not induce a consumption coagulopathy characteristic of other Bothrops sp venoms. Both venoms induce a conspicuous thrombocytopenia. This experimental model reproduces the main clinical findings described in these envenomings and should be useful to understand the mechanisms of the thrombotic effect.
Collapse
Affiliation(s)
- Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Erika Camacho
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Daniela Solano
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Isabel Quirós-Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Gabriel Ramírez-Vargas
- Laboratorio de Hematología, Hospital Nacional de Niños ‘Dr Carlos Sáenz Herrera’, Caja Costarricense del Seguro Social, San José, Costa Rica
| | - Karol Vargas
- Laboratorio de Hematología, Hospital Nacional de Niños ‘Dr Carlos Sáenz Herrera’, Caja Costarricense del Seguro Social, San José, Costa Rica
| | - Ivette Argüello
- Laboratorio de Hematología, Hospital Nacional de Niños ‘Dr Carlos Sáenz Herrera’, Caja Costarricense del Seguro Social, San José, Costa Rica
| | - Alejandro Navarro
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Abarca
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Álvaro Segura
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Jonathan Florentin
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), Fort-de-France, France
| | - Hatem Kallel
- Intensive Care Unit, Cayenne General Hospital, Cayenne, French Guiana
- Tropical Biome and immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, Cayenne, French Guiana
| | - Dabor Resiere
- Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), Fort-de-France, France
| | - Remi Neviere
- Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), Fort de France, France
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
3
|
Qin T, Lv Y, Xi X, Wu Z. PLK-3-mediated phosphorylation of BAP1 prevents diabetic retinopathy. Biochem Pharmacol 2024; 226:116374. [PMID: 38906226 DOI: 10.1016/j.bcp.2024.116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus, and its main clinical manifestation is retinal vascular dysfunction. DR causes blindness and is a problem with significant global health implications. However, treating DR is still challenging. In this study, we aimed to explore the role of polo-like kinase-3 (PLK-3) and the potential regulatory mechanism in DR. Sprague-Dawley rats were injected intraperitoneally with streptozotocin (STZ, 60 mg/kg) to induce a rat model of DR, and rat retinal microvascular endothelial cells (RRMECs) were treated with high glucose (HG, 25 mmol/L glucose) to develop a cell model of DR. We found that PLK-3 was significantly downregulated in the retinal tissues of STZ-induced diabetic rats and HG-induced RRMECs. Lentivirus-mediated PLK-3 overexpression alleviated the histological damages in DR rats. After HG stimulation, cell proliferation, migration, and angiogenesis in RRMECs were inhibited after PLK-3 upregulation. By using label-free proteomics, we identified 82 differentially expressed proteins downstream of PLK-3, including BRCA1-associated protein 1 (BAP1), which was significantly upregulated in PLK-3-overexpressed RRMECs compared to control cells under the HG condition. In vivo and in vitro assays indicated that the forced expression of PLK-3 increased the phosphorylation of BAP1 at serine 592 and caspase-8 expression. Detailed evidence showed that BAP1-shRNA-mediated knockdown restored the cell function in HG-treated RRMECs when PLK-3 was overexpressed. Collectively, this study shows that PLK-3 alleviates retinal vascular dysfunction in DR by inhibiting the phosphorylation of BAP1. Thus, PLK-3 may develop as a promising target for the therapy of DR.
Collapse
Affiliation(s)
- Tingyu Qin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yingnan Lv
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangying Xi
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhipeng Wu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Santana HM, Ikenohuchi YJ, Silva MDS, Farias BJC, Serrath SN, Da Silva CP, Magalhães JGDS, Cruz LF, Cardozo DG, Ferreira E Ferreira A, Dos Reis VP, Diniz-Sousa R, Boeno CN, Paloschi MV, DE Lima AM, Soares AM, Setúbal SDS, Zuliani JP. BjussuMP-II, a venom metalloproteinase, induces the release and cleavage of pro-inflammatory cytokines and disrupts human umbilical vein endothelial cells. Chem Biol Interact 2024; 394:110986. [PMID: 38583853 DOI: 10.1016/j.cbi.2024.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Snake venom metalloproteases (SVMPs) are hydrolytic enzymes dependent on metal binding, primarily zinc (Zn2+), at their catalytic site. They are classified into three classes (P-I to P-III). BjussuMP-II, a P-I SVMP isolated from Bothrops jararacussu snake venom, has a molecular mass of 24 kDa. It exhibits inhibitory activity on platelet aggregation and hydrolyzes fibrinogen. TNF-α upregulates the expression of adhesion molecules on endothelial cell surfaces, promoting leukocyte adhesion and migration during inflammation. Literature indicates that SVMPs may cleave the TNF-α precursor, possibly due to significant homology between metalloproteases from mammalian extracellular matrix and SVMPs. This study aimed to investigate BjussuMP-II's effects on human umbilical vein endothelial cells (HUVEC), focusing on viability, detachment, adhesion, release, and cleavage of TNF-α, IL-1β, IL-6, IL-8, and IL-10. HUVEC were incubated with BjussuMP-II (1.5-50 μg/mL) for 3-24 h. Viability was determined using LDH release, MTT metabolization, and 7AAD for membrane integrity. Adhesion and detachment were assessed by incubating cells with BjussuMP-II and staining with Giemsa. Cytokines were quantified in HUVEC supernatants using EIA. TNF-α cleavage was evaluated using supernatants from PMA-stimulated cells or recombinant TNF-α. Results demonstrated BjussuMP-II's proteolytic activity on casein. It was not toxic to HUVEC at any concentration or duration studied but interfered with adhesion and promoted detachment. PMA induced TNF-α release by HUVEC, but this effect was not observed with BjussuMP-II, which cleaved TNF-α. Additionally, BjussuMP-II cleaved IL-1β, IL-6, and IL-10. These findings suggest that the zinc metalloprotease BjussuMP-II could be a valuable biotechnological tool for treating inflammatory disorders involving cytokine deregulation.
Collapse
Affiliation(s)
- Hallison Mota Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Yoda Janaina Ikenohuchi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Milena Daniela Souza Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Braz Junior Campos Farias
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Suzanne Nery Serrath
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Carolina Pereira Da Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | | | - Larissa Faustina Cruz
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Daniel Gomes Cardozo
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Alex Ferreira E Ferreira
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Valdison Pereira Dos Reis
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Rafaela Diniz-Sousa
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde, e Instituto Nacional de Ciência e Tecnologia Em Epidemiologia da Amazônia Ocidental, INCT-EPIAMO, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Charles Nunes Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Mauro Valentino Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Anderson Maciel DE Lima
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde, e Instituto Nacional de Ciência e Tecnologia Em Epidemiologia da Amazônia Ocidental, INCT-EPIAMO, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Andreimar Martins Soares
- Laboratório de Biotecnologia de Proteínas e Compostos Bioativos Aplicados à Saúde, e Instituto Nacional de Ciência e Tecnologia Em Epidemiologia da Amazônia Ocidental, INCT-EPIAMO, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da Silva Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil.
| | - Juliana Pavan Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
5
|
Bittenbinder MA, van Thiel J, Cardoso FC, Casewell NR, Gutiérrez JM, Kool J, Vonk FJ. Tissue damaging toxins in snake venoms: mechanisms of action, pathophysiology and treatment strategies. Commun Biol 2024; 7:358. [PMID: 38519650 PMCID: PMC10960010 DOI: 10.1038/s42003-024-06019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Snakebite envenoming is an important public health issue responsible for mortality and severe morbidity. Where mortality is mainly caused by venom toxins that induce cardiovascular disturbances, neurotoxicity, and acute kidney injury, morbidity is caused by toxins that directly or indirectly destroy cells and degrade the extracellular matrix. These are referred to as 'tissue-damaging toxins' and have previously been classified in various ways, most of which are based on the tissues being affected (e.g., cardiotoxins, myotoxins). This categorisation, however, is primarily phenomenological and not mechanistic. In this review, we propose an alternative way of classifying cytotoxins based on their mechanistic effects rather than using a description that is organ- or tissue-based. The mechanisms of toxin-induced tissue damage and their clinical implications are discussed. This review contributes to our understanding of fundamental biological processes associated with snakebite envenoming, which may pave the way for a knowledge-based search for novel therapeutic options.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - Jory van Thiel
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Howard Hughes Medical Institute and Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, Liverpool, United Kingdom
| | - José-María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Marinho AD, Lucena da Silva E, Jullyanne de Sousa Portilho A, Lacerda Brasil de Oliveira L, Cintra Austregésilo Bezerra E, Maria Dias Nogueira B, Leitão-Araújo M, Lúcia Machado-Alves M, Correa Neto C, Seabra Ferreira R, de Fátima Aquino Moreira-Nunes C, Elisabete Amaral de Moraes M, Jorge RJB, Montenegro RC. Three snake venoms from Bothrops genus induced apoptosis and cell cycle arrest in K562 human leukemic cell line. Toxicon 2024; 238:107547. [PMID: 38065258 DOI: 10.1016/j.toxicon.2023.107547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/15/2024]
Abstract
Cancer is indisputably one of the leading causes of death worldwide. Snake venoms are a potential source of bioactive compounds, complex mixtures constituted mainly of proteins and peptides with several pharmacological possibilities, including the potential to inhibit tumoral cell growth. In the present study, it was evaluated the antitumor effect of crude venom of Bothrops erythromelas (BeV), Bothrops jararaca (from Southern and Southeastern- BjsV and BjsdV, respectively) and Bothrops alternatus (BaV) in in vitro Chronic myeloid leukemia (CML) cancer cell line model. After 24 h of cell exposure to 10 and 50 μg/mL, BjsV, BjsdV, and BaV exerted a decrease in cell viability in both concentrations. BeV was not cytotoxic and, therefore wasn't chosen for further mechanism of action investigation. Furthermore, morphological alterations show modification typical of apoptosis. Also, was observes a significant cell cycle arrest in the S phase by BjsdV and BaV treatment. Flow cytometry evidenced the involvement of changes in the cell membrane permeability and the mitochondrial function by BjsV and BjsdV, corroborating with the triggering of the apoptotic pathway by the venom administration. BjsV, BjsdV, and BaV also led to extensive DNA damage and were shown to modulate the gene expression of transcripts related to the cell cycle progression and suppress the expression of the BCR-ABL1 oncogene. Altogether, these findings suggest that the venoms trigger the apoptosis pathway due to mitochondrial damage and cell cycle arrest, with modulation of intracellular pathways important for CML progression. Thus, indicating the pharmacological potential of these venoms in the development of new antitumoral compounds.
