1
|
Choudhary S, Singh MK, Kashyap S, Seth R, Singh L. Wnt/β-Catenin Signaling Pathway in Pediatric Tumors: Implications for Diagnosis and Treatment. CHILDREN (BASEL, SWITZERLAND) 2024; 11:700. [PMID: 38929279 PMCID: PMC11201634 DOI: 10.3390/children11060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The evolutionarily conserved Wnt signaling has a significant and diverse role in maintaining cell homeostasis and tissue maintenance. It is necessary in the regulation of crucial biological functions such as embryonal development, proliferation, differentiation, cell fate, and stem cell pluripotency. The deregulation of Wnt/β-catenin signaling often leads to various diseases, including cancer and non-cancer diseases. The role of Wnt/β-catenin signaling in adult tumors has been extensively studied in literature. Although the Wnt signaling pathway has been well explored and recognized to play a role in the initiation and progression of cancer, there is still a lack of understanding on how it affects pediatric tumors. This review discusses the recent developments of this signaling pathway in pediatric tumors. We also focus on understanding how different types of variations in Wnt signaling pathway contribute to cancer development and provide an insight of tissue specific mutations that lead to clinical progression of these tumors.
Collapse
Affiliation(s)
- Sahar Choudhary
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| | | | - Seema Kashyap
- Department of Ocular Pathology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rachna Seth
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| | - Lata Singh
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India; (S.C.); (R.S.)
| |
Collapse
|
2
|
Zhang H, Shi B, Yuan C, Huang C, Huang T, Liao Z, Zhu W, Zhong W, Xu H, Ji J, Cai F, Chen Y, Sun P, Zeng X, Yang Z, Wang J, Shu B, Liang Q, Shi Q, Xu C, Tang D, Wang Y. Correlation between the non-use of cooking oil fume extractors and bone mineral density in population aged 45 years and older in China: a cross-sectional study. Front Endocrinol (Lausanne) 2024; 14:1280429. [PMID: 38239978 PMCID: PMC10794737 DOI: 10.3389/fendo.2023.1280429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/09/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The correlation between the non-use of cooking oil fumes (COFs) extractors and bone mineral density (BMD) have not been clarified. Consequently, this study attempted to explore the impact of non-use COFs extractors on BMD in population aged 45 years and older based on a cross-sectional study. Methods This study was a cross-sectional study within the framework of an ongoing prospective population-based cohort study in China. The multivariate linear regression models were used to evaluate the correlation between the non-use of fume extractors in family cooking and total lumbar spine (LS), femoral neck (FN), total hip BMD and levels of bone metabolism markers. Results A total of 3433 participants were included in the final analyses, of which 2607 (75.93%) participants used fume extractors. The results of models indicated that there were significant correlations of the non-use of fume extractors on total LS BMD (β = -0.024, 95% CI, -0.036, -0.012, p < 0.001), PINP (β = 4.363, 95% CI, 2.371, 6.356, p < 0.001) and ALP (β = 4.555, 95% CI, 2.593, 6.517, p < 0.001) levels. Conclusions This study verified that the use of fume extractors is an efficacious measure to prevent LS bone loss. For the sake of public bone health, people should install a fume extractor in the kitchen and use it routinely when cooking.
Collapse
Affiliation(s)
- Haitao Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Binhao Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Chunchun Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingrui Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhangyu Liao
- Ganzhou Nankang District Traditional Chinese Medicine Hospital, Ganzhou, China
| | - Wenhao Zhu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhong
- Ganzhou Nankang District Traditional Chinese Medicine Hospital, Ganzhou, China
| | - Hongbin Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiangxun Ji
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feihong Cai
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Xianhui Zeng
- Ganzhou Nankang District Traditional Chinese Medicine Hospital, Ganzhou, China
| | - Zhiwu Yang
- Ganzhou Nankang District Traditional Chinese Medicine Hospital, Ganzhou, China
| | - Jing Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai, China
| | - Bing Shu
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qianqian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Chuanglong Xu
- Ningxia Hospital of Traditional Chinese Medicine and Chinese Medicine Research Institute, Yinchuan, China
| | - Dezhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| |
Collapse
|
3
|
Tian Y, Hu M, Liu X, Wang X, Lu D, Li Z, Liu Y, Zhang P, Zhou Y. ZIM1 Combined with Hydrogel Inhibits Senescence of Primary PαS Cells during In Vitro Expansion. Int J Mol Sci 2023; 24:ijms24119766. [PMID: 37298717 DOI: 10.3390/ijms24119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Bone marrow stem cells (BMSCs) are a promising source of seed cells in bone tissue engineering, which needs a great quantity of cells. Cell senescence occurs as they are passaged, which could affect the therapeutic effects of cells. Therefore, this study aims to explore the transcriptomic differences among the uncultured and passaged cells, finding a practical target gene for anti-aging. We sorted PαS (PDGFR-α+SCA-1+CD45-TER119-) cells as BMSCs by flow cytometry analysis. The changes in cellular senescence phenotype (Counting Kit-8 (CCK-8) assay, reactive oxygen species (ROS) test, senescence-associated β-galactosidase (SA-β-Gal) activity staining, expression of aging-related genes, telomere-related changes and in vivo differentiation potential) and associated transcriptional alterations during three important cell culture processes (in vivo, first adherence in vitro, first passage, and serial passage in vitro) were studied. Overexpression plasmids of potential target genes were made and examed. Gelatin methacryloyl (GelMA) was applied to explore the anti-aging effects combined with the target gene. Aging-related genes and ROS levels increased, telomerase activity and average telomere length decreased, and SA-β-Gal activities increased as cells were passaged. RNA-seq offered that imprinted zinc-finger gene 1 (Zim1) played a critical role in anti-aging during cell culture. Further, Zim1 combined with GelMA reduced the expression of P16/P53 and ROS levels with doubled telomerase activities. Few SA-β-Gal positive cells were found in the above state. These effects are achieved at least by the activation of Wnt/β-catenin signaling through the regulation of Wnt2. The combined application of Zim1 and hydrogel could inhibit the senescence of BMSCs during in vitro expansion, which may benefit clinical application.
