1
|
Hammouz RY, Baryła I, Styczeń-Binkowska E, Bednarek AK. Twenty-five years of WWOX insight in cancer: a treasure trove of knowledge. Funct Integr Genomics 2025; 25:100. [PMID: 40327201 PMCID: PMC12055895 DOI: 10.1007/s10142-025-01601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/01/2025] [Accepted: 04/12/2025] [Indexed: 05/07/2025]
Abstract
More than two decades ago, MD Anderson Cancer group discovered, characterised, and identified the WW domain-containing oxidoreductase (WWOX) as a genes of interest mapping to the chromosomal region 16q23.3-24.2. This was pioneering research since WWOX is a critical tumour suppressor gene implicated in various cancers, involving interactions with numerous signalling pathways and molecular mechanisms. Notably, it inhibits the Wnt/β-catenin pathway, which is often activated in tumours. This inhibition helps prevent tumour formation by regulating cell proliferation and promoting apoptosis. Restoration of WWOX expression in cancer cell lines has been shown to reduce tumour growth and increased sensitivity to treatments. In addition to its role in tumour suppression, WWOX has been found to interact with proteins involved in critical signalling pathways such as TGF-β. Recent advancements allowed to reveal its interactions with key proteins and microRNAs that regulate cellular adhesion, invasion, and motility. Proteomic studies have shown that WWOX directly interacts with signalling molecules like Dishevelled and SMAD3, further underscoring its role in antagonizing metastasis. Challenges remain in translating this knowledge into clinical applications. For instance, the mechanisms underlying WWOX loss in tumours and its role across diverse cancer types require further investigation. Overall, WWOX serves as a vital player in maintaining cellular stability and preventing cancer progression through its multifaceted functions. Here, we include an updated molecular function of WWOX in cancers to possibly contribute to the potential use of WWOX expression as a biomarker regarding prognosis and response to the treatment. CLINICAL TRIAL NUMBER: Not applicable.
Collapse
Affiliation(s)
- Raneem Y Hammouz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Izabela Baryła
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Ewa Styczeń-Binkowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Żeligowskiego 7/9, Lodz, 90-752, Poland.
| |
Collapse
|
2
|
Chen Z, Sun J, Zhang L, Sun Y, Ni Q, Zhu H, Hui M, Zhang L, Wang Q. Molecular Mechanism of WWOX Inhibiting the Development of Esophageal Cancer by Inhibiting Hippo Signaling Pathway. Biochem Genet 2024:10.1007/s10528-024-10856-9. [PMID: 38902482 DOI: 10.1007/s10528-024-10856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
With the emergence of combined surgical treatments, complemented by radiotherapy and chemotherapy, survival rates for esophageal cancer patients have improved, but the overall 5-year survival rate remains low. Therefore, there is an urgent need for further research into the pathogenesis of esophageal cancer and the development of effective prevention, diagnosis, and treatment methods. We initially utilized the GeneCards and DisGeNET databases to identify the esophageal cancer-associated gene WWOX (WW domain containing oxidoreductase). Subsequently, we employed RT-qPCR (Reverse transcription-quantitative PCR) and WB (western blot) to investigate the differential expression of WWOX in HEEC (human esophageal endotheliocytes) and various ESCC (esophageal squamous cell carcinoma) cell lines. We further evaluated alterations in cell proliferation, migration and apoptosis via CCK8 (cell counting kit-8) and clonal formation, Transwell assays and flow cytometry. Additionally, we investigated changes in protein expressions related to the Hippo signaling pathway (YAP/TEAD) through RT-qPCR and WB. Lastly, to further elucidate the regulatory mechanism of WWOX in ESCC, we performed exogenous YAP rescue experiments in ESCC cells with WWOX overexpression to investigate the alterations in apoptosis and proliferation. Results indicated that the expression of WWOX in ESCC was significantly downregulated. Subsequently, upon overexpression of WWOX, ESCC cell proliferation and migration decreased, while apoptosis increased. Additionally, the expression of YAP and TEAD were reduced. However, the sustained overexpression of YAP attenuated the inhibitory effects of WWOX on ESCC cell malignancy. In conclusion, WWOX exerts inhibitory effects on the proliferation and migration of ESCC and promotes apoptosis by suppressing the Hippo signaling pathway. These findings highlight the potential of WWOX as a novel target for the diagnosis and treatment of esophageal cancer.
Collapse
Affiliation(s)
- Zihan Chen
- Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Jingyu Sun
- Medical College of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Lili Zhang
- Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Yanglin Sun
- Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Qingqing Ni
- Medical College of Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Hongkun Zhu
- Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Miao Hui
- Xuzhou Cancer Hospital, Xuzhou, 221000, Jiangsu, China
| | - Longzhen Zhang
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
| | - Qiang Wang
- Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
- Medical College of Jiangsu University, Zhenjiang, 212000, Jiangsu, China.
- Xuzhou Cancer Hospital, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|
3
|
Jado JC, Dow M, Carolino K, Klie A, Fonseca GJ, Ideker T, Carter H, Winzeler EA. In vitro evolution and whole genome analysis to study chemotherapy drug resistance in haploid human cells. Sci Rep 2024; 14:13989. [PMID: 38886371 PMCID: PMC11183241 DOI: 10.1038/s41598-024-63943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
In vitro evolution and whole genome analysis has proven to be a powerful method for studying the mechanism of action of small molecules in many haploid microbes but has generally not been applied to human cell lines in part because their diploid state complicates the identification of variants that confer drug resistance. To determine if haploid human cells could be used in MOA studies, we evolved resistance to five different anticancer drugs (doxorubicin, gemcitabine, etoposide, topotecan, and paclitaxel) using a near-haploid cell line (HAP1) and then analyzed the genomes of the drug resistant clones, developing a bioinformatic pipeline that involved filtering for high frequency alleles predicted to change protein sequence, or alleles which appeared in the same gene for multiple independent selections with the same compound. Applying the filter to sequences from 28 drug resistant clones identified a set of 21 genes which was strongly enriched for known resistance genes or known drug targets (TOP1, TOP2A, DCK, WDR33, SLCO3A1). In addition, some lines carried structural variants that encompassed additional known resistance genes (ABCB1, WWOX and RRM1). Gene expression knockdown and knockout experiments of 10 validation targets showed a high degree of specificity and accuracy in our calls and demonstrates that the same drug resistance mechanisms found in diverse clinical samples can be evolved, discovered and studied in an isogenic background.
Collapse
Affiliation(s)
- Juan Carlos Jado
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, 92093, USA
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michelle Dow
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
- Health Science, Department of Biomedical Informatics, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Krypton Carolino
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Adam Klie
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gregory J Fonseca
- Department of Medicine, Meakins-Christie Laboratories, McGill University Health Centre, 1001 Decaire Blvd, Montreal, QC, H4A 3J1, Canada
| | - Trey Ideker
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, 92093, USA.
- Department of Medicine, Division of Medical Genetics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Duman ET, Sitte M, Conrads K, Mackay A, Ludewig F, Ströbel P, Ellenrieder V, Hessmann E, Papantonis A, Salinas G. A single-cell strategy for the identification of intronic variants related to mis-splicing in pancreatic cancer. NAR Genom Bioinform 2024; 6:lqae057. [PMID: 38800828 PMCID: PMC11127633 DOI: 10.1093/nargab/lqae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
Most clinical diagnostic and genomic research setups focus almost exclusively on coding regions and essential splice sites, thereby overlooking other non-coding variants. As a result, intronic variants that can promote mis-splicing events across a range of diseases, including cancer, are yet to be systematically investigated. Such investigations would require both genomic and transcriptomic data, but there currently exist very few datasets that satisfy these requirements. We address this by developing a single-nucleus full-length RNA-sequencing approach that allows for the detection of potentially pathogenic intronic variants. We exemplify the potency of our approach by applying pancreatic cancer tumor and tumor-derived specimens and linking intronic variants to splicing dysregulation. We specifically find that prominent intron retention and pseudo-exon activation events are shared by the tumors and affect genes encoding key transcriptional regulators. Our work paves the way for the assessment and exploitation of intronic mutations as powerful prognostic markers and potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Emre Taylan Duman
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Maren Sitte
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Karly Conrads
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| | - Adi Mackay
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Fabian Ludewig
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Philipp Ströbel
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Volker Ellenrieder
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Elisabeth Hessmann
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Argyris Papantonis
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Gabriela Salinas
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
| |
Collapse
|
5
|
Bidany-Mizrahi T, Shweiki A, Maroun K, Abu-Tair L, Mali B, Aqeilan RI. Unveiling the relationship between WWOX and BRCA1 in mammary tumorigenicity and in DNA repair pathway selection. Cell Death Discov 2024; 10:145. [PMID: 38499540 PMCID: PMC10948869 DOI: 10.1038/s41420-024-01878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths in women worldwide, with the basal-like or triple-negative breast cancer (TNBC) subtype being particularly aggressive and challenging to treat. Understanding the molecular mechanisms driving the development and progression of TNBC is essential. We previously showed that WW domain-containing oxidoreductase (WWOX) is commonly inactivated in TNBC and is implicated in the DNA damage response (DDR) through ATM and ATR activation. In this study, we investigated the interplay between WWOX and BRCA1, both frequently inactivated in TNBC, on mammary tumor development and on DNA double-strand break (DSB) repair choice. We generated and characterized a transgenic mouse model (K14-Cre;Brca1fl/fl;Wwoxfl/fl) and observed that mice lacking both WWOX and BRCA1 developed basal-like mammary tumors and exhibited a decrease in 53BP1 foci and an increase in RAD51 foci, suggesting impaired DSB repair. We examined human TNBC cell lines harboring wild-type and mutant BRCA1 and found that WWOX expression promoted NHEJ repair in cells with wild-type BRCA1. Our findings suggest that WWOX and BRCA1 play an important role in DSB repair pathway choice in mammary epithelial cells, underscoring their functional interaction and significance in breast carcinogenesis.
Collapse
Affiliation(s)
- Tirza Bidany-Mizrahi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aya Shweiki
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kian Maroun
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lina Abu-Tair
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bella Mali
- Department of Pathology, Hadassah University Hospital, Jerusalem, Israel
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Cyprus Cancer Research Institute (CCRI), Nicosia, Cyprus.
| |
Collapse
|
6
|
Akkawi R, Hidmi O, Haj-Yahia A, Monin J, Diment J, Drier Y, Stein GS, Aqeilan RI. WWOX promotes osteosarcoma development via upregulation of Myc. Cell Death Dis 2024; 15:13. [PMID: 38182577 PMCID: PMC10770339 DOI: 10.1038/s41419-023-06378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Osteosarcoma is an aggressive bone tumor that primarily affects children and adolescents. This malignancy is highly aggressive, associated with poor clinical outcomes, and primarily metastasizes to the lungs. Due to its rarity and biological heterogeneity, limited studies on its molecular basis exist, hindering the development of effective therapies. The WW domain-containing oxidoreductase (WWOX) is frequently altered in human osteosarcoma. Combined deletion of Wwox and Trp53 using Osterix1-Cre transgenic mice has been shown to accelerate osteosarcoma development. In this study, we generated a traceable osteosarcoma mouse model harboring the deletion of Trp53 alone (single-knockout) or combined deletion of Wwox/Trp53 (double-knockout) and expressing a tdTomato reporter. By tracking Tomato expression at different time points, we detected the early presence of tdTomato-positive cells in the bone marrow mesenchymal stem cells of non-osteosarcoma-bearing mice (young BM). We found that double-knockout young BM cells, but not single-knockout young BM cells, exhibited tumorigenic traits both in vitro and in vivo. Molecular and cellular characterization of these double-knockout young BM cells revealed their resemblance to osteosarcoma tumor cells. Interestingly, one of the observed significant transcriptomic changes in double-knockout young BM cells was the upregulation of Myc and its target genes compared to single-knockout young BM cells. Intriguingly, Myc-chromatin immunoprecipitation sequencing revealed its increased enrichment on Myc targets, which were upregulated in double-knockout young BM cells. Restoration of WWOX in double-knockout young BM cells reduced Myc protein levels. As a prototype target, we demonstrated the upregulation of MCM7, a known Myc target, in double-knockout young BM relative to single-knockout young BM cells. Inhibition of MCM7 expression using simvastatin resulted in reduced proliferation and tumor cell growth of double-knockout young BM cells. Our findings reveal BM mesenchymal stem cells as a platform to study osteosarcoma and Myc and its targets as WWOX effectors and early molecular events during osteosarcomagenesis.
