1
|
Arlier S, Kayisli UA, Semerci N, Ozmen A, Larsen K, Schatz F, Lockwood CJ, Guzeloglu-Kayisli O. Enhanced ZBTB16 Levels by Progestin-Only Contraceptives Induces Decidualization and Inflammation. Int J Mol Sci 2023; 24:10532. [PMID: 37445713 PMCID: PMC10341894 DOI: 10.3390/ijms241310532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Progestin-only long-acting reversible-contraceptive (pLARC)-exposed endometria displays decidualized human endometrial stromal cells (HESCs) and hyperdilated thin-walled fragile microvessels. The combination of fragile microvessels and enhanced tissue factor levels in decidualized HESCs generates excess thrombin, which contributes to abnormal uterine bleeding (AUB) by inducing inflammation, aberrant angiogenesis, and proteolysis. The- zinc finger and BTB domain containing 16 (ZBTB16) has been reported as an essential regulator of decidualization. Microarray studies have demonstrated that ZBTB16 levels are induced by medroxyprogesterone acetate (MPA) and etonogestrel (ETO) in cultured HESCs. We hypothesized that pLARC-induced ZBTB16 expression contributes to HESC decidualization, whereas prolonged enhancement of ZBTB16 levels triggers an inflammatory milieu by inducing pro-inflammatory gene expression and tissue-factor-mediated thrombin generation in decidualized HESCs. Thus, ZBTB16 immunostaining was performed in paired endometria from pre- and post-depo-MPA (DMPA)-administrated women and oophorectomized guinea pigs exposed to the vehicle, estradiol (E2), MPA, or E2 + MPA. The effect of progestins including MPA, ETO, and levonorgestrel (LNG) and estradiol + MPA + cyclic-AMP (E2 + MPA + cAMP) on ZBTB16 levels were measured in HESC cultures by qPCR and immunoblotting. The regulation of ZBTB16 levels by MPA was evaluated in glucocorticoid-receptor-silenced HESC cultures. ZBTB16 was overexpressed in cultured HESCs for 72 h followed by a ± 1 IU/mL thrombin treatment for 6 h. DMPA administration in women and MPA treatment in guinea pigs enhanced ZBTB16 immunostaining in endometrial stromal and glandular epithelial cells. The in vitro findings indicated that: (1) ZBTB16 levels were significantly elevated by all progestin treatments; (2) MPA exerted the greatest effect on ZBTB16 levels; (3) MPA-induced ZBTB16 expression was inhibited in glucocorticoid-receptor-silenced HESCs. Moreover, ZBTB16 overexpression in HESCs significantly enhanced prolactin (PRL), insulin-like growth factor binding protein 1 (IGFBP1), and tissue factor (F3) levels. Thrombin-induced interleukin 8 (IL-8) and prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA levels in control-vector-transfected HESCs were further increased by ZBTB16 overexpression. In conclusion, these results supported that ZBTB16 is enhanced during decidualization, and long-term induction of ZBTB16 expression by pLARCs contributes to thrombin generation through enhancing tissue factor expression and inflammation by enhancing IL-8 and PTGS2 levels in decidualized HESCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (S.A.); (U.A.K.); (N.S.); (A.O.); (K.L.); (F.S.); (C.J.L.)
| |
Collapse
|
2
|
Sharma M, Chaudhary D. In vitro and in vivo implications of rationally designed bromelain laden core-shell hybrid solid lipid nanoparticles for oral administration in thrombosis management. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102543. [PMID: 35189392 DOI: 10.1016/j.nano.2022.102543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Bromelain, a dietary supplement of cysteine protease family having promising results against thrombosis, is gaining attention. Yet poor mechanical stability, gastric instability, high oral dose and poor patient compliance restricted its clinical application. Therefore, acid stable bromelain loaded hybrid solid lipid nanoparticles (Br-HNPs) were fabricated and characterized for their contribution to in-vivo stability and therapeutic efficacy in thrombosis management. Comprehensive optimization of various process and formulation variables ensued the formation of nano-sized (120.56 ± 40.12 nm) Br-HNPs with entrapment efficiency of 86.32 ± 5.56%. Spherical core shell framework of Br-HNPs prolonged drug release and provided in-vivo and storage stability at room temperature. Br-HNPs significantly inhibited platelet aggregation without affecting bleeding time and dissolved thrombus at 1.91-fold higher efficacy compared to bromelain. Furthermore, Br-HNPs prevented hypercoagulation states and suppressed cytokines production significantly (P < .05) contributing to its antiplatelet activity. These findings indicated that Br-HNPs could serve as a promising alternative to commercial therapies for management of thrombotic disorders.
