1
|
Shen Y, Zhao H, Wang X, Wu S, Wang Y, Wang C, Zhang Y, Zhao H. Unraveling the web of defense: the crucial role of polysaccharides in immunity. Front Immunol 2024; 15:1406213. [PMID: 39524445 PMCID: PMC11543477 DOI: 10.3389/fimmu.2024.1406213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The great potential of polysaccharides in immunological regulation has recently been highlighted in pharmacological and clinical studies. Polysaccharides can trigger immunostimulatory responses through molecular identification, intra- and intercellular communication via direct or indirect interactions with the immune system. Various immunostimulatory polysaccharides or their derivative compounds interacts at cellular level to boost the immune system, including arabinogalactans, fucoidans, mannans, xylans, galactans, hyaluronans, fructans, pectin and arabinogalactans, etc. These natural polysaccharides are derived from various plants, animals and microbes. A unique structural diversity has been identified in polysaccharides, while monosaccharides and glucosidic bonds mainly confer diverse biological activities. These natural polysaccharides improve antioxidant capacity, reduce the production of pro-inflammatory mediators, strengthen the intestinal barrier, influence the composition of intestinal microbial populations and promote the synthesis of short-chain fatty acids. These natural polysaccharides are also known to reduce excessive inflammatory responses. It is crucial to develop polysaccharide-based immunomodulators that could be used to prevent or treat certain diseases. This review highlights the structural features, immunomodulatory properties, underlying immunomodulatory mechanisms of naturally occurring polysaccharides, and activities related to immune effects by elucidating a complex relationship between polysaccharides and immunity. In addition, the future of these molecules as potential immunomodulatory components that could transform pharmaceutical applications at clinical level will also be highlighted.
Collapse
Affiliation(s)
- Yu Shen
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hongbo Zhao
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, China
| | - Xuefeng Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Shihao Wu
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yuliang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, China
| |
Collapse
|
2
|
Abdala-Díaz RT, Casas-Arrojo V, Castro-Varela P, Riquelme C, Carrillo P, Medina MÁ, Cárdenas C, Becerra J, Pérez Manríquez C. Immunomodulatory, Antioxidant, and Potential Anticancer Activity of the Polysaccharides of the Fungus Fomitiporia chilensis. Molecules 2024; 29:3628. [PMID: 39125036 PMCID: PMC11314378 DOI: 10.3390/molecules29153628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Fomitiporia species have aroused the interest of numerous investigations that reveal their biological activity and medicinal potential. The present investigation shows the antioxidant, anticancer, and immunomodulatory activity of acidic polysaccharides obtained from the fungus Fomitiporia chilensis. The acidic polysaccharides were obtained for acidic precipitation with 2% O-N-cetylpyridinium bromide. Chemical analysis was performed using FT-IR and GC-MS methods. The antioxidant capacity of acidic polysaccharides from F. chilensis was evaluated by scavenging free radicals with an ABTS assay. Macrophage proliferation and cytokine production assays were used to determine the immunomodulatory capacity of the polysaccharides. Anti-tumor and cytotoxicity activity was evaluated with an MTT assay in the U-937, HTC-116, and HGF-1 cell lines. The effect of polysaccharides on the cell cycle of the HCT-116 cell line was determined for flow cytometry. Fourier Transform-infrared characterization revealed characteristic absorption peaks for polysaccharides, whereas the GC-MS analysis detected three peaks corresponding to D-galactose, galacturonic acid, and D-glucose. The secreted TNF-α concentration was increased when the cell was treated with 2 mg mL-1 polysaccharides, whereas the IL-6 concentration was increased with all of the evaluated polysaccharide concentrations. A cell cycle analysis of HTC-116 treated with polysaccharides evidenced that the acidic polysaccharides from F. chilensis induce an increase in the G0/G1 cell cycle phase, increasing the apoptotic cell percentage. Results from a proteomic analysis suggest that some of the molecular mechanisms involved in their antioxidant and cellular detoxifying effects and justify their traditional use in heart diseases. Proteomic data are available through ProteomeXchange under identifier PXD048361. The study on acidic polysaccharides from F. chilensis has unveiled their diverse biological activities, including antioxidant, anticancer, and immunomodulatory effects. These findings underscore the promising therapeutic applications of acidic polysaccharides from F. chilensis, warranting further pharmaceutical and medicinal research exploration.
Collapse
Affiliation(s)
- Roberto T. Abdala-Díaz
- Department of Ecology and Geology, Institute of Blue Biotechnology and Development (IBYDA), Malaga University, E-29071 Malaga, Spain; (R.T.A.-D.); (V.C.-A.)
| | - Virginia Casas-Arrojo
- Department of Ecology and Geology, Institute of Blue Biotechnology and Development (IBYDA), Malaga University, E-29071 Malaga, Spain; (R.T.A.-D.); (V.C.-A.)
| | - Pablo Castro-Varela
- FICOLAB Microalgal Research Group, Department of Botany, Faculty of Natural and Oceanographic Sciences, University of Concepción, Concepción PC 304000, Chile;
| | - Cristian Riquelme
- Mycology Laboratory, Institute of Biochemistry and Microbiology, Universidad Austral de Chile, Isla Teja, PO 567, Valdivia PC 5049000, Chile;
| | - Paloma Carrillo
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, E-29071 Málaga, Spain; (P.C.); (M.Á.M.); (C.C.)
- Malaga Biomedical Research Institute and Nanomedicine Platform (IBIMA PlataformaBIONAND), C/Severo Ochoa, 35, E-29590 Málaga, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, E-29071 Málaga, Spain; (P.C.); (M.Á.M.); (C.C.)
