1
|
Fu Y, Li G, Feng Z, Liu J, Wang X, Wang T, Liu J. Methyl Cinnamate (MC) Alleviates Free Fatty Acids (FFAs) Induced Lipid Accumulation Through the AMPK Pathway in HepG2 Cells. Diabetes Metab Syndr Obes 2024; 17:1183-1197. [PMID: 38469107 PMCID: PMC10926926 DOI: 10.2147/dmso.s449300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Background AMP-activated protein kinase (AMPK) plays a critical role in energy metabolism. Its activation leads to the phosphorylation of downstream proteins such as acetyl-CoA carboxylase (ACC) and sterol regulatory element-binding protein-1 (SREBP1), subsequently inhibiting de novo fatty acid synthesis, thereby reducing intracellular triglyceride accumulation. MC is a compound found in extracts from Zanthoxylum armatum DC plants. Research has shown that MC can inhibit the differentiation of 3T3-L1 adipocytes through the CAMKK2-AMPK pathway. However, the biological effect of MC in HepG2 cells remains unknown. Methods In this study, we utilized HepG2 cells to establish a model of MAFLD through FFAs stimulation. We investigated the biological effects of MC on HepG2 cells and studied its impact on lipid metabolism. Small interfering RNA was employed to explore the mechanism by which MC activates AMPK. Finally, molecular docking was conducted, establishing a model of the interaction between AMPK and MC. Results We observed that MC can alleviate triglyceride accumulation in HepG2 cells. We observed the elevated p-AMPK/AMPK, P-ACC/ ACC, and elevated CPT1a after treatment of MC in HepG2 cells. The interference of CAMKK2 mRNA did not impact the ability of MC to phosphorylate AMPK. Compound C attenuates the ability of MC to increase p-AMPK. Molecular docking results led us to hypothesize that MC directly interacts with AMPK, resulting in AMPK phosphorylation and improved lipid accumulation in HepG2 cells.
Collapse
Affiliation(s)
- Yingda Fu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Guangbing Li
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Zichen Feng
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Xiaoyu Wang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Tao Wang
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jun Liu
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Hepatobiliary Surgery and Center of Organ Transplantation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
2
|
Liu XD, Li YG, Wang GY, Bi YG, Zhao Y, Yan ML, Liu X, Wei M, Wan LL, Zhang QY. Metformin protects high glucose‑cultured cardiomyocytes from oxidative stress by promoting NDUFA13 expression and mitochondrial biogenesis via the AMPK signaling pathway. Mol Med Rep 2020; 22:5262-5270. [PMID: 33174032 PMCID: PMC7646981 DOI: 10.3892/mmr.2020.11599] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/01/2020] [Indexed: 01/16/2023] Open
Abstract
Tissue damage in diabetes is at least partly due to elevated reactive oxygen species production by the mitochondrial respiratory chain during hyperglycemia. Sustained hyperglycemia results in mitochondrial dysfunction and the abnormal expression of mitochondrial genes, such as NADH: Ubiquinone oxidoreductase subunit A13 (NDUFA13). Metformin, an AMP-activated protein kinase (AMPK) activator, protects cardiomyocytes from oxidative stress by improving mitochondrial function; however, the exact underlying mechanisms are not completely understood. The aim of the present study was to investigated the molecular changes and related regulatory mechanisms in the response of H9C2 cardiomyocytes to metformin under high glucose conditions. H9C2 cells were subjected to CCK-8 assay to assess cell viability. Reactive oxygen species generation was measured with DCFH-DA assay. Western blotting was used to analyze the expression levels of NDUFA13, AMPK, p-AMPK and GAPDH. Reverse transcription-quantitative PCR was used to evaluate the expression levels of mitochondrial genes and transcription factors. It was observed that metformin protected H9C2 cardiomyocytes by suppressing high glucose (HG)-induced elevated oxidative stress. In addition, metformin stimulated mitochondrial biogenesis, as indicated by increased expression levels of mitochondrial genes (NDUFA1, NDUFA2, NDUFA13 and manganese superoxide dismutase) and mitochondrial biogenesis-related transcription factors [peroxisome proliferator-activated receptor-gamma coactivator-1α, nuclear respiratory factor (NRF)-1, and NRF-2] in the metformin + HG group compared with the HG group. Moreover, metformin promoted mitochondrial NDUFA13 protein expression via the AMPK signaling pathway, which was abolished by pretreatment with the AMPK inhibitor, Compound C. The results suggested that metformin protected cardiomyocytes against HG-induced oxidative stress via a mechanism involving AMPK, NDUFA13 and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Xiang-Dong Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yong-Guang Li
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Guang-Yu Wang
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Ya-Guang Bi
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yu Zhao
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Mei-Ling Yan
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xuebo Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Meng Wei
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Li-Li Wan
- Division of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qing-Yong Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
3
|
Waldman M, Arad M, Abraham NG, Hochhauser E. The Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1α-Heme Oxygenase 1 Axis, a Powerful Antioxidative Pathway with Potential to Attenuate Diabetic Cardiomyopathy. Antioxid Redox Signal 2020; 32:1273-1290. [PMID: 32027164 PMCID: PMC7232636 DOI: 10.1089/ars.2019.7989] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Significance: From studies of diabetic animal models, the downregulation of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α)-heme oxygenase 1 (HO-1) axis appears to be a crucial event in the development of obesity and diabetic cardiomyopathy (DCM). In this review, we discuss the role of metabolic and biochemical stressors in the rodent and human pathophysiology of DCM. A crucial contributor for many cardiac pathologies is excessive production of reactive oxygen species (ROS) pathologies, which lead to extensive cellular damage by impairing mitochondrial function and directly oxidizing DNA, proteins, and lipid membranes. We discuss the role of ROS production and inflammatory pathways with multiple contributing and confounding factors leading to DCM. Recent Advances: The relevant biochemical pathways that are critical to a therapeutic approach to treat DCM, specifically caloric restriction and its relation to the PGC-1α-HO-1 axis in the attenuation of DCM, are elucidated. Critical Issues: The increased prevalence of diabetes mellitus type 2, a major contributor to unique cardiomyopathy characterized by cardiomyocyte hypertrophy with no effective clinical treatment. This review highlights the role of mitochondrial dysfunction in the development of DCM and potential oxidative targets to attenuate oxidative stress and attenuate DCM. Future Directions: Targeting the PGC-1α-HO-1 axis is a promising approach to ameliorate DCM through improvement in mitochondrial function and antioxidant defenses. A pharmacological inducer to activate PGC-1α and HO-1 described in this review may be a promising therapeutic approach in the clinical setting.