Collapse
Affiliation(s)
- Aline D Marinho
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil.
| | - Emerson Lucena da Silva
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Adrhyann Jullyanne de Sousa Portilho
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Laís Lacerda Brasil de Oliveira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Emanuel Cintra Austregésilo Bezerra
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Beatriz Maria Dias Nogueira
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Moema Leitão-Araújo
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Dr. Salvador França St., 1427, 90690-000, Porto Alegre, RS, Brazil
| | - Maria Lúcia Machado-Alves
- Fundação Zoobotânica do Rio Grande do Sul, Museu de Ciências Naturais, Núcleo Regional de Ofiologia de Porto Alegre, Dr. Salvador França St., 1427, 90690-000, Porto Alegre, RS, Brazil
| | - Carlos Correa Neto
- Instituto Vital Brazil, Maestro José Botelho St., 64, 24230-410, Niterói, RJ, Brazil; Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, César Pernetta St., 1573-1675, 21941-902, Rio de Janeiro-RJ, Brazil
| | - Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals, Fazenda Experimental Lageado, São Paulo State University, José Barbosa de Barros St., 1780, 18610-307, Botucatu, SP, Brazil
| | - Caroline de Fátima Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Maria Elisabete Amaral de Moraes
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil
| | - Roberta J B Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil
| | - Raquel C Montenegro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Coronel Nunes de Melo St., 1127, 60.430-275, Fortaleza, CE, Brazil; Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceara, Coronel Nunes de Melo St., 1000, 60.430-275, Fortaleza, CE, Brazil.
| |
Collapse
|
7
|
Lopes-de-Souza L, Costal-Oliveira F, Rodrigues CR, Stransky S, de Assis TCS, Liberato C, Vivas-Ruiz D, Chocas AY, Guerra-Duarte C, Braga VMM, Chávez-Olortegui C. Bothrops atrox venom: Biochemical properties and cellular phenotypes of three highly toxic classes of toxins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140930. [PMID: 37442518 DOI: 10.1016/j.bbapap.2023.140930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 07/15/2023]
Abstract
Snake venoms have a complex mixture of compounds that are conserved across species and act synergistically, triggering severe local and systemic effects. Identification of the toxin classes that are most damaging to cell homeostasis would be a powerful approach to focus on the main activities that underpin envenomation. Here, we focus on the venom of Bothrops atrox, snake responsible for most of the accidents in Amazon region of South America. We identified the key cytotoxic toxin fractions from B. atrox venom and mapped their biochemical properties, protein composition and cell damage. Five fractions were obtained by mass exclusion chromatography and contained either a single class of enzymatic activity (i.e., L-amino acid oxidases or Hyaluronidases) or different activities co-distributed in two or more protein fractions (e.g., Metalloproteinases, Serine Proteases, or Phospholipases A2). Only three protein fractions reduced cell viability of primary human cells. Strikingly, such activity is accompanied by disruption of cell attachment to substratum and to neighbouring cells. Such strong perturbation of morphological cell features indicates likely defects in tissue integrity in vivo. Mass spectrometry identified the main classes of toxins that contribute to these phenotypes. We provide here a strategy for the selection of key cytotoxic proteins for targeted investigation of their mechanism of action and potential synergism during snakebite envenomation. Our data highlights putative toxins (or combinations of) that may be the focus of future therapeutic interference.
Collapse
Affiliation(s)
- Leticia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina Rego Rodrigues
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thamyres C S de Assis
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Liberato
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dan Vivas-Ruiz
- Laboratorio de Biología Molecular - Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos (UNMSM), Peru
| | - Armando Yarleque Chocas
- Laboratorio de Biología Molecular - Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos (UNMSM), Peru
| | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK.
| | - Carlos Chávez-Olortegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Albrecht EA, Carter JD, Garbar V, Choudhary A, Tomlins SA. Intracellular Zinc Trafficking during Crotalus atrox Venom Wound Development. Int J Mol Sci 2023; 24:ijms24076763. [PMID: 37047742 PMCID: PMC10094922 DOI: 10.3390/ijms24076763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
In this study, we examined zinc trafficking in human umbilical vein endothelial cells (HUVEC) stimulated with Crotalus atrox (CA venom) snake venom. We utilized MTS cytotoxicity assays to monitor the cytotoxic range of CA venom. HUVEC monolayers stimulated with 10 µg/mL CA venom for 3 h displayed cellular retraction, which coincided with 53.0 ± 6.5 percent viability. In contrast, venom concentrations of 100 µg/mL produced a complete disruption of cellular adherence and viability decreased to 36.6 ± 1.0. The zinc probe Fluozin-3AM was used to detect intracellular zinc in non-stimulated controls, HUVEC stimulated with 10 µg/mL CA venom or HUVEC preincubated with TPEN for 2 h then stimulated with 10 µg/mL CA venom. Fluorescent intensity analysis returned values of 1434.3 ± 197.4 for CA venom demonstrating an increase of about two orders of magnitude in labile zinc compared to non-stimulated controls. Endothelial response to CA venom induced a 96.1 ± 3.0- and 4.4 ± 0.41-fold increase in metallothionein 1X (MT1X) and metallothionein 2A (MT2A) gene expression. Zinc chelation during CA venom stimulation significantly increased cell viability, suggesting that the maintenance of zinc homeostasis during envenomation injury improves cell survival.
Collapse
Affiliation(s)
- Eric A Albrecht
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Jasmine D Carter
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Veronica Garbar
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Abeeha Choudhary
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Scott A Tomlins
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Chiang LC, Chien KY, Su HY, Chen YC, Mao YC, Wu WG. Comparison of Protein Variation in Protobothrops mucrosquamatus Venom between Northern and Southeast Taiwan and Association with Human Envenoming Effects. Toxins (Basel) 2022; 14:toxins14090643. [PMID: 36136582 PMCID: PMC9501293 DOI: 10.3390/toxins14090643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Reports of bite from Protobothrops mucrosquamatus (Pmu) are frequent in Taiwan, and its wide-spread distribution and diverse habitats drove us to investigate its envenoming effects and relevant venom variations. We used reversed-phase high-performance liquid chromatography and mass spectrometry to analyze 163 Pmu venom samples collected from northern and southeastern Taiwan. Twenty-two major protein fractions were separated and analyzed, and their contents were determined semi-quantitatively. The results showed that despite the trivial differences in the protein family, there is an existing variation in acidic phospholipases A2s, serine proteinases, metalloproteinases, C-type lectin-like proteins, and other less abundant components in the Pmu venoms. Moreover, clinical manifestations of 209 Pmu envenomed patients hospitalized in northern or southeastern Taiwan revealed significant differences in local symptoms, such as ecchymosis and blistering. The mechanism of these local effects and possibly relevant venom components were examined. Further analysis showed that certain venom components with inter-population variation might work alone or synergistically with others to aggravate the local effects. Therefore, our findings of the venom variation may help one to improve antivenom production and better understand and manage Pmu bites.
Collapse
Affiliation(s)
- Liao-Chun Chiang
- College of Life Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan
| | - Kun-Yi Chien
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan County 333, Taiwan
- Clinical Proteomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan County 333, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan County 333, Taiwan
| | - Hung-Yuan Su
- Department of Emergency Medicine, E-Da Hospital, Kaohsiung County 824, Taiwan
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung County 840, Taiwan
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung County 811, Taiwan
| | - Yen-Chia Chen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
- Department of Emergency Medicine, National Defense Medical Center, Taipei City 114, Taiwan
| | - Yan-Chiao Mao
- Department of Emergency Medicine, National Defense Medical Center, Taipei City 114, Taiwan
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan
- College of Medicine, National Chung Hsing University, Taichung City 402, Taiwan
- Correspondence: (Y.-C.M.); (W.-G.W.)
| | - Wen-Guey Wu
- College of Life Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan
- Correspondence: (Y.-C.M.); (W.-G.W.)
| |
Collapse
|
10
|
Bhat SK, Joshi MB, Vasishta S, Jagadale RN, Biligiri SG, Coronado MA, Arni RK, Satyamoorthy K. P-I metalloproteinases and L-amino acid oxidases from Bothrops species inhibit angiogenesis. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200180. [PMID: 34471403 PMCID: PMC8381740 DOI: 10.1590/1678-9199-jvatitd-2020-0180] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Snake venoms are composed of pharmacologically active proteins that are evolutionarily diverse, stable and specific to targets. Hence, venoms have been explored as a source of bioactive molecules in treating numerous diseases. Recent evidences suggest that snake venom proteins may affect the formation of new blood vessels. Excessive angiogenesis has been implicated in several pathologies including tumours, diabetic retinopathy, arthritis, inter alia. In the present study, we have examined the effects of P-I metalloproteinases isolated from Bothrops moojeni (BmMP-1) and Bothrops atrox (BaMP-1) and L-amino acid oxidases (LAAO) isolated from B. moojeni (BmLAAO) and B. atrox (BaLAAO) on biochemical and functional aspects of angiogenesis. METHODS P-I metalloproteinases and LAAO were purified from venom by molecular size exclusion and ion-exchange chromatography and subsequently confirmed using mass spectrometry. The P-I metalloproteinases were characterized by azocaseinolytic, fibrinogenolytic and gelatinase activity and LAAO activity was assessed by enzyme activity on L-amino acids. Influence of these proteins on apoptosis and cell cycle in endothelial cells was analysed by flow cytometry. The angiogenic activity was determined by in vitro 3D spheroid assay, Matrigel tube forming assay, and in vivo agarose plug transformation in mice. RESULTS P-I metalloproteinases exhibited azocaseinolytic activity, cleaved α and partially β chain of fibrinogen, and displayed catalytic activity on gelatin. LAAO showed differential activity on L-amino acids. Flow cytometry analysis indicated that both P-I metalloproteinases and LAAO arrested the cells in G0/G1 phase and further induced both necrosis and apoptosis in endothelial cells. In vitro, P-I metalloproteinases and LAAO exhibited significant anti-angiogenic properties in 3D spheroid and Matrigel models by reducing sprout outgrowth and tube formation. Using agarose plug transplants in mice harbouring P-I metalloproteinases and LAAO we demonstrated a marked disruption of vasculature at the periphery. CONCLUSION Our research suggests that P-I metalloproteinases and LAAO exhibit anti-angiogenic properties in vitro and in vivo.