- Malaga Biomedical Research Institute and Nanomedicine Platform (IBIMA PlataformaBIONAND), C/Severo Ochoa, 35, E-29590 Málaga, Spain
- Network Biomedical Research Center for Rare Diseases (CIBERER), U741, E-28029 Málaga, Spain
| | - Casimiro Cárdenas
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, E-29071 Málaga, Spain; (P.C.); (M.Á.M.); (C.C.)
- Research Support Central Services (SCAI) of the University of Málaga, E-29071 Málaga, Spain
| | - José Becerra
- Laboratory of Chemistry of Natural Products, Department of Botany, Faculty of Natural and Oceanographic Sciences, University of Concepción, Concepción PC 304000, Chile;
- Technological Development Unit, University of Concepción, Concepción PC 304000, Chile
| | - Claudia Pérez Manríquez
- Laboratory of Chemistry of Natural Products, Department of Botany, Faculty of Natural and Oceanographic Sciences, University of Concepción, Concepción PC 304000, Chile;
- Technological Development Unit, University of Concepción, Concepción PC 304000, Chile
| |
Collapse
|
3
|
Lian S, Li W, Zhong C, Li Y, Wu C, Zhang K, Lin J, Wang W, Katanaev V, Xie X, Jia L. Ganoderma lucidum spore oil synergistically enhances the function of cyclophosphamide in the prevention of breast cancer metastasis. J Chin Med Assoc 2024; 87:305-313. [PMID: 38109372 DOI: 10.1097/jcma.0000000000001038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Ganoderma lucidum ( G . lucidum ) is a traditional Chinese herbal medicine that has shown potential as an alternative adjuvant therapy for cancer patients. However, the mechanisms and adjuvant therapeutic effects of G . lucidum in cancer treatment remain unclear. METHODS In this work, G . lucidum spore oil (GanoOil), a newly developed oily G . lucidum spore extract was used to investigate the mechanisms and adjuvant therapeutic effects of GanoOil in conjunction with the chemotherapeutic drug cyclophosphamide (CTX) for preventing breast cancer metastasis. RESULTS In the model of lung metastasis, orally administered GanoOil increased the population of CD8 + T cells and interleukin (IL)-6 cytokine levels in mouse blood, whereas also enhancing the activity of natural killer cells in the spleen. Furthermore, the combination of GanoOil and CTX effectively suppressed the lung metastasis of circulating breast cancer cells, alleviated CTX-induced weight loss, and reduced the ratio of lung and spleen weight to body weight in mice. Moreover, high concentrations of GanoOil exhibited no significant toxicity or side effects in both in vitro and in vivo experiments. CONCLUSION In conclusion, GanoOil is a safe drug that can enhance immune activity in mice to achieve therapeutic effects on cancer, and can also synergistically inhibit tumor metastasis with CTX.
Collapse
Affiliation(s)
- Shu Lian
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
| | - Wulin Li
- Institute of Chemisty, Fuzhou University, Fuzhou, Fujian, China
| | - Chunlian Zhong
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
| | - Ye Li
- Fujian Xianzhilou Biological and Technology Co., Ltd., Fuzhou, Fujian, China
| | - Changhui Wu
- Fujian Xianzhilou Biological and Technology Co., Ltd., Fuzhou, Fujian, China
| | - Kun Zhang
- Fujian Xianzhilou Biological and Technology Co., Ltd., Fuzhou, Fujian, China
| | - Jiangfei Lin
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
| | - Weiyu Wang
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Vladimir Katanaev
- Faculty of Medicine, Department of Cell Physiology and Metabolism, Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland
| | - Xiaodong Xie
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
| | - Lee Jia
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, Institute of Oceanography, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, China
- Institute of Chemisty, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Huang X, Li S, Ding R, Li Y, Li C, Gu R. Antitumor effects of polysaccharides from medicinal lower plants: A review. Int J Biol Macromol 2023; 252:126313. [PMID: 37579902 DOI: 10.1016/j.ijbiomac.2023.126313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Cancer is one of the leading causes of death worldwide, yet the drugs currently approved for cancer treatment are associated with significant side effects, making it urgent to develop alternative drugs with low side effects. Polysaccharides are natural polymers with ketone or aldehyde groups, which are widely found in plants and have various biological activities such as immunomodulation, antitumor and hypolipidemic. The lower plants have attracted much attention for their outstanding anticancer effects, and many studies have shown that medicinal lower plant polysaccharides (MLPPs) have antitumor activity against various cancers and are promising alternatives with potential development in the food and pharmaceutical fields. Therefore, this review describes the structure and mechanism of action of MLPPs with antitumor activity. In addition, the application of MLPPs in cancer treatment is discussed, and the future development of MLPPs is explored.
Collapse
Affiliation(s)
- Xi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Canlin Li
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
5
|
Lu J, Yang Y, Varga E, Marko D, Yu Q, Xie J, Li C, Chen Y. Molecular Mechanisms Associated with Protecting IEC-6 Cells from Acrylamide-Induced Tight Junction Damage by Ganoderma atrum Polysaccharide. Mol Nutr Food Res 2023; 67:e2200774. [PMID: 36565056 DOI: 10.1002/mnfr.202200774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/08/2022] [Indexed: 12/25/2022]
Abstract
SCOPE The previous in vivo studies show Ganoderma atrum polysaccharide (PSG-F2 ) has a protective effect against the acrylamide (AA)-induced intestinal oxidative damage in rats. Now, this study aims to explore the protective mechanism with IEC-6 cell model. METHODS AND RESULTS Based on RNA Sequencing (RNA-Seq), the study screens MAPK signaling pathway as one of the most crucial pathways for pretreatment with PSG-F2 against AA-induced damage in IEC-6 cells. In total, six key MAPK signaling pathway-related proteins (p-P38/P38, p-ERK/ERK, and p-JNK/JNK), and three tight junction key proteins (Zonula Occludens protein-1, Claudin-1, and Occludin) are detected by Western blot and immunofluorescence, which verify the RNA-Seq data. Moreover, PD98059 interference inhibits critical proteins in the MAPK signaling pathway, thus uncovering the precise molecular mechanisms of MAPK/ERK signaling pathway involve in the protective effects of PSG-F2 against AA-induced intestinal barrier damage. CONCLUSION These findings confirm that PSG-F2 can be used as a daily dietary supplement to protect the intestinal cells from damage caused by thermal processing hazards AA.