Collapse
Affiliation(s)
- Yueming Tian
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Menglong Hu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xuenan Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Xu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Dazhuang Lu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Center for Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| |
Collapse
|
4
|
Zhang K, Qiu W, Li H, Li J, Wang P, Chen Z, Lin X, Qian A. MACF1 overexpression in BMSCs alleviates senile osteoporosis in mice through TCF4/miR-335-5p signaling pathway. J Orthop Translat 2023; 39:177-190. [PMID: 36969134 PMCID: PMC10036500 DOI: 10.1016/j.jot.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Background The decreased osteogenic differentiation ability of mesenchymal stem cells (MSCs) is one of the important reasons for SOP. Inhibition of Wnt signaling in MSCs is closely related to SOP. Microtubule actin crosslinking factor 1 (MACF1) is an important regulator in Wnt/β-catenin signal transduction. However, whether the specific expression of MACF1 in MSC regulates SOP and its mechanism remains unclear. Methods We established MSC-specific Prrx1 (Prx1) promoter-driven MACF1 conditional knock-in (MACF-KI) mice, naturally aged male mice, and ovariectomized female mice models. Micro-CT, H&E staining, double calcein labeling, and the three-point bending test were used to explore the effects of MACF1 on bone formation and bone microstructure in the SOP mice model. Bioinformatics analysis, ChIP-PCR, qPCR, and ALP staining were used to explore the effects and mechanisms of MACF1 on MSCs' osteogenic differentiation. Results Microarray analysis revealed that the expression of MACF1 and positive regulators of the Wnt pathway (such as TCF4, β-catenin, Dvl) was decreased in human MSCs (hMSCs) isolated from aged osteoporotic than non-osteoporotic patients. The ALP activity and osteogenesis marker genes (Alp, Runx2, and Bglap) expression in mouse MSCs was downregulated during aging. Furthermore, Micro-CT analysis of the femur from 2-month-old MSC-specific Prrx1 (Prx1) promoter-driven MACF1 conditional knock-in (MACF-cKI) mice showed no significant trabecular bone changes compared to wild-type littermate controls, whereas 18- and 21-month-old MACF1 c-KI animals displayed increased bone mineral densities (BMD), improved bone microstructure, and increased maximum compression stress. In addition, the ovariectomy (OVX)-induced osteoporosis model of MACF1 c-KI mice had significantly higher trabecular volume and number, and increased bone formation rate than that in control mice. Mechanistically, ChIP-PCR showed that TCF4 could bind to the promoter region of the host gene miR-335-5p. Moreover, MACF1 could regulate the expression of miR-335-5p by TCF4 during the osteogenic differentiation of MSCs. Conclusion These data indicate that MACF1 positively regulates MSCs osteogenesis and bone formation through the TCF4/miR-335-5p signaling pathway in SOP, suggesting that targeting MACF1 may be a novel therapeutic approach against SOP. The translational potential of this article MACF1, an important switch in the Wnt signaling pathway, can alleviate SOP through the TCF4/miR-335-5p signaling pathway in mice model. It might act as a therapeutic target for the treatment of SOP to improve bone function.
Collapse
Affiliation(s)
- Kewen Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wuxia Qiu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jun Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pai Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiao Lin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City, 518063, China
- Corresponding authorSchool of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Corresponding authorSchool of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
5
|
Chen J, Zhang P, Chen H, Wang X, He X, Zhong J, Zheng H, Li X, Jakovlić I, Zhang Y, Chen Y, Shen B, Deng C, Wu Y. Whole-genome sequencing identifies rare missense variants of WNT16 and ERVW-1 causing the systemic lupus erythematosus. Genomics 2022; 114:110332. [PMID: 35283196 DOI: 10.1016/j.ygeno.2022.110332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/27/2022] [Accepted: 03/06/2022] [Indexed: 01/14/2023]
Abstract
Systemic lupus erythematosus (SLE, OMIM 152700) is a rare autoimmune disease with high heritability that affects ~0.1% of the population. Previous studies have revealed several common variants with small effects in European and East Asian SLE patients. However, there is still no rare variant study on Chinese SLE patients using the whole-genome sequencing technology (WGS). Here, we designed a family based WGS study to identify novel rare variants with large effects. Based on large-scale allele frequency data from the gnomAD database, we identified rare protein-coding gene variants with disruptive and sequence-altering impacts in SLE patients. We found that the burden of rare variants was significantly higher than that of common variants in patients, suggesting a larger effect of rare variants on the SLE pathogenesis. We identified the pathogenic risk of rare missense variants with significant odds ratios (p < 0.05) in two genes, including WNT16 (NC_000007.14:g.121329757G > C, NP_057171.2:p.(Ala86Pro) and 7 g.121329760G > C, NP_057171.2:p.(Ala87Pro)), which explains five out of seven patients covering all three families but are absent from all controls, and ERVW-1 (NC_000007.14:g.92469882A > G, NP_001124397.1:p.(Leu167Pro), rs74545114; NC_000007.14:g.92469907G > A, NP_001124397.1:p.(Arg159Cys), rs201142302; NC_000007.14:g.92469919G > A, NP_001124397.1:p.(His155Tyr), rs199552228), which explains the other two patients. None of these variants were identified in any of the controls. These associations are supported by known gene expression studies in SLE patients based on literature review. We further tested the wild and mutant types using the luciferase assays and qPCR in cells. We found that WNT16 can activate the canonical Wnt/β-catenin pathway while the mutant cannot. Additionally, the wild ERVW-1 expression can be significantly up-regulated by cAMP while the mutant cannot. Our study provides the first direct genetic and in vitro evidence for the pathogenic risk of mutant WNT16 and ERVW-1, which may facilitate the design of precision therapy for SLE.
Collapse
Affiliation(s)
- Jianhai Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haidi Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuefei He
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Zhong
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - HuaPing Zheng
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | - Yong Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Deng
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongkang Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Gherardelli C, Cisternas P, Vera-Salazar RF, Mendez-Orellana C, Inestrosa NC. Age- and Sex-Associated Glucose Metabolism Decline in a Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2022; 87:901-917. [DOI: 10.3233/jad-215273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Alzheimer’s disease (AD) is characterized by a high etiological and clinical heterogeneity, which has obscured the diagnostic and treatment efficacy, as well as limited the development of potential drugs. Sex differences are among the risk factors that contribute to the variability of disease manifestation. Unlike men, women are at greater risk of developing AD and suffer from higher cognitive deterioration, together with important changes in pathological features. Alterations in glucose metabolism are emerging as a key player in the pathogenesis of AD, which appear even decades before the presence of clinical symptoms. Objective: We aimed to study whether AD-related sex differences influence glucose metabolism. Methods: We used male and female APPswe/PS1dE9 (APP/PS1) transgenic mice of different ages to examine glucose metabolism effects on AD development. Results: Our analysis suggests an age-dependent decline of metabolic responses, cognitive functions, and brain energy homeostasis, together with an increase of Aβ levels in both males and females APP/PS1 mice. The administration of Andrographolide (Andro), an anti-inflammatory and anti-diabetic compound, was able to restore several metabolic disturbances, including the glycolytic and the pentose phosphate pathway fluxes, ATP levels, AMPKα activity, and Glut3 expression in 8-month-old mice, independent of the sex, while rescuing these abnormalities only in older females. Similarly, Andro also prevented Aβ accumulation and cognitive decline in all but old males. Conclusion: Our study provides insight into the heterogeneity of the disease and supports the use of Andro as a potential drug to promote personalized medicine in AD.