Collapse
Affiliation(s)
- Shreesha K. Bhat
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manjunath B. Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sampara Vasishta
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | | | | | - Monika A. Coronado
- Multiuser Center for Biomolecular Innovation, Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Kapaettu Satyamoorthy
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
11
|
Olaoba OT, Karina dos Santos P, Selistre-de-Araujo HS, Ferreira de Souza DH. Snake Venom Metalloproteinases (SVMPs): A structure-function update. Toxicon X 2020; 7:100052. [PMID: 32776002 PMCID: PMC7399193 DOI: 10.1016/j.toxcx.2020.100052] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) represent a diverse group of multi-domain proteins with several biological activities such as the ability to induce hemorrhage, proteolytic degradation of fibrinogen and fibrin, induction of apoptosis and inhibition of platelet aggregation. Due to these activities, SVMPs are responsible for many of the well-known pathological phenotypes in snake envenomations caused particularly by species from the Viperidae family and the Crotalinae subfamily. These proteins have been classified based on their size and domain structure into P–I, P-II and P-III classes. Comparatively, members of the P–I SVMPs possess the simplest structures, formed by the catalytic metalloproteinase domain only; the P-II SVMPs are moderately more complex, having the canonical disintegrin domain in addition to the metalloproteinase domain; members of the P-III class are more structurally varied, comprising the metalloproteinase, disintegrin-like, and cysteine-rich domains. Proteolytic cleavage, repeated domain loss and presence of other ancillary domains are responsible for structural diversities in the P-III class. However, studies continue to unveil the relationship between the structure and function of these proteins. In this review, we recovered evidences from literature on the structural peculiarities and functional classification of Snake Venom Metalloproteinases. In addition, we reflect on diversities that exist among each class while taking into account specific and up-to-date class-based activities.
Collapse
Affiliation(s)
- Olamide Tosin Olaoba
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
| | - Patty Karina dos Santos
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
| | | | - Dulce Helena Ferreira de Souza
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, São Paulo, Brazil
- Corresponding author.
| |
Collapse
|
12
|
The relationship between clinics and the venom of the causative Amazon pit viper (Bothrops atrox). PLoS Negl Trop Dis 2020; 14:e0008299. [PMID: 32511239 PMCID: PMC7302866 DOI: 10.1371/journal.pntd.0008299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/18/2020] [Accepted: 04/16/2020] [Indexed: 11/26/2022] Open
Abstract
Snake venoms are complex mixtures of proteins with toxic activities, with many distinct isoforms, affecting different physiological targets, comprised in a few protein families. It is currently accepted that this diversity in venom composition is an adaptive advantage for venom efficacy on a wide range of prey. However, on the other side, variability on isoforms expression has implications in the clinics of human victims of snakebites and in the efficacy of antivenoms. B. atrox snakes are responsible for most of the human accidents in Brazilian Amazon and the type and abundance of protein families on their venoms present individual variability. Thus, in this study we attempted to correlate the individual venom proteome of the snake brought to the hospital by the patient seeking for medical assistance with the clinical signs observed in the same patient. Individual variability was confirmed in venoms of the 14 snakes selected for the study. The abundance of each protein family was quite similar among the venom samples, while the isoforms composition was highly variable. Considering the protein families, the SVMP group presented the best correlation with bleeding disorders and edema. Considering individual isoforms, some isoforms of venom metalloproteinase (SVMP), C-type lectin-like toxins (CTL) and snake venom serine proteinases (SVSP) presented expression levels that with statistically significant positive correlation to signs and symptoms presented by the patients as bleeding disorders, edema, ecchymosis and blister formation. However, some unexpected data were also observed as the correlation between a CTL, CRISP or LAAO isoforms with blister formation, still to be confirmed with a larger number of samples. Although this is still a small number of patient samples, we were able to indicate that venom composition modulates clinical manifestations of snakebites, to confirm at the bedside the prominent role of SVMPs and to include new possible toxin candidates for the development of toxin inhibitors or to improve antivenom selectiveness, important actions for the next generation treatments of snakebites. Bothrops atrox is a snake of major medical importance in the Amazon. Its venom is specialized to kill preys in the nature, especially because of coagulotoxic and proteolytic activities. B. atrox envenomings cause local inflammation and, in a significant proportion, systemic manifestations, namely bleeding disorders. These signs and symptoms are caused by the various toxins present in the venom of this snake, which act in the organism by different mechanisms. It is not known to what extent the composition of the venom that was inoculated by the snake that caused the envenoming can influence the patient’s clinical condition. To study this subject, this work correlated the constituents of the venom with the clinical manifestations of hospitalized patients, taking advantage of the fact that many patients bring the snake responsible for the bite. The abundance of each toxin family was similar among the venom samples, but the variants composition of each toxin was highly variable. Considering the protein families, a group named metalloproteases (SVMP) presented the best correlation with bleeding disorders and edema. Some variants of venom SVMPs, and other toxin families, such as C-type lectin-like toxins (CTL) and snake venom serine proteinases (SVSP) presented correlation to signs and symptoms presented by the patients as bleeding disorders, edema, ecchymosis and blister formation. Our results show that venom composition modulates clinical manifestations of snakebites.
Collapse
|
13
|
Sato K, Kodama A, Kase C, Hirakawa S, Ato M. Development of a Simple Permeability Assay Method for Snake Venom-induced Vascular Damage. ANAL SCI 2018. [PMID: 29526900 DOI: 10.2116/analsci.34.323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have developed a novel bioassay method for the detection of snake venom based on the permeability of endothelial cell monolayers cultured in Transwell cell culture inserts. This assay relies on the proteolytic degradation of capillary basement membrane proteins, a pathophysiological event that occurs due to snakebites in vivo. Transwell permeability assays with fluorescence measurements are advantageous with regard to ethical considerations for the use of animals. The assay time was reduced from 24 h for animal tests to 2 h, and many samples could be assayed easily.
Collapse
Affiliation(s)
- Kae Sato
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University
| | - Ayuki Kodama
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University
| | - Chikako Kase
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University
| | - Satoshi Hirakawa
- Department of Dermatology, Hamamatsu University School of Medicine
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases
| |
Collapse
|
14
|
G-quadruplexes in the BAP1 promoter positively regulate its expression. Exp Cell Res 2018; 369:147-157. [DOI: 10.1016/j.yexcr.2018.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/23/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022]
|
15
|
Stransky S, Costal-Oliveira F, Lopes-de-Souza L, Guerra-Duarte C, Chávez-Olórtegui C, Braga VMM. In vitro assessment of cytotoxic activities of Lachesis muta muta snake venom. PLoS Negl Trop Dis 2018; 12:e0006427. [PMID: 29659601 PMCID: PMC5919693 DOI: 10.1371/journal.pntd.0006427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/26/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022] Open
Abstract
Envenomation by the bushmaster snake Lachesis muta muta is considered severe, characterized by local effects including necrosis, the main cause of permanent disability. However, cellular mechanisms related to cell death and tissue destruction, triggered by snake venoms, are poorly explored. The purpose of this study was to investigate the cytotoxic effect caused by L. m. muta venom in normal human keratinocytes and to identify the cellular processes involved in in cellulo envenomation. In order to investigate venom effect on different cell types, Alamar Blue assay was performed to quantify levels of cellular metabolism as a readout of cell viability. Apoptosis, necrosis and changes in mitochondrial membrane potential were evaluated by flow cytometry, while induction of autophagy was assessed by expression of GFP-LC3 and analyzed using fluorescence microscopy. The cytotoxic potential of the venom is shown by reduced cell viability in a concentration-dependent manner. It was also observed the sequential appearance of cells undergoing autophagy (by 6 hours), apoptosis and necrosis (12 and 24 hours). Morphologically, incubation with L. m. muta venom led to a significant cellular retraction and formation of cellular aggregates. These results indicate that L. m. muta venom is cytotoxic to normal human keratinocytes and other cell lines, and this toxicity involves the integration of distinct modes of cell death. Autophagy as a cell death mechanism, in addition to apoptosis and necrosis, can help to unravel cellular pathways and mechanisms triggered by the venom. Understanding the mechanisms that underlie cellular damage and tissue destruction will be useful in the development of alternative therapies against snakebites.
Collapse
Affiliation(s)
- Stephanie Stransky
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (CCO); (VMMB)
| | - Vania Maria Martin Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (CCO); (VMMB)
| |
Collapse
|
16
|
Delafontaine M, Villas-Boas IM, Mathieu L, Josset P, Blomet J, Tambourgi DV. Enzymatic and Pro-Inflammatory Activities of Bothrops lanceolatus Venom: Relevance for Envenomation. Toxins (Basel) 2017; 9:toxins9080244. [PMID: 28783135 PMCID: PMC5577578 DOI: 10.3390/toxins9080244] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022] Open
Abstract
Bothrops lanceolatus, commonly named ‘Fer-de-Lance’, is an endemic snake of the French Caribbean Island of Martinique. Envenomations by B. lanceolatus present clinical aspects characterized by systemic thrombotic syndrome and important local inflammation, involving edema and pain but limited hemorrhage. To investigate mechanisms of venom-induced inflammation, B. lanceolatus venom was characterized, its cross-reactivity with bothropic antivenom explored, its cytotoxicity on human keratinocytes and vascular cells, and the production of cytokines and chemokines were analyzed. We used electrophoretic separation, zymography, colorimetric or fluorimetric enzymatic assays, and immunochemical assays. Therapeutic South American bothropic antivenom cross-reacted with B. lanceolatus venom and completely or partially abolished its PLA2, hyaluronidase, and proteolytic activities, as well as its cytotoxicity for keratinocytes. The substrate specificity of B. lanceolatus venom proteases was emphasized. B. lanceolatus venom cytotoxicity was compared to the B. jararaca venom. Both venoms were highly cytotoxic for keratinocytes (HaCaT), whereas B. lanceolatus venom showed particularly low toxicity for endothelial cells (EAhy926). Patterns of cytokine and chemokine production by cells exposed to the venoms were highly pro-inflammatory. Thus, the results presented here show that B. lanceolatus venom toxins share important antigenic similarities with South American Bothrops species toxins, although their proteases have acquired particular substrate specificity. Moreover, the venom displays important cytotoxic and pro-inflammatory action on human cell types such as keratinocytes and endothelial cells, which are important players in the local and systemic compartments affected by the envenomation.