Collapse
Affiliation(s)
- Jiawen Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Ying Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38, Vienna, 1090, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, University of Vienna, Währinger Straße 38, Vienna, 1090, Austria
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Chang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| |
Collapse
|
6
|
Meng M, Sun Y, Bai Y, Xu J, Sun J, Han L, Sun H, Han R. A polysaccharide from Pleurotus citrinopileatus mycelia enhances the immune response in cyclophosphamide-induced immunosuppressed mice via p62/Keap1/Nrf2 signal transduction pathway. Int J Biol Macromol 2023; 228:165-177. [PMID: 36543297 DOI: 10.1016/j.ijbiomac.2022.12.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The manuscript aimed to study the immunoregulatory activity and the mechanism of the polysaccharide (CMP) from Pleurotus citrinopileatus mycelia. The mice were divided into normal group, model group, different dosage of CMP (50, 100 and 200 mg/kg, respectively) groups and levamisole hydrochloride treated group. The results showed that, compared with the model group, CMP could significantly improve the auricle swelling rate, half hemolysis value and phagocytic index in mice. The indices of immune organs were raised, and tissue damage of spleen was relieved. Splenic Th1 cells were decreased, while Th2 cells were increased, furthermore the proliferation of splenic lymphocytes and the cytotoxicity of NK cells were increased. The levels of interleukin-12 (IL-12), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in spleen were decreased, while interleukin-4 (IL-4) and interleukin-10 (IL-10) were increased. In serum and spleen, the levels of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities were increased, while the level of malondialdehyde (MDA) was decreased. And the levels of Immunoglobulin were also increased. Western blot showed that CMP had immunoregulatory activity by activating Nrf2, Keap1, p62, HO-1, and NQO1 in the p62/Keap1/Nrf2 signaling pathway. The study proved that CMP could be used as a biological Immune regulating agent.
Collapse
Affiliation(s)
- Meng Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Ying Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yuhe Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Jin Xu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Jingge Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Lirong Han
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China
| | - Huiqing Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Ran Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| |
Collapse
|
7
|
Gao Y, Li Y, Niu Y, Ju H, Chen R, Li B, Song X, Song L. Chemical Characterization, Antitumor, and Immune-Enhancing Activities of Polysaccharide from Sargassum pallidum. Molecules 2021; 26:7559. [PMID: 34946640 PMCID: PMC8709291 DOI: 10.3390/molecules26247559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Searching for natural products with antitumor and immune-enhancing activities is an important aspect of cancer research. Sargassum pallidum is an edible brown alga that has been used in Chinese traditional medicine for the treatment of tumors. However, the purification and application of its active components are still insufficient. In the present study, the polysaccharides from S. pallidum (SPPs) with antitumor and immune-enhancing activities were isolated and purified, and five polysaccharide fractions (SPP-0.3, SPP-0.5, SPP-0.7, SPP-1, and SPP-2) were obtained. The ratio of total saccharides, monosaccharide composition, and sulfated contents was determined, and their structures were analyzed by Fourier transform infrared spectroscopy. Moreover, bioactivity analysis showed that all five fractions had significant antitumor activity against three types of cancer cells (A549, HepG2, and B16), and can induce cancer cell apoptosis. In addition, the results indicated that SPPs can enhance the proliferation of immune cells and improve the expression levels of serum cytokines (IL-6, IL-1β, iNOS, and TNF-α). SPP-0.7 was identified as the most active fraction and selected for further purification, and its physicochemical properties and antitumor mechanism were further analyzed. Transcriptome sequencing result showed that SPP-0.7 can significantly induce the cell apoptosis, cytokine secretion, and cellular stress response process, and inhibit the normal physiological processes of cancer cells. Overall, SPPs and SPP-0.7 may be suitable for use as potential candidate agents for cancer therapy.
Collapse
Affiliation(s)
- Yi Gao
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (B.L.)
| | - Yizhen Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.N.); (H.J.); (R.C.)
| | - Yunze Niu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.N.); (H.J.); (R.C.)
| | - Hao Ju
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.N.); (H.J.); (R.C.)
| | - Ran Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.); (Y.N.); (H.J.); (R.C.)
| | - Bin Li
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.G.); (B.L.)