Collapse
Affiliation(s)
- Rania Akkawi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Osama Hidmi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ameen Haj-Yahia
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathon Monin
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Judith Diment
- Department of Pathology, Hadassah University Medical Center, Jerusalem, Israel
| | - Yotam Drier
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gary S Stein
- Department of Biochemistry, Larner College of Medicine, UVM Cancer Center, University of Vermont, Burlington, VT, USA
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Cyprus Cancer Research Institute (CCRI), Nicosia, Cyprus.
| |
Collapse
|
7
|
Yan W, Hou N, Zheng J, Zhai W. Predictive genomic biomarkers of therapeutic effects in renal cell carcinoma. Cell Oncol (Dordr) 2023; 46:1559-1575. [PMID: 37223875 DOI: 10.1007/s13402-023-00827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND In recent years, there have been great improvements in the therapy of renal cell carcinoma. Nevertheless, the therapeutic effect varies significantly from person to person. To discern the effective treatment for different populations, predictive molecular biomarkers in response to target, immunological, and combined therapies are widely studied. CONCLUSION This review summarized those studies from three perspectives (SNPs, mutation, and expression level) and listed the relationship between biomarkers and therapeutic effect, highlighting the great potential of predictive molecular biomarkers in metastatic RCC therapy. However, due to a series of reasons, most of these findings require further validation.
Collapse
Affiliation(s)
- Weijie Yan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Naiqiao Hou
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Dong XS, Wen XJ, Zhang S, Wang DG, Xiong Y, Li ZM. Identification of compound heterozygous deletion of the WWOX gene in WOREE syndrome. BMC Med Genomics 2023; 16:291. [PMID: 37974179 PMCID: PMC10652538 DOI: 10.1186/s12920-023-01731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Biallelic loss-of-function variants in WWOX cause WWOX-related epileptic encephalopathy (WOREE syndrome), which has been reported in 60 affected individuals to date. In this study, we report on an affected individual with WOREE syndrome who presented with early-onset refractory seizures and global neurodevelopmental delay and died at the age of two and a half years. METHODS We present clinical and molecular findings in the affected individual, including biallelic pathogenic variants in the WWOX gene. We employed different molecular approaches, such as whole exome sequencing, quantitative real-time polymerase chain reaction (qPCR), and whole-genome sequencing, to identify the genetic variants. The breakpoints were determined through gap PCR and Sanger sequencing. RESULT Whole exome sequencing revealed homozygous exon 6 deletion in the WWOX gene in the proband. Quantitative real-time PCR confirmed that the parents were heterozygous carriers of exon 6 deletion. However, using whole-genome sequencing, we identified three larger deletions (maternal allele with exon 6-8 deletion and paternal allele with two deletions in proximity one in intron 5 and the other in exon 6) involving the WWOX gene in the proband, with deletion sizes of 13,261 bp, 53,904 bp, and 177,200 bp. The exact breakpoints were confirmed through gap PCR and Sanger sequencing. We found that the proband inherited the discontinuous deletion of intron 5 and exon 6 from the father, and the exons 6-8 deletion from the mother using gap PCR. CONCLUSION Our findings extend the variant spectrum of WOREE syndrome and support the critical role of the WWOX gene in neural development.
Collapse
Affiliation(s)
- Xing-Sheng Dong
- Prenatal Diagnosis Center, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, Guangdong, China
| | - Xiao-Jun Wen
- Reproductive Medicine Center, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, Guangdong, China
| | - Sheng Zhang
- Department of Pediatrics, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, Guangdong, China
| | - De-Gang Wang
- Prenatal Diagnosis Center, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, Guangdong, China
| | - Yi Xiong
- Prenatal Diagnosis Center, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, Guangdong, China
| | - Zhi-Ming Li
- Prenatal Diagnosis Center, Zhongshan Boai Hospital Affiliated to Southern Medical University, Zhongshan, Guangdong, China.
| |
Collapse
|
9
|
Taouis K, Vacher S, Guirouilh-Barbat J, Camonis J, Formstecher E, Popova T, Hamy AS, Petitalot A, Lidereau R, Caputo SM, Zinn-Justin S, Bièche I, Driouch K, Lallemand F. WWOX binds MERIT40 and modulates its function in homologous recombination, implications in breast cancer. Cancer Gene Ther 2023; 30:1144-1155. [PMID: 37248434 PMCID: PMC10425285 DOI: 10.1038/s41417-023-00626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
The tumor suppressor gene WWOX is localized in an unstable chromosomal region and its expression is decreased or absent in several types of cancer. A low expression of WWOX is associated with a poor prognosis in breast cancer (BC). It has recently been shown that WWOX contributes to genome stability through its role in the DNA damage response (DDR). In breast cancer cells, WWOX inhibits homologous recombination (HR), and thus promotes the repair of DNA double-stranded breaks (DSBs) by non-homologous end joining (NHEJ). The fine-tuning modulation of HR activity is crucial. Its under or overstimulation inducing genome alterations that can induce cancer. MERIT40 is a positive regulator of the DDR. This protein is indispensable for the function of the multi-protein complex BRCA1-A, which suppresses excessive HR activity. MERIT40 also recruits Tankyrase, a positive regulator of HR, to the DSBs to stimulate DNA repair. Here, we identified MERIT40 as a new molecular partner of WWOX. We demonstrated that WWOX inhibited excessive HR activity induced by overexpression of MERIT40. We showed that WWOX impaired the MERIT40-Tankyrase interaction preventing the role of the complex on DSBs. Furthermore, we found that MERIT40 is overexpressed in BC and that this overexpression is associated to a poor prognosis. These results strongly suggest that WWOX, through its interaction with MERIT40, prevents the deleterious impact of excessive HR on BC development by inhibiting MERIT40-Tankyrase association. This inhibitory effect of WWOX would oppose MERIT40-dependent BC development.
Collapse
Affiliation(s)
- Karim Taouis
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Sophie Vacher
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Josée Guirouilh-Barbat
- Laboratoire Recombinaison-Réparation et Cancer UMR8200 Stabilité Génétique et Oncogenèse Institut Gustave Roussy, PR2, pièce 426114 Rue Edouard Vaillant, 94805, Villejuif, France
| | | | | | - Tatiana Popova
- Centre De Recherche, Institut Curie, Paris, F-75248, France
- INSERM U830, Paris, F-75248, France
| | - Anne-Sophie Hamy
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, University Paris, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
- University Paris, Paris, France
| | - Ambre Petitalot
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France
| | - Rosette Lidereau
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France
| | - Sandrine M Caputo
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Ivan Bièche
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France
- INSERM U1016, Université Paris Descartes, 4 avenue de l'observatoire, Paris, France
| | - Keltouma Driouch
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - François Lallemand
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France.
- Paris Sciences Lettres Research University, Paris, France.
| |
Collapse
|
10
|
WWOX-Mediated Degradation of AMOTp130 Negatively Affects Egress of Filovirus VP40 VLPs. J Virol 2022; 96:e0202621. [PMID: 35107375 DOI: 10.1128/jvi.02026-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebola (EBOV) and Marburg (MARV) viruses continue to emerge and cause severe hemorrhagic disease in humans. A comprehensive understanding of the filovirus-host interplay will be crucial for identifying and developing antiviral strategies. The filoviral VP40 matrix protein drives virion assembly and egress, in part by recruiting specific WW-domain-containing host interactors via its conserved PPxY Late (L) domain motif to positively regulate virus egress and spread. In contrast to these positive regulators of virus budding, a growing list of WW-domain-containing interactors that negatively regulate virus egress and spread have been identified, including BAG3, YAP/TAZ and WWOX. In addition to host WW-domain regulators of virus budding, host PPxY-containing proteins also contribute to regulating this late stage of filovirus replication. For example, angiomotin (AMOT) is a multi-PPxY-containing host protein that functionally interacts with many of the same WW-domain-containing proteins that regulate virus egress and spread. In this report, we demonstrate that host WWOX, which negatively regulates egress of VP40 VLPs and recombinant VSV-M40 virus, interacts with and suppresses the expression of AMOT. We found that WWOX disrupts AMOT's scaffold-like tubular distribution and reduces AMOT localization at the plasma membrane via lysosomal degradation. In sum, our findings reveal an indirect and novel mechanism by which modular PPxY/WW-domain interactions between AMOT and WWOX regulate PPxY-mediated egress of filovirus VP40 VLPs. A better understanding of this modular network and competitive nature of protein-protein interactions will help to identify new antiviral targets and therapeutic strategies. IMPORTANCE Filoviruses (Ebola [EBOV] and Marburg [MARV]) are zoonotic, emerging pathogens that cause outbreaks of severe hemorrhagic fever in humans. A fundamental understanding of the virus-host interface is critical for understanding the biology of these viruses and for developing future strategies for therapeutic intervention. Here, we reveal a novel mechanism by which host proteins WWOX and AMOTp130 interact with each other and with the EBOV matrix protein VP40 to regulate VP40-mediated egress of virus like particles (VLPs). Our results highlight the biological impact of competitive interplay of modular virus-host interactions on both the virus lifecycle and the host cell.
Collapse
|
11
|
Effect of WW Domain-Containing Oxidoreductase Gene Polymorphism on Clinicopathological Characteristics of Patients with EGFR Mutant Lung Adenocarcinoma in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413136. [PMID: 34948746 PMCID: PMC8701001 DOI: 10.3390/ijerph182413136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/28/2022]
Abstract
Lung adenocarcinoma is the most common histological type of non-small cell lung cancer, which accounts for the majority of lung cancers. Previous studies have showed that dysregulation of WW domain-containing oxidoreductase (WWOX) participates in the generation of several cancer types, including lung cancer. However, whether these WWOX polymorphisms are related to the clinical risk of epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma is worthy of investigation. The present study examined the relationship between the WWOX single-nucleotide polymorphisms (SNPs; rs11545028, rs12918952, rs3764340, rs73569323, and rs383362) and the clinicopathological factors in lung adenocarcinoma patients with or without EGFR mutations. We found that there was no significant difference in the genotype distribution of WWOX polymorphism between EGFR wild-type and EGFR mutant in patients with lung adenocarcinoma. Our results demonstrated that the presence of at least one G genotype (CG and GG) allele on WWOX rs3764340 was associated with a significantly higher risk of nearby lymph node involvement in those patients harboring EGFR mutations (odds ratio (OR) = 3.881, p = 0.010) compared with the CC genotype. Furthermore, in the subgroup of lung adenocarcinoma patients with the EGFR-L858R mutation, both WWOX rs3764340 C/G (OR = 5.209, p = 0.023) and rs73569323 C/T polymorphisms (OR = 3.886, p = 0.039) exhibited significant associations with the size of primary tumors and the invasion of adjacent tissues. In conclusion, these data indicate that WWOX SNPs may help predict tumor growth and invasion in patients with EGFR mutant lung adenocarcinoma, especially those with the EGFR-L858R mutant in Taiwan.