Collapse
Affiliation(s)
| | | | - Laurence Mathieu
- Prevor Laboratory, Moulin de Verville, Valmondois 95760, France.
| | | | - Joël Blomet
- Prevor Laboratory, Moulin de Verville, Valmondois 95760, France.
| | - Denise V Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil.
| |
Collapse
|
17
|
Preciado LM, Pereañez JA. Low molecular mass natural and synthetic inhibitors of snake venom metalloproteinases. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1309550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lina María Preciado
- Programa de Ofidismo/Escorpionismo, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
| | - Jaime Andrés Pereañez
- Programa de Ofidismo/Escorpionismo, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
18
|
Herrera C, Voisin MB, Escalante T, Rucavado A, Nourshargh S, Gutiérrez JM. Effects of PI and PIII Snake Venom Haemorrhagic Metalloproteinases on the Microvasculature: A Confocal Microscopy Study on the Mouse Cremaster Muscle. PLoS One 2016; 11:e0168643. [PMID: 27992592 PMCID: PMC5161479 DOI: 10.1371/journal.pone.0168643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
The precise mechanisms by which Snake Venom Metalloproteinases (SVMPs) disrupt the microvasculature and cause haemorrhage have not been completely elucidated, and novel in vivo models are needed. In the present study, we compared the effects induced by BaP1, a PI SVMP isolated from Bothrops asper venom, and CsH1, a PIII SVMP from Crotalus simus venom, on cremaster muscle microvasculature by topical application of the toxins on isolated tissue (i.e., ex vivo model), and by intra-scrotal administration of the toxins (i.e., in vivo model). The whole tissue was fixed and immunostained to visualize the three components of blood vessels by confocal microscopy. In the ex vivo model, BaP1 was able to degrade type IV collagen and laminin from the BM of microvessels. Moreover, both SVMPs degraded type IV collagen from the BM in capillaries to a higher extent than in PCV and arterioles. CsH1 had a stronger effect on type IV collagen than BaP1. In the in vivo model, the effect of BaP1 on type IV collagen was widespread to the BM of arterioles and PCV. On the other hand, BaP1 was able to disrupt the endothelial barrier in PCV and to increase vascular permeability. Moreover, this toxin increased the size of gaps between pericytes in PCV and created new gaps between smooth muscle cells in arterioles in ex vivo conditions. These effects were not observed in the case of CsH1. In conclusion, our findings demonstrate that both SVMPs degrade type IV collagen from the BM in capillaries in vivo. Moreover, while the action of CsH1 is more directed to the BM of microvessels, the effects of BaP1 are widespread to other microvascular components. This study provides new insights in the mechanism of haemorrhage and other pathological effects induced by these toxins.
Collapse
Affiliation(s)
- Cristina Herrera
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica.,Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
19
|
Ami A, Oussedik-Oumehdi H, Laraba-Djebari F. Biochemical and biological characterization of a dermonecrotic metalloproteinase isolated fromCerastes cerastessnake venom. J Biochem Mol Toxicol 2016; 31. [DOI: 10.1002/jbt.21835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/25/2016] [Accepted: 08/10/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Amina Ami
- USTHB, Faculty of Biological Sciences; Laboratory of Cellular and Molecular Biology; Bab Ezzouar Algiers Algeria
| | - Habiba Oussedik-Oumehdi
- USTHB, Faculty of Biological Sciences; Laboratory of Cellular and Molecular Biology; Bab Ezzouar Algiers Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences; Laboratory of Cellular and Molecular Biology; Bab Ezzouar Algiers Algeria
| |
Collapse
|
20
|
Gutiérrez JM, Escalante T, Rucavado A, Herrera C. Hemorrhage Caused by Snake Venom Metalloproteinases: A Journey of Discovery and Understanding. Toxins (Basel) 2016; 8:93. [PMID: 27023608 PMCID: PMC4848620 DOI: 10.3390/toxins8040093] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 01/11/2023] Open
Abstract
The historical development of discoveries and conceptual frames for understanding the hemorrhagic activity induced by viperid snake venoms and by hemorrhagic metalloproteinases (SVMPs) present in these venoms is reviewed. Histological and ultrastructural tools allowed the identification of the capillary network as the main site of action of SVMPs. After years of debate, biochemical developments demonstrated that all hemorrhagic toxins in viperid venoms are zinc-dependent metalloproteinases. Hemorrhagic SVMPs act by initially hydrolyzing key substrates at the basement membrane (BM) of capillaries. This degradation results in the weakening of the mechanical stability of the capillary wall, which becomes distended owing of the action of the hemodynamic biophysical forces operating in the circulation. As a consequence, the capillary wall is disrupted and extravasation occurs. SVMPs do not induce rapid toxicity to endothelial cells, and the pathological effects described in these cells in vivo result from the mechanical action of these hemodynamic forces. Experimental evidence suggests that degradation of type IV collagen, and perhaps also perlecan, is the key event in the onset of microvessel damage. It is necessary to study this phenomenon from a holistic, systemic perspective in which the action of other venom components is also taken into consideration.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| | - Cristina Herrera
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
- Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica.
| |
Collapse
|
21
|
Baldo C, Lopes DS, Faquim-Mauro EL, Jacysyn JF, Niland S, Eble JA, Clissa PB, Moura-da-Silva AM. Jararhagin disruption of endothelial cell anchorage is enhanced in collagen enriched matrices. Toxicon 2015; 108:240-8. [PMID: 26528579 DOI: 10.1016/j.toxicon.2015.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 01/13/2023]
Abstract
Hemorrhage is one of the most striking effects of bites by viper snakes resulting in fast bleeding and ischemia in affected tissues. Snake venom metalloproteinases (SVMPs) are responsible for hemorrhagic activity, but the mechanisms involved in SVMP-induced hemorrhage are not entirely understood and the study of such mechanisms greatly depends on in vivo experiments. In vivo, hemorrhagic SVMPs accumulate on basement membrane (BM) of venules and capillary vessels allowing the hydrolysis of collagen IV with consequent weakness and rupture of capillary walls. These effects are not reproducible in vitro with conventional endothelial cell cultures. In this study we used two-dimension (2D) or three-dimension (3D) cultures of HUVECs on matrigel and observed the same characteristics as in ex vivo experiments: only the hemorrhagic toxin was able to localize on surfaces or internalize endothelial cells in 2D cultures or in the surface of tubules formed on 3D cultures. The contribution of matrigel, fibronectin and collagen matrices in jararhagin-induced endothelial cell damage was then analyzed. Collagen and matrigel substrates enhanced the endothelial cell damage induced by jararhagin allowing toxin binding to focal adhesions, disruption of stress fibers, detachment and apoptosis. The higher affinity of jararhagin to collagen than to fibronectin explains the localization of the toxin within BM. Moreover, once located in BM, interactions of jararhagin with α2β1 integrin would favor its localization on focal adhesions, as observed in our study. The accumulation of toxin in focal adhesions, observed only in cells grown in collagen matrices, would explain the enhancement of cell damage in these matrices and reflects the actual interaction among toxin, endothelial cells and BM components that occurs in vivo and results in the hemorrhagic lesions induced by viper venoms.
Collapse
Affiliation(s)
- C Baldo
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - D S Lopes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - E L Faquim-Mauro
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - J F Jacysyn
- LIM62, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - S Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany
| | - J A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149, Münster, Germany
| | - P B Clissa
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - A M Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Gutiérrez JM. Understanding and confronting snakebite envenoming: The harvest of cooperation. Toxicon 2015; 109:51-62. [PMID: 26615826 DOI: 10.1016/j.toxicon.2015.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/13/2015] [Accepted: 11/18/2015] [Indexed: 01/14/2023]
Abstract
During 45 years, the Instituto Clodomiro Picado (ICP, University of Costa Rica) has developed an ambitious scientific, technological, productive, and social program aimed at providing a better understanding of snakes and their venoms, contributing to the development, production and distribution of antivenoms, improving the prevention and management of snakebite envenomings, and strengthening human resources in science and technology. Among other topics, its research agenda has focused on the local tissue alterations induced by viperid snake venoms, i.e. myonecrosis, hemorrhage, dermonecrosis, extracellular matrix degradation, lymphatic vessel damage, and inflammation. In addition, the preclinical efficacy of antivenoms has been thoroughly investigated, together with the technological development of novel antivenoms. ICP's project has been based on a philosophical frame characterized by: (a) An integrated approach for confronting the problem of snakebites, involving research, production, extension activities, and teaching; (b) a cooperative and team work perspective in the pursuit of scientific, technological, productive, and social goals; (c) a search for excellence and continuous improvement in the quality of its activities; and (d) a vision of solidarity and compassion, based on the realization that snakebite envenomings mostly affect impoverished vulnerable populations in the rural settings of developing countries. A key aspect in this program has been the consolidation of international partnerships with groups of all continents, within a frame of academic and social cooperation, some of which are described in this review.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
23
|
Marinho AD, Morais ICO, Lima DB, Jorge ARC, Jorge RJB, Menezes RRPPB, Mello CP, Pereira GJS, Silveira JAM, Toyama MH, Orzáez M, Martins AMC, Monteiro HSA. Bothropoides pauloensis venom effects on isolated perfused kidney and cultured renal tubular epithelial cells. Toxicon 2015; 108:126-33. [PMID: 26410111 DOI: 10.1016/j.toxicon.2015.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022]
Abstract
Snake envenomation (Bothrops genus) is common in tropical countries and acute kidney injury is one of the complications observed in Bothrops snakebite with relevant morbidity and mortality. Here, we showed that Bothropoides pauloensis venom (BpV) decreased cell viability (IC50 of 7.5 μg/mL). Flow cytometry with annexin V and propidium iodide showed that cell death occurred predominantly by apoptosis and late apoptosis, through caspases 3 and 7 activation, mitochondrial membrane potential collapse and ROS overproduction. BpV reduced perfusion pressure, renal vascular resistance, urinary flow, glomerular filtration rate, percentage of sodium, chloride or potassium tubular transportation. These findings demonstrated that BpV cytotoxicity on renal epithelial cells might be responsible for the nephrotoxicity observed in isolated kidney.