Collapse
Affiliation(s)
- Maayan Waldman
- Cardiac Research Laboratory, Felsenstein Medical Research Institute at Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
- Cardiac Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Michael Arad
- Cardiac Leviev Heart Center, Sheba Medical Center, Tel Hashomer, Sackler School of Medicine, Tel Aviv University, Ramat Gan, Israel
| | - Nader G. Abraham
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute at Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Wang C, Zhu L, Yuan W, Sun L, Xia Z, Zhang Z, Yao W. Diabetes aggravates myocardial ischaemia reperfusion injury via activating Nox2-related programmed cell death in an AMPK-dependent manner. J Cell Mol Med 2020; 24:6670-6679. [PMID: 32351005 PMCID: PMC7299688 DOI: 10.1111/jcmm.15318] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases such as myocardial ischaemia have a high fatality rate in patients with diabetes. This study was designed to expose the crosstalk between oxidative stress and AMPK, a vital molecule that controls biological energy metabolism, in myocardial ischaemia reperfusion injury (I/RI) in diabetic rats. Diabetes was stimulated in rats using streptozotocin injection. Rats were separated on random into control, control + I/R, Diabetes, Diabetes + I/R, Diabetes + I/R + N-acetylcysteine and Diabetes + I/R + Vas2870 groups. Myocardial infarct size was determined, and the predominant Nox family isoforms were analysed. In vitro, the H9C2 cells were administered excess glucose and exposed to hypoxia/reoxygenation to mimic diabetes and I/R. The AMPK siRNA or AICAR was used to inhibit or activate AMPK expression in H9C2 cells, respectively. Then, myocardial oxidative stress and programmed cell death were measured. Diabetes or high glucose levels were found to aggravate myocardial I/RI or hypoxia/reoxygenation in H9C2 cells, as demonstrated by an increase in myocardial infarct size or lactate dehydrogenase levels, oxidative stress generation and induction of programmed cell death. In diabetic rat hearts, cardiac Nox1, Nox2 and Nox4 were all heightened. The suppression of Nox2 expression using Vas2870 or Nox2-siRNA treatment in vivo or in vitro, respectively, protected diabetic rats from myocardial I/RI. AMPK gene knockout increased Nox2 protein expression while AMPK agonist decreased Nox2 expression. Therefore, diabetes aggravates myocardial I/RI by generating of Nox2-associated oxidative stress in an AMPK-dependent manner, which led to the induction of programmed cell death such as apoptosis, pyroptosis and ferroptosis.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of AnesthesiologyShenzhen People's Hospital and Shenzhen Anesthesiology Engineering CenterThe Second Clinical Medical College of Jinan UniversityShenzhenChina
- Department of PathophysiologySchool of MedicineShenzhen UniversityShenzhenChina
| | - Lijie Zhu
- Department of AnesthesiologyShenzhen People's Hospital and Shenzhen Anesthesiology Engineering CenterThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Wenlin Yuan
- Department of AnesthesiologyShenzhen People's Hospital and Shenzhen Anesthesiology Engineering CenterThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Lingbin Sun
- Department of AnesthesiologyShenzhen People's Hospital and Shenzhen Anesthesiology Engineering CenterThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Zhengyuan Xia
- Department of AnesthesiologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Zhongjun Zhang
- Department of AnesthesiologyShenzhen People's Hospital and Shenzhen Anesthesiology Engineering CenterThe Second Clinical Medical College of Jinan UniversityShenzhenChina
| | - Weifeng Yao
- Department of AnesthesiologyThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
5
|
Drummond GS, Baum J, Greenberg M, Lewis D, Abraham NG. HO-1 overexpression and underexpression: Clinical implications. Arch Biochem Biophys 2019; 673:108073. [PMID: 31425676 DOI: 10.1016/j.abb.2019.108073] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022]
Abstract
In this review we examine the effects of both over- and under-production of heme oxygenase-1 (HO-1) and HO activity on a broad spectrum of biological systems and on vascular disease. In a few instances e.g., neonatal jaundice, overproduction of HO-1 and increased HO activity results in elevated levels of bilirubin requiring clinical intervention with inhibitors of HO activity. In contrast HO-1 levels and HO activity are low in obesity and the HO system responds to mitigate the deleterious effects of oxidative stress through increased levels of bilirubin (anti-inflammatory) and CO (anti-apoptotic) and decreased levels of heme (pro-oxidant). Site specific HO-1 overexpression diminishes adipocyte terminal differentiation and lipid accumulation of obesity mediated release of inflammatory molecules. A series of diverse strategies have been implemented that focus on increasing HO-1 and HO activity that are central to reversing the clinical complications associated with diseases including, obesity, metabolic syndrome and vascular disease.