Collapse
|
12
|
Repudi S, Kustanovich I, Abu‐Swai S, Stern S, Aqeilan RI. Neonatal neuronal WWOX gene therapy rescues Wwox null phenotypes. EMBO Mol Med 2021; 13:e14599. [PMID: 34747138 PMCID: PMC8649866 DOI: 10.15252/emmm.202114599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX) is an emerging neural gene-regulating homeostasis of the central nervous system. Germline biallelic mutations in WWOX cause WWOX-related epileptic encephalopathy (WOREE) syndrome and spinocerebellar ataxia and autosomal recessive 12 (SCAR12), two devastating neurodevelopmental disorders with highly heterogenous clinical outcomes, the most common being severe epileptic encephalopathy and profound global developmental delay. We recently demonstrated that neuronal ablation of murine Wwox recapitulates phenotypes of Wwox-null mice leading to intractable epilepsy, hypomyelination, and postnatal lethality. Here, we designed and produced an adeno-associated viral vector (AAV9) harboring murine Wwox or human WWOX cDNA and driven by the human neuronal Synapsin I promoter (AAV-SynI-WWOX). Testing the efficacy of AAV-SynI-WWOX delivery in Wwox-null mice demonstrated that specific neuronal restoration of WWOX expression rescued brain hyperexcitability and seizures, hypoglycemia, myelination deficits, and the premature lethality and behavioral deficits of Wwox-null mice. These findings provide a proof-of-concept for WWOX gene therapy as a promising approach to curing children with WOREE and SCAR12.
Collapse
Affiliation(s)
- Srinivasarao Repudi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research‐IMRICHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | | | - Sara Abu‐Swai
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research‐IMRICHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| | - Shani Stern
- Sagol Department of NeurobiologyUniversity of HaifaHaifaIsrael
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research‐IMRICHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| |
Collapse
|
13
|
Steinberg DJ, Aqeilan RI. WWOX-Related Neurodevelopmental Disorders: Models and Future Perspectives. Cells 2021; 10:cells10113082. [PMID: 34831305 PMCID: PMC8623516 DOI: 10.3390/cells10113082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The WW domain-containing oxidoreductase (WWOX) gene was originally discovered as a putative tumor suppressor spanning the common fragile site FRA16D, but as time has progressed the extent of its pleiotropic function has become apparent. At present, WWOX is a major source of interest in the context of neurological disorders, and more specifically developmental and epileptic encephalopathies (DEEs). This review article aims to introduce the many model systems used through the years to study its function and roles in neuropathies. Similarities and fundamental differences between rodent and human models are discussed. Finally, future perspectives and promising research avenues are suggested.
Collapse
|
14
|
Molecular Biology of the WWOX Gene That Spans Chromosomal Fragile Site FRA16D. Cells 2021; 10:cells10071637. [PMID: 34210081 PMCID: PMC8305172 DOI: 10.3390/cells10071637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
It is now more than 20 years since the FRA16D common chromosomal fragile site was characterised and the WWOX gene spanning this site was identified. In this time, much information has been discovered about its contribution to disease; however, the normal biological role of WWOX is not yet clear. Experiments leading to the identification of the WWOX gene are recounted, revealing enigmatic relationships between the fragile site, its gene and the encoded protein. We also highlight research mainly using the genetically tractable model organism Drosophila melanogaster that has shed light on the integral role of WWOX in metabolism. In addition to this role, there are some particularly outstanding questions that remain regarding WWOX, its gene and its chromosomal location. This review, therefore, also aims to highlight two unanswered questions. Firstly, what is the biological relationship between the WWOX gene and the FRA16D common chromosomal fragile site that is located within one of its very large introns? Secondly, what is the actual substrate and product of the WWOX enzyme activity? It is likely that understanding the normal role of WWOX and its relationship to chromosomal fragility are necessary in order to understand how the perturbation of these normal roles results in disease.
Collapse
|
15
|
Normal cells repel WWOX-negative or -dysfunctional cancer cells via WWOX cell surface epitope 286-299. Commun Biol 2021; 4:753. [PMID: 34140629 PMCID: PMC8211909 DOI: 10.1038/s42003-021-02271-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/27/2021] [Indexed: 02/05/2023] Open
Abstract
Metastatic cancer cells are frequently deficient in WWOX protein or express dysfunctional WWOX (designated WWOXd). Here, we determined that functional WWOX-expressing (WWOXf) cells migrate collectively and expel the individually migrating WWOXd cells. For return, WWOXd cells induces apoptosis of WWOXf cells from a remote distance. Survival of WWOXd from the cell-to-cell encounter is due to activation of the survival IκBα/ERK/WWOX signaling. Mechanistically, cell surface epitope WWOX286-299 (repl) in WWOXf repels the invading WWOXd to undergo retrograde migration. However, when epitope WWOX7-21 (gre) is exposed, WWOXf greets WWOXd to migrate forward for merge. WWOX binds membrane type II TGFβ receptor (TβRII), and TβRII IgG-pretreated WWOXf greet WWOXd to migrate forward and merge with each other. In contrast, TβRII IgG-pretreated WWOXd loses recognition by WWOXf, and WWOXf mediates apoptosis of WWOXd. The observatons suggest that normal cells can be activated to attack metastatic cancer cells. WWOXd cells are less efficient in generating Ca2+ influx and undergo non-apoptotic explosion in response to UV irradiation in room temperature. WWOXf cells exhibit bubbling cell death and Ca2+ influx effectively caused by UV or apoptotic stress. Together, membrane WWOX/TβRII complex is needed for cell-to-cell recognition, maintaining the efficacy of Ca2+ influx, and control of cell invasiveness.
Collapse
|
16
|
Yang T, Xu R, Huo J, Wang B, Du X, Dai B, Zhu M, Zhan Y, Zhang D, Zhang Y. WWOX activation by toosendanin suppresses hepatocellular carcinoma metastasis through JAK2/Stat3 and Wnt/β-catenin signaling. Cancer Lett 2021; 513:50-62. [PMID: 34015398 DOI: 10.1016/j.canlet.2021.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 02/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide. Loss of WW-domain containing oxidoreductase (WWOX) has been proven to be associated with malignant metastasis in patients with HCC. In this study, by using a non-biased CRISPR knockout genetic screen targeting 19,050 human genes, we found that toosendanin (TSN) is a novel druggable WWOX candidate agonist for metastatic HCC patients. We also found that TSN exhibited significant anti-proliferative and anti-metastatic effects on HCC cells in a WWOX-dependent manner. Overexpression and knockdown of WWOX in vitro and in vivo confirmed that the suppression of HCC by TSN involved WWOX. TSN regulated Stat3, DVL2, and GSK3β by transforming their interactions with WWOX as demonstrated by a Co-IP assay. TSN accelerated the degradation of β-catenin by promoting the function of APC, AXIN1, CK1, and GSK3β complex. Nuclear translocation of p-Stat3 Y705 and β-catenin was impeded by the TSN-induced blockade of JAK2/Stat3 and Wnt/β-catenin signaling, accompanied by the inhibition of MMPs and C-MYC.
Collapse
Affiliation(s)
- Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Rui Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Jian Huo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Bo Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Xia Du
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, 710003, PR China
| | - Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Yingzhuan Zhan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Dongdong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China.
| |
Collapse
|
17
|
Taouis K, Driouch K, Lidereau R, Lallemand F. Molecular Functions of WWOX Potentially Involved in Cancer Development. Cells 2021; 10:cells10051051. [PMID: 33946771 PMCID: PMC8145924 DOI: 10.3390/cells10051051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
The WW domain-containing oxidoreductase gene (WWOX) was cloned 21 years ago as a putative tumor suppressor gene mapping to chromosomal fragile site FRA16D. The localization of WWOX in a chromosomal region frequently altered in human cancers has initiated multiple current studies to establish its role in this disease. All of this work suggests that WWOX, due to its ability to interact with a large number of partners, exerts its tumor suppressive activity through a wide variety of molecular actions that are mostly cell specific.
Collapse
|
18
|
Banne E, Abudiab B, Abu-Swai S, Repudi SR, Steinberg DJ, Shatleh D, Alshammery S, Lisowski L, Gold W, Carlen PL, Aqeilan RI. Neurological Disorders Associated with WWOX Germline Mutations-A Comprehensive Overview. Cells 2021; 10:824. [PMID: 33916893 PMCID: PMC8067556 DOI: 10.3390/cells10040824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
The transcriptional regulator WW domain-containing oxidoreductase (WWOX) is a key player in a number of cellular and biological processes including tumor suppression. Recent evidence has emerged associating WWOX with non-cancer disorders. Patients harboring pathogenic germline bi-allelic WWOX variants have been described with the rare devastating neurological syndromes autosomal recessive spinocerebellar ataxia 12 (SCAR12) (6 patients) and WWOX-related epileptic encephalopathy (DEE28 or WOREE syndrome) (56 patients). Individuals with these syndromes present with a highly heterogenous clinical spectrum, the most common clinical symptoms being severe epileptic encephalopathy and profound global developmental delay. Knowledge of the underlying pathophysiology of these syndromes, the range of variants of the WWOX gene and its genotype-phenotype correlations is limited, hampering therapeutic efforts. Therefore, there is a critical need to identify and consolidate all the reported variants in WWOX to distinguish between disease-causing alleles and their associated severity, and benign variants, with the aim of improving diagnosis and increasing therapeutic efforts. Here, we provide a comprehensive review of the literature on WWOX, and analyze the pathogenic variants from published and unpublished reports by collecting entries from the ClinVar, DECIPHER, VarSome, and PubMed databases to generate the largest dataset of WWOX pathogenic variants. We estimate the correlation between variant type and patient phenotype, and delineate the impact of each variant, and used GnomAD to cross reference these variants found in the general population. From these searches, we generated the largest published cohort of WWOX individuals. We conclude with a discussion on potential personalized medicine approaches to tackle the devastating disorders associated with WWOX mutations.
Collapse
Affiliation(s)
- Ehud Banne
- The Genetic Institute, Kaplan Medical Center, Hebrew University-Hadassah Medical School, Rehovot 76100, Israel;
- The Rina Mor Genetic Institute, Wolfson Medical Center, Holon 58100, Israel
| | - Baraa Abudiab
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Sara Abu-Swai
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Srinivasa Rao Repudi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Daniel J. Steinberg
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Diala Shatleh
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Sarah Alshammery
- Faculty of Medicine and Health, School of Medical Sciences and Discipline of Child and Adolescent Health, The University of Sydney, Westmead 2145, NSW, Australia; (S.A.); (W.G.)
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, The University of Sydney, Westmead 2145, NSW, Australia;
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Wendy Gold
- Faculty of Medicine and Health, School of Medical Sciences and Discipline of Child and Adolescent Health, The University of Sydney, Westmead 2145, NSW, Australia; (S.A.); (W.G.)