Collapse
Affiliation(s)
- Aline D Marinho
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil.
| | - Isabel C O Morais
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Dânya B Lima
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Antônio R C Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Roberta J B Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Ramon R P P B Menezes
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Clarissa P Mello
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - João A M Silveira
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Marcos H Toyama
- São Vicente Unit, Paulista Coastal Campus, São Paulo State University (UNESP), São Paulo, Brazil
| | - Mar Orzáez
- Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Alice M C Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Helena S A Monteiro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| |
Collapse
|
24
|
Bernardoni JL, Sousa LF, Wermelinger LS, Lopes AS, Prezoto BC, Serrano SMT, Zingali RB, Moura-da-Silva AM. Functional variability of snake venom metalloproteinases: adaptive advantages in targeting different prey and implications for human envenomation. PLoS One 2014; 9:e109651. [PMID: 25313513 PMCID: PMC4196926 DOI: 10.1371/journal.pone.0109651] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/02/2014] [Indexed: 01/11/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) are major components in most viperid venoms that induce disturbances in the hemostatic system and tissues of animals envenomated by snakes. These disturbances are involved in human pathology of snake bites and appear to be essential for the capture and digestion of snake's prey and avoidance of predators. SVMPs are a versatile family of venom toxins acting on different hemostatic targets which are present in venoms in distinct structural forms. However, the reason why a large number of different SVMPs are expressed in some venoms is still unclear. In this study, we evaluated the interference of five isolated SVMPs in blood coagulation of humans, birds and small rodents. P-III class SVMPs (fractions Ic, IIb and IIc) possess gelatinolytic and hemorrhagic activities, and, of these, two also show fibrinolytic activity. P-I class SVMPs (fractions IVa and IVb) are only fibrinolytic. P-III class SVMPs reduced clotting time of human plasma. Fraction IIc was characterized as prothrombin activator and fraction Ic as factor X activator. In the absence of Ca2+, a firm clot was observed in chicken blood samples with fractions Ic, IIb and partially with fraction IIc. In contrast, without Ca2+, only fraction IIc was able to induce a firm clot in rat blood. In conclusion, functionally distinct forms of SVMPs were found in B. neuwiedi venom that affect distinct mechanisms in the coagulation system of humans, birds and small rodents. Distinct SVMPs appear to be more specialized to rat or chicken blood, strengthening the current hypothesis that toxin diversity enhances the possibilities of the snakes for hunting different prey or evading different predators. This functional diversity also impacts the complexity of human envenoming since different hemostatic mechanisms will be targeted by SVMPs accounting for the complexity of the response of humans to venoms.
Collapse
Affiliation(s)
| | - Leijiane F. Sousa
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Luciana S. Wermelinger
- Laboratório de Hemostasia e Venenos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio do Janeiro, RJ, Brazil
- Laboratório de Fisiopatologia da Trombose, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio do Janeiro, RJ, Brazil
| | - Aline S. Lopes
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP, Brazil
- Center of Toxins, Immune-Response and Cell Signaling (CeTICS), FAPESP, São Paulo, SP, Brazil
| | | | - Solange M. T. Serrano
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP, Brazil
- Center of Toxins, Immune-Response and Cell Signaling (CeTICS), FAPESP, São Paulo, SP, Brazil
| | - Russolina B. Zingali
- Laboratório de Hemostasia e Venenos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio do Janeiro, RJ, Brazil
| | | |
Collapse
|
25
|
Propensity of crocin to offset Vipera russelli venom induced oxidative stress mediated neutrophil apoptosis: a biochemical insight. Cytotechnology 2014; 68:73-85. [PMID: 25149285 DOI: 10.1007/s10616-014-9752-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 06/07/2014] [Indexed: 10/24/2022] Open
Abstract
Viper envenomation results in inflammation at the bitten site as well as target organs. Neutrophils and other polymorphonuclear leukocytes execute inflammation resolving mechanism and will undergo apoptosis after completing the task. However, the target specific toxins induce neutrophil apoptosis at the bitten site and in circulation prior to their function, thus reducing their number. Circulating activated neutrophils are major source of inflammatory cytokines and leakage of reactive oxygen species (ROS)/other toxic intermediates resulting in aggravation of inflammatory response at the bitten/target site. Therefore, neutralization of venom induced neutrophil apoptosis reduces inflammation besides increasing the functional neutrophil population. Therefore, the present study investigates the venom induced perturbances in isolated human neutrophils and its neutralization by crocin (Crocus sativus) a potent antioxidant carotenoid. Human neutrophils on treatment with venom resulted in altered ROS generation, intracellular Ca(2+) mobilization, mitochondrial membrane depolarization, cyt-c translocation, caspase activation, phosphatidylserine externalization and DNA damage. On the other hand significant protection against oxidative stress and apoptosis were evidenced in crocin pre-treated groups. In conclusion the viper venom induces neutrophil apoptosis and results in aggravation of inflammation and tissue damage. The present study demands the necessity of an auxiliary therapy in addition to antivenin therapy to treat secondary/overlooked complications of envenomation.
Collapse
|
26
|
Silva-Torres LA, Vélez C, Lyvia Alvarez J, Ortiz JG, Zayas B. Toxic effects of xylazine on endothelial cells in combination with cocaine and 6-monoacetylmorphine. Toxicol In Vitro 2014; 28:1312-9. [PMID: 25017475 DOI: 10.1016/j.tiv.2014.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 11/19/2022]
Abstract
The use of xylazine as a drug of abuse has emerged worldwide in the last 7 years, including Puerto Rico. Clinical findings reported that xylazine users present greater physiological deterioration, than heroin users. The aim of this study was to assess the xylazine toxicity on endothelial cells, as this is one of the first tissues impact upon administration. Human umbilical vein endothelial cells in culture were treated with xylazine, cocaine, 6-monoacetylmorphine (heroin metabolite) and its combinations, at concentrations of 0.10-400 μM, for periods of 24, 48 and 72 h. IC50 were calculated and the Annexin V assay implemented to determine the cell death mechanism. Results indicated IC50 values at 24h as follow: xylazine 62 μM, cocaine 210 μM, 6-monoacetylmorphine 300 μM. When these drugs were combined the IC50 value was 57 μM. Annexin V results indicated cell death by an apoptosis mechanism in cells treated with xylazine or in combination. Results demonstrated that xylazine use inhibits the endothelial cell proliferation, at lower concentrations than cocaine and 6-monoacetylmorphine. These findings contribute to the understanding of the toxicity mechanisms induced by xylazine on endothelial cells.
Collapse
Affiliation(s)
- L A Silva-Torres
- University of Puerto Rico, Pharmacology and Toxicology Department, School of Medicine, Medical Science Campus, Puerto Rico; Puerto Rico Institute of Forensic Science, San Juan, Puerto Rico.
| | - C Vélez
- Universidad Metropolitana, School of Environmental Affairs, San Juan, Puerto Rico
| | - J Lyvia Alvarez
- Puerto Rico Institute of Forensic Science, San Juan, Puerto Rico; University of Puerto Rico, School of Health Professions, Medical Science Campus, Puerto Rico
| | - J G Ortiz
- University of Puerto Rico, Pharmacology and Toxicology Department, School of Medicine, Medical Science Campus, Puerto Rico
| | - B Zayas
- University of Puerto Rico, Pharmacology and Toxicology Department, School of Medicine, Medical Science Campus, Puerto Rico; Universidad Metropolitana, School of Environmental Affairs, San Juan, Puerto Rico
| |
Collapse
|
27
|
Bustillo S, Gay CC, García Denegri ME, Ponce-Soto LA, Bal de Kier Joffé E, Acosta O, Leiva LC. Synergism between baltergin metalloproteinase and Ba SPII RP4 PLA2 from Bothrops alternatus venom on skeletal muscle (C2C12) cells. Toxicon 2012; 59:338-43. [DOI: 10.1016/j.toxicon.2011.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 11/16/2022]
|
28
|
Key events in microvascular damage induced by snake venom hemorrhagic metalloproteinases. J Proteomics 2011; 74:1781-94. [DOI: 10.1016/j.jprot.2011.03.026] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 01/28/2023]
|
29
|
Wang WJ. Acurhagin-C, an ECD disintegrin, inhibits integrin alphavbeta3-mediated human endothelial cell functions by inducing apoptosis via caspase-3 activation. Br J Pharmacol 2010; 160:1338-51. [PMID: 20590625 DOI: 10.1111/j.1476-5381.2010.00781.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Acurhagin, a member of versatile metalloproteinase disintegrins from Agkistrodon acutus venom, has been identified as a platelet aggregation inhibitor, previously. Here, acurhagin-C, the C-terminal Glu-Cys-Asp (ECD)-containing fragment of acurhagin, was evaluated for its biological activities and potential applications in anti-angiogenic therapy. EXPERIMENTAL APPROACH Human umbilical vein endothelial cells (HUVECs) were treated with acurhagin-C to assay effects on viability, apoptosis, adhesion, migration, invasion, proliferation and angiogenesis. The recognition site and signalling involved for the interactions of acurhagin-C with HUVEC were determined using flow cytometric, electrophoresis and immunoblotting analyses. KEY RESULTS Acurhagin-C decreased viability and induced apoptosis in HUVEC. It also dose-dependently inhibited HUVEC adhesion to immobilized extracellular matrices fibronectin, collagen I and vitronectin with respective IC(50) values of approximately 0.6, 0.3 and 0.1 microM. Acurhagin-C prevented migration and invasion of HUVEC through vitronectin- and Matrigel-coated barriers respectively. Furthermore, acurhagin-C attenuated fibroblast growth factor-2-primed angiogenesis both in vitro and in vivo, and specifically blocked the binding of anti-alphavbeta3 monoclonal antibody 23C6 to HUVEC in an ECD-dependent manner. However, purified alphavbeta3 also dose-dependently bound to immobilized acurhagin and acurhagin-C with a saturable pattern. Interference with integrin alphavbeta3-mediated functions and promotion of caspase-3 activation by acurhagin-C affected morphology of HUVEC and induced apoptosis. CONCLUSIONS AND IMPLICATIONS Acurhagin-C elicited endothelial anoikis via disruption of alphavbeta3/focal adhesion kinase/phosphatidylinositol 3-kinase/Akt survival cascade and subsequent initiation of the procaspase-3 apoptotic signalling pathway.