Collapse
Affiliation(s)
- Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua, Chile
| | - Roberto F. Vera-Salazar
- Escuela de Kinesiología, Facultad de Ciencias Médicas. Universidad de Santiago de Chile, Santiago, Chile
| | - Carolina Mendez-Orellana
- Carrera de Fonoaudiología, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
7
|
Houschyar KS, Borrelli MR, Rein S, Tapking C, Popp D, Puladi B, Ooms M, Schulz T, Maan ZN, Branski LK, Siemers F, Philipp-Dormston WG, Yazdi AS, Duscher D. Wnt ligand expression in malignant melanoma: new insights. EUROPEAN JOURNAL OF PLASTIC SURGERY 2022. [DOI: 10.1007/s00238-022-01941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
9
|
Chen H, Song F, Long F. WNT7B overexpression rescues bone loss caused by glucocorticoids in mice. FASEB J 2021; 35:e21683. [PMID: 34118078 DOI: 10.1096/fj.202100151rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/28/2023]
Abstract
Glucocorticoids, widely prescribed for anti-inflammatory and immunosuppressive purposes, are the most common secondary cause for osteoporosis and related fractures. Current anti-resorptive and anabolic therapies are insufficient for treating glucocorticoid-induced osteoporosis due to contraindications or concerns of side effects. Glucocorticoids have been shown to disrupt Wnt signaling in osteoblast-lineage cells, but the efficacy for Wnt proteins to restore bone mass after glucocorticoid therapy has not been examined. Here by using two mouse genetic models wherein WNT7B expression is temporally activated by either tamoxifen or doxycycline in osteoblast-lineage cells, we show that WNT7B recovers bone mass following glucocorticoid-induced bone loss, thanks to increased osteoblast number and function. However, WNT7B overexpression in bone either before or after glucocorticoid treatments does not ameliorate the abnormal accumulation of body fat. The study demonstrates a potent bone anabolic function for WNT7B in countering glucocorticoid-induced bone loss.
Collapse
Affiliation(s)
- Hong Chen
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fangfang Song
- Translational Research Program of Pediatric Orthopedics, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fanxin Long
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Translational Research Program of Pediatric Orthopedics, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
10
|
Zhu Z, Zhou H, Wang Y, Yao X. Associations between bone turnover markers and bone mineral density in older adults. J Orthop Surg (Hong Kong) 2021; 29:2309499020987653. [PMID: 33480325 DOI: 10.1177/2309499020987653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To examine the associations between bone turnover markers (BTMs) and bone mineral density (BMD) in older adults aged 60-85 years. METHODS A total of 1124 men (mean age, 69.1 years) and 1203 women (mean age, 70.7 years) from the National Health and Nutrition Examination Survey 1999-2002 were included in this cross-sectional analysis. Independent variables were serum bone-specific alkaline phosphatase (sBAP) and urinary N-telopeptide (uNTx), which are biomarkers of bone formation and resorption, respectively. Outcome variable was lumbar BMD. The associations of sBAP and uNTx levels with lumbar BMD was examined using multivariable linear regression models. RESULTS sBAP was negatively associated with lumbar BMD in each multivariable linear regression model, and this negative association was stable in both men and women men (men: β = -0.0028, 95% CI: -0.0046 to -0.0010; women: β = -0.0039, 95% CI: -0.0054 to -0.0023). On the other hand, uNTx was negatively associated with lumbar BMD after adjustment of relevant covariables (β = -0.0328, 95% CI: -0.0523 to -0.0133). However, in the subgroup analysis stratified by gender, this negative association remained only in older women (β = -0.0491, 95% CI: -0.0751 to -0.0231). CONCLUSION Our study suggested that elevated sBAP and uNTX levels correlated with decreased lumbar BMD, especially in older women. This finding indicated that maintaining BTMs at low levels may be beneficial to bone health for older adults.
Collapse
Affiliation(s)
- Zhongxin Zhu
- Department of Osteoporosis Care and Control, Xiaoshan First Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hongliang Zhou
- Department of Clinical Laboratory, Xiaoshan First Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanfei Wang
- Department of Medical Oncology, Xiaoshan First Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaocong Yao
- Department of Osteoporosis Care and Control, Xiaoshan First Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Zhytnik L, Maasalu K, Reimann E, Märtson A, Kõks S. RNA sequencing analysis reveals increased expression of interferon signaling genes and dysregulation of bone metabolism affecting pathways in the whole blood of patients with osteogenesis imperfecta. BMC Med Genomics 2020; 13:177. [PMID: 33228694 PMCID: PMC7684725 DOI: 10.1186/s12920-020-00825-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare genetic disorder in which the patients suffer from numerous fractures, skeletal deformities and bluish sclera. The disorder ranges from a mild form to severe and lethal cases. The main objective of this pilot study was to compare the blood transcriptional landscape of OI patients with COL1A1 pathogenic variants and their healthy relatives, in order to find out different gene expression and dysregulated molecular pathways in OI. METHODS We performed RNA sequencing analysis of whole blood in seven individuals affected with different OI severity and their five unaffected relatives from the three families. The data was analyzed using edgeR package of R Bioconductor. Functional profiling and pathway analysis of the identified differently expressed genes was performed with g:GOSt and MinePath web-based tools. RESULTS We identified 114 differently expressed genes. The expression of 79 genes was up-regulated, while 35 genes were down-regulated. The functional analysis identified a presence of dysregulated interferon signaling pathways (IFI27, IFITM3, RSAD12, GBP7). Additionally, the expressions of the genes related to extracellular matrix organization, Wnt signaling, vitamin D metabolism and MAPK-ERK 1/2 pathways were also altered. CONCLUSIONS The current pilot study successfully captured the differential expression of inflammation and bone metabolism pathways in OI patients. This work can contribute to future research of transcriptional bloodomics in OI. Transcriptional bloodomics has a strong potential to become a major contributor to the understanding of OI pathological mechanisms, the discovery of phenotype modifying factors, and the identification of new therapeutic targets. However, further studies in bigger cohorts of OI patients are needed to confirm the findings of the current work.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia.