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead and The Children’s Medical Research Institute, Westmead 2145, NSW, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead 2145, NSW, Australia
| | - Peter L. Carlen
- Krembil Research Institute, University Health Network and Department of Medicine, Physiology and BME, University of Toronto, Toronto, ON M5T 1M8, Canada;
| | - Rami I. Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| |
Collapse
|
19
|
Angiomotin Counteracts the Negative Regulatory Effect of Host WWOX on Viral PPxY-Mediated Egress. J Virol 2021; 95:JVI.00121-21. [PMID: 33536174 PMCID: PMC8103691 DOI: 10.1128/jvi.00121-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Filoviridae family members Ebola (EBOV) and Marburg (MARV) viruses and Arenaviridae family member Lassa virus (LASV) are emerging pathogens that can cause hemorrhagic fever and high rates of mortality in humans. A better understanding of the interplay between these viruses and the host will inform about the biology of these pathogens, and may lead to the identification of new targets for therapeutic development. Notably, expression of the filovirus VP40 and LASV Z matrix proteins alone drives assembly and egress of virus-like particles (VLPs). The conserved PPxY Late (L) domain motifs in the filovirus VP40 and LASV Z proteins play a key role in the budding process by mediating interactions with select host WW-domain containing proteins that then regulate virus egress and spread. To identify the full complement of host WW-domain interactors, we utilized WT and PPxY mutant peptides from EBOV and MARV VP40 and LASV Z proteins to screen an array of GST-WW-domain fusion proteins. We identified WW domain-containing oxidoreductase (WWOX) as a novel PPxY-dependent interactor, and we went on to show that full-length WWOX physically interacts with eVP40, mVP40 and LASV Z to negatively regulate egress of VLPs and of a live VSV/Ebola recombinant virus (M40). Interestingly, WWOX is a versatile host protein that regulates multiple signaling pathways and cellular processes via modular interactions between its WW-domains and PPxY motifs of select interacting partners, including host angiomotin (AMOT). Notably, we demonstrated recently that expression of endogenous AMOT not only positively regulates egress of VLPs, but also promotes egress and spread of live EBOV and MARV. Toward the mechanism of action, we show that the competitive and modular interplay among WWOX-AMOT-VP40/Z regulates VLP and M40 virus egress. Thus, WWOX is the newest member of an emerging group of host WW-domain interactors (e.g. BAG3; YAP/TAZ) that negatively regulate viral egress. These findings further highlight the complex interplay of virus-host PPxY/WW-domain interactions and their potential impact on the biology of both the virus and the host during infection.Author Summary Filoviruses (Ebola [EBOV] and Marburg [MARV]) and arenavirus (Lassa virus; LASV) are zoonotic, emerging pathogens that cause outbreaks of severe hemorrhagic fever in humans. A fundamental understanding of the virus-host interface is critical for understanding the biology of these viruses and for developing future strategies for therapeutic intervention. Here, we identified host WW-domain containing protein WWOX as a novel interactor with VP40 and Z, and showed that WWOX inhibited budding of VP40/Z virus-like particles (VLPs) and live virus in a PPxY/WW-domain dependent manner. Our findings are important to the field as they expand the repertoire of host interactors found to regulate PPxY-mediated budding of RNA viruses, and further highlight the competitive interplay and modular virus-host interactions that impact both the virus lifecycle and the host cell.
Collapse
|
20
|
Tanimura K, Nyunoya T. Loss of Endothelial WWOX: A Risk Factor for ARDS in Smokers? Am J Respir Cell Mol Biol 2021; 64:10-11. [PMID: 33105088 PMCID: PMC7780999 DOI: 10.1165/rcmb.2020-0444ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kazuya Tanimura
- Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania and
| | - Toru Nyunoya
- Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania and.,Medical Specialty Service Line Veterans Affairs Pittsburgh Healthcare System Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Sanaei M, Kavoosi F, Karami H. Effects of trichostatin A on FHIT and WWOX genes expression, cell growth inhibition and apoptosis induction in hepatocellular carcinoma WCH 17 cell line. BRAZ J PHARM SCI 2021. [DOI: 10.1590/s2175-97902020000419033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Zeng Z, Chen W, Moshensky A, Shakir Z, Khan R, Crotty Alexander LE, Ware LB, Aldaz CM, Jacobson JR, Dudek SM, Natarajan V, Machado RF, Singla S. Cigarette Smoke and Nicotine-Containing Electronic-Cigarette Vapor Downregulate Lung WWOX Expression, Which Is Associated with Increased Severity of Murine Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2021; 64:89-99. [PMID: 33058734 PMCID: PMC7780991 DOI: 10.1165/rcmb.2020-0145oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
A history of chronic cigarette smoking is known to increase risk for acute respiratory distress syndrome (ARDS), but the corresponding risks associated with chronic e-cigarette use are largely unknown. The chromosomal fragile site gene, WWOX, is highly susceptible to genotoxic stress from environmental exposures and thus an interesting candidate gene for the study of exposure-related lung disease. Lungs harvested from current versus former/never-smokers exhibited a 47% decrease in WWOX mRNA levels. Exposure to nicotine-containing e-cigarette vapor resulted in an average 57% decrease in WWOX mRNA levels relative to vehicle-treated controls. In separate studies, endothelial (EC)-specific WWOX knockout (KO) versus WWOX flox control mice were examined under ARDS-producing conditions. EC WWOX KO mice exhibited significantly greater levels of vascular leak and histologic lung injury. ECs were isolated from digested lungs of untreated EC WWOX KO mice using sorting by flow cytometry for CD31+ CD45-cells. These were grown in culture, confirmed to be WWOX deficient by RT-PCR and Western blotting, and analyzed by electric cell impedance sensing as well as an FITC dextran transwell assay for their barrier properties during methicillin-resistant Staphylococcus aureus or LPS exposure. WWOX KO ECs demonstrated significantly greater declines in barrier function relative to cells from WWOX flox controls during either methicillin-resistant S. aureus or LPS treatment as measured by both electric cell impedance sensing and the transwell assay. The increased risk for ARDS observed in chronic smokers may be mechanistically linked, at least in part, to lung WWOX downregulation, and this phenomenon may also manifest in the near future in chronic users of e-cigarettes.
Collapse
Affiliation(s)
- Zhenguo Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | | | - Zaid Shakir
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Raheel Khan
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | | | | | - C. M. Aldaz
- MD Anderson Cancer Center, University of Texas, Houston, Texas; and
| | - Jeffrey R. Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sunit Singla
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
23
|
Makii R, Cook H, Louke D, Breitbach J, Jennings R, Premanandan C, Green EM, Fenger JM. Characterization of WWOX expression and function in canine mast cell tumors and malignant mast cell lines. BMC Vet Res 2020; 16:415. [PMID: 33129329 PMCID: PMC7603737 DOI: 10.1186/s12917-020-02638-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/23/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The WW domain-containing oxidoreductase (WWOX) tumor suppressor gene is frequently lost in a variety of solid and hematopoietic malignancies in humans. Dysregulation of WWOX has been implicated as playing a key role in tumor cell survival, DNA damage repair, and genomic stability. The purpose of this study was to characterize WWOX expression in spontaneous canine mast cell tumors (MCTs) and malignant cell lines and investigate the potential contribution of WWOX loss on malignant mast cell behavior. METHODS/RESULTS WWOX expression is decreased in primary canine MCTs and malignant mast cell lines compared to normal canine bone marrow-cultured mast cells. In transformed canine mastocytoma cell lines, overexpression of WWOX or WWOX knockdown had no effect on mast cell viability. Inhibition of WWOX enhanced clonogenic survival following treatment with ionizing radiation in the C2 mast cell line. Lastly, immunohistochemistry for WWOX was performed using a canine MCT tissue microarray, demonstrating that WWOX staining intensity and percent of cells staining for WWOX is decreased in high-grade MCTs compared to low-grade MCTs. CONCLUSIONS These data suggest that WWOX expression is attenuated or lost in primary canine MCTs and malignant mast cell lines. Given the observed increase in clonogenic survival in WWOX-deficient C2 mast cells treated with ionizing radiation, further investigation of WWOX and its role in mediating the DNA damage response in malignant mast cells is warranted.
Collapse
Affiliation(s)
- Rebecca Makii
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, 444 Veterinary Medical Academic Building, Columbus, OH, USA
| | - Hanna Cook
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, 444 Veterinary Medical Academic Building, Columbus, OH, USA
| | - Darian Louke
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, 444 Veterinary Medical Academic Building, Columbus, OH, USA
| | - Justin Breitbach
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Ryan Jennings
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Christopher Premanandan
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Eric M Green
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, 444 Veterinary Medical Academic Building, Columbus, OH, USA
| | - Joelle M Fenger
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, 444 Veterinary Medical Academic Building, Columbus, OH, USA.
| |
Collapse
|
24
|
Khawaled S, Nigita G, Distefano R, Oster S, Suh SS, Smith Y, Khalaileh A, Peng Y, Croce CM, Geiger T, Seewaldt VL, Aqeilan RI. Pleiotropic tumor suppressor functions of WWOX antagonize metastasis. Signal Transduct Target Ther 2020; 5:43. [PMID: 32300104 PMCID: PMC7162874 DOI: 10.1038/s41392-020-0136-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 02/05/2023] Open
Abstract
Tumor progression and metastasis are the major causes of death among cancer associated mortality. Metastatic cells acquire features of migration and invasion and usually undergo epithelia-mesenchymal transition (EMT). Acquirement of these various hallmarks rely on different cellular pathways, including TGF-β and Wnt signaling. Recently, we reported that WW domain-containing oxidoreductase (WWOX) acts as a tumor suppressor and has anti-metastatic activities involving regulation of several key microRNAs (miRNAs) in triple-negative breast cancer (TNBC). Here, we report that WWOX restoration in highly metastatic MDA-MB435S cancer cells alters mRNA expression profiles; further, WWOX interacts with various proteins to exert its tumor suppressor function. Careful alignment and analysis of gene and miRNA expression in these cells revealed profound changes in cellular pathways mediating adhesion, invasion and motility. We further demonstrate that WWOX, through regulation of miR-146a levels, regulates SMAD3, which is a member of the TGF-β signaling pathway. Moreover, proteomic analysis of WWOX partners revealed regulation of the Wnt-signaling activation through physical interaction with Disheveled. Altogether, these findings underscore a significant role for WWOX in antagonizing metastasis, further highlighting its role and therapeutic potential in suppressing tumor progression.
Collapse
Affiliation(s)
- Saleh Khawaled
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Rosario Distefano
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Sara Oster
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Sung-Suk Suh
- Department of Bioscience, Mokpo National University, Muan, Republic of Korea
| | - Yoav Smith
- Genomic Data Analysis Unit, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Abed Khalaileh
- Department of Surgery, Hadassah Medical Center, Jerusalem, Israel
| | - Yong Peng
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Victoria L Seewaldt
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Rami I Aqeilan
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel. .,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
25
|
Lahav N, Rotem-Bamberger S, Fahoum J, Dodson EJ, Kraus Y, Mousa R, Metanis N, Friedler A, Schueler-Furman O. Phosphorylation of the WWOX Protein Regulates Its Interaction with p73. Chembiochem 2020; 21:1843-1851. [PMID: 32185845 DOI: 10.1002/cbic.202000032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Indexed: 11/10/2022]
Abstract
We describe a molecular characterization of the interaction between the cancer-related proteins WWOX and p73. This interaction is mediated by the first of two WW domains (WW1) of WWOX and a PPXY-motif-containing region in p73. While phosphorylation of Tyr33 of WWOX and association with p73 are known to affect apoptotic activity, the quantitative effect of phosphorylation on this specific interaction is determined here for the first time. Using ITC and fluorescence anisotropy, we measured the binding affinity between WWOX domains and a p73 derived peptide, and showed that this interaction is regulated by Tyr phosphorylation of WW1. Chemical synthesis of the phosphorylated domains of WWOX revealed that the binding affinity of WWOX to p73 is decreased when WWOX is phosphorylated. This result suggests a fine-tuning of binding affinity in a differential, ligand-specific manner: the decrease in binding affinity of WWOX to p73 can free both partners to form new interactions.