Collapse
Affiliation(s)
- Wen-Jeng Wang
- Department of Nutrition and Health Sciences, Chang-Gung Institute of Technology, Kwei-Shan, Tao-Yuan, Taiwan.
| |
Collapse
|
30
|
Fernandes I, Assumpção GG, Silveira CRF, Faquim-Mauro EL, Tanjoni I, Carmona AK, Alves MFM, Takehara HA, Rucavado A, Ramos OHP, Moura-da-Silva AM, Gutiérrez JM. Immunochemical and biological characterization of monoclonal antibodies against BaP1, a metalloproteinase from Bothrops asper snake venom. Toxicon 2010; 56:1059-65. [PMID: 20674587 DOI: 10.1016/j.toxicon.2010.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/19/2010] [Accepted: 07/22/2010] [Indexed: 11/27/2022]
Abstract
BaP1 is a P-I class of Snake Venom Metalloproteinase (SVMP) relevant in the local tissue damage associated with envenomations by Bothrops asper, a medically-important species in Central America and parts of South America. Six monoclonal antibodies (MoAb) against BaP1 (MABaP1) were produced and characterized regarding their isotype, dissociation constant (K(d)), specificity and ability to neutralize BaP1-induced hemorrhagic and proteolytic activity. Two MABaP1 are IgM, three are IgG1 and one is IgG2b. The K(d)s of IgG MoAbs were in the nM range. All IgG MoAbs recognized conformational epitopes of BaP1 and B. asper venom components but failed to recognize venoms from 27 species of Viperidae, Colubridae and Elapidae families. Clone 7 cross-reacted with three P-I SVMPs tested (moojeni protease, insularinase and neuwiedase). BaP1-induced hemorrhage was totally neutralized by clones 3, 6 and 8 but not by clone 7. Inhibition of BaP1 enzymatic activity on a synthetic substrate by MABaP1 was totally achieved by clones 3 and 6, and partially by clone 8, but not by clone 7. In conclusion, these neutralizing MoAbs against BaP1 may become important tools to understand structure-function relationships of BaP1 and the role of P-I class SVMP in snakebite envenomation.
Collapse
Affiliation(s)
- I Fernandes
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brazil, 1500, Butantã, CEP 05503-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Baldo C, Jamora C, Yamanouye N, Zorn TM, Moura-da-Silva AM. Mechanisms of vascular damage by hemorrhagic snake venom metalloproteinases: tissue distribution and in situ hydrolysis. PLoS Negl Trop Dis 2010; 4:e727. [PMID: 20614020 PMCID: PMC2894137 DOI: 10.1371/journal.pntd.0000727] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 05/10/2010] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Envenoming by viper snakes constitutes an important public health problem in Brazil and other developing countries. Local hemorrhage is an important symptom of these accidents and is correlated with the action of snake venom metalloproteinases (SVMPs). The degradation of vascular basement membrane has been proposed as a key event for the capillary vessel disruption. However, SVMPs that present similar catalytic activity towards extracellular matrix proteins differ in their hemorrhagic activity, suggesting that other mechanisms might be contributing to the accumulation of SVMPs at the snakebite area allowing capillary disruption. METHODOLOGY/PRINCIPAL FINDINGS In this work, we compared the tissue distribution and degradation of extracellular matrix proteins induced by jararhagin (highly hemorrhagic SVMP) and BnP1 (weakly hemorrhagic SVMP) using the mouse skin as experimental model. Jararhagin induced strong hemorrhage accompanied by hydrolysis of collagen fibers in the hypodermis and a marked degradation of type IV collagen at the vascular basement membrane. In contrast, BnP1 induced only a mild hemorrhage and did not disrupt collagen fibers or type IV collagen. Injection of Alexa488-labeled jararhagin revealed fluorescent staining around capillary vessels and co-localization with basement membrane type IV collagen. The same distribution pattern was detected with jararhagin-C (disintegrin-like/cysteine-rich domains of jararhagin). In opposition, BnP1 did not accumulate in the tissues. CONCLUSIONS/SIGNIFICANCE These results show a particular tissue distribution of hemorrhagic toxins accumulating at the basement membrane. This probably occurs through binding to collagens, which are drastically hydrolyzed at the sites of hemorrhagic lesions. Toxin accumulation near blood vessels explains enhanced catalysis of basement membrane components, resulting in the strong hemorrhagic activity of SVMPs. This is a novel mechanism that underlies the difference between hemorrhagic and non-hemorrhagic SVMPs, improving the understanding of snakebite pathology.
Collapse
Affiliation(s)
- Cristiani Baldo
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo, São Paulo, Brasil
| | - Colin Jamora
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Norma Yamanouye
- Laboratório de Farmacologia, Instituto Butantan, São Paulo, São Paulo, Brasil
| | - Telma M. Zorn
- Laboratório da Biologia da Reprodução e Matriz Extracelular, Instituto de Ciências Biomédicas, USP, São Paulo, São Paulo, Brasil
| | | |
Collapse
|
32
|
Cell death induced by Bothrops asper snake venom metalloproteinase on endothelial and other cell lines. Exp Mol Pathol 2010; 88:424-32. [PMID: 20219457 DOI: 10.1016/j.yexmp.2010.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 02/15/2010] [Accepted: 02/15/2010] [Indexed: 11/22/2022]
Abstract
Two adherent cell lines, BAEC and HeLa, and non-adherent Jurkat, were treated with snake venom metalloproteinase BaP1 to determine whether cytotoxicity, previously reported for this toxin, could be mediated by the process of anoikis. It was observed that there was no correlation between the ability of this toxin to induce loss of adherence, and the cytotoxic effect, since concentrations that do not induce loss of adherence (3-6 microg/mL), were able to trigger 50% of cytotoxicity in BAEC. In the case of HeLa, where toxicity was very low (less than 20% at maximun concentrations and times of exposure), significant detachment and no toxicity was observed at concentrations of 1.5 microg/mL, showing also no correlation between both events. We also observed differences between BAEC toxicity measured by XTT reduction and DNA fragmentation determined by flow cytometry (as an indicator of apoptosis), since concentrations that induce 100% of cytotoxicity barely showed any DNA fragmentation (12% at 24h), suggesting that if apoptosis was involved, DNA damage is still not present, although chromatin condensation, another indicator of apoptosis, is observed in 40% of the cells. Inhibition of BAEC cytotoxicity by caspase inhibitors indicate that apoptosis is playing a role in this process, but other mechanisms of cell death could be participating also. Another way to determine whether the mechanism of cell death was related to anoikis was using a non-adherent cell line, which should show substrate independence. We determined by TUNEL that at 50 microg/ml BaP1 triggered 50% of apoptosis at 96 h, an effect that was seen earlier, suggesting also that if this toxin was inducing apoptosis in a non-adherent cell line, the mechanism could not be related to loss of attachment. Cell cycle arrest in S phase was also observed in Jurkat cells, an effect that could be leading to apoptosis. In conclusion, since there was no correlation between cell detachment and cytotoxicity (and apoptosis) in adherent cell lines and due to the ability of BaP1 to induce apoptosis in a non-adherent cell line, we suggest that this enzyme is toxic by a mechanism not related to anoikis, and that in the case of Jurkat cells, it is likely to be related to its ability to induce cell cycle arrest. Processes other than apoptosis could be also involved in the cell death mechanism mediated by BaP1 on BAEC.
Collapse
|
33
|
Gutiérrez JM, Rucavado A, Escalante T, Lomonte B, Angulo Y, Fox JW. Tissue pathology induced by snake venoms: How to understand a complex pattern of alterations from a systems biology perspective? Toxicon 2010; 55:166-70. [DOI: 10.1016/j.toxicon.2009.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 08/14/2009] [Indexed: 11/15/2022]
|
34
|
Experimental pathology of local tissue damage induced by Bothrops asper snake venom. Toxicon 2009; 54:958-75. [DOI: 10.1016/j.toxicon.2009.01.038] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/22/2009] [Accepted: 01/23/2009] [Indexed: 01/01/2023]
|
35
|
Angulo Y, Lomonte B. Biochemistry and toxicology of toxins purified from the venom of the snake Bothrops asper. Toxicon 2009; 54:949-57. [DOI: 10.1016/j.toxicon.2008.12.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 12/09/2008] [Indexed: 01/25/2023]
|
36
|
Mora J, Mora R, Lomonte B, Gutiérrez JM. Effects of Bothrops asper snake venom on lymphatic vessels: insights into a hidden aspect of envenomation. PLoS Negl Trop Dis 2008; 2:e318. [PMID: 18923712 PMCID: PMC2563035 DOI: 10.1371/journal.pntd.0000318] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 09/16/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Envenomations by the snake Bothrops asper represent a serious medical problem in Central America and parts of South America. These envenomations concur with drastic local tissue pathology, including a prominent edema. Since lymph flow plays a role in the maintenance of tissue fluid balance, the effect of B. asper venom on collecting lymphatic vessels was studied. METHODOLOGY/PRINCIPAL FINDINGS B. asper venom was applied to mouse mesentery, and the effects were studied using an intravital microscopy methodology coupled with an image analysis program. B. asper venom induced a dose-dependent contraction of collecting lymphatic vessels, resulting in a reduction of their lumen and in a halting of lymph flow. The effect was reproduced by a myotoxic phospholipase A(2) (PLA(2)) homologue isolated from this venom, but not by a hemorrhagic metalloproteinase or a coagulant thrombin-like serine proteinase. In agreement with this, treatment of the venom with fucoidan, a myotoxin inhibitor, abrogated the effect, whereas no inhibition was observed after incubation with the peptidomimetic metalloproteinase inhibitor Batimastat. Moreover, fucoidan significantly reduced venom-induced footpad edema. The myotoxic PLA(2) homologue, known to induce skeletal muscle necrosis, was able to induce cytotoxicity in smooth muscle cells in culture and to promote an increment in the permeability to propidium iodide in these cells. CONCLUSIONS/SIGNIFICANCE Our observations indicate that B. asper venom affects collecting lymphatic vessels through the action of myotoxic PLA(2)s on the smooth muscle of these vessels, inducing cell contraction and irreversible cell damage. This activity may play an important role in the pathogenesis of the pronounced local edema characteristic of viperid snakebite envenomation, as well as in the systemic biodistribution of the venom, thus representing a potential therapeutical target in these envenomations.
Collapse
Affiliation(s)
- Javier Mora
- Departamento de Parasitología, Universidad de Costa Rica, San José, Costa Rica
| | - Rodrigo Mora
- Departamento de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- * E-mail:
| |
Collapse
|
37
|
Skin pathology induced by snake venom metalloproteinase: acute damage, revascularization, and re-epithelization in a mouse ear model. J Invest Dermatol 2008; 128:2421-8. [PMID: 18449209 DOI: 10.1038/jid.2008.118] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viperid snakebite envenomation induces blistering and dermonecrosis. The pathological alterations induced by a snake venom metalloproteinase in the skin were investigated in a mouse ear model. Metalloproteinase BaP1, from Bothrops asper, induced rapid edema, hemorrhage, and blistering; the latter two effects were abrogated by preincubation with the metalloproteinase inhibitor batimastat. Neutrophils did not play a role in the pathology, as depletion of these cells resulted in a similar histological picture. Blisters are likely to result from the direct proteolytic activity of BaP1 of proteins at the dermal-epidermal junction, probably at the lamina lucida, as revealed by immunostaining for type IV collagen and laminin. Widespread apoptosis of keratinocytes was detected by the TUNEL assay, whereas no apoptosis of capillary endothelial cells was observed. BaP1 induced a drastic reduction in the microvessel density, revealed by immunostaining for the endothelial marker vascular endothelial growth factor receptor-2. This was followed by a rapid angiogenic response, leading to a partial revascularization. Skin damage was followed by inflammation and granulation tissue formation. Then, a successful re-epithelization process occurred, and the skin of the ear regained its normal structure by 2 weeks. Venom metalloproteinase-induced skin damage reproduces the pathological changes described in snakebitten patients.