Collapse
Affiliation(s)
- Manu Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| | - Deepika Chaudhary
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| |
Collapse
|
3
|
Xiao A, Wu C, Kuang L, Lu W, Zhao X, Kuang Z, Hao N. Effect of Zhongyi paste on inflammatory pain in mice by regulation of the extracellular regulated protein kinases 1/2-cyclooxygenase-2-prostaglandin E 2 pathway. Korean J Pain 2020; 33:335-343. [PMID: 32989198 PMCID: PMC7532292 DOI: 10.3344/kjp.2020.33.4.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/01/2022] Open
Abstract
Background Zhongyi paste is a traditional Chinese medicine herbal paste that is externally applied to reduce inflammation and relieve pain. Methods An acute foot swelling inflammation model in C57BL/6J mice was established by carrageenan-induced pathogenesis. Zhongyi paste raised the pain threshold and also reduced the degree of swelling in mice with carrageenan-induced foot swelling. Results Analysis indicated that serum tumor necrosis factor-alpha, interleukin-1 beta, and prostaglandin E2 (PGE2) cytokine levels and PGE2 levels in the paw tissue of the mice were decreased by Zhongyi paste treatment. The quantitative polymerase chain reaction and western blot results showed that Zhongyi paste downregulated the mRNA and protein expression of extracellular signal-regulated kinase 1/2 (ERK1/2), and cyclooxygenase-2 (COX-2), and also downregulated the mRNA expression of PGE2. At the same time, the Zhongyi paste exerted a stronger effect as an external drug than that of indomethacin, which is an oral drug, and voltaren, which is an externally applied drug. Conclusions Our results indicated that Zhongyi paste is a very effective drug to reduce inflammatory swelling of the foot, and its mechanism of action is related to regulation of the ERK1/2–COX-2–PGE2 pathway.
Collapse
Affiliation(s)
- Ailan Xiao
- The First Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Chuncao Wu
- Office of Academic Research, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Lei Kuang
- The First Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Weizhong Lu
- The First Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
| | - Zhiping Kuang
- The First Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Na Hao
- The First Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
4
|
Huang ZW, Lien GS, Lin CH, Jiang CP, Chen BC. p300 and C/EBPβ-regulated IKKβ expression are involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. Pharmacol Res 2017; 121:33-41. [PMID: 28428115 DOI: 10.1016/j.phrs.2017.04.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/07/2017] [Accepted: 04/14/2017] [Indexed: 12/17/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are common chronic lung inflammatory diseases. Thrombin and interleukin (IL)-8/C-X-C chemokine ligand 8 (CXCL8) play critical roles in lung inflammation. Our previous study showed that c-Src-dependent IκB kinase (IKK)/IκBα/nuclear factor (NF)-κB and mitogen-activated protein kinase kinase kinase 1 (MEKK1)/extracellular signal-regulated kinase (ERK)/ribosomal S6 protein kinase (RSK)-dependent CAAT/enhancer-binding protein β (C/EBPβ) activation are involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. In this study, we aimed to investigate the roles of p300 and C/EBPβ-reliant IKKβ expression in thrombin-induced IL-8/CXCL8 expression. Thrombin-induced increases in IL-8/CXCL8-luciferase activity and IL-8/CXCL8 release were inhibited by p300 small interfering (siRNA). Thrombin-caused histone H3 acetylation was attenuated by p300 siRNA. Stimulation of cells with thrombin for 12h resulted in increases in IKKβ expression and phosphorylation in human lung epithelial cells. However, thrombin did not affect p65 expression. Moreover, 12h of thrombin stimulation produced increases in IKKβ expression and phosphorylation, and IκBα phosphorylation, which were inhibited by C/EBPβ siRNA. Finally, treatment of cells with thrombin caused increases in p300 and C/EBPβ complex formation, p65 and C/EBPβ complex formation, and recruitment of p300, p65, and C/EBPβ to the IL-8/CXCL8 promoter. These results imply that p300-dependent histone H3 acetylation and C/EBPβ-regulated IKKβ expression contribute to thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells. Results of this study will help clarify C/EBPβ signaling pathways involved in thrombin-induced IL-8/CXCL8 expression in human lung epithelial cells.