Collapse
Affiliation(s)
- Noa Lahav
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Shahar Rotem-Bamberger
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical School POB 12272, 91120, Jerusalem, Israel
| | - Jamal Fahoum
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical School POB 12272, 91120, Jerusalem, Israel
| | - Emma-Joy Dodson
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical School POB 12272, 91120, Jerusalem, Israel
| | - Yahel Kraus
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Reem Mousa
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute of Biomedical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Hadassah Medical School POB 12272, 91120, Jerusalem, Israel
| |
Collapse
|
26
|
Hung SC, Chou YE, Li JR, Chen CS, Lin CY, Chang LW, Chiu KY, Cheng CL, Ou YC, Wang SS, Yang SF. Functional genetic variant of WW domain containing oxidoreductase gene associated with urothelial cell carcinoma clinicopathologic characteristics and long-term survival. Urol Oncol 2019; 38:41.e1-41.e9. [PMID: 31474505 DOI: 10.1016/j.urolonc.2019.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/02/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES In Taiwan, urothelial cell carcinoma (UCC) is a common malignancy of urinary tract that is associated with genetic and environmental carcinogens. WW domain-containing oxidoreductase (WWOX) has been identified as a tumor suppressor gene that associated with several cancers development and progression. The study aimed to explore the impact of WWOX gene polymorphisms on the clinicopathological status and prognosis of patients with UCC. MATERIALS AND METHODS A total of 1,293 participants, including 431 patients with UCC and 862 healthy controls, were recruited for this study. Five polymorphisms of the WWOX gene were examined by a real-time PCR assay. RESULTS We found that individuals carrying TT polymorphism at rs11545028 and at least 1 G allele at rs3764340 associated with more susceptible to UCC. At least 1 A allele at rs12918952 associated with more advance disease and high grade tumor. Patients with T allele at rs11545028 associated with worse relapse free survival in all patients and worse disease specific survival (DSS) in male. Patients with A allele at rs12918952 associated with worse DSS in all patients and worse relapse free survival, DSS and overall survival in male. CONCLUSIONS This is the first reported correlation between WWOX polymorphisms and UCC risk and clinicopathologic feature. Genetic variants of WWOX contribute to the pathologic staging, grading, and prognosis. The findings regarding these biomarkers provided a potential prediction of UCC progression.
Collapse
Affiliation(s)
- Sheng-Chun Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jian-Ri Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Medicine and Nursing, Hungkuang University, Taichung, Taiwan Taiwan
| | - Chuan-Shu Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Yen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-Wen Chang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chen-Li Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Chuan Ou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Urology, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Shian-Shiang Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
27
|
Abu-Remaileh M, Abu-Remaileh M, Akkawi R, Knani I, Udi S, Pacold ME, Tam J, Aqeilan RI. WWOX somatic ablation in skeletal muscles alters glucose metabolism. Mol Metab 2019; 22:132-140. [PMID: 30755385 PMCID: PMC6437662 DOI: 10.1016/j.molmet.2019.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE WWOX, a well-established tumor suppressor, is frequently lost in cancer and plays important roles in DNA damage response and cellular metabolism. METHODS We re-analyzed several genome-wide association studies (GWAS) using the Type 2 Diabetes Knowledge Portal website to uncover WWOX's association with metabolic syndrome (MetS). Using several engineered mouse models, we studied the effect of somatic WWOX loss on glucose homeostasis. RESULTS Several WWOX variants were found to be strongly associated with MetS disorders. In mouse models, somatic ablation of Wwox in skeletal muscle (WwoxΔSKM) results in weight gain, glucose intolerance, and insulin resistance. Furthermore, WwoxΔSKM mice display reduced amounts of slow-twitch fibers, decreased mitochondrial quantity and activity, and lower glucose oxidation levels. Mechanistically, we found that WWOX physically interacts with the cellular energy sensor AMP-activated protein kinase (AMPK) and that its loss is associated with impaired activation of AMPK, and with significant accumulation of the hypoxia inducible factor 1 alpha (HIF1α) in SKM. CONCLUSIONS Our studies uncover an unforeseen role of the tumor suppressor WWOX in whole-body glucose homeostasis and highlight the intimate relationship between cancer progression and metabolic disorders, particularly obesity and type-2 diabetes. SUBJECT AREAS Genetics, Metabolic Syndrome, Diabetes.
Collapse
Affiliation(s)
- Muhannad Abu-Remaileh
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Monther Abu-Remaileh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Rania Akkawi
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ibrahim Knani
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Shiran Udi
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Micheal E Pacold
- Department of Radiation Oncology, New York University Langone Medical Center, 522 First Avenue, Smilow 907, New York, NY, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Rami I Aqeilan
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel; Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
28
|
Khawaled S, Suh SS, Abdeen SK, Monin J, Distefano R, Nigita G, Croce CM, Aqeilan RI. WWOX Inhibits Metastasis of Triple-Negative Breast Cancer Cells via Modulation of miRNAs. Cancer Res 2019; 79:1784-1798. [PMID: 30622118 DOI: 10.1158/0008-5472.can-18-0614] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/30/2018] [Accepted: 01/03/2019] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous, highly aggressive, and difficult to treat tumor type. The tumor suppressor WWOX spans FRA16D, a common fragile site that is commonly altered in breast cancer. Despite recent progress, the role of WWOX in TNBC metastasis is unknown. Here we report that WWOX inactivation correlates with advanced stages of TNBC and that its levels are frequently altered in TNBC cells. Ectopic restoration of WWOX in WWOX-negative TNBC cells inhibited metastasis while its depletion in WWOX-positive TNBC cells promoted metastasis. WWOX was a negative regulator of c-MYC, which regulated miR-146a expression and consequently fibronectin levels, contributing to an epithelial status of the cell. Treatment of TNBC cells with anti-miR-146a rescued the WWOX antimetastatic phenotype. Moreover, overexpression of MYC in WWOX-expressing TNBC cells overrode WWOX effects on miR-146a and fibronectin levels. Altogether, our data uncover an essential role for WWOX in antagonizing TNBC progression and highlight its potential use as a biomarker for metastasis. SIGNIFICANCE: These findings highlight the mechanism by which the tumor suppressor WWOX regulates metastasis of triple-negative breast cancer.See related commentary by Sharma, p. 1746.
Collapse
Affiliation(s)
- Saleh Khawaled
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Sung Suk Suh
- Department of Bioscience, Mokpo National University, Muan, Republic of Korea
| | - Suhaib K Abdeen
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Jonathan Monin
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Rosario Distefano
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Rami I Aqeilan
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel. .,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
29
|
Crona DJ, Skol AD, Leppänen VM, Glubb DM, Etheridge AS, Hilliard E, Peña CE, Peterson YK, Klauber-DeMore N, Alitalo KK, Innocenti F. Genetic Variants of VEGFA and FLT4 Are Determinants of Survival in Renal Cell Carcinoma Patients Treated with Sorafenib. Cancer Res 2019; 79:231-241. [PMID: 30385613 PMCID: PMC6541205 DOI: 10.1158/0008-5472.can-18-1089] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/03/2018] [Accepted: 10/29/2018] [Indexed: 12/30/2022]
Abstract
Molecular markers of sorafenib efficacy in patients with metastatic renal cell carcinoma (mRCC) are not available. The purpose of this study was to discover genetic markers of survival in patients with mRCC treated with sorafenib. Germline variants from 56 genes were genotyped in 295 patients with mRCC. Variant-overall survival (OS) associations were tested in multivariate regression models. Mechanistic studies were conducted to validate clinical associations. VEGFA rs1885657, ITGAV rs3816375, and WWOX rs8047917 (sorafenib arm), and FLT4 rs307826 and VEGFA rs3024987 (sorafenib and placebo arms combined) were associated with shorter OS. FLT4 rs307826 increased VEGFR-3 phosphorylation, membrane trafficking, and receptor activation. VEGFA rs1885657 and rs58159269 increased transcriptional activity of the constructs containing these variants in endothelial and RCC cell lines, and VEGFA rs58159269 increased endothelial cell proliferation and tube formation. FLT4 rs307826 and VEGFA rs58159269 led to reduced sorafenib cytotoxicity. Genetic variation in VEGFA and FLT4 could affect survival in sorafenib-treated patients with mRCC. These markers should be examined in additional malignancies treated with sorafenib and in other angiogenesis inhibitors used in mRCC. SIGNIFICANCE: Clinical and mechanistic data identify germline genetic variants in VEGFA and FLT4 as markers of survival in patients with metastatic renal cell carcinoma.
Collapse
Affiliation(s)
- Daniel J Crona
- Division of Pharmacotherapy and Experimental Therapeutics, Center for Pharmacogenomics and Individualized Therapy, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Andrew D Skol
- The University of Chicago, Department of Medicine, Chicago, Illinois
| | | | - Dylan M Glubb
- Division of Pharmacotherapy and Experimental Therapeutics, Center for Pharmacogenomics and Individualized Therapy, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
- The Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Amy S Etheridge
- Division of Pharmacotherapy and Experimental Therapeutics, Center for Pharmacogenomics and Individualized Therapy, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina
| | - Eleanor Hilliard
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Carol E Peña
- Bayer HealthCare Pharmaceuticals, Montville, New Jersey
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Nancy Klauber-DeMore
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Kari K Alitalo
- Wihuri Research Institute and University of Helsinki, Helsinki, Finland
| | - Federico Innocenti
- Division of Pharmacotherapy and Experimental Therapeutics, Center for Pharmacogenomics and Individualized Therapy, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
30
|
Jamous A, Salah Z. WW-Domain Containing Protein Roles in Breast Tumorigenesis. Front Oncol 2018; 8:580. [PMID: 30619734 PMCID: PMC6300493 DOI: 10.3389/fonc.2018.00580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions are key factors in executing protein function. These interactions are mediated through different protein domains or modules. An important domain found in many different types of proteins is WW domain. WW domain-containing proteins were shown to be involved in many human diseases including cancer. Some of these proteins function as either tumor suppressor genes or oncogenes, while others show dual identity. Some of these proteins act on their own and alter the function(s) of specific or multiple proteins implicated in cancer, others interact with their partners to compose WW domain modular pathway. In this review, we discuss the role of WW domain-containing proteins in breast tumorigenesis. We give examples of specific WW domain containing proteins that play roles in breast tumorigenesis and explain the mechanisms through which these proteins lead to breast cancer initiation and progression. We discuss also the possibility of using these proteins as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Abrar Jamous
- Al Quds-Bard College for Arts and Sciences, Al Quds University, Abu Dis, Palestine
| | - Zaidoun Salah
- Al Quds-Bard College for Arts and Sciences, Al Quds University, Abu Dis, Palestine
| |
Collapse
|
31
|
Tanna M, Aqeilan RI. Modeling WWOX Loss of Function in vivo: What Have We Learned? Front Oncol 2018; 8:420. [PMID: 30370248 PMCID: PMC6194312 DOI: 10.3389/fonc.2018.00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022] Open
Abstract
The WW domain–containing oxidoreductase (WWOX) gene encompasses a common fragile sites (CFS) known as FRA16D, and is implicated in cancer. WWOX encodes a 46kDa adaptor protein, which contains two N-terminal WW–domains and a catalytic domain at its C–terminus homologous to short–chain dehydrogenase/reductase (SDR) family proteins. A high sequence conservation of WWOX orthologues from insects to rodents and ultimately humans suggest its significant role in physiology and homeostasis. Indeed, data obtained from several animal models including flies, fish, and rodents demonstrate WWOX in vivo requirement and that its deregulation results in severe pathological consequences including growth retardation, post–natal lethality, neuropathy, metabolic disorders, and tumorigenesis. Altogether, these findings set WWOX as an essential protein that is necessary to maintain normal cellular/physiological homeostasis. Here, we review and discuss lessons and outcomes learned from modeling loss of WWOX expression in vivo.