| | - Katre Maasalu
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ene Reimann
- Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Aare Märtson
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
12
|
Clinical Variables that Influence Properties of Human Mesenchymal Stromal Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-019-00123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Yu F, Wu F, Li F, Liao X, Wang Y, Li X, Wang C, Shi Y, Ye L. Wnt7b-induced Sox11 functions enhance self-renewal and osteogenic commitment of bone marrow mesenchymal stem cells. Stem Cells 2020; 38:1020-1033. [PMID: 32346881 DOI: 10.1002/stem.3192] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/05/2023]
Abstract
As a profoundly anabolic regulator of bone, Wnt7b is well acknowledged to enhance osteoblast activities. Here, we report that bone marrow mesenchymal stem cells (BMSCs) are another important population responding to Wnt7b. In this study, we systematically investigated the in vivo role of Wnt7b in BMSCs using transgenic mice, high-throughput RNA-seq, immunohistochemistry, RT-qPCR, and in situ hybridization. These methods led us to uncover that Sox11 is induced via Wnt7b in BMSCs. Colony formation assay, flow cytometry, EdU incorporation labeling, RT-qPCR, and Western blot were conducted to detect the self-renewal capacity of BMSCs. Alkaline phosphatase staining, alizarin red staining, and ex vivo BMSCs transplantation were utilized to detect the osteogenic ability of BMSCs. ChIP-qPCR, shRNAs, and immunofluorescence staining were utilized to investigate the underlying mechanisms. Consequently, bone-derived Wnt7b was found to decrease in osteoporosis and elevate in bone fracture healing. During bone fracture healing, Wnt7b was particularly expressed in the mesenchymal cells residing within healing frontiers. RNA-seq data of Wnt7b-overexpressed bones uncovered the significant upregulation of Sox11. Histological results further unveiled that Sox11 is specifically increased in BMSCs. Wnt7b-induced Sox11 was demonstrated to reinforce both self-renewal and osteogenic differentiation of BMSCs. Mechanistically, Wnt7b activates the Ca2+ -dependent Nfatc1 signaling to directly induce Sox11 transcription, which in turn activates the transcriptions of both proliferation-related transcription factors (Ccnb1 and Sox2) and osteogenesis-related factors (Runx2, Sp7) in BMSCs. It is intriguing that this Wnt7b-Sox11 signaling in BMSCs is β-Catenin-independent. Overall, this study provides brand new insights of Wnt7b in bone formation, namely, Wnt7b can enhance both self-renewal and osteogenic differentiation of BMSCs via inducing Sox11. These findings present a new crosstalk between Wnt and Sox signaling in BMSCs.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xueyang Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
14
|
Inducible expression of Wnt7b promotes bone formation in aged mice and enhances fracture healing. Bone Res 2020; 8:4. [PMID: 32047703 PMCID: PMC6997361 DOI: 10.1038/s41413-019-0081-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 10/14/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
There remain unmet clinical needs for safe and effective bone anabolic therapies to treat aging-related osteoporosis and to improve fracture healing in cases of nonunion or delayed union. Wnt signaling has emerged as a promising target pathway for developing novel bone anabolic drugs. Although neutralizing antibodies against the Wnt antagonist sclerostin have been tested, Wnt ligands themselves have not been fully explored as a potential therapy. Previous work has demonstrated Wnt7b as an endogenous ligand upregulated during osteoblast differentiation, and that Wnt7b overexpression potently stimulates bone accrual in the mouse. The earlier studies however did not address whether Wnt7b could promote bone formation when specifically applied to aged or fractured bones. Here we have developed a doxycycline-inducible strategy where Wnt7b is temporally induced in the bones of aged mice or during fracture healing. We report that forced expression of Wnt7b for 1 month starting at 15 months of age greatly stimulated trabecular and endosteal bone formation, resulting in a marked increase in bone mass. We further tested the effect of Wnt7b on bone healing in a murine closed femur fracture model. Induced expression of Wnt7b at the onset of fracture did not affect the initial cartilage formation but promoted mineralization of the subsequent bone callus. Thus, targeted delivery of Wnt7b to aged bones or fracture sites may be explored as a potential therapy.
Collapse
|
15
|
Chatzopoulos GS, Mansky KC, Lunos S, Costalonga M, Wolff LF. Sclerostin and WNT‐5a gingival protein levels in chronic periodontitis and health. J Periodontal Res 2019; 54:555-565. [DOI: 10.1111/jre.12659] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/18/2019] [Accepted: 03/09/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Georgios S. Chatzopoulos
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry University of Minnesota Minneapolis Minnesota
| | - Kim C. Mansky
- Division of Orthodontics, Department of Developmental and Surgical Sciences, School of Dentistry University of Minnesota Minneapolis Minnesota
| | - Scott Lunos
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute University of Minnesota Minneapolis Minnesota
| | - Massimo Costalonga
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry University of Minnesota Minneapolis Minnesota
| | - Larry F. Wolff
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry University of Minnesota Minneapolis Minnesota
| |
Collapse
|
16
|
Li J, Padwa BL, Zhou S, Mullokandova J, LeBoff MS, Glowacki J. Synergistic effect of 1α,25-dihydroxyvitamin D 3 and 17β-estradiol on osteoblast differentiation of pediatric MSCs. J Steroid Biochem Mol Biol 2018; 177:103-108. [PMID: 28765038 DOI: 10.1016/j.jsbmb.2017.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022]
Abstract
Vitamin D is essential for mineral homeostasis and contributes to bone metabolism by stimulating osteoblast differentiation of marrow stromal cells (MSCs). In this study, we used MSCs from pre-pubertal girls and boys to test the hypothesis that 1α,25(OH)2D and 17β-estradiol have synergistic effects on these MSCs, and what mechanism is involved. With IRB approval, we isolated MSCs from discarded excess iliac marrow graft from children undergoing alveolar cleft repair. Plasma was available from 8 female (9.3±0.2years) and 8 male (9.6±0.1years) subjects for hormone assays [25(OH)D, total testosterone, 17β-estradiol, estrone, DHEA-S, Growth Hormone, IGF-I]. RT-PCR was used for gene expression. Alkaline phosphatase (ALP) activity was used to measure osteoblast differentiation at day 7; alizarin red was used to measure matrix mineralization at day 21. All subjects were pre-pubertal based on their hormone levels. Serum 25(OH)D levels ranged from 13.1 to 26.4ng/mL, with 75% below 20ng/mL. Constitutive gene expression of VDR and ERα, β varied from subject to subject with no association with sex or serum chemistries. In osteoblastogenic medium, 1α,25(OH)2D3 (10nM) increased ALP activity by 36% (p<0.05) in MSCs; 10nM of E2 was not stimulatory but the combination of 1α,25(OH)2D3 and E2 increased ALP 151% (p<0.05 vs. control) and by 84.5% (p<0.05 vs. 1α,25(OH)2D3 alone). The combination of 1α,25(OH)2D3 and E2 significantly increased mineralization 11-fold, compared with either agent alone. Twenty-four hour treatment with 1α,25(OH)2D3 (10nM) or E2 (10nM) upregulated each other's receptor by as much as 5.8-fold for ERα and 2.9-fold for the VDR. In summary, 1α,25(OH)2D3 stimulated osteoblast differentiation and matrix mineralization with MSCs from pre-pubertal subjects, with a synergistic effect of E2, mediated by upregulated receptor levels, at least in part. These studies add new information about the regulation of human osteoblast differentiation, effects of 1α,25(OH)2D3 and E2 on MSCs, and the importance of vitamin D for skeletal health.