Collapse
Affiliation(s)
- Zheng-Wei Huang
- Graduate Institute of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Gi-Shih Lien
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Ping Jiang
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
He GL, Luo Z, Shen TT, Li P, Yang J, Luo X, Chen CH, Gao P, Yang XS. Inhibition of STAT3- and MAPK-dependent PGE 2 synthesis ameliorates phagocytosis of fibrillar β-amyloid peptide (1-42) via EP2 receptor in EMF-stimulated N9 microglial cells. J Neuroinflammation 2016; 13:296. [PMID: 27871289 PMCID: PMC5117690 DOI: 10.1186/s12974-016-0762-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/09/2016] [Indexed: 12/16/2022] Open
Abstract
Background Prostaglandin E2 (PGE2)-involved neuroinflammatory processes are prevalent in several neurological conditions and diseases. Amyloid burden is correlated with the activation of E-prostanoid (EP) 2 receptors by PGE2 in Alzheimer’s disease. We previously demonstrated that electromagnetic field (EMF) exposure can induce pro-inflammatory responses and the depression of phagocytosis in microglial cells, but the signaling pathways involved in phagocytosis of fibrillar β-amyloid (fAβ) in microglial cells exposed to EMF are poorly understood. Given the important role of PGE2 in neural physiopathological processes, we investigated the PGE2-related signaling mechanism in the immunomodulatory phagocytosis of EMF-stimulated N9 microglial cells (N9 cells). Methods N9 cells were exposed to EMF with or without pretreatment with the selective inhibitors of cyclooxygenase-2 (COX-2), Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinases (MAPKs) and antagonists of PG receptors EP1-4. The production of endogenous PGE2 was quantified by enzyme immunoassays. The phagocytic ability of N9 cells was evaluated based on the fluorescence intensity of the engulfed fluorescent-labeled fibrillar β-amyloid peptide (1-42) (fAβ42) measured using a flow cytometer and a fluorescence microscope. The effects of pharmacological agents on EMF-activated microglia were investigated based on the expressions of JAK2, STAT3, p38/ERK/JNK MAPKs, COX-2, microsomal prostaglandin E synthase-1 (mPGES-1), and EP2 using real-time PCR and/or western blotting. Results EMF exposure significantly increased the production of PGE2 and decreased the phagocytosis of fluorescent-labeled fAβ42 by N9 cells. The selective inhibitors of COX-2, JAK2, STAT3, and MAPKs clearly depressed PGE2 release and ameliorated microglial phagocytosis after EMF exposure. Pharmacological agents suppressed the phosphorylation of JAK2-STAT3 and MAPKs, leading to the amelioration of the phagocytic ability of EMF-stimulated N9 cells. Antagonist studies of EP1-4 receptors showed that EMF depressed the phagocytosis of fAβ42 through the PGE2 system, which is linked to EP2 receptors. Conclusions This study indicates that EMF exposure could induce phagocytic depression via JAK2-STAT3- and MAPK-dependent PGE2-EP2 receptor signaling pathways in microglia. Therefore, pharmacological inhibition of PGE2 synthesis and EP2 receptors may be a potential therapeutic strategy to combat the neurobiological deterioration that follows EMF exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0762-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gen-Lin He
- Department of Tropic Hygiene, Institute of Tropical Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Zhen Luo
- Department of Tropic Hygiene, Institute of Tropical Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Ting-Ting Shen
- Department of Tropic Hygiene, Institute of Tropical Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Ping Li
- Department of Tropic Hygiene, Institute of Tropical Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Ju Yang
- Department of Tropic Hygiene, Institute of Tropical Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Xue Luo
- Department of Tropic Hygiene, Institute of Tropical Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China
| | - Chun-Hai Chen
- Key Laboratory of Medical Protection for Electromagnetic Radiation Ministry of Education, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Peng Gao
- Key Laboratory of Medical Protection for Electromagnetic Radiation Ministry of Education, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Xue-Sen Yang
- Department of Tropic Hygiene, Institute of Tropical Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
6
|
Han X, Lan X, Li Q, Gao Y, Zhu W, Cheng T, Maruyama T, Wang J. Inhibition of prostaglandin E2 receptor EP3 mitigates thrombin-induced brain injury. J Cereb Blood Flow Metab 2016; 36:1059-74. [PMID: 26661165 PMCID: PMC4908617 DOI: 10.1177/0271678x15606462] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 07/27/2015] [Indexed: 11/16/2022]
Abstract
Prostaglandin E2 EP3 receptor is the only prostaglandin E2 receptor that couples to multiple G-proteins, but its role in thrombin-induced brain injury is unclear. In the present study, we exposed mouse hippocampal slice cultures to thrombin in vitro and injected mice with intrastriatal thrombin in vivo to investigate the role of EP3 receptor in thrombin-induced brain injury and explore its underlying cellular and molecular mechanisms. In vitro, EP3 receptor inhibition reduced thrombin-induced hippocampal CA1 cell death. In vivo, EP3 receptor was expressed in astrocytes and microglia in the perilesional region. EP3 receptor inhibition reduced lesion volume, neurologic deficit, cell death, matrix metalloproteinase-9 activity, neutrophil infiltration, and the number of CD68(+) microglia, but increased the number of Ym-1(+) M2 microglia. RhoA-Rho kinase levels were increased after thrombin injection and were decreased by EP3 receptor inhibition. In mice that received an intrastriatal injection of autologous arterial blood, inhibition of thrombin activity with hirudin decreased RhoA expression compared with that in vehicle-treated mice. However, EP3 receptor activation reversed this effect of hirudin. These findings show that prostaglandin E2 EP3 receptor contributes to thrombin-induced brain damage via Rho-Rho kinase-mediated cytotoxicity and proinflammatory responses.