Collapse
Affiliation(s)
- Mayur Tanna
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research, Israel-Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rami I Aqeilan
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research, Israel-Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Cancer Biology & Genetics, Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
32
|
Chang R, Song L, Xu Y, Wu Y, Dai C, Wang X, Sun X, Hou Y, Li W, Zhan X, Zhan L. Loss of Wwox drives metastasis in triple-negative breast cancer by JAK2/STAT3 axis. Nat Commun 2018; 9:3486. [PMID: 30154439 PMCID: PMC6113304 DOI: 10.1038/s41467-018-05852-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
Loss of WW domain-containing oxidoreductase (Wwox) expression has been observed in breast cancer (BC). However, its regulatory effects are largely unknown, especially in triple-negative breast cancer (TNBC). Herein, gene expression profiling revealed that JAK/STAT3 pathway was one of the most differentially modulated pathways in basal-like BC cells. The lower expression of Wwox was significantly correlated with high activation of STAT3 in basal-like cells and TNBC tissues. Overexpression of Wwox markedly inhibited proliferation and metastasis of BC cells by suppressing STAT3 activation, which is to interact with JAK2 to inhibit JAK2 and STAT3 phosphorylation. Furthermore, Wwox limited STAT3 binding to the interleukin-6 promoter, repressing expression of the IL-6 cytokine. Altogether, our data established that Wwox suppresses BC cell metastasis and proliferation by JAK2/STAT3 pathway. Targeting of Wwox with STAT3 could offer a promising therapeutic strategy for TNBC. In breast cancer, the loss of expression of WW domain-containing oxireductase (Wwox) has been observed. Here, the authors illustrate that in triple negative breast cancer models Wwox suppresses metastasis and proliferation via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Renxu Chang
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lele Song
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Xu
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanjun Wu
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng Dai
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinyu Wang
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xia Sun
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Li
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, 310020, China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Lixing Zhan
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China. .,Department of Cellular and Genetic Medicine, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
33
|
Somatic loss of WWOX is associated with TP53 perturbation in basal-like breast cancer. Cell Death Dis 2018; 9:832. [PMID: 30082886 PMCID: PMC6079009 DOI: 10.1038/s41419-018-0896-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
Abstract
Inactivation of WW domain-containing oxidoreductase (WWOX), the gene product of the common fragile site FRA16D, is a common event in breast cancer and is associated with worse prognosis of triple-negative breast cancer (TNBC) and basal-like breast cancer (BLBC). Despite recent progress, the role of WWOX in driving breast carcinogenesis remains unknown. Here we report that ablation of Wwox in mammary tumor-susceptible mice results in increased tumorigenesis, and that the resultant tumors resemble human BLBC. Interestingly, copy number loss of Trp53 and downregulation of its transcript levels were observed in the Wwox knockout tumors. Moreover, tumors isolated from Wwox and Trp53 mutant mice were indistinguishable histologically and transcriptionally. Finally, we find that deletion of TP53 and WWOX co-occurred and is associated with poor survival of breast cancer patients. Altogether, our data uncover an essential role for WWOX as a bona fide breast cancer tumor suppressor through the maintenance of p53 stability.
Collapse
|
34
|
Abu-Remaileh M, Khalaileh A, Pikarsky E, Aqeilan RI. WWOX controls hepatic HIF1α to suppress hepatocyte proliferation and neoplasia. Cell Death Dis 2018; 9:511. [PMID: 29724996 PMCID: PMC5938702 DOI: 10.1038/s41419-018-0510-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/21/2022]
Abstract
Liver cancer is one of the most lethal malignancies with very poor prognosis once diagnosed. The most common form of liver cancer is hepatocellular carcinoma (HCC). The WW domain-containing oxidoreductase (WWOX) is a large gene that is often perturbed in a wide variety of tumors, including HCC. WWOX has been shown to act as a tumor suppressor modulating cellular metabolism via regulating hypoxia-inducible factor 1α (HIF-1α) levels and function. Given that WWOX is commonly inactivated in HCC, we set to determine whether specific targeted deletion of murine Wwox affects liver biology and HCC development. WWOX liver-specific knockout mice (Wwox ΔHep ) showed more potent liver regeneration potential and enhanced proliferation as compared with their control littermates. Moreover, WWOX deficiency in hepatocytes combined with diethylnitrosamine treatment increased the tumor burden, which was associated with increased HIF1α levels and target gene transactivation. Inhibition of HIF1α by systemic treatment with digoxin significantly delayed HCC formation. Our work suggests that WWOX inactivation has a central role in promoting HCC through rewiring of cellular metabolism and modulating proliferation.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Diet, High-Fat/adverse effects
- Diethylnitrosamine/pharmacology
- Digoxin/pharmacology
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms/etiology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Lymphatic Metastasis
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Prognosis
- Signal Transduction
- Tumor Burden/drug effects
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
- WW Domain-Containing Oxidoreductase/deficiency
- WW Domain-Containing Oxidoreductase/genetics
Collapse
Affiliation(s)
- Muhannad Abu-Remaileh
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Abed Khalaileh
- Department of Surgery, Hebrew University-Hadassah Medical, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rami I Aqeilan
- The Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
35
|
Lin YH, Hsiao YH, Wu WJ, Yang SF, Hsu CF, Kang YT, Wang PH. Relationship of genetic variant distributions of WW domain-containing oxidoreductase gene with uterine cervical cancer. Int J Med Sci 2018; 15:1005-1013. [PMID: 30013442 PMCID: PMC6036151 DOI: 10.7150/ijms.25553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
To our knowledge, no study investigates the association of genetic variant distributions of WW domain-containing oxidoreductase (WWOX) gene with development of invasive cancer, clinicopathologic variables and patient survival in uterine cervical cancer for Taiwanese women. We therefore conducted this study to explore the clinical involvements of WWOX single nucleotide polymorphisms (SNPs) in cervical cancer. One hundred and thirty-one patients with cervical invasive cancer and 93 patients with precancerous lesions as well as 316 control women were consecutively enrolled. The genotypic frequencies of WWOX genetic variants rs73569323, rs383362, rs11545028, rs3764340 and rs12918952 were determined by real-time polymerase chain reaction. The results revealed that only WWOX SNP rs3764340 was associated between patients with cervical invasive cancer and normal controls among 5 WWOX genetic variants. Cervical cancer patients with genotypes GA/AA in WWOX SNP rs12918952 were associated with parametrium invasion and pelvic lymph node metastasis. Univariate analysis found that WWOX SNPs rs73569323 and rs11545028 were associated with patient survival, whereas multivariate analysis revealed CT/TT in rs11545028 was the only genetic variant, which could predict better overall survival, among 5 WWOX SNPs in Taiwan. In conclusion, Taiwanese women with CG/GG in WWOX SNP rs3764340 are susceptible to cervical invasive cancer. Cervical cancer patients with GA/AA in rs12918952 tend to have more risk to develop parametrium invasion and pelvic lymph node metastasis. Among 5 WWOX SNPs, rs11545028 is the only genetic variant associated with patient survival, in which CT/TT could predict better overall survival in Taiwanese women.
Collapse
Affiliation(s)
- Yu-Hsiang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsuan Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Wen-Jun Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Fang Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ting Kang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
36
|
Chen S, Wang H, Huang YF, Li ML, Cheng JH, Hu P, Lu CH, Zhang Y, Liu N, Tzeng CM, Zhang ZM. WW domain-binding protein 2: an adaptor protein closely linked to the development of breast cancer. Mol Cancer 2017; 16:128. [PMID: 28724435 PMCID: PMC5518133 DOI: 10.1186/s12943-017-0693-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/10/2017] [Indexed: 01/27/2023] Open
Abstract
The WW domain is composed of 38 to 40 semi-conserved amino acids shared with structural, regulatory, and signaling proteins. WW domain-binding protein 2 (WBP2), as a binding partner of WW domain protein, interacts with several WW-domain-containing proteins, such as Yes kinase-associated protein (Yap), paired box gene 8 (Pax8), WW-domain-containing transcription regulator protein 1 (TAZ), and WW-domain-containing oxidoreductase (WWOX) through its PPxY motifs within C-terminal region, and further triggers the downstream signaling pathway in vitro and in vivo. Studies have confirmed that phosphorylated form of WBP2 can move into nuclei and activate the transcription of estrogen receptor (ER) and progesterone receptor (PR), whose expression were the indicators of breast cancer development, indicating that WBP2 may participate in the progression of breast cancer. Both overexpression of WBP2 and activation of tyrosine phosphorylation upregulate the signal cascades in the cross-regulation of the Wnt and ER signaling pathways in breast cancer. Following the binding of WBP2 to the WW domain region of TAZ which can accelerate migration, invasion and is required for the transformed phenotypes of breast cancer cells, the transformation of epithelial to mesenchymal of MCF10A is activated, suggesting that WBP2 is a key player in regulating cell migration. When WBP2 binds with WWOX, a tumor suppressor, ER transactivation and tumor growth can be suppressed. Thus, WBP2 may serve as a molecular on/off switch that controls the crosstalk between E2, WWOX, Wnt, TAZ, and other oncogenic signaling pathways. This review interprets the relationship between WBP2 and breast cancer, and provides comprehensive views about the function of WBP2 in the regulation of the pathogenesis of breast cancer and endocrine therapy in breast cancer treatment.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.,Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, People's Republic of China
| | - Han Wang
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, People's Republic of China
| | - Yu-Fan Huang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Ming-Li Li
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, People's Republic of China
| | - Jiang-Hong Cheng
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, People's Republic of China
| | - Peng Hu
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, People's Republic of China.,INNOVA Cell Theranostics/Clinics and TRANSLA Health Group, Yangzhou, Jiangsu, People's Republic of China
| | - Chuan-Hui Lu
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Ya Zhang
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China.,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, People's Republic of China
| | - Na Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, People's Republic of China
| | - Chi-Meng Tzeng
- Translational Medicine Research Center (TMRC), School of Pharmaceutical Science, Xiamen University, Xiamen, Fujian, 361005, People's Republic of China. .,Key Laboratory for Cancer T-Cell Therapeutics and Clinical Translation (CTCTCT), Xiamen, Fujian, 361005, People's Republic of China. .,INNOVA Cell Theranostics/Clinics and TRANSLA Health Group, Yangzhou, Jiangsu, People's Republic of China.
| | - Zhi-Ming Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361005, People's Republic of China. .,Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China.
| |
Collapse
|
37
|
Lee HL, Cheng HL, Liu YF, Chou MC, Yang SF, Chou YE. Functional genetic variant of WW domain-containing oxidoreductase (WWOX) gene is associated with hepatocellular carcinoma risk. PLoS One 2017; 12:e0176141. [PMID: 28426730 PMCID: PMC5398630 DOI: 10.1371/journal.pone.0176141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Human WW domain-containing oxidoreductase (WWOX) gene has been identified as a tumor suppressor gene in multiple cancers. We hypothesize that genetic variations in WWOX are associated with HCC risk. METHODOLOGY/PRINCIPAL FINDINGS Five single-nucleotide polymorphisms (SNPs) of the WWOX gene were evaluated from 708 normal controls and 354 patients with HCC. We identified a significant association between a WWOX single nucleotide polymorphism (SNP), rs73569323, and decreased risk of HCC. After adjustment for potential confounders, patients with at least one T allele at rs11545028 of WWOX may have a significantly smaller tumor size, reduced levels of α-fetoprotein and alanine aminotransferase (ALT). Moreover, the A allele at SNP rs12918952 in WWOX conferred higher risk of vascular invasion. Additional in silico analysis also suggests that WWOX rs12918952 polymorphism tends to affect WWOX expression, which in turn contributes to tumor vascular invasion. CONCLUSIONS In conclusion, genetic variations in WWOX may be a significant predictor of early HCC occurrence and a reliable biomarker for disease progression.