| | - Xiyun Song
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China;
| | - Lin Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao 266042, China
| |
Collapse
|
8
|
Ma Y, Elmhadi M, Wang C, Zhang H, Wang H. Dietary supplementation of thiamine down-regulates the expression of mitophagy and endoplasmic reticulum stress-related genes in the rumen epithelium of goats during high-concentrate diet feeding. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1985944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| | - Mawda Elmhadi
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| | - Chao Wang
- Queen Elizabeth II Medical Centre, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
9
|
Kacar S, Sahinturk V. The Protective Agents Used against Acrylamide Toxicity: An In Vitro Cell Culture Study-Based Review. CELL JOURNAL 2021; 23:367-381. [PMID: 34455711 PMCID: PMC8405082 DOI: 10.22074/cellj.2021.7286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/19/2020] [Indexed: 01/23/2023]
Abstract
Acrylamide is a dangerous electrophile with the potency to react with many biological moieties including proteins, and nucleic acids as well as other macromolecules. Acrylamide was first only known a chemical exposed in working areas as a neurotoxicant, it was later discovered that beyond just being a neurotoxicant exposed in industrial areas, acrylamide is exposed via daily foods as well. As such, several strategies have been sought to be developed to relieve the toxic spectrum of this chemical. The utilization of a protective agent against acrylamide toxicity was one of those strategies. To date, many agents with protective potency have been investigated. Herein, we compiled these agents and their effects shown in in vitro studies. We used the search engines of Web of Knowledge and searched the keywords "acrylamide" and "protect" in the titles along with the keyword "cell" in the topics. Twenty-one directly related articles out of 35 articles were examined. Briefly, all agents used against acrylamide were reported to exhibit protective activity. In most of these reports, 5 mM concentration of acrylamide and 24-hour treatment were the employed dose and duration. Usually, the beneficial agents were pre-treated to the cells. PC12 cells were the most utilized cell line, and the mitogen-activated protein kinase (MAPK) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways were the most studied pathways. This study, beside other importance, can be utilized as a guide for how the protective studies against acrylamide were done and which parameters were investigated in in vitro acrylamide studies. In conclusion, taking measures is of utmost importance to prevent or alleviate the toxicity of acrylamide, to which we are daily exposed even in our homes. Therefore, future studies should persist in focusing on mitigating acrylamide toxicity.
Collapse
Affiliation(s)
- Sedat Kacar
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Varol Sahinturk
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
10
|
Li N, Wang C, Georgiev MI, Bajpai VK, Tundis R, Simal-Gandara J, Lu X, Xiao J, Tang X, Qiao X. Advances in dietary polysaccharides as anticancer agents: Structure-activity relationship. Trends Food Sci Technol 2021; 111:360-377. [DOI: 10.1016/j.tifs.2021.03.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Characterization and antitumor activity of novel exopolysaccharide APS of Lactobacillus plantarum WLPL09 from human breast milk. Int J Biol Macromol 2020; 163:985-995. [PMID: 32629060 DOI: 10.1016/j.ijbiomac.2020.06.277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
Two exopolysaccharides, NPS and APS, were isolated from L. plantarum WLPL09 and purified by ion-exchange chromatography. The structural analyses showed that molecular weight of NPS and APS were 72.60 kDa and 33.22 kDa, respectively. NPS was mainly composed of mannose and glucose, in molar ratio of 85.35:14.65, while APS was composed of mannose, glucose and galactose, in molar ratio of 89.69:8.65:1.66. In in vitro antitumor assays, APS displayed strong anti-proliferative effect against HepG2 hepatocellular carcinoma cells and HCT-8 colon adenocarcinoma cells in a dose-dependent manner. Morphological and flow cytometry analyses revealed that APS strongly induced apoptosis of HepG2 and HCT-8, especially for HCT-8. Furthermore, APS significantly up-regulated the mRNA level of apoptosis-related genes in cancer cells, and remarkably improved the activities of caspase-3, -8 and -9 in HepG2, caspase-3 and -8 in HCT-8. These results suggest APS might be explored as a potential, natural antitumor agent for functional food.
Collapse
|
12
|
Liu W, Xiao K, Ren L, Sui Y, Chen J, Zhang T, Li XQ, Cao W. Leukemia cells apoptosis by a newly discovered heterogeneous polysaccharide from Angelica sinensis (Oliv.) Diels. Carbohydr Polym 2020; 241:116279. [DOI: 10.1016/j.carbpol.2020.116279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/05/2023]
|
13
|
Lam CS, Cheng LP, Zhou LM, Cheung YT, Zuo Z. Herb-drug interactions between the medicinal mushrooms Lingzhi and Yunzhi and cytotoxic anticancer drugs: a systematic review. Chin Med 2020; 15:75. [PMID: 32724333 PMCID: PMC7382813 DOI: 10.1186/s13020-020-00356-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lingzhi and Yunzhi are medicinal mushrooms commonly used with cytotoxic chemotherapy in cancer patients in Asian countries. The current systematic review aims to identify potential pharmacokinetic or pharmacodynamic interactions from the existing literature to ensure their effective and safe combination usage in cancer patients. METHODS A systematic search was conducted on nine major Chinese and English databases, including China Journal Net, Allied and Complementary Medicine Database, and Ovid MEDLINE®, etc., to identify clinical, animal, and in-vitro studies that evaluate the effect of combined use of Lingzhi or Yunzhi with cytotoxic drugs. The Jadad scale was used to assess the quality of clinical studies. RESULTS This search identified 213 studies, including 77 clinical studies that reported on the combined use of cytotoxic drugs with Yunzhi (n = 56) or Lingzhi (n = 21). Majority of these clinical studies demonstrated modest methodological quality. In clinical practice, the most commonly used cytotoxic drugs with Lingzhi were cisplatin, 5-fluorouracil (5-FU) and paclitaxel, whereas Tegafur/uracil (UFT)/Tegafur, 5-FU, and mitomycin were the ones used more often with Yunzhi. Only two clinical pharmacokinetic studies were available showing no significant interactions between Polysaccharide K (PSK) and Tegafur. From the pharmacodynamic interactions perspective, combination uses of Yunzhi/Lingzhi with cytotoxic drugs in clinical practice could lead to improvement in survival (n = 31) and quality of life (n = 17), reduction in tumor lesions (n = 22), immune modulation (n = 38), and alleviation of chemotherapy-related side effects (n = 14) with no reported adverse effects. CONCLUSION Our findings suggest that the clinical combination use of Lingzhi or Yunzhi with cytotoxic drugs could enhance the efficacy and ameliorate the adverse effects of cytotoxic drugs, leading to improved quality of life in cancer patients. More high quality clinical studies including pharmacokinetic herb-drug interactions studies are warranted to verify these observations and mechanisms involved. Based on the high quality clinical data, pharmacoepidemiology methods and bioinformatics or data mining could be adopt for further identification of clinical meaningful herb-drug interactions in cancer therapies.