Collapse
Affiliation(s)
- George S Drummond
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Jeffrey Baum
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Menachem Greenberg
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - David Lewis
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
6
|
Pathophysiology of cardiovascular disease in diabetes mellitus. Cardiovasc Endocrinol Metab 2018; 7:4-9. [PMID: 31646271 DOI: 10.1097/xce.0000000000000141] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/22/2017] [Indexed: 01/12/2023]
Abstract
Diabetes mellitus elicits cellular, epigenetic, and post-translational changes that directly or indirectly affect the biology of the vasculature and other metabolic systems resulting in the apparition of cardiovascular disease. In this review, we provide a current perspective on the most recent discoveries in this field, with particular focus on hyperglycemia- induced pathology in the cardiovascular system. We also provide perspective on the clinical importance of molecular targeting of cardiovascular and diabetes mellitus therapies to treat hyperglycemia, inflammation, thrombosis, dyslipidemia, atherosclerosis, and hypertension.
Collapse
|
7
|
Casieri V, Matteucci M, Cavallini C, Torti M, Torelli M, Lionetti V. Long-term Intake of Pasta Containing Barley (1-3)Beta-D-Glucan Increases Neovascularization-mediated Cardioprotection through Endothelial Upregulation of Vascular Endothelial Growth Factor and Parkin. Sci Rep 2017; 7:13424. [PMID: 29044182 PMCID: PMC5647408 DOI: 10.1038/s41598-017-13949-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/03/2017] [Indexed: 01/17/2023] Open
Abstract
Barley (1-3)β-D-Glucan (BBG) enhances angiogenesis. Since pasta is very effective in providing a BBG-enriched diet, we hypothesized that the intake of pasta containing 3% BBG (P-BBG) induces neovascularization-mediated cardioprotection. Healthy adult male C57BL/6 mice fed P-BBG (n = 15) or wheat pasta (Control, n = 15) for five-weeks showed normal glucose tolerance and cardiac function. With a food intake similar to the Control, P-BBG mice showed a 109% survival rate (P < 0.01 vs. Control) after cardiac ischemia (30 min)/reperfusion (60 min) injury. Left ventricular (LV) anion superoxide production and infarct size in P-BBG mice were reduced by 62 and 35% (P < 0.0001 vs. Control), respectively. The capillary and arteriolar density of P-BBG hearts were respectively increased by 12 and 18% (P < 0.05 vs. Control). Compared to the Control group, the VEGF expression in P-BBG hearts was increased by 87.7% (P < 0.05); while, the p53 and Parkin expression was significantly increased by 125% and cleaved caspase-3 levels were reduced by 33% in P-BBG mice. In vitro, BBG was required to induce VEGF, p53 and Parkin expression in human umbelical vascular endothelial cells. Moreover, the BBG-induced Parkin expression was not affected by pifithrin-α (10 uM/7days), a p53 inhibitor. In conclusion, long-term dietary supplementation with P-BBG confers post-ischemic cardioprotection through endothelial upregulation of VEGF and Parkin.
Collapse
Affiliation(s)
| | - Marco Matteucci
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claudia Cavallini
- ATTRE (Advanced Therapies and Tissue Regeneration) Laboratory, Innovation Accelerator CNR, Bologna, Italy
| | - Milena Torti
- Research and Development Unit, Pastificio Attilio Matromauro Granoro s.r.l, Corato, Italy
| | - Michele Torelli
- Research and Development Unit, Pastificio Attilio Matromauro Granoro s.r.l, Corato, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy. .,UOS Anesthesia and Intensive Care, Fondazione Toscana "G. Monasterio", Pisa, Italy.
| |
Collapse
|
8
|
Heme Oxygenase Induction Suppresses Hepatic Hepcidin and Rescues Ferroportin and Ferritin Expression in Obese Mice. J Nutr Metab 2017; 2017:4964571. [PMID: 29062571 PMCID: PMC5618758 DOI: 10.1155/2017/4964571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022] Open
Abstract
Hepcidin, a phase II reactant secreted by hepatocytes, regulates cellular iron levels by increasing internalization of ferroportin-a transmembrane protein facilitating egress of cellular iron. Chronic low-grade inflammatory states, such as obesity, have been shown to increase oxidative stress and enhance hepcidin secretion from hepatocytes and macrophages. Heme-heme oxygenase (HO) is a stress response system which reduces oxidative stress. We investigated the effects of HO-1 induction on hepatic hepcidin levels and on iron homeostasis in hepatic tissues from lean and obese mice. Obese mice exhibited hyperglycemia (p < 0.05); increased levels of proinflammatory cytokines (MCP-1, IL-6, p < 0.05); oxidative stress (p < 0.05); and increased hepatic hepcidin levels (p < 0.05). Enhancement of hepcidin was reflected in the reduced expression of ferroportin in obese mice (p < 0.05). However, this effect is accompanied by a significant decline in ferritin expression. Additionally, there are reduced insulin receptor phosphorylation and attenuation of metabolic regulators pAMPK, pAKT, and pLKB1. Cobalt protoporphyrin- (CoPP-) induced HO-1 upregulation in obese mice reversed these alterations (p < 0.05), while attenuating hepatic hepcidin levels. These effects of CoPP were prevented in obese mice concurrently exposed to an inhibitor of HO (SnMP) (p < 0.05). Our results highlight a modulatory effect of HO on iron homeostasis mediated through the suppression of hepatic hepcidin.