Collapse
Affiliation(s)
- Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qiang Li
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yufeng Gao
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei Zhu
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tian Cheng
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takayuki Maruyama
- Project Management, Discovery and Research, Ono Pharmaceutical Co. Ltd., Mishima-gun, Osaka, Japan
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Sato N, Ichikawa J, Wako M, Ohba T, Saito M, Sato H, Koyama K, Hagino T, Schoenecker JG, Ando T, Haro H. Thrombin induced by the extrinsic pathway and PAR-1 regulated inflammation at the site of fracture repair. Bone 2016; 83:23-34. [PMID: 26475502 DOI: 10.1016/j.bone.2015.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/30/2015] [Accepted: 10/11/2015] [Indexed: 02/07/2023]
Abstract
Thrombin (coagulation factor IIa) is a serine protease encoded by the F2 gene. Pro-thrombin (coagulation factor II) is cut to generate thrombin in the coagulation cascade that results in a reduction of blood loss. Procoagulant states that lead to activation of thrombin are common in bone fracture sites. However, its physiological roles and relationship with osteoblasts in bone fractures are largely unknown. We herein report various effects of thrombin on mouse osteoblastic MC3T3-E1 cells. MC3T3-E1 cells expressed proteinase-activated receptor 1 (PAR1), also known as the coagulation factor II receptor. They also produced monocyte chemoattractant protein (MCP-1), tissue factor (TF), MCSF and IL-6 upon thrombin stimulation through the PI3K-Akt and MEK-Erk1/2 pathways. Furthermore, MCP-1 obtained from thrombin-stimulated MC3T3-E1 cells induced migration by macrophage RAW264 cells. All these effects of thrombin on MC3T3-E1 cells were abolished by the selective non-peptide thrombin receptor inhibitor SCH79797. We also found that thrombin, PAR-1, MCP-1, TF as well as phosphorylated AKT and p42/44 were significantly expressed at the fracture site of mouse femoral bone. Collectively, thrombin/PAR-1 interaction regulated MCP-1, TF, MCSF and IL-6 production by MC3T3-E1 cells. Furthermore, MCP-1 induced RAW264 cell migration. Thrombin may thus be a novel cytokine that regulates several aspects of osteoblast function and fracture healing.
Collapse
Affiliation(s)
- Nobutaka Sato
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Masanori Wako
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Tetsuro Ohba
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Masanori Saito
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Hironao Sato
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Kensuke Koyama
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Tetsuo Hagino
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan; The Sports Medicine and Knee Center, Kofu National Hospital, 11-35 Tenjincho, Kofu, Yamanashi 400-8533, Japan
| | - Jonathan G Schoenecker
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States; Department of Orthopaedics, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States; Department of Center for Bone Biology, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States; Department of Pharmacology, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States; Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States
| | - Takashi Ando
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan.
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
8
|
Lekic T, Krafft PR, Klebe D, Flores J, Rolland WB, Tang J, Zhang JH. PAR-1, -4, and the mTOR Pathway Following Germinal Matrix Hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:213-6. [PMID: 26463951 DOI: 10.1007/978-3-319-18497-5_38] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Germinal matrix hemorrhage (GMH) is the most common cause of neurological complications of prematurity and has lasting implications. PAR-1 and PAR-4 receptors are involved with upstream signaling pathways following brain hemorrhage in adult models of stroke, of which the mammalian target of rapamycin (mTOR) is a potential downstream mediator. Therefore, we hypothesized a role for PAR-1, -4/ mTOR signaling following GMH brain injury. Postnatal day 7 Sprague-Dawley rats were subjected to GMH through stereotactic infusion of collagenase into the right ganglionic eminence. Rodents were euthanized at 72 h (short term), or 4 weeks (long term). Short-term mTOR expression was evaluated by Western blot in the context of PAR-1 (SCH-79797) and PAR-4 (P4pal10) inhibition. Pups in the long-term group were administered the selective mTOR inhibitor (rapamycin) with neurobehavioral and brain pathological examinations performed at 4 weeks. Pharmacological PAR-1, -4 antagonism normalized the increased mTOR expression following GMH. Early inhibition of mTOR by rapamycin improved long-term outcomes in rats. Mammalian-TOR signaling plays an important role in brain injury following neonatal GMH, possibly involving upstream PAR-1, -4 mechanisms.
Collapse
Affiliation(s)
- Tim Lekic
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA
| | - Paul R Krafft
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA
| | - Damon Klebe
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA
| | - Jerry Flores
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA
| | - William B Rolland
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Division of Physiology and Pharmacology, School of Medicine, Loma Linda, CA, USA. .,Department of Neurosurgery, School of Medicine, Loma Linda, CA, USA. .,Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall Rm 219, Loma Linda, CA, 92354, USA.