Collapse
Affiliation(s)
- Hsiang-Lin Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Deptartment of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsin-Lin Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Deptartment of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
38
|
Singla S, Chen J, Sethuraman S, Sysol JR, Gampa A, Zhao S, Machado RF. Loss of lung WWOX expression causes neutrophilic inflammation. Am J Physiol Lung Cell Mol Physiol 2017; 312:L903-L911. [PMID: 28283473 DOI: 10.1152/ajplung.00034.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor WW domain-containing oxidoreductase (WWOX) exhibits regulatory interactions with an array of transcription factors and signaling molecules that are positioned at the well-known crossroads between inflammation and cancer. WWOX is also subject to downregulation by genotoxic environmental exposures, making it of potential interest to the study of lung pathobiology. Knockdown of lung WWOX expression in mice was observed to cause neutrophil influx and was accompanied by a corresponding vascular leak and inflammatory cytokine production. In cultured human alveolar epithelial cells, loss of WWOX expression resulted in increased c-Jun- and IL-8-dependent neutrophil chemotaxis toward cell monolayers. WWOX was observed to directly interact with c-Jun in these cells, and its absence resulted in increased nuclear translocation of c-Jun. Finally, inhibition of the c-Jun-activating kinase JNK abrogated the lung neutrophil influx observed during WWOX knockdown in mice. Altogether, these observations represent a novel mechanism of pulmonary neutrophil influx that is highly relevant to the pathobiology and potential treatment of a number of different lung inflammatory conditions.
Collapse
Affiliation(s)
- Sunit Singla
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Jiwang Chen
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Shruthi Sethuraman
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Justin R Sysol
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Amulya Gampa
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Shuangping Zhao
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
39
|
Functions and Epigenetic Regulation of Wwox in Bone Metastasis from Breast Carcinoma: Comparison with Primary Tumors. Int J Mol Sci 2017; 18:ijms18010075. [PMID: 28045433 PMCID: PMC5297710 DOI: 10.3390/ijms18010075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/26/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023] Open
Abstract
Epigenetic mechanisms influence molecular patterns important for the bone-metastatic process, and here we highlight the role of WW-domain containing oxidoreductase (Wwox). The tumor-suppressor Wwox lacks in almost all cancer types; the variable expression in osteosarcomas is related to lung-metastasis formation, and exogenous Wwox destabilizes HIF-1α (subunit of Hypoxia inducible Factor-1, HIF-1) affecting aerobic glycolysis. Our recent studies show critical functions of Wwox present in 1833-osteotropic clone, in the corresponding xenograft model, and in human bone metastasis from breast carcinoma. In hypoxic-bone metastatic cells, Wwox enhances HIF-1α stabilization, phosphorylation, and nuclear translocation. Consistently, in bone-metastasis specimens Wwox localizes in cytosolic/perinuclear area, while TAZ (transcriptional co-activator with PDZ-binding motif) and HIF-1α co-localize in nuclei, playing specific regulatory mechanisms: TAZ is a co-factor of HIF-1, and Wwox regulates HIF-1 activity by controlling HIF-1α. In vitro, DNA methylation affects Wwox-protein synthesis; hypoxia decreases Wwox-protein level; hepatocyte growth factor (HGF) phosphorylates Wwox driving its nuclear shuttle, and counteracting a Twist program important for the epithelial phenotype and metastasis colonization. In agreement, in 1833-xenograft mice under DNA-methyltransferase blockade with decitabine, Wwox increases in nuclei/cytosol counteracting bone metastasis with prolongation of the survival. However, Wwox seems relevant for the autophagic process which sustains metastasis, enhancing more Beclin-1 than p62 protein levels, and p62 accumulates under decitabine consistent with adaptability of metastasis to therapy. In conclusion, Wwox methylation as a bone-metastasis therapeutic target would depend on autophagy conditions, and epigenetic mechanisms regulating Wwox may influence the phenotype of bone metastasis.
Collapse
|
40
|
Hsu LJ, Chiang MF, Sze CI, Su WP, Yap YV, Lee IT, Kuo HL, Chang NS. HYAL-2-WWOX-SMAD4 Signaling in Cell Death and Anticancer Response. Front Cell Dev Biol 2016; 4:141. [PMID: 27999774 PMCID: PMC5138198 DOI: 10.3389/fcell.2016.00141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/18/2016] [Indexed: 02/04/2023] Open
Abstract
Hyaluronidase HYAL-2 is a membrane-anchored protein and also localizes, in part, in the lysosome. Recent study from animal models revealed that both HYAL-1 and HYAL-2 are essential for the metabolism of hyaluronan (HA). Hyal-2 deficiency is associated with chronic thrombotic microangiopathy with hemolytic anemia in mice due to over accumulation of high molecular size HA. HYAL-2 is essential for platelet generation. Membrane HYAL-2 degrades HA bound by co-receptor CD44. Also, in a non-canonical signal pathway, HYAL-2 serves as a receptor for transforming growth factor beta (TGF-β) to signal with downstream tumor suppressors WWOX and SMAD4 to control gene transcription. When SMAD4 responsive element is overly driven by the HYAL-2–WWOX–SMAD4 signaling complex, cell death occurs. When rats are subjected to traumatic brain injury, over accumulation of a HYAL-2–WWOX complex occurs in the nucleus to cause neuronal death. HA induces the signaling of HYAL-2–WWOX–SMAD4 and relocation of the signaling complex to the nucleus. If the signaling complex is overexpressed, bubbling cell death occurs in WWOX-expressing cells. In addition, a small synthetic peptide Zfra (zinc finger-like protein that regulates apoptosis) binds membrane HYAL-2 of non-T/non-B spleen HYAL-2+ CD3− CD19− Z lymphocytes and activates the cells to generate memory anticancer response against many types of cancer cells in vivo. Whether the HYAL-2–WWOX–SMAD4 signaling complex is involved is discussed. In this review and opinion article, we have updated the current knowledge of HA, HYAL-2 and WWOX, HYAL-2–WWOX–SMAD4 signaling, bubbling cell death, and Z cell activation for memory anticancer response.
Collapse
Affiliation(s)
- Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Tainan, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Mackay Medicine, Nursing and Management College, and Graduate Institute of Injury Prevention and Control, Taipei Medical University Taipei, Taiwan
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Wan-Pei Su
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Ye Vone Yap
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - I-Ting Lee
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Hsiang-Ling Kuo
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Advanced Optoelectronic Technology Center, National Cheng Kung UniversityTainan, Taiwan; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Neurochemistry, New York State Institute for Basic Research in Developmental DisabilitiesStaten Island, NY, USA; Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
41
|
WWOX modulates the ATR-mediated DNA damage checkpoint response. Oncotarget 2016; 7:4344-55. [PMID: 26675548 PMCID: PMC4826209 DOI: 10.18632/oncotarget.6571] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/25/2015] [Indexed: 11/25/2022] Open
Abstract
For many decades genomic instability is considered one of the hallmarks of cancer. Role of the tumor suppressor WWOX (WW domain-containing oxidoreductase) in DNA damage response upon double strand breaks has been recently revealed. Here we demonstrate unforeseen functions for WWOX upon DNA single strand breaks (SSBs) checkpoint activation. We found that WWOX levels are induced following SSBs and accumulate in the nucleus. WWOX deficiency is associated with reduced activation of ataxia telangiectasia and Rad3-related protein (ATR) checkpoint proteins and increased chromosomal breaks. At the molecular level, we show that upon SSBs WWOX is modified at lysine 274 by ubiquitination mediated by the ubiquitin E3 ligase ITCH and interacts with ataxia telangiectasia-mutated (ATM). Interestingly, ATM inhibition was associated with reduced activation of ATR checkpoint proteins suggesting that WWOX manipulation of ATR checkpoint proteins is ATM-dependent. Taken together, the present findings indicate that WWOX plays a key role in ATR checkpoint activation, while its absence might facilitate genomic instability.
Collapse
|
42
|
Nishikawaji T, Akiyama Y, Shimada S, Kojima K, Kawano T, Eishi Y, Yuasa Y, Tanaka S. Oncogenic roles of the SETDB2 histone methyltransferase in gastric cancer. Oncotarget 2016; 7:67251-67265. [PMID: 27572307 PMCID: PMC5341872 DOI: 10.18632/oncotarget.11625] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/11/2016] [Indexed: 12/13/2022] Open
Abstract
SETDB2 is a histone H3 lysine 9 (H3K9) tri-methyltransferase that is involved in transcriptional gene silencing. Since it is still unknown whether SETDB2 is linked to carcinogenesis, we studied alterations and functions of SETDB2 in human gastric cancers (GCs). SETDB2 protein was highly expressed in 30 of 72 (41.7%) primary GC tissues compared with their normal counterparts by immunohistochemistry. SETDB2 overexpression was significantly associated with the late stage of GCs (P<0.05) and poor prognosis of GC patients (P<0.05). The GC cell lines with SETDB2 knockdown and overexpression significantly decreased and increased cell proliferation, migration and invasion, respectively (P<0.05). Knockdown of SETDB2 in MKN74 and MKN45 cells reduced global H3K9 tri-methylation (me3) levels. Microarray analysis indicated that expression of WWOX and CADM1, tumor suppressor genes, was significantly enhanced in MKN74 cells after SETDB2 knockdown. Chromatin immunoprecipitation assays showed that the H3K9me3 levels at the promoter regions of these two genes corresponded to the SETDB2 expression levels in GC cells. Moreover, ectopic SETDB2 protein was recruited to their promoter regions. Our data suggest that SETDB2 is associated with transcriptional repression of WWOX and CADM1, and hence overexpression of SETDB2 may contribute to GC progression.
Collapse
Affiliation(s)
- Taketo Nishikawaji
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuyuki Kojima
- Department of Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuyuki Kawano
- Department of Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
43
|
Shi Y, Du M, Fang Y, Tong N, Zhai X, Sheng X, Li Z, Xue Y, Li J, Chu H, Chen J, Song Z, Shen J, Ji J, Li X, Hu Z, Shen H, Xu J, Wang M, Zhang Z. Identification of a novel susceptibility locus at 16q23.1 associated with childhood acute lymphoblastic leukemia in Han Chinese. Hum Mol Genet 2016; 25:2873-2880. [PMID: 27094129 DOI: 10.1093/hmg/ddw112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/13/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Recently, genome-wide association studies (GWAS) have identified several susceptibility loci for childhood acute lymphoblastic leukemia (ALL) in populations of European descent; only a few loci could be confirmed in Asian populations because of those populations' genetic heterogeneity. To identify genetic factors associated with childhood ALL risk in the Chinese population, we performed a three-stage GWAS of 1184 childhood ALL cases and 3219 non-ALL controls. The combined analysis identified a new locus (rs1121404 in WWOX) at 16q23.1 associated with childhood ALL susceptibility (odds ratio (OR) = 1.38, P = 5.29 × 10-10), especially in the subtype of B-ALL (OR = 1.39, P = 2.47 × 10-9). The functional studies subsequently revealed that the expression of WWOX in ALL bone marrow was significantly lower than that in normal bone marrow. The G allele of rs1121404 displayed significantly decreased levels of mRNA expression of WWOX These results suggest that WWOX plays an important role in the development of childhood ALL and provide new insights into the etiology of childhood ALL.