Collapse
|
9
|
Adiponectin improves coronary no-reflow injury by protecting the endothelium in rats with type 2 diabetes mellitus. Biosci Rep 2017; 37:BSR20170282. [PMID: 28667102 PMCID: PMC5529206 DOI: 10.1042/bsr20170282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/14/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022] Open
Abstract
To determine the effect of adiponectin (APN) on the coronary no-reflow (NR) injury in rats with Type 2 diabetes mellitus (T2DM), 80 male Sprague–Dawley rats were fed with a high-sugar–high-fat diet to build a T2DM model. Rats received vehicle or APN in the last week and then were subjected to myocardial ischemia reperfusion (MI/R) injury. Endothelium-dependent vasorelaxation of the thoracic aorta was significantly decreased and serum levels of endothelin-1 (ET-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were noticably increased in T2DM rats compared with rats without T2DM. Serum APN was positively correlated with the endothelium-dependent vasorelaxation, but negatively correlated with the serum level of ET-1. Treatment with APN improved T2DM-induced endothelium-dependent vasorelaxation, recovered cardiac function, and decreased both NR size and the levels of ET-1, ICAM-1 and VCAM-1. Hypoadiponectinemia was associated with the aggravation of coronary NR in T2DM rats. APN could alleviate coronary NR injury in T2DM rats by protecting the endothelium and improving microcirculation.
Collapse
|
10
|
Ma X, Bai G, Lu D, Huang L, Zhang J, Deng R, Ding S, Gu N, Guo X. Association between STK11 Gene Polymorphisms and Coronary Artery Disease in Type 2 Diabetes in Han Population in China. J Diabetes Res 2017; 2017:6297087. [PMID: 28349069 PMCID: PMC5350304 DOI: 10.1155/2017/6297087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/24/2017] [Indexed: 11/18/2022] Open
Abstract
Background. Recent studies indicated that the Serine threonine kinase 11 (STK11), which is a key regulator of the AMP-activated protein kinase (AMPK), plays a crucial role in cardiovascular system. This study aimed to investigate whether genetic variations in the STK11 gene affect the risk of coronary artery disease (CAD) in Chinese type 2 diabetics. Methods. 5 haplotype-tagging single nucleotide polymorphisms (SNPs) were selected, and 288 CAD-positive cases and 159 CAD-negative controls with type 2 diabetes were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. Results. The carriers of minor allele A at rs12977689 had a higher risk of CAD compared to the homozygotes of CC (OR = 1.572, 95% CI = 1.039-2.376, p = 0.035), and the difference was still significant after adjustment for the other known CAD risk factors (OR' = 1.184, 95% CI' = 1.036-1.353, p' = 0.013). Conclusion. Genetic variability at STK11 locus is associated with CAD risk in type 2 diabetes in the Chinese population.
Collapse
Affiliation(s)
- Xiaowei Ma
- Department of Endocrinology, Peking University First Hospital, Beijing, China
- *Xiaowei Ma:
| | - Ge Bai
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Difei Lu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Linjuan Huang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jianwei Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ruifen Deng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Shan Ding
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Nan Gu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
11
|
Abraham NG, Junge JM, Drummond GS. Translational Significance of Heme Oxygenase in Obesity and Metabolic Syndrome. Trends Pharmacol Sci 2015; 37:17-36. [PMID: 26515032 DOI: 10.1016/j.tips.2015.09.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 01/04/2023]
Abstract
The global epidemic of obesity continues unabated with sequelae of diabetes and metabolic syndrome. This review reflects the dramatic increase in research on the role of increased expression of heme oxygenase (HO)-1/HO-2, biliverdin reductase, and HO activity on vascular disease. The HO system engages with other systems to mitigate the deleterious effects of oxidative stress in obesity and cardiovascular disease (CVD). Recent reports indicate that HO-1/HO-2 protein expression and HO activity have several important roles in hemostasis and reactive oxygen species (ROS)-dependent perturbations associated with metabolic syndrome. HO-1 protects tissue during inflammatory stress in obesity through the degradation of pro-oxidant heme and the production of carbon monoxide (CO) and bilirubin, both of which have anti-inflammatory and anti-apoptotic properties. By contrast, repression of HO-1 is associated with increases of cellular heme and inflammatory conditions including hypertension, stroke, and atherosclerosis. HO-1 is a major focus in the development of potential therapeutic strategies to reverse the clinical complications of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA; Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA.