Collapse
|
38
|
Moura-da-Silva AM, Ramos OHP, Baldo C, Niland S, Hansen U, Ventura JS, Furlan S, Butera D, Della-Casa MS, Tanjoni I, Clissa PB, Fernandes I, Chudzinski-Tavassi AM, Eble JA. Collagen binding is a key factor for the hemorrhagic activity of snake venom metalloproteinases. Biochimie 2008; 90:484-92. [PMID: 18096518 DOI: 10.1016/j.biochi.2007.11.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 11/26/2007] [Indexed: 11/24/2022]
Abstract
Snake venom metalloproteinases (SVMPs) are multifunctional enzymes involved in several symptoms following snakebite, such as severe local hemorrhage. Multidomain P-III SVMPs are strongly hemorrhagic, whereas single domain P-I SVMPs are not. This indicates that disintegrin-like and cysteine-rich domains allocate motifs that enable catalytic degradation of ECM components leading to disruption of capillary vessels. Interestingly, some P-III SVMPs are completely devoid of hemorrhagic activity despite their highly conserved disintegrin-like and cysteine-rich domains. This observation was approached in the present study by comparing the effects of jararhagin, a hemorrhagic P-III SVMP, and berythractivase, a pro-coagulant and non-hemorrhagic P-III SVMP. Both toxins inhibited collagen-induced platelet aggregation, but only jararhagin was able to bind to collagen I with high affinity. The monoclonal antibody MAJar 3, that neutralizes the hemorrhagic effect of Bothrops venoms and jararhagin binding to collagen, did not react with berythractivase. The three-dimensional structures of jararhagin and berythractivase were compared to explain the differential binding to collagen and MAJar 3. Thereby, we pinpointed a motif within the Da disintegrin subdomain located opposite to the catalytic domain. Jararhagin binds to both collagen I and IV in a triple helix-dependent manner and inhibited in vitro fibrillogenesis. The jararhagin-collagen complex retained the catalytic activity of the toxin as observed by hydrolysis of fibrin. Thus, we suggest that binding of hemorrhagic SVMPs to collagens I and IV occurs through a motif located in the Da subdomain. This allows accumulation of toxin molecules at the site of injection, close to capillary vessels, where their catalytic activity leads to a local hemorrhage. Toxins devoid of this motif would be more available for vascular internalization leading to systemic pro-coagulant effects. This reveals a novel function of the disintegrin domain in hemorrhage formation.
Collapse
Affiliation(s)
- A M Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brasil, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Forkhead Factor, FOXO3a, Induces Apoptosis of Endothelial Cells Through Activation of Matrix Metalloproteinases. Arterioscler Thromb Vasc Biol 2008. [DOI: 10.1161/atvbaha.107.150668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Baldo C, Tanjoni I, León IR, Batista IFC, Della-Casa MS, Clissa PB, Weinlich R, Lopes-Ferreira M, Lebrun I, Amarante-Mendes GP, Rodrigues VM, Perales J, Valente RH, Moura-da-Silva AM. BnP1, a novel P-I metalloproteinase from Bothrops neuwiedi venom: biological effects benchmarking relatively to jararhagin, a P-III SVMP. Toxicon 2008; 51:54-65. [PMID: 17889921 DOI: 10.1016/j.toxicon.2007.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/09/2007] [Accepted: 08/10/2007] [Indexed: 11/28/2022]
Abstract
Snake venom metalloproteinases (SVMPs) have been extensively studied and their effects associated with the local bleeding observed in human accidents by viper snakes. Representatives of P-I and P-III classes of SVMPs similarly hydrolyze extracellular matrix proteins or coagulation factors while only P-III SVMPs induce significant hemorrhage in experimental models. In this work, the effects of P-I and P-III SVMPs on plasma proteins and cultures of muscle and endothelial cells were compared in order to enlighten the mechanisms involved in venom-induced hemorrhage. To reach this comparison, BnP1 was isolated from B. neuwiedi venom and used as a weakly hemorrhagic P-I SVMPs and jararhagin was used as a model of potently hemorrhagic P-III SVMP. BnP1 was isolated by size exclusion and anion-exchange chromatographies, showing apparent molecular mass of approximately 24kDa and sequence similarity with other members of SVMPs, which allowed its classification as a group P-I SVMP. The comparison of local effects induced by SVMPs showed that BnP1 was devoid of significant myotoxic and hemorrhagic activities and jararhagin presented only hemorrhagic activity. BnP1 and jararhagin were able to hydrolyze fibrinogen and fibrin, although the latter displayed higher activity in both systems. Using HUVEC primary cultures, we observed that BnP1 induced cell detachment and a decrease in the number of viable endothelial cells in levels comparable to those observed by treatment with jararhagin. Moreover, both BnP1 and jararhagin induced apoptosis in HUVECs while only a small increase in LDH supernatant levels was observed after treatment with jararhagin, suggesting that the major mechanism involved in endothelial cell death is apoptosis. Jararhagin and BnP1 induced little effects on C2C12 muscle cell cultures, characterized by a partial detachment 24h after treatment and a mild necrotic effect as evidenced by a small increase in the supernatants LDH levels. Taken together, our data show that P-I and P-III SVMPs presented comparable effects except for the hemorrhagic activity, suggesting that hydrolysis of coagulation factors or damage to endothelial cells are not sufficient for induction of local bleeding.
Collapse
Affiliation(s)
- C Baldo
- Laboratórios de Imunopatologia, Instituto Butantan, Av. Vital Brasil, 1500-05503-900, São Paulo, SP, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee HY, You HJ, Won JY, Youn SW, Cho HJ, Park KW, Park WY, Seo JS, Park YB, Walsh K, Oh BH, Kim HS. Forkhead factor, FOXO3a, induces apoptosis of endothelial cells through activation of matrix metalloproteinases. Arterioscler Thromb Vasc Biol 2007; 28:302-8. [PMID: 18063811 DOI: 10.1161/atvbaha.107.150664] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The forkhead factor, FOXO3a, is known to induce apoptosis in endothelial cells (ECs). However, its effects on extracellular matrices (ECM), which are important in EC survival, remained unknown. Here, we evaluated the role of FOXO3a on EC-ECM interaction. METHODS AND RESULTS Constitutively active FOXO3a was transduced to human umbilical vein endothelial cells by adenoviral vector (Ad-TM-FOXO3a). Ad-TM-FOXO3a transfection led to dehiscence of ECs from fibronectin-coated plates, resulting in anoikis, which was significantly reversed by matrix metalloproteinase (MMP) inhibitor, GM6001. FOXO3a increased the expression of MMP-3 (stromelysin-1) but decreased the expression of tissue inhibitors of metalloproteinases-1 (TIMP-1), which was associated with increased MMP enzymatic activity in zymography. Pathophysiologic conditions such as serum starvation or heat shock also induced activation of endogenous FOXO3a, leading to activation of MMP-3 and apoptosis, which was reversed by GM6001. Delivery of Ad-TM-FOXO3a to the intraluminal surface in vivo led to EC denudation, disrupted vascular integrity, and impaired endothelium-dependent vasorelaxation. CONCLUSIONS Activation of MMPs and possible ECM disruption represent novel mechanisms of FOXO3a-mediated apoptosis in ECs.
Collapse
Affiliation(s)
- Hae-Young Lee
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gremski LH, Chaim OM, Paludo KS, Sade YB, Otuki MF, Richardson M, Gremski W, Sanchez EF, Veiga SS. Cytotoxic, thrombolytic and edematogenic activities of leucurolysin-a, a metalloproteinase from Bothrops leucurus snake venom. Toxicon 2007; 50:120-34. [PMID: 17482228 DOI: 10.1016/j.toxicon.2007.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 03/03/2007] [Accepted: 03/06/2007] [Indexed: 11/20/2022]
Abstract
Leucurolysin-a (leuc-a), a 23 kDa non-hemorrhagic metalloproteinase, is found in venom of the viper Bothrops leucurus. Here, we examine the biological consequences of leuc-a, including thrombolytic activity, direct effects on endothelial cells in culture and edematogenic activity in vivo. We demonstrate fibrinolytic activity of leuc-a, in which the protease specifically degrades alpha, beta, and gamma-gamma chains. While not causing hemorrhaging, leuc-a does cause thrombolytic activities in whole blood clots. Endothelial cells are highly resistant to leuc-a in culture. Cell viability suffered only when cells were exposed to large quantities of the protease. Nevertheless, leuc-a induces changes in cell morphology. The impact of leuc-a on cell adhesion was confirmed by an adhesion assay, in which cell adhesion to fibronectin decreased due to leuc-a. This mild cellular impact is unlike that of crude venom, where lower concentrations triggered cell death and a greater reduction in cell adhesion. Also, leuc-a increased microvessel permeability with marked edema in mice peritoneum and foot pads. These effects are similar to those of other P-I class SVPMs. These in vivo effects were weaker when crude venom was tested. In conclusion, albeit not showing significant hemorrhagic activity, leuc-a can induce a prominent edema which appears to be significant in the local effects observed after B. leucurus venom accidents.