Collapse
Affiliation(s)
- Chun Sing Lam
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People’s Republic of China
| | - Lok Pui Cheng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People’s Republic of China
| | - Li Min Zhou
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon City, Hong Kong, People’s Republic of China
| | - Yin Ting Cheung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People’s Republic of China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, People’s Republic of China
| |
Collapse
|
14
|
Zou Q, Zhang X, Liu X, Li Y, Tan Q, Dan Q, Yuan T, Liu X, Liu RH, Liu Z. Ficus carica polysaccharide attenuates DSS-induced ulcerative colitis in C57BL/6 mice. Food Funct 2020; 11:6666-6679. [PMID: 32658237 DOI: 10.1039/d0fo01162b] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Ficus carica polysaccharide (FCPS) components of the common fig fruit have been demonstrated to exhibit antioxidant and immunity-enhancing activities. However, it is unclear whether it could prevent the ulcerative colitis development. Here, we reported that 5 week orally administered FCPS (150-300 mg per kg bw) significantly prevented DSS-induced colitis in C57BL/6J mice by improving the colon length and suppressing the infiltration of inflammatory cells in the gut. FCPS treatment protected the goblet cells, elevated the expression of tight junction protein claudin-1, and suppressed the formation of cytokines including TNF-α and IL-1β. FCPS supplementation significantly reformed the gut microbiome by enhancing the abundance of S24-7, Bacteroides, and Coprococus, and suppressing the abundance of Escherichia and Clostridium at the genus level. Consistently, the formation of beneficial microbial metabolites, short chain fatty acids, especially acetate and butyrate, were improved in FCPS-treated colitis mice. The correlation analysis indicated that the protective effects of FCPS on ulcerative colitis might be highly correlated with the microbiota composition changes and the formation of SCFAs. In conclusion, these results indicated that FCPS supplementation could be a promising nutritional strategy for reducing inflammatory bowel disease and the gut microbes play essential roles in providing these beneficial effects.
Collapse
Affiliation(s)
- Qianhui Zou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang H, Ma Y, Wang M, Elsabagh M, Loor JJ, Wang H. Dietary supplementation of l-arginine and N-carbamylglutamate enhances duodenal barrier and mitochondrial functions and suppresses duodenal inflammation and mitophagy in suckling lambs suffering from intrauterine-growth-restriction. Food Funct 2020; 11:4456-4470. [PMID: 32374309 DOI: 10.1039/d0fo00019a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The current work aimed at investigating the effects of the dietary supplementation of N-carbamylglutamate (NCG) or l-arginine (Arg) on the duodenal mitophagy, mitochondrial function, inflammation, and barrier function in suckling lambs suffering from intrauterine-growth-retardation (IUGR). Forty-eight neonate Hu lambs were used in this study: 12 lambs with normal birth weight (NBW: 4.25 ± 0.14 kg) and 36 lambs with IUGR (3.01 ± 0.13 kg). Seven day old lambs were assigned to 4 treatment groups (12 lambs in each group) as follows: control group (CON), IUGR group, IUGR + Arg, and IUGR + NCG. Lambs were fed the experimental diets for 21 days from 7 days to 28 days of age. Compared with IUGR lambs, the Arg or NCG-treated IUGR lambs had a markedly higher duodenal transepithelial electrical resistance (TER) and lower fluorescein isothiocyanate dextran (FD4) (P < 0.05), respectively. The duodenal mitochondrial membrane potential change (ΔΨm), relative mitochondrial DNA (mtDNA) content, adenosine triphosphate (ATP) level, together with the activities of the respiratory complexes I, III, and IV were markedly higher in Arg or NCG-treated IUGR lambs than those in non-supplemented IUGR lambs (P < 0.05). The expressions of the integrity-related proteins (occludin and zonula occludens-1 (ZO-1)), antioxidant- and apoptosis-related proteins (B-cell lymphoma/leukaemia 2 (Bcl2), superoxide dismutase 2 (SOD2), catalase (CAT), and glutathione peroxidase 1 (GPx1)), and the nitric oxide-dependent pathway-related proteins (epithelial NO synthase (eNOS) and inducible NO synthase (iNOS)) were higher in NCG or Arg-supplemented IUGR lambs than those in nontreated IUGR lambs (P < 0.05). The duodenal expressions of the mitophagy-related proteins (microtubule-associated protein light chain 3 (LC3) I, LC3 II, Belin1, PTEN induced putative kinase 1 (PINK1), and Parkin) and the immune function-related proteins (myeloid differentiation factor 88 (MyD88), IL-6, nuclear factor kappa B (p65), toll-like receptor (TLR4) and TNF-α) were reduced (P < 0.05) in NCG or Arg-supplemented IUGR lambs compared with non-supplemented IUGR lambs. These results demonstrated that the dietary supplementation of Arg or NCG enhanced the duodenal barrier function and mitochondrial function, mitigated duodenal inflammation, and suppressed mitophagy in suckling lambs suffering from IUGR.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, P. R. China.
| | | | | | | | | | | |
Collapse
|
16
|
Carboxymethylated Sulfated Heteroexopolysaccharide from a Haloarchaeal Strain as Potential Biomolecule for Harmless Adjuvant Therapy in Cancer Treatment. J CHEM-NY 2020. [DOI: 10.1155/2020/8907958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study explored the possible use of a microbial carboxymethylated sulfated heteroexopolysaccharide (CS-hEPS) as a potential anticancer agent. The investigation was carried out through antioxidant, antifatigue, and antiproliferative activities. Antioxidant potential including scavenging DPPH and hydroxyl radical activities and reducing power was evaluated. Antifatigue activity was determined by assessing the endurance of mice using the forced swimming test. Following 30 days of CS-hEPS oral treatment at different doses, biochemical parameters related to fatigue such as lactic dehydrogenase (LDH), serum urea nitrogen (SUN), and hepatic glycogen (HG) contents were measured. Antitumor activities were investigated against human cancer liver and myelogenous leukemia cells. Results showed that CS-hEPS possesses notable antioxidant, antifatigue, and antitumor effects. CS-hEPS significantly inhibited the proliferation of leukemia (86.6 ± 0.32%) and cancer liver (58.6 ± 0.43%) cells. CS-hEPS are promising natural antioxidant, antifatigue, and antitumor harmless adjuvant materials that could be applied in human cancer therapy.