| | - Joshua M Junge
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| | - George S Drummond
- Departments of Medicine and Pharmacology, New York Medical College, School of Medicine, Valhalla, NY 10595, USA
| |
Collapse
|
12
|
Qi D, Young LH. AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrinol Metab 2015; 26:422-9. [PMID: 26160707 PMCID: PMC4697457 DOI: 10.1016/j.tem.2015.05.010] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 01/12/2023]
Abstract
AMP-activated protein kinase (AMPK) is a critical regulator of cellular metabolism and plays an important role in diabetes, cancer, and vascular disease. In the heart, AMPK activation is an essential component of the adaptive response to cardiomyocyte stress that occurs during myocardial ischemia. During ischemia-reperfusion, AMPK activation modulates glucose and fatty acid metabolism, mitochondrial function, endoplasmic reticulum (ER) stress, autophagy, and apoptosis. Pharmacological activation of AMPK prevents myocardial necrosis and contractile dysfunction during ischemia-reperfusion and potentially represents a cardioprotective strategy for the treatment of myocardial infarction. This review discusses novel mechanisms of AMPK activation in the ischemic heart, the role of endogenous AMPK activation during ischemia, and the potential therapeutic applications for AMPK-directed therapy.
Collapse
Affiliation(s)
- Dake Qi
- The Sections of Cardiovascular Medicine, Yale University School of Medicine, 333 Cedar Street, 3 FMP, P.O. Box 208017, New Haven, CT 06520-8017, USA
| | - Lawrence H Young
- The Sections of Cardiovascular Medicine, Yale University School of Medicine, 333 Cedar Street, 3 FMP, P.O. Box 208017, New Haven, CT 06520-8017, USA; Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, 3 FMP, P.O. Box 208017, New Haven, CT 06520-8017, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, 3 FMP, P.O. Box 208017, New Haven, CT 06520-8017, USA.
| |
Collapse
|
13
|
Herbal product silibinin-induced programmed cell death is enhanced by metformin in cervical cancer cells at the dose without influence on nonmalignant cells. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2014.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
14
|
Tsai CC, Chuang TW, Chen LJ, Niu HS, Chung KM, Cheng JT, Lin KC. Increase in apoptosis by combination of metformin with silibinin in human colorectal cancer cells. World J Gastroenterol 2015; 21:4169-4177. [PMID: 25892866 PMCID: PMC4394077 DOI: 10.3748/wjg.v21.i14.4169] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/25/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of metformin on silibinin-induced apoptosis in human colorectal cancer (COLO 205) cells. METHODS MTT assays were performed to quantify cell viability. Western blot assays were applied to identify the expression of signaling proteins. RESULTS The combined treatment of COLO 205 cells with metformin and silibinin decreased cell survival at a dose insufficient to influence the non-malignant cells [Human colonic epithelial cells (HCoEpiC)]. Silibinin and metformin increased phosphatase and tensin homolog and 5'-adenosine monophosphate-activated protein kinase expression in COLO 205 cells and inhibited the phosphorylation of mammol/Lalian target of rapamycin. This combined treatment resulted in an increase in the expression of activated caspase 3 and apoptosis inducing factor, indicating apoptosis. CONCLUSION The combined treatment of human colorectal cancer cells with silibinin and metformin may induce apoptosis at a dose that does not affect HCoEpiC. This finding reveals a potential therapeutic strategy for the treatment of colorectal cancer.
Collapse
|
15
|
Kusmic C, Barsanti C, Matteucci M, Vesentini N, Pelosi G, Abraham NG, L'Abbate A. Up-regulation of heme oxygenase-1 after infarct initiation reduces mortality, infarct size and left ventricular remodeling: experimental evidence and proof of concept. J Transl Med 2014; 12:89. [PMID: 24708733 PMCID: PMC4022338 DOI: 10.1186/1479-5876-12-89] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 03/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Up-regulation of HO-1 by genetic manipulation or pharmacological pre-treatment has been reported to provide benefits in several animal models of myocardial infarction (MI). However, its efficacy following MI initiation (as in clinical reality) remains to be tested. Therefore, this study investigated whether HO-1 over-expression, by cobalt protoporphyrin (CoPP) administered after LAD ligation, is still able to improve functional and structural changes in left ventricle (LV) in a rat model of 4-week MI. METHODS A total of 144 adult male Wistar rats were subjected to either left anterior coronary artery ligation or sham-operation. The effect of CoPP treatment (5 mg/kg i.p. at the end of the surgical session and, then, once a week for 4 weeks) was evaluated on the basis of survival, electro- and echocardiography, plasma levels of B-type natriuretic peptide (BNP), endothelin-1 and prostaglandin E2, coronary microvascular reactivity, MI size, LV wall thickness and vascularity. Besides, the expression of HO-1 and connexin-43 in different LV territories was assessed by western blot analysis and immunohistochemistry, respectively. RESULTS CoPP induced an increased expression of HO-1 protein with >16 h delay. CoPP treatment significantly reduced mortality, MI size, BNP concentration, ECG alterations, LV dysfunction, microvascular constriction, capillary rarefaction and restored connexin-43 expression as compared to untreated MI. These functional and structural changes were paralleled by increased HO-1 expression in all LV territories. HO activity inhibition by tin-mesoporphyrin abolished the differences between CoPP-treated and untreated MI animals. CONCLUSIONS This is the first report demonstrating the putative role of pharmacological induction of HO-1 following coronary occlusion to benefit infarcted and remote territories, leading to better cardiac function in a 4-week MI outcome.