| |
Collapse
|
9
|
Cyclooxygenase-2 Inhibition Provides Lasting Protection Following Germinal Matrix Hemorrhage in Premature Infant Rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 121:203-7. [PMID: 26463949 DOI: 10.1007/978-3-319-18497-5_36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germinal matrix hemorrhage (GMH) is a major cause of brain damage in prematurity and has long-lasting neurological implications. The development of brain inflammation contributes to brain injury, leading to a lifetime of neurologic deficits. PAR-1 and 4 receptors are involved with inflammatory pathways after brain hemorrhage in adult models of stroke, of which cyclooxygenase-2 (COX-2) is a potential mediator. We therefore hypothesized a role for PAR-1, 4/ COX-2 signaling following GMH. Postnatal day 7 Sprague-Dawley rats were subjected to GMH induction, which entailed stereotactic collagenase infusion into the ganglionic eminence. Animals were euthanized at two time points: 72 h (short-term) or 4 weeks (long-term). Short-term COX-2 expression was evaluated in the context of PAR-1 (SCH-79797) and PAR-4 (P4pal10) inhibition. Pups in the long-term group were administered the selective COX-2 inhibitor (NS-398); and the neurobehavioral and pathological examinations were performed 4 weeks later. Pharmacological PAR-1, 4 antagonism normalized COX-2 expression following GMH and reduced hydrocephalus. Early inhibition of COX-2 by NS-398 improved long-term neurobehavioral outcomes. COX-2 signaling plays an important role in brain injury following neonatal GMH, possibly through upstream PAR-1, 4 receptor mechanisms.
Collapse
|
10
|
Chien PTY, Lin CC, Hsiao LD, Yang CM. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes. Toxicol Appl Pharmacol 2015; 289:349-59. [DOI: 10.1016/j.taap.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/28/2015] [Accepted: 09/11/2015] [Indexed: 12/18/2022]
|
11
|
Lekic T, Klebe D, McBride DW, Manaenko A, Rolland WB, Flores JJ, Altay O, Tang J, Zhang JH. Protease-activated receptor 1 and 4 signal inhibition reduces preterm neonatal hemorrhagic brain injury. Stroke 2015; 46:1710-3. [PMID: 25931468 DOI: 10.1161/strokeaha.114.007889] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 03/23/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND PURPOSE This study examines the role of thrombin's protease-activated receptor (PAR)-1, PAR-4 in mediating cyclooxygenase-2 and mammalian target of rapamycin after germinal matrix hemorrhage. METHODS Germinal matrix hemorrhage was induced by intraparenchymal infusion of bacterial collagenase into the right ganglionic eminence of P7 rat pups. Animals were treated with PAR-1, PAR-4, cyclooxygenase-2, or mammalian target of rapamycin inhibitors by 1 hour, and ≤5 days. RESULTS We found increased thrombin activity 6 to 24 hours after germinal matrix hemorrhage, and PAR-1, PAR-4, inhibition normalized cyclooxygenase-2, and mammalian target of rapamycin by 72 hours. Early treatment with NS398 or rapamycin substantially improved long-term outcomes in juvenile animals. CONCLUSIONS Suppressing early PAR signal transduction, and postnatal NS398 or rapamycin treatment, may help reduce germinal matrix hemorrhage severity in susceptible preterm infants.
Collapse
Affiliation(s)
- Tim Lekic
- From the Departments of Physiology and Pharmacology (T.L., D.K., D.W.M., A.M., W.B.R., J.J.F., O.A., J.T., J.H.Z.), Neurology (T.L.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, CA
| | - Damon Klebe
- From the Departments of Physiology and Pharmacology (T.L., D.K., D.W.M., A.M., W.B.R., J.J.F., O.A., J.T., J.H.Z.), Neurology (T.L.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, CA
| | - Devin W McBride
- From the Departments of Physiology and Pharmacology (T.L., D.K., D.W.M., A.M., W.B.R., J.J.F., O.A., J.T., J.H.Z.), Neurology (T.L.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, CA
| | - Anatol Manaenko
- From the Departments of Physiology and Pharmacology (T.L., D.K., D.W.M., A.M., W.B.R., J.J.F., O.A., J.T., J.H.Z.), Neurology (T.L.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, CA
| | - William B Rolland
- From the Departments of Physiology and Pharmacology (T.L., D.K., D.W.M., A.M., W.B.R., J.J.F., O.A., J.T., J.H.Z.), Neurology (T.L.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, CA
| | - Jerry J Flores
- From the Departments of Physiology and Pharmacology (T.L., D.K., D.W.M., A.M., W.B.R., J.J.F., O.A., J.T., J.H.Z.), Neurology (T.L.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, CA
| | - Orhan Altay
- From the Departments of Physiology and Pharmacology (T.L., D.K., D.W.M., A.M., W.B.R., J.J.F., O.A., J.T., J.H.Z.), Neurology (T.L.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, CA
| | - Jiping Tang
- From the Departments of Physiology and Pharmacology (T.L., D.K., D.W.M., A.M., W.B.R., J.J.F., O.A., J.T., J.H.Z.), Neurology (T.L.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, CA
| | - John H Zhang
- From the Departments of Physiology and Pharmacology (T.L., D.K., D.W.M., A.M., W.B.R., J.J.F., O.A., J.T., J.H.Z.), Neurology (T.L.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, CA.