Collapse
Affiliation(s)
- Jing Li
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Bonnie L Padwa
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Julia Mullokandova
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Meryl S LeBoff
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
17
|
Becerikli M, Jaurich H, Schira J, Schulte M, Döbele C, Wallner C, Abraham S, Wagner JM, Dadras M, Kneser U, Lehnhardt M, Behr B. Age-dependent alterations in osteoblast and osteoclast activity in human cancellous bone. J Cell Mol Med 2017; 21:2773-2781. [PMID: 28444839 PMCID: PMC5661248 DOI: 10.1111/jcmm.13192] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/09/2017] [Indexed: 01/18/2023] Open
Abstract
It is assumed that the activity of osteoblasts and osteoclasts is decreased in bone tissue of aged individuals. However, detailed investigation of the molecular signature of human bone from young compared to aged individuals confirming this assumption is lacking. In this study, quantitative expression analysis of genes related to osteogenesis and osteoclastogenesis of human cancellous bone derived from the distal radius of young and aged individuals was performed. Furthermore, we additionally performed immunohistochemical stainings. The young group included 24 individuals with an average age of 23.2 years, which was compared to cancellous bone derived from 11 body donators with an average age of 81.0 years. In cancellous bone of young individuals, the osteogenesis-related genes RUNX-2, OSTERIX, OSTEOPONTIN and OSTEOCALCIN were significantly up-regulated compared to aged individuals. In addition, RANKL and NFATc1, both markers for osteoclastogenesis, were significantly induced in cancellous bone of young individuals, as well as the WNT gene family member WNT5a and the matrix metalloproteinases MMP-9. However, quantitative RT-PCR analysis of BMP-2, ALP, FGF-2, CYCLIN-D1, MMP-13, RANK, OSTEOPROTEGERIN and TGFb1 revealed no significant difference. Furthermore, Tartrate-resistant acid phosphatase (TRAP) staining was performed which indicated an increased osteoclast activity in cancellous bone of young individuals. In addition, pentachrome stainings revealed significantly less mineralized bone matrix, more osteoid and an increased bone density in young individuals. In summary, markers related to osteogenesis as well as osteoclastogenesis were significantly decreased in the aged individuals. Thus, the present data extends the knowledge about reduced bone regeneration and healing capacity observed in aged individuals.
Collapse
Affiliation(s)
- Mustafa Becerikli
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Henriette Jaurich
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Jessica Schira
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Matthias Schulte
- Department of Plastic SurgeryBG Trauma Hospital LudwigshafenUniversity of HeidelbergLudwigshafenGermany
| | - Carmen Döbele
- Department of Plastic SurgeryBG Trauma Hospital LudwigshafenUniversity of HeidelbergLudwigshafenGermany
| | - Christoph Wallner
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Stephanie Abraham
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Johannes M. Wagner
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Mehran Dadras
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Ulrich Kneser
- Department of Plastic SurgeryBG Trauma Hospital LudwigshafenUniversity of HeidelbergLudwigshafenGermany
| | - Marcus Lehnhardt
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| | - Björn Behr
- Department of Plastic SurgeryBG University Hospital BergmannsheilRuhr‐University BochumBochumGermany
| |
Collapse
|
18
|
Ruggiero B, Padwa BL, Christoph KM, Zhou S, Glowacki J. Vitamin D metabolism and regulation in pediatric MSCs. J Steroid Biochem Mol Biol 2016; 164:287-291. [PMID: 26385609 DOI: 10.1016/j.jsbmb.2015.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 12/16/2022]
Abstract
Vitamin D is crucial for mineral homeostasis and contributes to bone metabolism by inducing osteoblast differentiation of marrow stromal cells (MSCs). We recently reported that MSCs from adults demonstrate 1α-hydroxylase activity in vitro and express vitamin D-related genes; this raises a possible autocrine/paracrine role for D activation in pre-osteoblasts. In this studies, we tested the hypotheses that pediatric MSCs have 1α-hydroxylase activity and express vitamin D-related genes. With IRB approval, we isolated MSCs from discarded excess iliac marrow graft from 6 male and 6 female subjects (age 8-12 years) undergoing alveolar cleft repair. 1α-hydroxylation of substrate 25(OH)D3 was measured by ELISA for 1α,25(OH)2D. RT-PCR was used for gene expression. Pediatric MSCs showed a range of 1α-hydroxylase activity in vitro. There was constitutive expression of vitamin D receptor (VDR), megalin, d-hydroxylases (CYP27B1, CYP27A1, CYP2R1, and CYP24A1), and estrogen receptor (ER). There was 2.6-fold greater expression of CYP27B1 and 3.5-fold greater expression of CYP24A1 in MSCs from boys compared with girls. There was 2.4-fold greater expression of ERα and 3.2-fold greater expression of megalin in MSCs from boys. In preliminary studies, treatment of female pediatric MSCs with 10nM 17β-estradiol resulted in upregulation of CYP27B1 and CYP24A1, as well as VDR, megalin, ERα, and ERβ. Treatment with 25(OH)D3 upregulated CYP27B1, VDR, and ERα. Expression and regulation of vitamin D related genes in pediatric hMSCs reinforces an autocrine/paracrine role for vitamin D in hMSCs. Finding striking gender differences in MSCs from children was not seen with MSCs from adults and adds insight to the metabolic environment of bone and presents a research approach for investigating and optimizing pediatric bone health.
Collapse
Affiliation(s)
- B Ruggiero
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - B L Padwa
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA; Department of Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA, USA
| | - K M Christoph
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - S Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - J Glowacki
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA; Department of Oral and Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA, USA; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone. PLoS One 2015; 10:e0140260. [PMID: 26451596 PMCID: PMC4599960 DOI: 10.1371/journal.pone.0140260] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022] Open
Abstract
Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα) depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse) mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an obligatory contributor to regulation of bone mass per se, it potentially plays a role in influencing pathways associated with regulation of bone mass during ageing and estrogen withdrawal.
Collapse
|
20
|
Marthandan S, Priebe S, Groth M, Guthke R, Platzer M, Hemmerich P, Diekmann S. Hormetic effect of rotenone in primary human fibroblasts. Immun Ageing 2015; 12:11. [PMID: 26380578 PMCID: PMC4572608 DOI: 10.1186/s12979-015-0038-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/01/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Rotenone inhibits the electron transfer from complex I to ubiquinone, in this way interfering with the electron transport chain in mitochondria. This chain of events induces increased levels of intracellular reactive oxygen species, which in turn can contribute to acceleration of telomere shortening and induction of DNA damage, ultimately resulting in aging. In this study, we investigated the effect of rotenone treatment in human fibroblast strains. RESULTS For the first time we here describe that rotenone treatment induced a hormetic effect in human fibroblast strains. We identified a number of genes which were commonly differentially regulated due to low dose rotenone treatment in fibroblasts independent of their cell origin. However, these genes were not among the most strongly differentially regulated genes in the fibroblast strains on treatment with rotenone. Thus, if there is a common hormesis regulation, it is superimposed by cell strain specific individual responses. We found the rotenone induced differential regulation of pathways common between the two fibroblast strains, being weaker than the pathways individually regulated in the single fibroblast cell strains. Furthermore, within the common pathways different genes were responsible for this different regulation. Thus, rotenone induced hormesis was related to a weak pathway signal, superimposed by a stronger individual cellular response, a situation as found for the differentially expressed genes. CONCLUSION We found that the concept of hormesis also applies to in vitro aging of primary human fibroblasts. However, in depth analysis of the genes as well as the pathways differentially regulated due to rotenone treatment revealed cellular hormesis being related to weak signals which are superimposed by stronger individual cell-internal responses. This would explain that in general hormesis is a small effect. Our data indicate that the observed hormetic phenotype does not result from a specific strong well-defined gene or pathway regulation but from weak common cellular processes induced by low levels of reactive oxygen species. This conclusion also holds when comparing our results with those obtained for C. elegans in which the same low dose rotenone level induced a life span extending, thus hormetic effect.