Collapse
Affiliation(s)
- Claudia Kusmic
- CNR Institute of Clinical Physiology, Via G Moruzzi 1, 56124 Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Issan Y, Kornowski R, Aravot D, Shainberg A, Laniado-Schwartzman M, Sodhi K, Abraham NG, Hochhauser E. Heme oxygenase-1 induction improves cardiac function following myocardial ischemia by reducing oxidative stress. PLoS One 2014; 9:e92246. [PMID: 24658657 PMCID: PMC3962395 DOI: 10.1371/journal.pone.0092246] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/20/2014] [Indexed: 01/23/2023] Open
Abstract
Background Oxidative stress plays a key role in exacerbating diabetes and cardiovascular disease. Heme oxygenase-1 (HO-1), a stress response protein, is cytoprotective, but its role in post myocardial infarction (MI) and diabetes is not fully characterized. We aimed to investigate the protection and the mechanisms of HO-1 induction in cardiomyocytes subjected to hypoxia and in diabetic mice subjected to LAD ligation. Methods In vitro: cultured cardiomyocytes were treated with cobalt-protoporphyrin (CoPP) and tin protoporphyrin (SnPP) prior to hypoxic stress. In vivo: CoPP treated streptozotocin-induced diabetic mice were subjected to LAD ligation for 2/24 h. Cardiac function, histology, biochemical damage markers and signaling pathways were measured. Results HO-1 induction lowered release of lactate dehydrogenase (LDH) and creatine phospho kinase (CK), decreased propidium iodide staining, improved cell morphology and preserved mitochondrial membrane potential in cardiomyocytes. In diabetic mice, Fractional Shortening (FS) was lower than non-diabetic mice (35±1%vs.41±2, respectively p<0.05). CoPP-treated diabetic animals improved cardiac function (43±2% p<0.01), reduced CK, Troponin T levels and infarct size compared to non-treated diabetic mice (P<0.01, P<0.001, P<0.01 respectively). CoPP-enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the decrease in superoxide levels in cardiac tissues and plasma TNFα levels (p<0.05). The increased levels of HO-1 by CoPP treatment after LAD ligation led to a shift of the Bcl-2/bax ratio towards the antiapoptotic process (p<0.05). CoPP significantly increased the expression levels of pAKT and pGSK3β (p<0.05) in cardiomyocytes and in diabetic mice with MI. SnPP abolished CoPP's cardioprotective effects. Conclusions HO-1 induction plays a role in cardioprotection against hypoxic damage in cardiomyocytes and in reducing post ischemic cardiac damage in the diabetic heart as proved by the increased levels of pAKT with a concomitant inhibition of pGSK3β leading to preserved mitochondrial membrane potential.
Collapse
Affiliation(s)
- Yossi Issan
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel-Aviv University, Petah-Tikva, Israel
| | - Ran Kornowski
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel-Aviv University, Petah-Tikva, Israel
- Cardiology Department, Rabin Medical Center, Tel-Aviv University, Petah-Tikva, Israel
| | - Dan Aravot
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel-Aviv University, Petah-Tikva, Israel
- Cardiac Surgery department, Rabin Medical Center, Tel-Aviv University, Petah-Tikva, Israel
| | - Asher Shainberg
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Komal Sodhi
- Department of Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, United States of America
| | - Nader G. Abraham
- Department of Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, West Virginia, United States of America
| | - Edith Hochhauser
- Cardiac Research Laboratory, Felsenstein Medical Research Institute, Tel-Aviv University, Petah-Tikva, Israel
- Cardiac Surgery department, Rabin Medical Center, Tel-Aviv University, Petah-Tikva, Israel
- * E-mail:
| |
Collapse
|
17
|
Xu J, Lei S, Liu Y, Gao X, Irwin MG, Xia ZY, Hei Z, Gan X, Wang T, Xia Z. Antioxidant N-acetylcysteine attenuates the reduction of Brg1 protein expression in the myocardium of type 1 diabetic rats. J Diabetes Res 2013; 2013:716219. [PMID: 23853776 PMCID: PMC3703332 DOI: 10.1155/2013/716219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 06/01/2013] [Indexed: 02/07/2023] Open
Abstract
Brahma-related gene 1 (Brg1) is a key gene in inducing the expression of important endogenous antioxidant enzymes, including heme oxygenase-1 (HO-1) which is central to cardioprotection, while cardiac HO-1 expression is reduced in diabetes. It is unknown whether or not cardiac Brg1 expression is reduced in diabetes. We hypothesize that cardiac Brg1 expression is reduced in diabetes which can be restored by antioxidant treatment with N-acetylcysteine (NAC). Control (C) and streptozotocin-induced diabetic (D) rats were treated with NAC in drinking water or placebo for 4 weeks. Plasma and cardiac free15-F2t-isoprostane in diabetic rats were increased, accompanied with increased plasma levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin 6 (IL-6), while cardiac Brg1, p-STAT3 and HO-1 protein expression levels were significantly decreased. Left ventricle weight/body weight ratio was higher, while the peak velocities of early (E) and late (A) flow ratio was lower in diabetic than in C rats. NAC normalized tissue and plasma levels of 15-F2t-isoprostane, significantly increased cardiac Brg1, HO-1 and p-STAT3 protein expression levels and reduced TNF-alpha and IL-6, resulting in improved cardiac function. In conclusion, myocardial Brg1 is reduced in diabetes and enhancement of cardiac Brg1 expression may represent a novel mechanism whereby NAC confers cardioprotection.