Collapse
|
17
|
Cao S, Wang C, Yan J, Li X, Wen J, Hu C. Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting Parkin dependent mitophagy through AMPK-TFEB signal pathway. Free Radic Biol Med 2020; 147:8-22. [PMID: 31816386 DOI: 10.1016/j.freeradbiomed.2019.12.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/23/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022]
Abstract
The gut epithelial is known as the most critical barrier for protection against harmful antigens and pathogens. Oxidative stress has been implicated in the dysfunction of the intestine barrier. Hence, effective and safe therapeutic approaches for maintaining intestinal redox balance are urgently needed. Curcumin has gained attention for its vast beneficial biological function via antioxidative stress. However, whether the curcumin can relief intestine damage and mitochondrial injury induced by oxidative stress is still unclear. In this study, we found that curcumin can effectively ameliorate hydrogen peroxide (H2O2)-induced oxidative stress, intestinal epithelial barrier injury and mitochondrial damage in porcine intestinal epithelial cells (IPEC-J2 cells) in a PTEN-induced putative kinase (PINK1)-Parkin mitophagy dependent way. Mechanistically, depletion of Parkin (a mitophagy related protein) abolished curcumin's protective action on anti-oxidative stress, improving intestinal barrier and mitochondrial function in porcine intestinal epithelial cells (IPEC-J2) induced by H2O2. Consistently, the protective effect of curcumin was not found in cells transfected with GFP-ParkinΔUBL, which encodes a mutant Parkin protein without the ubiquitin E3 ligase activity, indicating that the ubiquitin E3 ligase of Parkin is required for curcumin's protective effects. On the other hand, we also found that the protective function of curcumin was diminished when PRKAA1 was depleted in IPEC-J2 cells treated with H2O2. Immunofluorescence and luciferase assay showed that curcumin dramatically enhanced nuclear translocation and transcriptional activity of transcription factor EB (TFEB) in IPEC-J2 cells treated with H2O2, and it was ameliorated by co-treated with compound C, an Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) inhibitor, which means curcumin promotes TFEB transcript via AMPK signal pathway. Consistent with in vitro data, dietary curcumin protected intestinal barrier function, improved redox status, alleviated mitochondrial damage, triggered mitophagy and influenced AMPK-TFEB signal pathway in a well-established pig oxidative stress model by challenging with diquat. Taken together, these results unveil that curcumin ameliorates oxidative stress, enhances intestinal barrier function and mitochondrial function via the induction of Parkin dependent mitophagy through AMPK activation and subsequent TFEB nuclear translocation.
Collapse
Affiliation(s)
- Shuting Cao
- Animal Science College, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Chunchun Wang
- Animal Science College, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Jintao Yan
- Glasgow college, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xin Li
- Animal Science College, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Jiashu Wen
- Animal Science College, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China
| | - Caihong Hu
- Animal Science College, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Jiao C, Chen W, Tan X, Liang H, Li J, Yun H, He C, Chen J, Ma X, Xie Y, Yang BB. Ganoderma lucidum spore oil induces apoptosis of breast cancer cells in vitro and in vivo by activating caspase-3 and caspase-9. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112256. [PMID: 31586690 DOI: 10.1016/j.jep.2019.112256] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The mushroom Ganoderma lucidum (G. lucidum) is a traditional Chinese medicine reported to have a variety of pharmacological properties, including anti-cancer activity. G. lucidum spore oil (GLSO) is a lipid substance extracted from sporoderm-broken spore of G. lucidum. However, the effect of GLSO on breast cancer and the underlying molecular mechanism remain unclear. AIM OF THE STUDY The aim of this study was to identify the effects of GLSO on breast cancer cells in vitro and in vivo as well as to investigate the mechanistic basis for the anticancer effect of GLSO. MATERIALS AND METHODS First, in vitro MDA-MB-231 cells were treated with GLSO (0.2, 0.4, and 0.6 μL/mL). The protein levels of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), X-linked inhibitor of apoptosis (XIAP), total poly (ADP-ribose) polymerase (PARP), caspase-3 and caspase-8 were examined using western blotting. The mRNA expression levels of Fas-associated protein with death domain (FADD), TNF receptor-associated factor 2 (TRAF2), caspases-3, -8, -9 and Bax were examined using qRT-PCR. Second, in vivo the anticancer properties of GLSO were assessed by H&E, TUNEL and immunohistochemistry in BALB/c mice injected with 4T1 cells. In addition, the levels of caspase-9/caspase-3 signaling pathway proteins in tumor tissue were evaluated by immunoblotting. Finally, MDA-MB-231 cells were treated with caspase inhibitors to measure cell viability, the protein levels were examined with western blotting. RESULTS The results in vitro showed that GLSO up-regulated the expression of Bax and caspase-3 in MDA-MB-231 cells, but had no effect on the expression of caspase-8. Moreover, the growth of tumors in vivo was significantly suppressed in the GLSO-treated group. The results of Western blot were consistent with in vitro. In vitro, co-treatment of MDA-MB-231 cells with caspase inhibitors reduced the inhibitory effect of GLSO on cell growth. CONCLUSIONS GLSO inhibits the growth of MDA-MB-231 cells and tumors in vivo by inducing apoptosis, which may be achieved through the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Chunwei Jiao
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| | - Wang Chen
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Xupeng Tan
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Huijia Liang
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Jieyi Li
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Hao Yun
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Chunyan He
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Jiaming Chen
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Xiaowei Ma
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China
| | - Yizhen Xie
- Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, 510663, PR China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, PR China.