Collapse
Affiliation(s)
- Shiva Marthandan
- />Leibniz-Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Steffen Priebe
- />Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - Marco Groth
- />Leibniz-Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Reinhard Guthke
- />Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute e.V. (HKI), Jena, Germany
| | - Matthias Platzer
- />Leibniz-Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Peter Hemmerich
- />Leibniz-Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Stephan Diekmann
- />Leibniz-Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Beutenbergstrasse 11, D-07745 Jena, Germany
| |
Collapse
|
21
|
Zhou S. Paracrine effects of haematopoietic cells on human mesenchymal stem cells. Sci Rep 2015; 5:10573. [PMID: 26030407 PMCID: PMC4450757 DOI: 10.1038/srep10573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/17/2015] [Indexed: 12/28/2022] Open
Abstract
Stem cell function decline during ageing can involve both cell intrinsic and extrinsic mechanisms. Bone and blood formation are intertwined in bone marrow, therefore haematopoietic cells and bone cells could be extrinsic factors for each other. In this study, we assessed the paracrine effects of extrinsic factors from haematopoietic cells on human mesenchymal stem cells (MSCs). Our data showed that haematopoietic cells stimulate proliferation, osteoblast differentiation and inhibit senescence of MSCs; TNF-α, PDGF-β, Wnt1, 4, 6, 7a and 10a, sFRP-3 and sFRP-5 are dominantly expressed in haematopoietic cells; the age-related increase of TNF-α in haematopoietic cells may perform as a negative factor in the interactions of haematopoietic cells on MSCs via TNF-α receptors and then activating NF-κB signaling or Wnt/β-catenin signaling to induce senescence and reduce osteoblast differentiation in MSCs. In conclusion, our data demonstrated that there are paracrine interactions of haematopoietic cells on human MSCs; immunosenescence may be one of the extrinsic mechanisms by which skeletal stem cell function decline during human skeletal ageing.
Collapse
Affiliation(s)
- Shuanhu Zhou
- 1] Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA [2] Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
22
|
Geng S, Zhou S, Bi Z, Glowacki J. Vitamin D metabolism in human bone marrow stromal (mesenchymal stem) cells. Metabolism 2013; 62:768-77. [PMID: 23375059 PMCID: PMC3644521 DOI: 10.1016/j.metabol.2013.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 01/10/2023]
Abstract
There are many human extra-renal tissues and cells that biosynthesize 1α,25-dihydroxyvitamin D (1α,25(OH)(2)D) by the action of CYP27B1/1α-hydroxylase. Human marrow stromal cells (hMSCs), also known as mesenchymal stem cells, were isolated from marrow discarded from well-characterized, consented subjects during common orthopedic procedures. Human MSCs can give rise to osteoblasts, chondrocytes, adipocytes, and other lineages. Their in vitro differentiation to osteoblasts is stimulated by 1α,25(OH)(2)D, and recent evidence indicates that they have the capacity to metabolize vitamin D in a regulated manner. Human MSCs express the vitamin D receptor, 25-hydroxylases, 1α-hydroxylase, and 24-hydroxylase; stimulation of in vitro osteoblastogenesis by 25(OH)D depends on the activity of CYP27B1/1α-hydroxylase. The finding that hMSCs are a both a producer and target of 1α,25(OH)(2)D suggests a potential autocrine/paracrine role of vitamin D metabolism in osteoblast differentiation. Expression and enzyme activity of CYP27B1/1α-hydroxylase are upregulated by substrate 25(OH)D and Parathyroid Hormone (PTH) and are downregulated by 1α,25(OH)(2)D. With subject age, there are decreases in basal osteoblast potential and in stimulation of osteoblastogenesis by 1α,25(OH)(2)D, 25(OH)D, and PTH. In vitro treatment with a combination of 25(OH)D and PTH rejuvenated osteoblastogenesis with hMSCs from elders; this was attributable to increases in CYP27B1/1α-hydroxylase and in receptor for each hormone by the reciprocal factor. Other clinical variables beside age, i.e. low serum 25(OH)D or low estimated glomerular filtration rate, are correlated with reduced osteoblastogenesis. These studies suggest that osteoblastogenesis may not be optimal unless there is sufficient serum 25(OH)D substrate for hMSCs to synthesize and respond to local 1α,25(OH)(2)D.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhenggang Bi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Corresponding author: Tel: 617-732-5397; Fax: 617-732-6937;
| |
Collapse
|
23
|
Zhou S, Glowacki J, Kim SW, Hahne J, Geng S, Mueller SM, Shen L, Bleiberg I, LeBoff MS. Clinical characteristics influence in vitro action of 1,25-dihydroxyvitamin D(3) in human marrow stromal cells. J Bone Miner Res 2012; 27:1992-2000. [PMID: 22576852 PMCID: PMC3423497 DOI: 10.1002/jbmr.1655] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vitamin D is important for bone health, with low vitamin D levels being associated with skeletal fragility and fractures. Among its other biological activities, 1,25-dihydroxyvitamin D (1,25(OH)(2) D), stimulates the in vitro differentiation of human marrow stromal cells (hMSCs) to osteoblasts, which can be monitored by increases in alkaline phosphatase enzyme activity or osteocalcin gene expression. In this study, we tested the hypotheses that age and clinical attributes of subjects influence in vitro responsiveness of hMSCs to 1,25(OH)(2) D(3) . In a cohort of subjects whose hMSCs were isolated from bone marrow discarded during hip replacement surgery for osteoarthritis, there were significant inverse correlations with age for bone mineral density, renal function, body mass index, fat mass index, and lean mass index (n = 36-53). There were significant correlations with serum 25(OH)D for serum parathyroid hormone (PTH), body mass index, fat mass index, and lean mass index (n = 47-50). In vivo-in vitro correlation analyses indicated that there were significantly greater in vitro effects of 1,25(OH)(2) D(3) to stimulate osteoblast differentiation in hMSCs obtained from subjects who were younger than 65 years of age, or who had serum 25(OH)D ≤ 20 ng/mL, elevated serum PTH, or better renal function, assessed by estimated glomerular filtration rate. The greater in vitro stimulation of osteoblast differentiation by 1,25(OH)(2) D(3) in hMSCs from vitamin D-deficient subjects suggests that vitamin D replenishment may lead to more vigorous bone formation in subjects at risk.