Collapse
Affiliation(s)
- Jinjin Xu
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
| | - Shaoqing Lei
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanan Liu
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
| | - Xia Gao
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
| | - Michael G. Irwin
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
| | - Zhong-yuan Xia
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ziqing Hei
- Department of Anesthesiology, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaoliang Gan
- Department of Anesthesiology, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tingting Wang
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
- Department of Anesthesiology and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, China
- *Tingting Wang: and
| | - Zhengyuan Xia
- Department of Anaesthesiology, The University of Hong Kong, HKSAR, Hong Kong
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
- *Zhengyuan Xia:
| |
Collapse
|
18
|
Cao J, Vecoli C, Neglia D, Tavazzi B, Lazzarino G, Novelli M, Masiello P, Wang YT, Puri N, Paolocci N, L'abbate A, Abraham NG. Cobalt-Protoporphyrin Improves Heart Function by Blunting Oxidative Stress and Restoring NO Synthase Equilibrium in an Animal Model of Experimental Diabetes. Front Physiol 2012; 3:160. [PMID: 22675305 PMCID: PMC3366474 DOI: 10.3389/fphys.2012.00160] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/07/2012] [Indexed: 01/09/2023] Open
Abstract
Myocardial dysfunction and coronary macro/microvascular alterations are the hallmarks of diabetic cardiomyopathy and are ascribed to increased oxidative stress and altered nitric oxide synthase (NOS) activity. We hypothesize that pre-treatment by cobalt-protoporphyrin IX (CoPP) ameliorates both myocardial function and coronary circulation in streptozotocin (STZ)-induced diabetic rats. Isolated hearts from diabetic rats in Langendorff configuration displayed lower left ventricular function and higher coronary resistance (CR) compared to hearts from control animals. CoPP treatment of diabetic animals (0.3 mg/100 g body weight i.p., once a week for 3 weeks) significantly increased all the contractile/relaxation indexes (p < 0.01), while decreasing CR (p < 0.01). CoPP enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the significant (p < 0.05) decrease in heart % GSSG, [Formula: see text] and malondialdehyde (MDA) levels. CoPP increased adiponectin levels and phosphorylation of AKT and AMPK and reversed the eNOS/iNOS expression imbalance observed in the untreated diabetic heart. Furthermore, after CoPP treatment, a rise in malonyl-CoA as well as a decrease in acetyl-CoA was observed in diabetic hearts. In this experimental model of diabetic cardiomyopathy, CoPP treatment improved both cardiac function and coronary flow by blunting oxidative stress, restoring eNOS/iNOS expression balance and increasing HO-1 levels, thereby favoring improvement in both endothelial function and insulin sensitivity.
Collapse
Affiliation(s)
- Jian Cao
- First Geriatric Cardiology Division, Chinese PLA General Hospital Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Vecoli C, Cao J, Neglia D, Inoue K, Sodhi K, Vanella L, Gabrielson KK, Bedja D, Paolocci N, L'abbate A, Abraham NG. Apolipoprotein A-I mimetic peptide L-4F prevents myocardial and coronary dysfunction in diabetic mice. J Cell Biochem 2011; 112:2616-26. [PMID: 21598304 DOI: 10.1002/jcb.23188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Diabetes is a major health problem associated with adverse cardiovascular outcomes. The apolipoprotein A-I mimetic peptide L-4F is a putative anti-diabetic drug, has antioxidant and anti-inflammatory proprieties and improves endothelial function. In obese mice L-4F increases adiponectin levels, improving insulin sensitivity, and reducing visceral adiposity. We hypothesized that the pleiotropic actions of L-4F can prevent heart and coronary dysfunction in a mouse model of genetically induced Type II diabetes. We treated db/db mice with either L-4F or vehicle for 8 weeks. Trans-thoracic echocardiography was performed; thereafter, isolated hearts were subjected to ischemia/reperfusion (IR). Glucose, insulin, adiponectin, and pro-inflammatory cytokines (IL-1β, TNF-α, MCP-1) were measured in plasma and HO-1, pAMPK, peNOS, iNOS, adiponectin, and superoxide in cardiac tissue. In db/db mice L-4F decreased accumulation of subcutaneous and total fat, and increased insulin sensitivity and adiponectin levels while lowering inflammatory cytokines (P < 0.05). L-4F normalized in vivo left ventricular (LV) function of db/db mice, increasing (P < 0.05) fractional shortening and decreasing (P < 0.05) LV dimensions. In I/R experiments, L-4F prevented coronary microvascular resistance from increasing and LV function from deteriorating in the db/db mice. These changes were associated with increased cardiac expression of HO-1, pAMPK, peNOS, and adiponectin and decreased levels of superoxide and iNOS (P < 0.01). In the present study we showed that L-4F prevented myocardial and coronary functional abnormalities in db/db mice. These effects were associated with stimulation of HO-1 resulting in increased levels of anti-inflammatory, anti-oxidative, and vasodilatatory action through a mechanism involving increased levels of adiponectin, pAMPK, and peNOS.