| | - Burton B Yang
- Sunnybrook Research Institute, Toronto, M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada.
| |
Collapse
|
19
|
Wong JH, Sze SCW, Ng TB, Cheung RCF, Tam C, Zhang KY, Dan X, Chan YS, Shing Cho WC, Ng CCW, Waye MMY, Liang W, Zhang J, Yang J, Ye X, Lin J, Ye X, Wang H, Liu F, Chan DW, Ngan HYS, Sha O, Li G, Tse R, Tse TF, Chan H. Apoptosis and Anti-cancer Drug Discovery: The Power of Medicinal Fungi and Plants. Curr Med Chem 2019; 25:5613-5630. [DOI: 10.2174/0929867324666170720165005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 01/21/2023]
Abstract
The purpose of this account is to review the compounds capable of eliciting
mitochondria-mediated apoptosis in cancer cells produced by medicinal fungi and plants.
The medicinal fungi discussed encompass Cordyceps, Ganoderma species, Coriolus versicolor
and Hypsizygus marmoreus. The medicinal plants discussed comprise Astragalus
complanatus, Dendrobium spp, Dioscorea spp, Glycyrrhiza spp, Panax notoginseng,
Panax ginseng, and Momordica charantia. These compounds have the potential of development
into anticancer drugs.
Collapse
Affiliation(s)
- Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Stephen Cho Wing Sze
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chit Tam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kalin Yanbo Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yau Sang Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | | | - Mary Miu Yee Waye
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Weicheng Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinfang Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Xiujuan Ye
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing 100193, China
| | - Fang Liu
- Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - David Wai Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hextan Yuen Sheung Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ou Sha
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Guohui Li
- Vita Green Pharmaceuticals (HK) Ltd, Vita Green Health Products (HK) Ltd Genning Partners Company Limited, and Hong Kong Institute of Medical Research, Hong Kong, China
| | - Ryan Tse
- Vita Green Pharmaceuticals (HK) Ltd, Vita Green Health Products (HK) Ltd Genning Partners Company Limited, and Hong Kong Institute of Medical Research, Hong Kong, China
| | - Tak Fu Tse
- Vita Green Pharmaceuticals (HK) Ltd, Vita Green Health Products (HK) Ltd Genning Partners Company Limited, and Hong Kong Institute of Medical Research, Hong Kong, China
| | - Helen Chan
- Vita Green Pharmaceuticals (HK) Ltd, Vita Green Health Products (HK) Ltd Genning Partners Company Limited, and Hong Kong Institute of Medical Research, Hong Kong, China
| |
Collapse
|
20
|
Cao S, Shen Z, Wang C, Zhang Q, Hong Q, He Y, Hu C. Resveratrol improves intestinal barrier function, alleviates mitochondrial dysfunction and induces mitophagy in diquat challenged piglets1. Food Funct 2019; 10:344-354. [DOI: 10.1039/c8fo02091d] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study evaluated whether resveratrol can alleviate intestinal injury and enhance the mitochondrial function and the mitophagy level in diquat induced oxidative stress of piglets.
Collapse
Affiliation(s)
- Shuting Cao
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Zhuojun Shen
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Chunchun Wang
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Qianhui Zhang
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Qihua Hong
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| | - Yonghui He
- Henan Province Engineering Technology Centre of Intelligent Cleaner Production of Livestock and Poultry
- Henan Institute of Science and Technology
- Xinxiang
- China
| | - Caihong Hu
- Animal Science College
- Zhejiang University
- Key Laboratory of Molecular Animal Nutrition
- Ministry of Education
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province
| |
Collapse
|
21
|
Immunomodulating Effect of Ganoderma (Lingzhi) and Possible Mechanism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:1-37. [DOI: 10.1007/978-981-32-9421-9_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Conformational properties of a bioactive polysaccharide from Ganoderma atrum by light scattering and molecular modeling. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Cao Y, Xu X, Liu S, Huang L, Gu J. Ganoderma: A Cancer Immunotherapy Review. Front Pharmacol 2018; 9:1217. [PMID: 30410443 PMCID: PMC6209820 DOI: 10.3389/fphar.2018.01217] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/05/2018] [Indexed: 01/20/2023] Open
Abstract
Ganoderma is a significant source of natural fungal medicines and has been used for the treatment of various diseases for many years. However, the use of Ganoderma in cancer immunotherapy is poorly elucidated. In this study, we have analyzed 2,398 English-language papers and 6,968 Chinese-language papers published between 1987 and 2017 by using bibliometrics. A steady growth in the number of publications was observed before 2004, followed by an exponential increase between 2004 and 2017. The most common category for publications about Ganoderma was "Pharmacology & Pharmacy," in which immunomodulation (25.60%) and cancer treatment (21.40%) were the most popular subcategories. Moreover, we have provided an overview of the bioactive components and combinatorial immunomodulatory effects for the use of Ganoderma in the treatment of cancer, including the major pathways of immune cells. Immunomodulatory protein and polysaccharides are the key bioactive factors responsible for cancer immunotherapy, and the NF-κB and MAPK pathways are the most comprehensively investigated major pathways. Our results indicate that Ganoderma has a broad-spectrum application for the treatment of cancer through the regulation of the immune system. This review provides guidance for future research into the role of Ganoderma in cancer immunotherapy.