| |
Collapse
|
12
|
Contribution of protease-activated receptor 1 in status epilepticus-induced epileptogenesis. Neurobiol Dis 2015; 78:68-76. [PMID: 25843668 DOI: 10.1016/j.nbd.2015.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/28/2015] [Accepted: 03/26/2015] [Indexed: 12/28/2022] Open
Abstract
Clinical observations and studies on different animal models of acquired epilepsy consistently demonstrate that blood-brain barrier (BBB) leakage can be an important risk factor for developing recurrent seizures. However, the involved signaling pathways remain largely unclear. Given the important role of thrombin and its major receptor in the brain, protease-activated receptor 1 (PAR1), in the pathophysiology of neurological injury, we hypothesized that PAR1 may contribute to status epilepticus (SE)-induced epileptogenesis and that its inhibition shortly after SE will have neuroprotective and antiepileptogenic effects. Adult rats subjected to lithium-pilocarpine SE were administrated with SCH79797 (a PAR1 selective antagonist) after SE termination. Thrombin and PAR1 levels and neuronal cell survival were evaluated 48h following SE. The effect of PAR1 inhibition on animal survival, interictal spikes (IIS) and electrographic seizures during the first two weeks after SE and behavioral seizures during the chronic period was evaluated. SE resulted in a high mortality rate and incidence of IIS and seizures in the surviving animals. There was a marked increase in thrombin, decrease in PAR1 immunoreactivity and hippocampal cell loss in the SE-treated rats. Inhibition of PAR1 following SE resulted in a decrease in mortality and morbidity, increase in neuronal cell survival in the hippocampus and suppression of IIS, electrographic and behavioral seizures following SE. These data suggest that the PAR1 signaling pathway contributes to epileptogenesis following SE. Because breakdown of the BBB occurs frequently in brain injuries, PAR1 inhibition may have beneficial effects in a variety of acquired injuries leading to epilepsy.
Collapse
|
13
|
Chien PTY, Hsieh HL, Chi PL, Yang CM. PAR1-dependent COX-2/PGE2 production contributes to cell proliferation via EP2 receptors in primary human cardiomyocytes. Br J Pharmacol 2014; 171:4504-19. [PMID: 24902855 PMCID: PMC4209155 DOI: 10.1111/bph.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/15/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Different protease-activated receptors (PARs) activated by thrombin are involved in cardiovascular disease, via up-regulation of inflammatory proteins including COX-2. However, the mechanisms underlying thrombin-regulated COX-2 expression in human cardiomyocytes remain unclear. EXPERIMENTAL APPROACH Human cardiomyocytes were used in the study. Thrombin-induced COX-2 protein and mRNA expression, and signalling pathways were determined by Western blot, real-time PCR and COX-2 promoter luciferase reporter assays, and pharmacological inhibitors or siRNAs. PGE2 generation and cell proliferation were also determined. KEY RESULTS Thrombin-induced COX-2 protein and mRNA expression, promoter activity and PGE2 release was attenuated by the PAR1 antagonist (SCH79797) or the inhibitors of proteinase activity (PPACK), MEK1/2 (U0126), p38 MAPK (SB202190) or JNK1/2 (SP600125), and transfection with small interfering RNA (siRNA) of PAR1, p38, p42 or JNK2. These results suggested that PAR1-dependent MAPKs participate in thrombin-induced COX-2 expression in human cardiomyocytes. Moreover, thrombin stimulated phosphorylation of MAPKs, which was attenuated by PPACK and SCH79797. Furthermore, thrombin-induced COX-2 expression was blocked by the inhibitors of AP-1 (tanshinone IIA) and NF-κB (helenalin). Moreover, thrombin-stimulated phosphorylation of c-Jun/AP-1 and p65/NF-κB was attenuated by tanshinone IIA and helenalin, respectively, suggesting that thrombin induces COX-2 expression via PAR1/MAPKs/AP-1 or the NF-κB pathway. Functionally, thrombin increased human cardiomyocyte proliferation through the COX-2/PGE2 system linking to EP2 receptors, as determined by proliferating cell nuclear antigen and cyclin D1 expression. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that MAPKs-mediated activation of AP-1/NF-κB pathways is, at least in part, required for COX-2/PGE2 /EP2 -triggered cell proliferation in human cardiomyocytes.
Collapse
Affiliation(s)
- Peter Tzu-Yu Chien
- Graduate Institute of Biomedical Science, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Hsi-Lung Hsieh
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and TechnologyTao-Yuan, Taiwan
| | - Pei-Ling Chi
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical Science, Chang Gung UniversityTao-Yuan, Taiwan
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung UniversityTao-Yuan, Taiwan
| |
Collapse
|
14
|
An Asp49 phospholipase A2 from snake venom induces cyclooxygenase-2 expression and prostaglandin E2 production via activation of NF-κB, p38MAPK, and PKC in macrophages. Mediators Inflamm 2014; 2014:105879. [PMID: 24808633 PMCID: PMC3997854 DOI: 10.1155/2014/105879] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/16/2014] [Indexed: 02/08/2023] Open
Abstract
Phospholipases A2 (PLA2) are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PG)E2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2). Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.