Collapse
Affiliation(s)
- Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sung Won Kim
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jochen Hahne
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuo Geng
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Stefan M. Mueller
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Longxiang Shen
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ilan Bleiberg
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meryl S. LeBoff
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Berwick DC, Harvey K. LRRK2 functions as a Wnt signaling scaffold, bridging cytosolic proteins and membrane-localized LRP6. Hum Mol Genet 2012; 21:4966-79. [PMID: 22899650 PMCID: PMC3709196 DOI: 10.1093/hmg/dds342] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mutations in PARK8, encoding leucine-rich repeat kinase 2 (LRRK2), are a frequent cause of Parkinson's disease (PD). Nonetheless, the physiological role of LRRK2 remains unclear. Here, we demonstrate that LRRK2 participates in canonical Wnt signaling as a scaffold. LRRK2 interacts with key Wnt signaling proteins of the β-catenin destruction complex and dishevelled proteins in vivo and is recruited to membranes following Wnt stimulation, where it binds to the Wnt co-receptor low-density lipoprotein receptor-related protein 6 (LRP6) in cellular models. LRRK2, therefore, bridges membrane and cytosolic components of Wnt signaling. Changes in LRRK2 expression affects pathway activity, while pathogenic LRRK2 mutants reduce both signal strength and the LRRK2–LRP6 interaction. Thus, decreased LRRK2-mediated Wnt signaling caused by reduced binding to LRP6 may underlie the neurodegeneration observed in PD. Finally, a newly developed LRRK2 kinase inhibitor disrupted Wnt signaling to a similar extent as pathogenic LRRK2 mutations. The use of LRRK2 kinase inhibition to treat PD may therefore need reconsideration.
Collapse
Affiliation(s)
- Daniel C Berwick
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, UK
| | | |
Collapse
|
25
|
Seke Etet PF, Vecchio L, Nwabo Kamdje AH. Interactions between bone marrow stromal microenvironment and B-chronic lymphocytic leukemia cells: any role for Notch, Wnt and Hh signaling pathways? Cell Signal 2012; 24:1433-1443. [PMID: 22446006 DOI: 10.1016/j.cellsig.2012.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/05/2012] [Indexed: 01/02/2023]
Abstract
B-cell chronic lymphocytic leukemia (CLL), which is the most common lymphoproliferative disorder, displays characteristics consistent with a defect in programmed cell death and exhibit prolonged survival of affected cells in vivo. When recovered from peripheral blood or lymphoid tissues of patients and cultured in vitro, CLL malignant cells rapidly undergo spontaneous apoptosis. CLL B-cells co-culture with different adherent cell types, collectively referred to as stromal cells, induces leukemia cell survival, migration, and drug resistance. In addition, such survival-promoting microenvironments can rescue leukemia cells from cytotoxic therapy, giving way to disease relapse. Quite surprisingly considering that many anti-cancer drugs, including γ-secretase inhibitors, Cyclopamine and Quercetin, were reported to block Notch, Wnt, and Hedgehog anti-apoptotic signaling pathways respectively, the link between the latter anti-apoptotic pathways and bone marrow stromal cells in CLL has been pointed out only recently. Data concerning the pathogenesis of CLL have been critically reviewed in regards to the growing body of evidence indicating deregulations of Notch, Wnt and Hedgehog anti-apoptotic signaling pathways in the stromal microenvironment of affected cells.
Collapse
MESH Headings
- Bone Marrow/metabolism
- Cellular Microenvironment
- Gene Expression Regulation, Leukemic/genetics
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Molecular Targeted Therapy
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/metabolism
- Smoothened Receptor
- Stromal Cells/cytology
- Stromal Cells/metabolism
- Wnt Signaling Pathway
Collapse
|
26
|
Javaheri B, Sunters A, Zaman G, Suswillo RFL, Saxon LK, Lanyon LE, Price JS. Lrp5 is not required for the proliferative response of osteoblasts to strain but regulates proliferation and apoptosis in a cell autonomous manner. PLoS One 2012; 7:e35726. [PMID: 22567110 PMCID: PMC3342322 DOI: 10.1371/journal.pone.0035726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/22/2012] [Indexed: 11/19/2022] Open
Abstract
Although Lrp5 is known to be an important contributor to the mechanisms regulating bone mass, its precise role remains unclear. The aim of this study was to establish whether mutations in Lrp5 are associated with differences in the growth and/or apoptosis of osteoblast-like cells and their proliferative response to mechanical strain in vitro. Primary osteoblast-like cells were derived from cortical bone of adult mice lacking functional Lrp5 (Lrp5(-/-)), those heterozygous for the human G171V High Bone Mass (HBM) mutation (LRP5(G171V)) and their WT littermates (WT(Lrp5), WT(HBM)). Osteoblast proliferation over time was significantly higher in cultures of cells from LRP5(G171V) mice compared to their WT(HBM) littermates, and lower in Lrp5(-/-) cells. Cells from female LRP5(G171V) mice grew more rapidly than those from males, whereas cells from female Lrp5(-/-) mice grew more slowly than those from males. Apoptosis induced by serum withdrawal was significantly higher in cultures from Lrp5(-/-) mice than in those from WT(HBM) or LRP5(G171V) mice. Exposure to a single short period of dynamic mechanical strain was associated with a significant increase in cell number but this response was unaffected by genotype which also did not change the 'threshold' at which cells responded to strain. In conclusion, the data presented here suggest that Lrp5 loss and gain of function mutations result in cell-autonomous alterations in osteoblast proliferation and apoptosis but do not alter the proliferative response of osteoblasts to mechanical strain in vitro.
Collapse
Affiliation(s)
- Behzad Javaheri
- Department of Oral Biology, UMKC School of Dentistry, Kansas City, Missouri, United States of America.
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhou S, Bueno EM, Kim SW, Amato I, Shen L, Hahne J, Bleiberg I, Morley P, Glowacki J. Effects of age on parathyroid hormone signaling in human marrow stromal cells. Aging Cell 2011; 10:780-8. [PMID: 21518242 DOI: 10.1111/j.1474-9726.2011.00717.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human bone marrow stromal cells (hMSCs) have the potential to differentiate into osteoblasts; there are age-related decreases in their proliferation and differentiation to osteoblasts. Parathyroid hormone (PTH), when applied intermittently in vivo, has osteoanabolic effects in a variety of systems. In this study, we compared PTH signaling and osteoanabolic effects in hMSCs from young and old subjects. There were age-related decreases in expression of PTH/PTHrP receptor type 1 (PTHR1) gene (P = 0.049, n = 19) and in PTH activation of CREB (P = 0.029, n = 7) and PTH stabilization of β-catenin (P = 0.018, n = 7). Three human PTH peptides, PTH1-34, PTH1-31C (Ostabolin-C, Leu(27) , Cyclo[Glu(22) -Lys(26) ]-hPTH1-31), and PTH1-84 (10 nm), stimulated osteoblast differentiation with hMSCs. Treatment with PTH1-34 resulted in a significant 67% increase in alkaline phosphatase activity in hMSCs obtained from younger subjects (<50 years old, n = 5), compared with an 18% increase in hMSCs from elders (>55 years old, n = 7). Both knockdown of CREB and treatment with a protein kinase A inhibitor H-89 blocked PTH stimulation of osteoblast differentiation in hMSCs from young subjects. The PTH peptides significantly stimulated proliferation of hMSCs. Treatment with PTH1-34 resulted in an average of twice as many cells in cultures of hMSCs from young subjects (n = 4), but had no effect with hMSCs from elders (n = 7). Upregulation of PTHR1 by 24-h pretreatment with 100 nm dexamethasone rescued PTH stimulation of proliferation in hMSCS from elders. In conclusion, age-related intrinsic alterations in signaling responses to osteoanabolic agents like PTH may contribute to cellular and tissue aging of the human skeleton.