Collapse
Affiliation(s)
- Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China .,The Affiliated Hospital of Qingdao University, Qingdao 266003, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mulong Du
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Nanjing Children's Hospital Affiliated with Nanjing Medical University, Nanjing 210000, China
| | - Na Tong
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiaowen Zhai
- Department of Hematology and Oncology, Children's hospital of Fudan University, Shanghai 200032, China
| | - Xiaojing Sheng
- Department of Children's healthcare, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Xue
- Department of Hematology and Oncology, Nanjing Children's Hospital Affiliated with Nanjing Medical University, Nanjing 210000, China
| | - Jie Li
- Department of Hematology and Oncology, The Affiliated Children's Hospital of Soochow University, Suzhou 215025, China
| | - Haiyan Chu
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhijian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiawei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jue Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois 60201, USA
| | - Meilin Wang
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China .,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China .,Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
44
|
Zfra activates memory Hyal-2+ CD3- CD19- spleen cells to block cancer growth, stemness, and metastasis in vivo. Oncotarget 2016; 6:3737-51. [PMID: 25686832 PMCID: PMC4414150 DOI: 10.18632/oncotarget.2895] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022] Open
Abstract
Zfra is a 31-amino-acid zinc finger-like protein, which participates in the tumor necrosis factor signaling. Here, we determined that when nude mice and BALB/c mice were pre-injected with nanogram levels of a synthetic Zfra1–31 or truncated Zfra4–10 peptide via tail veins, these mice became resistant to the growth, metastasis and stemness of melanoma cells, and many malignant cancer cells. The synthetic peptides underwent self-polymerization in phosphate-buffered saline. Alteration of the Ser8 phosphorylation site to Gly8 abolished Zfra aggregation and its-mediated cancer suppression in vivo. Injected Zfra peptide autofluoresced due to polymerization and was trapped mainly in the spleen. Transfer of Zfra-stimulated spleen cells to naïve mice conferred resistance to cancer growth. Zfra-binding cells, designated Hyal-2+ CD3− CD19− Z cells, are approximately 25–30% in the normal spleen, but are significantly downregulated (near 0–3%) in tumor-growing mice. Zfra prevented the loss of Z cells caused by tumors. In vitro stimulation or education of naïve spleen cells with Zfra allowed generation of activated Z cells to confer a memory anticancer response in naïve or cancer-growing mice. In particular, Z cells are abundant in nude and NOD-SCID mice, and can be readily activated by Zfra to mount against cancer growth.
Collapse
|
45
|
Chang JY, Lee MH, Lin SR, Yang LY, Sun HS, Sze CI, Hong Q, Lin YS, Chou YT, Hsu LJ, Jan MS, Gong CX, Chang NS. Trafficking protein particle complex 6A delta (TRAPPC6AΔ) is an extracellular plaque-forming protein in the brain. Oncotarget 2016; 6:3578-89. [PMID: 25650666 PMCID: PMC4414138 DOI: 10.18632/oncotarget.2876] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/08/2014] [Indexed: 11/25/2022] Open
Abstract
Tumor suppressor WWOX is involved in the progression of cancer and neurodegeneration. Here, we examined whether protein aggregation occurs in the brain of nondemented, middle-aged humans and whether this is associated with WWOX downregulation. We isolated an N-terminal internal deletion isoform, TPC6AΔ, derived from alternative splicing of the TRAPPC6A (TPC6A) gene transcript. TPC6AΔ proteins are present as aggregates or plaques in the extracellular matrix of the brain such as in the cortex. Filter retardation assays revealed that aggregate formation of TPC6AΔ occurs preceding Aβ generation in the hippocampi of middle-aged postmortem normal humans. In a Wwox gene knockout mouse model, we showed the plaques of pT181-Tau and TPC6AΔ in the cortex and hippocampus in 3-week-old mice, suggesting a role of WWOX in limiting TPC6AΔ aggregation. To support this hypothesis, in vitro analysis revealed that TGF-β1 induces dissociation of the ectopic complex of TPC6AΔ and WWOX in cells, and then TPC6AΔ undergoes Ser35 phosphorylation-dependent polymerization and induces caspase 3 activation and Aβ production. Similarly, knockdown of WWOX by siRNA resulted in dramatic aggregation of TPC6AΔ. Together, when WWOX is downregulated, TPC6AΔ is phosphorylated at Ser35 and becomes aggregated for causing caspase activation that leads to Tau aggregation and Aβ formation.
Collapse
Affiliation(s)
- Jean-Yun Chang
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Ming-Hui Lee
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Sing-Ru Lin
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Li-Yi Yang
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - H Sunny Sun
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Chun-I Sze
- Departments of Anatomy and Cell Biology, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Qunying Hong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, ROC
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan, ROC.,Center for Infectious Disease and Signaling Research, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Ying-Tsen Chou
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Li-Jin Hsu
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan, ROC.,Center for Infectious Disease and Signaling Research, National Cheng Kung University Medical College, Tainan, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | - Ming-Shiou Jan
- Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Cheng-Xin Gong
- Institute of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Nan-Shan Chang
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC.,Center for Infectious Disease and Signaling Research, National Cheng Kung University Medical College, Tainan, Taiwan, ROC.,Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan, ROC.,Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan, Taiwan, ROC.,Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
46
|
Abu-Remaileh M, Joy-Dodson E, Schueler-Furman O, Aqeilan RI. Pleiotropic Functions of Tumor Suppressor WWOX in Normal and Cancer Cells. J Biol Chem 2015; 290:30728-35. [PMID: 26499798 DOI: 10.1074/jbc.r115.676346] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX), originally marked as a likely tumor suppressor gene, has over the years become recognized for its role in a much wider range of cellular activities. Phenotypic effects displayed in animal studies, along with resolution of WWOX's architecture, fold, and binding partners, point to the protein's multifaceted biological functions. Results from a series of complementary experiments seem to indicate WWOX's involvement in metabolic regulation. More recently, clinical studies involving cases of severe encephalopathy suggest that WWOX also plays a part in controlling CNS development, further expanding our understanding of the breadth and complexity of WWOX behavior. Here we present a short overview of the various approaches taken to study this dynamic gene, emphasizing the most recent findings regarding WWOX's metabolic- and CNS-associated functions and their underlying molecular basis.
Collapse
Affiliation(s)
| | - Emma Joy-Dodson
- Microbiology & Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Ora Schueler-Furman
- Microbiology & Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Rami I Aqeilan
- From the Departments of Immunology & Cancer Research and
| |
Collapse
|
47
|
Chang JY, Chang NS. WWOX dysfunction induces sequential aggregation of TRAPPC6AΔ, TIAF1, tau and amyloid β, and causes apoptosis. Cell Death Discov 2015; 1:15003. [PMID: 27551439 PMCID: PMC4981022 DOI: 10.1038/cddiscovery.2015.3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022] Open
Abstract
Aggregated vesicle-trafficking protein isoform TRAPPC6AΔ (TPC6AΔ) has a critical role in causing caspase activation, tau aggregation and Aβ generation in the brains of nondemented middle-aged humans, patients with Alzheimer's disease (AD) and 3-week-old Wwox gene knockout mice. WWOX blocks neurodegeneration via interactions with tau and tau-phosphorylating enzymes. WWOX deficiency leads to epilepsy, mental retardation and early death. Here, we demonstrated that TGF-β1 induces shuttling of endogenous wild-type TPC6A and TPC6AΔ in between nucleoli and mitochondria (~40-60 min per round trip), and WWOX reduces the shuttling time by 50%. TGF-β1 initially maximizes the binding of TPC6AΔ to the C-terminal tail of WWOX, followed by dissociation. TPC6AΔ then undergoes aggregation, together with TIAF1 (TGF-β1-induced antiapoptotic factor), in the mitochondria to induce apoptosis. An additional rescue scenario is that TGF-β1 induces Tyr33 phosphorylation and unfolding of WWOX and its the N-terminal WW domain slowly binds TPC6AΔ to block aggregation and apoptosis. Similarly, loss of WWOX induces TPC6AΔ polymerization first, then aggregation of TIAF1, amyloid β and tau, and subsequent cell death, suggesting that a cascade of protein aggregation leads to neurodegeneration.
Collapse
Affiliation(s)
- J-Y Chang
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
| | - N-S Chang
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan
- Center for Infectious Disease and Signaling Research, National Cheng Kung University Medical College, Tainan, Taiwan
- Advanced Optoelectronic Technology Center, National Cheng Kung University Medical College, Tainan, Taiwan
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
48
|
Chen T, Gao F, Feng S, Yang T, Chen M. MicroRNA-134 regulates lung cancer cell H69 growth and apoptosis by targeting WWOX gene and suppressing the ERK1/2 signaling pathway. Biochem Biophys Res Commun 2015; 464:748-54. [DOI: 10.1016/j.bbrc.2015.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
|
49
|
Jiang J, Wang N, Jiang Y, Tan H, Zheng J, Chen G, Jia Z. Characterization of substrate binding of the WW domains in human WWP2 protein. FEBS Lett 2015; 589:1935-42. [PMID: 25999310 DOI: 10.1016/j.febslet.2015.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/26/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
WW domains harbor substrates containing proline-rich motifs, but the substrate specificity and binding mechanism remain elusive for those WW domains less amenable for structural studies, such as human WWP2 (hWWP2). Herein we have employed multiple techniques to investigate the second WW domain (WW2) in hWWP2. Our results show that hWWP2 is a specialized E3 for PPxY motif-containing substrates only and does not recognize other amino acids and phospho-residues. The strongest binding affinity of WW2, and the incompatibility between each WW domain, imply a novel relationship, and our SPR experiment reveals a dynamic binding mode in Class-I WW domains for the first time. The results from alanine-scanning mutagenesis and modeling further point to functionally conserved residues in WW2.
Collapse
Affiliation(s)
- Jiahong Jiang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Nan Wang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Yafei Jiang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Hongwei Tan
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing, China.
| | - Guangju Chen
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zongchao Jia
- Department of Biochemical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
50
|
Abstract
WWOX, the WW domain-containing oxidoreductase gene at chromosome region 16q23.3-q24.1, spanning chromosomal fragile site FRA16D, encodes the 46 kDa Wwox protein, a tumor suppressor that is lost or reduced in expression in a wide variety of cancers, including breast, prostate, ovarian, and lung. The function of Wwox as a tumor suppressor implies that it serves a function in the prevention of carcinogenesis. Indeed, in vitro studies show that Wwox protein interacts with many binding partners to regulate cellular apoptosis, proliferation, and/or maturation. It has been reported that newborn Wwox knockout mice exhibit nascent osteosarcomas while Wwox(+/-) mice exhibit increased incidence of spontaneous and induced tumors. Furthermore, absence or reduction of Wwox expression in mouse xenograft models results in increased tumorigenesis, which can be rescued by Wwox re-expression, though there is not universal agreement among investigators regarding the role of Wwox loss in these experimental models. Despite this proposed tumor suppressor function, the overlap of the human WWOX locus with FRA16D sensitizes the gene to protein-inactivating deletions caused by replication stress. The high frequency of deletions within the WWOX locus in cancers of various types, without the hallmark protein inactivation-associated mutations of "classical" tumor suppressors, has led to the proposal that WWOX deletions in cancers are passenger events that occur in early cancer progenitor cells due to fragility of the genetic locus, rather than driver events which provide the cancer cell a selective advantage. Recently, a proposed epigenetic cause of chromosomal fragility has suggested a novel mechanism for early fragile site instability and has implications regarding the involvement of tumor suppressor genes at chromosomal fragile sites in cancer. In this review, we provide an overview of the evidence for WWOX as a tumor suppressor gene and put this into the context of fragility associated with the FRA16D locus.
Collapse
Affiliation(s)
- Morgan S Schrock
- Biomedical Sciences Graduate Program, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Kay Huebner
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, Ohio 43210, USA
| |
Collapse
|