Collapse
|
15
|
Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun Signal 2013; 11:86. [PMID: 24215724 PMCID: PMC3842752 DOI: 10.1186/1478-811x-11-86] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023] Open
Abstract
Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease.
Collapse
Affiliation(s)
| | | | | | | | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Drackendorfer Str, 1, D-07747, Jena, Germany.
| |
Collapse
|
16
|
Lo HM, Chen CL, Yang CM, Wu PH, Tsou CJ, Chiang KW, Wu WB. The carotenoid lutein enhances matrix metalloproteinase-9 production and phagocytosis through intracellular ROS generation and ERK1/2, p38 MAPK, and RARβ activation in murine macrophages. J Leukoc Biol 2013; 93:723-735. [DOI: 10.1189/jlb.0512238] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Carotenoid lutein causes MMP-9 release that participates in macrophage phagocytosis.
Early studies have demonstrated the ability of dietary carotenoids to enhance immune response, but the mechanism underlying their influence on macrophage activity remains unclear. Here, we investigated the effects of carotenoids on macrophage activity. Carotenoids, including lutein and lycopene, enhanced MMP-9 activity in RAW264.7 macrophages. Lutein was chosen as a representative and analyzed further in this study. It increased the synthesis, activity, and release of MMP-9 in murine RAW264.7 and primary-cultured peritoneal macrophages. MMP-9 induction by lutein was through the transcriptional regulation of mmp-9. It was blunted by the MAPK inhibitors targeting ERK1/2 and p38 MAPK, the reagents that inhibit free radical signaling, and the inhibitors and siRNA targeting RARβ. Moreover, lutein induced Nox activation and intracellular ROS production at an early stage of treatment. This carotenoid also caused ERK1/2 and p38 MAPK activation, RARβ expression, and RAR interaction with its responsive element in the promoter region. These findings suggest the involvement of ROS, MAPKs, and RARβ activation in lutein-driven MMP-9 expression and release. Interestingly, lutein enhanced the phagocytic activity of macrophages, and the secreted MMP-9 appeared to be involved in this process. In summary, we provide evidence here for the first time that the carotenoid lutein induces intracellular ROS generation and MAPK and RARβ activation in macrophages, leading to an increase in MMP-9 release and macrophage phagocytosis. Our results demonstrate that lutein exerts an immunomodulatory effect on macrophages.
Collapse
Affiliation(s)
- Huey-Ming Lo
- School of Medicine, Fu-Jen Catholic University , New Taipei City, Taiwan
- Section of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital , Taipei, Taiwan
| | - Chih-Li Chen
- School of Medicine, Fu-Jen Catholic University , New Taipei City, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University , Tao-Yuan, Taiwan
| | - Pi-Hui Wu
- School of Medicine, Fu-Jen Catholic University , New Taipei City, Taiwan
| | - Chih-Jen Tsou
- School of Medicine, Fu-Jen Catholic University , New Taipei City, Taiwan
| | - Kai-Wen Chiang
- School of Medicine, Fu-Jen Catholic University , New Taipei City, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu-Jen Catholic University , New Taipei City, Taiwan
| |
Collapse
|
17
|
Khoufache K, Berri F, Nacken W, Vogel AB, Delenne M, Camerer E, Coughlin SR, Carmeliet P, Lina B, Rimmelzwaan GF, Planz O, Ludwig S, Riteau B. PAR1 contributes to influenza A virus pathogenicity in mice. J Clin Invest 2012. [PMID: 23202729 DOI: 10.1172/jci61667] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Influenza causes substantial morbidity and mortality, and highly pathogenic and drug-resistant strains are likely to emerge in the future. Protease-activated receptor 1 (PAR1) is a thrombin-activated receptor that contributes to inflammatory responses at mucosal surfaces. The role of PAR1 in pathogenesis of virus infections is unknown. Here, we demonstrate that PAR1 contributed to the deleterious inflammatory response after influenza virus infection in mice. Activating PAR1 by administering the agonist TFLLR-NH2 decreased survival and increased lung inflammation after influenza infection. Importantly, both administration of a PAR1 antagonist and PAR1 deficiency protected mice from infection with influenza A viruses (IAVs). Treatment with the PAR1 agonist did not alter survival of mice deficient in plasminogen (PLG), which suggests that PLG permits and/or interacts with a PAR1 function in this model. PAR1 antagonists are in human trials for other indications. Our findings suggest that PAR1 antagonism might be explored as a treatment for influenza, including that caused by highly pathogenic H5N1 and oseltamivir-resistant H1N1 viruses.