Collapse
Affiliation(s)
- Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Inhibition of adipocytogenesis by canonical WNT signaling in human mesenchymal stem cells. Exp Cell Res 2011; 317:1796-803. [PMID: 21640723 DOI: 10.1016/j.yexcr.2011.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/21/2011] [Accepted: 05/17/2011] [Indexed: 12/31/2022]
Abstract
The WNT signaling pathway plays important roles in the self-renewal and differentiation of mesenchymal stem cells (MSCs). Little is known about WNT signaling in adipocyte differentiation of human MSCs. In this study, we tested the hypothesis that canonical and non-canonical WNTs differentially regulate in vitro adipocytogenesis in human MSCs. The expression of adipocyte gene PPARγ2, lipoprotein lipase, and adipsin increased during adipocytogenesis of hMSCs. Simultaneously, the expression of canonical WNT2, 10B, 13, and 14 decreased, whereas non-canonical WNT4 and 11 increased, and WNT5A was unchanged. A small molecule WNT mimetic, SB-216763, increased accumulation of β-catenin protein, inhibited induction of WNT4 and 11 and inhibited adipocytogenesis. In contrast, knockdown of β-catenin with siRNA resulted in spontaneous adipocytogenesis. These findings support the view that canonical WNT signaling inhibits and non-canonical WNT signaling promotes adipocytogenesis in adult human marrow-derived mesenchymal stem cells.
Collapse
|
29
|
Eslami B, Zhou S, Van Eekeren I, LeBoff MS, Glowacki J. Reduced osteoclastogenesis and RANKL expression in marrow from women taking alendronate. Calcif Tissue Int 2011; 88:272-80. [PMID: 21327765 PMCID: PMC3060993 DOI: 10.1007/s00223-011-9473-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/14/2010] [Indexed: 12/20/2022]
Abstract
Alendronate (AL) is commonly used for the prevention and treatment of osteoporotic fractures. Little is known about the effects of AL administration on osteoclast differentiation from human marrow progenitor cells. We used marrow discarded during orthopedic surgery to test the hypothesis that cultures of bone marrow-derived stem cells (BMCs) from subjects receiving AL (+AL) may differ from control subjects with respect to in vitro osteoclast differentiation and regulatory factors. The number of osteoclasts generated in BMC cultures from control subjects was 4.7-fold greater than that from +AL subjects (P = 0.015). RANKL expression in +AL BMCs was 57% of that in controls (P = 0.001), and OPG expression in +AL BMCs was greater than in controls (153%, P = 0.01). The mean RANKL/OPG ratio in BMCs was 0.65 ± 0.35 for +AL specimens and 1.28 ± 0.53 for controls (P = 0.031). In addition, we assessed the direct effect of AL on expression of RANKL and OPG in marrow stromal cells isolated from nine control women. Treatment with AL downregulated RANKL expression and upregulated OPG expression, with an average 50% decrease in RANKL/OPG ratio at 10(-7) M (P = 0.004). These results show that osteoclast differentiation is dysregulated in marrow isolated from +AL subjects. Furthermore, AL may inhibit human osteoclastogenesis by affecting the key regulatory genes in marrow cells.
Collapse
Affiliation(s)
- Behnam Eslami
- Department of Orthopedic Surgery, Brigham and Women Hospital and Harvard Medical School, Boston, MA
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women Hospital and Harvard Medical School, Boston, MA
| | - Inge Van Eekeren
- Department of Orthopedic Surgery, Brigham and Women Hospital and Harvard Medical School, Boston, MA
| | - Meryl S. LeBoff
- Division of Endocrinology, Brigham and Women Hospital and Harvard Medical School, Boston, MA
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women Hospital and Harvard Medical School, Boston, MA
- Department of Oral & Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA
| |
Collapse
|
30
|
Abstract
CONTEXT Age-related bone loss is associated with progressive changes in bone remodeling characterized by decreased bone formation relative to bone resorption. Both trabecular and periosteal bone formation decline with age in both sexes, which contributes to bone fragility and increased risk of fractures. Studies in rodents and humans revealed that, independent of sex hormone deficiency, the age-related decline in bone formation is characterized by decreased osteoblast number and lifespan and reduced bone-forming capacity of individual osteoblasts. An important clinical question is to identify the mechanisms involved in the age-related defective bone formation. EVIDENCE ACQUISITION The mechanisms discussed in this review are based on a PubMed search and knowledge of the authors in the field. EVIDENCE SYNTHESIS Available basic and clinical studies indicate that multiple mechanisms are involved in the alterations of osteoblastogenesis and the resulting decline in bone formation with aging. Notably, the age-related osteoblast dysfunctions and defective bone formation are caused by a number of extrinsic clinical factors that inhibit anabolic signaling pathways in bone. Thus, targeting these pathways can abolish age-related bone loss. CONCLUSIONS The identification of extrinsic mechanisms involved in osteoblast dysfunctions associated with aging improves our knowledge of age-related bone loss and provides a basis for therapeutic intervention to improve bone formation and bone mass in the aging population.
Collapse
Affiliation(s)
- Pierre J Marie
- Laboratory of Osteoblast Biology and Pathology, Institut National de la Santé et de la Recherche Médicale Unité 606, Paris F-75475, France.
| | | |
Collapse
|
31
|
Bennett LB, Taylor KH, Arthur GL, Rahmatpanah FB, Hooshmand SI, Caldwell CW. Epigenetic regulation of WNT signaling in chronic lymphocytic leukemia. Epigenomics 2010; 2:53-70. [PMID: 20473358 PMCID: PMC2869094 DOI: 10.2217/epi.09.43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Certain WNT and WNT network target genes are expressed at higher or lower levels in chronic lymphocytic leukemia compared with normal B-cells. This includes upregulation of nuclear complex genes, as well as genes for cytoplasmic proteins and WNT ligands and their cognate receptors. In addition, epigenetic silencing of several negative regulators of the WNT pathway have been identified. The balance between epigenetic downregulation of negative effector genes and increased expression of positive effector genes demonstrate that the epigenetic downregulation of WNT antagonists is one mechanism, perhaps the main mechanism, that is permissive to active WNT signaling in chronic lymphocytic leukemia. Moreover, constitutive activation of the WNT network and target genes is likely to impact on additional interacting signaling pathways. Based on published studies, we propose a model of WNT signaling that involves mainly permissive expression, and sometimes overexpression, of positive effectors and downregulation of negative regulators in the network. In this model, DNA methylation, histone modifications and altered expression of microRNA molecules interact to allow continuous WNT signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - Charles W Caldwell
- Author for correspondence: Department of Pathology & Anatomical Sciences, Ellis Fischel Cancer Center, University of Missouri, 115 Business Loop I-70 West, Columbia, MO 65203, USA, Tel.: +1 573 882 1234, Fax: +1 573 884 5206,
| |
Collapse
|