Collapse
Affiliation(s)
- C Vecoli
- Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Autophagy as a therapeutic target in diabetic nephropathy. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:628978. [PMID: 22028701 PMCID: PMC3199112 DOI: 10.1155/2012/628978] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 08/01/2011] [Accepted: 08/17/2011] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy is a serious complication of diabetes mellitus, and its prevalence has been increasing worldwide. Therefore, there is an urgent need to identify a new therapeutic target to prevent diabetic nephropathy. Autophagy is a major catabolic pathway involved in degrading and recycling macromolecules and damaged organelles to maintain intracellular homeostasis. The study of autophagy in mammalian systems is advancing rapidly and has revealed that it is involved in the pathogenesis of various metabolic or age-related diseases. The functional role of autophagy in the kidneys is also currently under intense investigation although, until recently, evidence showing the involvement of autophagy in the pathogenesis of diabetic nephropathy has been limited. We provide a systematic review of autophagy and discuss the therapeutic potential of autophagy in diabetic nephropathy to help future investigations in this field.
Collapse
|
21
|
Paiva MA, Rutter-Locher Z, Gonçalves LM, Providência LA, Davidson SM, Yellon DM, Mocanu MM. Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. Am J Physiol Heart Circ Physiol 2011; 300:H2123-34. [PMID: 21421816 DOI: 10.1152/ajpheart.00707.2010] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AMPK activation during ischemia helps the myocardium to cope with the deficit of energy production. As AMPK activity is considered to be impaired in diabetes, we hypothesized that enhancing AMPK activation during ischemia above physiological levels would protect the ischemic diabetic heart through AMPK activation and subsequent inhibition of mitochondrial permeability transition pore (mPTP) opening. Isolated perfused hearts from normoglycemic Wistar or diabetic Goto-Kakizaki (GK) rats (n ≥ 6/group) were subjected to 35 min of ischemia in the presence of 10, 20, and 40 μM of A-769662, a known activator of AMPK, followed by 120 min of reperfusion with normal buffer. Myocardial infarction and AMPK phosphorylation were assessed. The effect of A-769662 on mPTP opening in adult cardiomyocytes isolated from both strains was also determined. A-769662 at 20 μM reduced infarct size in both Wistar (30.5 ± 2.7 vs. 51.8 ± 3.9% vehicle; P < 0.001) and GK hearts (22.7 ± 3.0 vs. 48.5 ± 4.7% vehicle; P < 0.001). This protection was accompanied by a significant increase in AMPK and GSK-3β phosphorylation. In addition, A-769662 significantly inhibited mPTP opening in both Wistar and GK cardiomyocytes subjected to oxidative stress. We demonstrate that AMPK activation during ischemia via A-769662 reduces myocardial infarct size in both the nondiabetic and diabetic rat heart. Furthermore, this cardioprotective effect appears to be mediated through inhibition of mPTP opening. Our findings suggest that improving AMPK activation during ischemia can be another mechanism for protecting the ischemic heart.
Collapse
Affiliation(s)
- Marta A Paiva
- Hatter Cardiovascular Institute, Univ. College London Hospitals, 67 Chenies Mews, London, WC1E 6HX, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Kim DH, Vanella L, Inoue K, Burgess A, Gotlinger K, Manthati VL, Koduru SR, Zeldin DC, Falck JR, Schwartzman ML, Abraham NG. Epoxyeicosatrienoic acid agonist regulates human mesenchymal stem cell-derived adipocytes through activation of HO-1-pAKT signaling and a decrease in PPARγ. Stem Cells Dev 2010; 19:1863-73. [PMID: 20412023 DOI: 10.1089/scd.2010.0098] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) expressed substantial levels of CYP2J2, a major CYP450 involved in epoxyeicosatrienoic acid (EET) formation. MSCs synthesized significant levels of EETs (65.8 ± 5.8 pg/mg protein) and dihydroxyeicosatrienoic acids (DHETs) (15.83 ± 1.62 pg/mg protein), suggesting the presence of soluble epoxide hydrolase (sEH). The addition of an sEH inhibitor to MSC culture decreased adipogenesis. EETs decreased MSC-derived adipocytes in a concentration-dependent manner, 8,9- and 14,15-EET having the maximum reductive effect on adipogenesis. We examined the effect of 12-(3-hexylureido)dodec-8(Z)-enoic acid, an EET agonist, on MSC-derived adipocytes and demonstrated an increased number of healthy small adipocytes, attenuated fatty acid synthase (FAS) levels (P < 0.01), and reduced PPARγ, C/EBPα, FAS, and lipid accumulation (P < 0.05). These effects were accompanied by increased levels of heme oxygenase (HO)-1 and adiponectin (P < 0.05), and increased glucose uptake (P < 0.05). Inhibition of HO activity or AKT by tin mesoporphyrin (SnMP) and LY2940002, respectively, reversed EET-induced inhibition of adipogenesis, suggesting that activation of the HO-1-adiponectin axis underlies EET effect in MSCs. These findings indicate that EETs decrease MSC-derived adipocyte stem cell differentiation by upregulation of HO-1-adiponectin-AKT signaling and play essential roles in the regulation of adipocyte differentiation by inhibiting PPARγ, C/EBPα, and FAS and in stem cell development. These novel observations highlight the seminal role of arachidonic acid metabolism in MSCs and suggest that an EET agonist may have potential therapeutic use in the treatment of dyslipidemia, diabetes, and the metabolic syndrome.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio 43614, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|