Collapse
Affiliation(s)
- L H Gremski
- Medical Clinic Discipline, Department of Medicine, UNIFESP, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jacobi J, Sela S, Cohen HI, Chezar J, Kristal B. Priming of polymorphonuclear leukocytes: a culprit in the initiation of endothelial cell injury. Am J Physiol Heart Circ Physiol 2006; 290:H2051-8. [PMID: 16387791 DOI: 10.1152/ajpheart.01040.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral polymorphonuclear leukocytes (PMNL) in hemodialysis (HD) patients are primed, continually releasing and exposing the vascular endothelium to soluble factors such as reactive oxygen species and inflammatory mediators. To mimic the close proximity between PMNL and the endothelial monolayer and to monitor and characterize the influence of soluble mediators released from PMNL, we developed a novel cocultivation system using primary human umbilical vein endothelial cell (HUVEC) cultures and PMNL, with a sieve separating the two cell types to prevent direct adhesive effects. PMNL (106) from HD patients or from healthy normal controls were cocultivated with HUVEC (105) for 15 min, and endothelial cell injury was assessed by HUVEC morphology, cell detachment, and apoptosis. Proinflammatory changes were estimated by expression of HUVEC adhesion molecule P-selectin and by endothelial IL-8 and endothelial nitric oxide synthase mRNA. The levels of intracellular tissue factor reflected the procoagulant state, whereas NADPH oxidase activity served as an indicator for prooxidative changes in HUVEC. Mediators released from the primed PMNL triggered activation/dysfunction of endothelial cells, causing 1) an increase in endothelial cell detachment and apoptosis, 2) a proinflammatory state manifested by increased IL-8 mRNA expression and P-selectin on the endothelial surface, 3) activation of endothelial NADPH oxidase, 4) an increase in endothelial cell tissue factor that directly correlated with PMNL priming index, and 5) a decrease in endothelial nitric oxide synthase mRNA. Our data support a pathogenic link between PMNL priming and endothelial dysfunction, suggesting that PMNL priming is a potential new nontraditional risk factor for the development of atherosclerosis.
Collapse
Affiliation(s)
- Jeanna Jacobi
- Eliachar Research Laboratory, Western Galilee Hospital, Nahariya, Israel
| | | | | | | | | |
Collapse
|
44
|
Gutiérrez JM, Núñez J, Escalante T, Rucavado A. Blood flow is required for rapid endothelial cell damage induced by a snake venom hemorrhagic metalloproteinase. Microvasc Res 2005; 71:55-63. [PMID: 16337973 DOI: 10.1016/j.mvr.2005.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/19/2005] [Accepted: 10/21/2005] [Indexed: 11/22/2022]
Abstract
The effects of blood flow interruption on the ultrastructural alterations induced by a snake venom hemorrhagic metalloproteinase on skeletal muscle capillary endothelial cells were studied. Saline solution or the metalloproteinase BaP1, from the venom of Bothrops asper, was injected into the gastrocnemius muscles of mice with normal blood flow perfusion or with blood supply abrogated by two different protocols. Tissue was collected 5 min after injection, and both histological and ultrastructural analyses of the muscle capillary vessels were performed. Muscle with normal perfusion injected with saline solution had the typical morphology of normal capillaries, whereas injection of metalloproteinase to muscle with normal blood flow induced prominent degenerative changes in endothelial cells, such as reduction in cell thickness, decrease in the amount of pinocytotic vesicles, prominent distention and rupture leading to extravasation. In contrast, endothelial cells of capillaries from tissue devoid of blood flow and injected with the metalloproteinase did not show degenerative changes. The only alterations observed were a reduction in the capillary lumen and the presence of cytoplasmic projections, or 'pseudopods', both of which were also present in capillaries from tissue devoid of blood flow and injected with saline solution, thus suggesting that such changes are due to the drop in transmural pressure as a consequence of blood flow interruption. Our observations support the hypothesis that biophysical forces operating in the microvasculature, i.e., transmural pressure-dependent wall tension and shear stress, play a significant role in the pathogenesis of endothelial cell damage and hemorrhage induced by snake venom metalloproteinases.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | | | | | | |
Collapse
|
45
|
Gallagher P, Bao Y, Serrano SMT, Laing GD, Theakston RDG, Gutiérrez JM, Escalante T, Zigrino P, Moura-da-Silva AM, Nischt R, Mauch C, Moskaluk C, Fox JW. Role of the snake venom toxin jararhagin in proinflammatory pathogenesis: in vitro and in vivo gene expression analysis of the effects of the toxin. Arch Biochem Biophys 2005; 441:1-15. [PMID: 16083850 DOI: 10.1016/j.abb.2005.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/08/2005] [Accepted: 06/09/2005] [Indexed: 10/25/2022]
Abstract
To assess the indirect effects of snake venom metalloproteinases (SVMP) on host tissue local necrosis, we investigated the effect of the SVMP jararhagin on the gene expression profiles of human fibroblasts in vitro and mouse tissue in vivo. Two functional classes of up-regulated proteins, cell death and inflammatory disease were identified as being significantly populated. The changes in gene expression observed by qRT-PCR on laser microdissected mouse muscle tissue treated with jararhagin were similar with significant up-regulation of proinflammatory transcripts such as IL-1 beta, IL-6, CXCL1, CXCL2, IL-8, and apoptosis, inflammation responsive transcripts such as TNF-alpha induced protein 6. Proteolytically inactive jararhagin had no effect on the gene expression profile of fibroblasts, indicating proteolysis as the primary mechanism affecting gene expression of cells and tissues resulting in a proinflammatory, pro-apoptotic host response which likely exacerbates the local necrosis frequently observed at the site of envenoming.
Collapse
Affiliation(s)
- Paul Gallagher
- Department of Microbiology, University of Virginia, Charlottesville, VA 22908-0734, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tanjoni I, Weinlich R, Della-Casa MS, Clissa PB, Saldanha-Gama RF, de Freitas MS, Barja-Fidalgo C, Amarante-Mendes GP, Moura-da-Silva AM. Jararhagin, a snake venom metalloproteinase, induces a specialized form of apoptosis (anoikis) selective to endothelial cells. Apoptosis 2005; 10:851-61. [PMID: 16133875 DOI: 10.1007/s10495-005-2945-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Jararhagin is a snake venom metalloproteinase (SVMP) from Bothrops jararaca involved in several hemostatic and inflammatory disorders that occur in human envenomings. In this study, we evaluated the effect of jararhagin on endothelial cells (tEnd). The exposure of tEnd to jararhagin (20 and 40microg/ml) resulted in apoptosis with activation of pro-caspase-3 and alterations in the ratio between Bax/Bcl-xL. We observed that apoptosis was followed by decrease of cell viability and the loss of cell adhesion. Jararhagin induced changes in cell shape with a decrease in cell spreading, rounding up and detachment. This was accompanied by a rearrangement of actin network and a decrease in FAK association to actin and in tyrosine phosphorylated proteins. Morphological alterations and apoptosis were abolished when jararhagin catalytic activity was inhibited, indicating the importance of catalysis. Treatment of murine peritoneal adherent cells or fibroblasts with jararhagin did not result in apoptosis. The data indicate that the pro-apoptotic effect of jararhagin is selective to endothelial cells, interfering with the adhesion mechanisms and inducing anoikis. The present model might be useful for the study of the relationships between the architectural changes in the cytoskeleton and the complex phenomenon named anoikis.
Collapse
Affiliation(s)
- I Tanjoni
- Laboratório de Imunopatologia, Instituto Butantan, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gutiérrez JM, Rucavado A, Escalante T, Díaz C. Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon 2005; 45:997-1011. [PMID: 15922771 DOI: 10.1016/j.toxicon.2005.02.029] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2004] [Indexed: 10/25/2022]
Abstract
Zinc-dependent metalloproteinases are responsible for the hemorrhagic activity characteristic of viperid snake venoms. Snake venom metalloproteinases (SVMPs) are classified in various groups (P-I-IV), according to their domain composition. P-III SVMPs, comprising metalloproteinase, disintegrin-like and cysteine-rich domains, exert more potent hemorrhagic activity than P-I SVMPs, which present only the metalloproteinase domain. SVMPs degrade various components of the basement membrane and are also able to hydrolyze endothelial cell membrane proteins, such as integrins and cadherins, involved in cell-matrix and cell-cell adhesion. In addition, disintegrin-like and cysteine-rich domains interact with endothelial cell integrins, interfering with their adhesion to extracellular matrix. Hemorrhage induced by SVMPs is an extremely rapid event in vivo, with capillary endothelial cells showing drastic structural alterations within few minutes. In contrast, observations in cell culture conditions do not evidence such rapid endothelial cell damage. Instead, the main effect is detachment and rounding of these cells; it is only after several hours of incubation that cells show evidence of apoptotic damage. This apparent discrepancy between in vivo and in vitro observations can be explained if biophysical forces operating on microvessels in vivo are taken into consideration. It is proposed that SVMP-induced hemorrhage occurs in vivo by a 'two-step' mechanism. Initially, SVMPs degrade basement membrane and adhesion proteins, thus weakening the capillary wall and perturbing the interactions between endothelial cells and the basement membrane. Then, transmural pressure acting on the weakened capillary wall causes distention. As a consequence, endothelial cells become very thin, until the integrity of the capillary wall is lost at some points, where extravasation occurs. In addition, endothelial cells become more susceptible to blood flow-dependent shear stress, which further contributes to capillary wall disruption.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | | | | | | |
Collapse
|
48
|
Modesto JCDA, Junqueira-de-Azevedo ILM, Neves-Ferreira AGC, Fritzen M, Oliva MLV, Ho PL, Perales J, Chudzinski-Tavassi AM. Insularinase A, a prothrombin activator from Bothrops insularis venom, is a metalloprotease derived from a gene encoding protease and disintegrin domains. Biol Chem 2005; 386:589-600. [PMID: 16006246 DOI: 10.1515/bc.2005.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The first low-molecular-mass metalloprotease presenting prothrombin activating activity was purified from Bothrops insularis venom and named insularinase A. It is a single-chain protease with a molecular mass of 22 639 Da. cDNA sequence analysis revealed that the disintegrin domain of the precursor protein is post-translationally processed, producing the mature insularinase A. Analysis of its deduced amino acid sequence showed a high similarity with several fibrin(ogen)olytic metalloproteases and only a moderate similarity with prothrombin activators. However, SDS-PAGE of prothrombin after activation by insularinase A showed fragment patterns similar to those generated by group A prothrombin activators, which convert prothrombin into meizothrombin independently of the prothrombinase complex. In addition, insularinase A activates factor X and hydrolyses fibrinogen and fibrin. Chelating agents fully inhibit all insularinase A activities. Insularinase A induced neither detachment nor apoptosis of human endothelial cells and was also not able to trigger an endothelial proinflammatory cell response. Nitric oxide and prostacyclin levels released by endothelial cells were significantly increased after treatment with insularinase A. Our results show that, although its primary structure is related to class P-I fibrin(ogen)olytic metalloproteases, insularinase A is functionally similar to group A prothrombin activators.
Collapse
|