Collapse
Affiliation(s)
- Khaled Khoufache
- Virologie et Pathologie Humaine, EA 4610, Université Lyon1, Faculté de Médecine RTH Laennec, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Effects of Extended-Release Dipyridamole In Vitro on Thrombin Indices Measured by Calibrated Automated Thrombography in Poststroke Survivors. Am J Ther 2012; 19:407-12. [DOI: 10.1097/mjt.0b013e318209e021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Lee H, Hamilton JR. The PAR1 antagonist, SCH79797, alters platelet morphology and function independently of PARs. Thromb Haemost 2012; 109:164-7. [PMID: 23093354 DOI: 10.1160/th12-06-0389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/25/2012] [Indexed: 12/11/2022]
|
20
|
Lin CC, Shih CH, Yang YL, Bien MY, Lin CH, Yu MC, Sureshbabu M, Chen BC. Thrombin induces inducible nitric oxide synthase expression via the MAPK, MSK1, and NF-κB signaling pathways in alveolar macrophages. Eur J Pharmacol 2011; 672:180-7. [DOI: 10.1016/j.ejphar.2011.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/28/2011] [Accepted: 10/02/2011] [Indexed: 12/17/2022]
|
21
|
Pou J, Rebollo A, Piera L, Merlos M, Roglans N, Laguna JC, Alegret M. Tissue factor pathway inhibitor 2 is induced by thrombin in human macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1254-60. [PMID: 21515313 DOI: 10.1016/j.bbamcr.2011.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 12/25/2022]
Abstract
Tissue factor pathway inhibitor 2 (TFPI2) is a serine protease inhibitor critical for the regulation of extracellular matrix remodeling and atherosclerotic plaque stability. Previously, we demonstrated that TFPI2 expression is increased in monocytes from patients with familial combined hyperlipidemia (FCH). To gain insight into the molecular mechanisms responsible for this upregulation, we examined TFPI2 expression in THP-1 macrophages exposed to lipoproteins and thrombin. Our results showed that TFPI2 expression was not affected by treatment with very low density lipoproteins (VLDL), but was induced by thrombin (10 U/ml) in THP-1 (1.9-fold increase, p<0.001) and human monocyte-derived macrophages (2.3-fold increase, p<0.005). The specificity of the inductive effect was demonstrated by preincubation with the thrombin inhibitors hirudin and PPACK, which ablated thrombin effects. TFPI2 induction was prevented by pre-incubation with MEK1/2 and JNK inhibitors, but not by the EGF receptor antagonist AG1478. In the presence of parthenolide, an inhibitor of NFκB, but not of SR-11302, a selective AP-1 inhibitor, thrombin-mediated TFPI2 induction was blunted. Our results also show that thrombin treatment increased ERK1/2, JNK and IκBα phosphorylation. Finally, we ruled out the possibility that TFPI2 induction by thrombin was mediated by COX-2, as preincubation with a selective COX-2 inhibitor did not prevent the inductive effect. In conclusion, thrombin induces TFPI2 expression by a mechanism involving ERK1/2 and JNK phosphorylation, leading finally to NFkB activation. In the context of atherosclerosis, thrombin-induced macrophage TFPI2 expression could represent a means of avoiding excessive activation of matrix metalloproteases at sites of inflammation.
Collapse
Affiliation(s)
- Jordi Pou
- Unidad de Farmacología, Universidad de Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
22
|
Kim YS, Lee YM, Park JS, Lee SK, Kim EC. SIRT1 modulates high-mobility group box 1-induced osteoclastogenic cytokines in human periodontal ligament cells. J Cell Biochem 2011; 111:1310-20. [PMID: 20803525 DOI: 10.1002/jcb.22858] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bone resorptive cytokines contribute to bone loss in periodontal disease. However, the involvement of SIRT1 in high-mobility group box 1 (HMGB1)-induced osteoclastic cytokine production remains unknown. The aim of this study was to investigate the role of SIRT1 in the responses of human periodontal ligament cells to HMGB1 and to identify the underlying mechanisms. The effect of HMGB1 on osteoclastic cytokine expression and secretion, and the regulatory mechanisms involved were studied by ELISA, reverse transcription-polymerase chain reaction, and Western blot analysis. HMGB1 upregulated the mRNA expression levels of the osteoclastic cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-11, and IL-17. In addition, HMGB1 upregulated RANKL mRNA expression, and SIRT1 mRNA and protein expression. The upregulation of these cytokines by HMGB1 was attenuated by pretreatment with inhibitors of p38 mitogen-activated protein kinase and NF-κB, as well as neutralizing antibodies against Toll-like receptors 2 and 4. Inhibition of SIRT1 by sirtinol or SIRT1 siRNA blocked the HMGB1-stimulated expression of RANKL and cytokines. These results suggest that the inhibition of SIRT1 may attenuate HMGB1-mediated periodontal bone resorption through the modulation of osteoclastogenic cytokine levels in human periodontal ligament cells.
Collapse
Affiliation(s)
- Young-Suk Kim
- Department of Oral & Maxillofacial Pathology, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | | | | | | | | |
Collapse
|