Collapse
Affiliation(s)
- Yu Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Pharmacy, Southwest University for Nationalities, Chengdu, China
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Gu
- Department of Pharmacy, Southwest University for Nationalities, Chengdu, China
| |
Collapse
|
24
|
Cao S, Wu H, Wang C, Zhang Q, Jiao L, Lin F, Hu CH. Diquat-induced oxidative stress increases intestinal permeability, impairs mitochondrial function, and triggers mitophagy in piglets. J Anim Sci 2018; 96:1795-1805. [PMID: 29562342 DOI: 10.1093/jas/sky104] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/16/2018] [Indexed: 12/20/2022] Open
Abstract
In the present study, we investigated the influence of diquat-induced oxidative stress on intestinal barrier, mitochondrial function, and the level of mitophagy in piglets. Twelve male Duroc × Landrace × Yorkshire 35-d-old pigs (weaned at 21 d of age), with an average body of 9.6 kg, were allotted to two treatments of six piglets each including the challenged group and the control group. The challenged pigs were injected with 100 mg/kg bodyweight diquat and control pigs injected with 0.9% (w/v) NaCl solution. The results showed that diquat injection decreased ADFI and ADG. Diquat decreased (P < 0.05) the activities of superoxide dismutase and glutathione peroxidase and increased (P < 0.05) the malondialdehyde concentrations. The lower (P < 0.05) transepithelial electrical resistance and higher (P < 0.05) paracellular permeability of fluorescein isothiocyanatedextran 4 kDa were found in diquat challenged piglets. Meanwhile, diquat decreased (P < 0.05) the protein abundance of claudin-1, occluding, and zonula occludens-1 in jejunum compared with the control group. Diquat-induced mitochondrial dysfunction, as demonstrated by increased (P < 0.05) reactive oxygen species production and decreased (P < 0.05) membrane potential of intestinal mitochondria. Diquat-injected pigs revealed a decrease (P < 0.05) of mRNA abundance of genes related to mitochondrial biogenesis and functions, PPARg coactivator-1α, mammalian-silencing information regulator-1, nuclear respiratory factor-1, mt transcription factor A, mt single-strand DNA-binding protein, mt polymerase r, glucokinase, citrate synthase, ATP synthase, and cytochrome coxidase subunit I and V in the jejunum. Diquat induced an increase (P < 0.05) in expression of mitophagy-related proteins, phosphatase and tensin homologue deleted on chromosome 10-induced putative kinase, and Parkin in the intestinal mitochondria, as well as an enhancement of the ratio of light chain 3-II (LC3-II) to LC3-I content in the jejunal mucosa. These results suggest that oxidative stress disrupted the intestinal barrier, caused mitochondrial dysfunction, and triggered mitophagy.
Collapse
Affiliation(s)
- Shuting Cao
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Huan Wu
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - ChunChun Wang
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Qianhui Zhang
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Lefei Jiao
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Fanghui Lin
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Caihong H Hu
- Animal Science College, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
25
|
Cao S, Zhang Q, Wang C, Wu H, Jiao L, Hong Q, Hu C. LPS challenge increased intestinal permeability, disrupted mitochondrial function and triggered mitophagy of piglets. Innate Immun 2018; 24:221-230. [PMID: 29642727 PMCID: PMC6830921 DOI: 10.1177/1753425918769372] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
Here we investigated the influence of LPS-induced gut injury on antioxidant homeostasis, mitochondrial (mt) function and the level of mitophagy in piglets. The results showed that LPS-induced intestinal injury decreased the transepithelial electrical resistance, increased the paracellular permeability of F1TC dextran 4 kDa, and decreased the expression of claudin-1, occludin and zonula occludens-1 in the jejunum compared with the control group. LPS decreased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and increased the content of malondialdehyde in the jejunum. Meanwhile, the expression of SOD-related genes ( Cu/Zn-SOD, Mn-SOD) and GSH-Px-related genes ( GPX-1, GPX-4) declined in LPS-challenged pigs compared with the control. LPS also increased TNF-α, IL-6, IL-8 and IL-1β mRNA expression. LPS induced mt dysfunction, as demonstrated by increased reactive oxygen species production and decreased membrane potential of intestinal mitochondria, intestinal content of mt DNA and activities of the intestinal mt respiratory chain. Furthermore, LPS induced an increase in expression of mitophagy related proteins, PTEN-induced putative kinase (PINK1) and Parkin in the intestinal mitochondria, as well as an enhancement of the ratio of light chain 3-II (LC3-II) to LC3-I content in the jejunal mucosa. These results suggested that LPS-induced intestinal injury accompanied by disrupted antioxidant homeostasis, caused mt dysfunction and triggered mitophagy.
Collapse
Affiliation(s)
- Shuting Cao
- Animal Science College, Zhejiang University, The Key
Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou,
China
| | - Qianhui Zhang
- Animal Science College, Zhejiang University, The Key
Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou,
China
| | - ChunChun Wang
- Animal Science College, Zhejiang University, The Key
Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou,
China
| | - Huan Wu
- Animal Science College, Zhejiang University, The Key
Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou,
China
| | - Lefei Jiao
- Animal Science College, Zhejiang University, The Key
Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou,
China
| | - Qihua Hong
- Animal Science College, Zhejiang University, The Key
Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou,
China
| | - Caihong Hu
- Animal Science College, Zhejiang University, The Key
Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou,
China
| |
Collapse
|
26
|
Chen L, Yang X, Liu R, Liu L, Zhao D, Liu J, Guo Y, Long J. Thinned young apple polysaccharide improves hepatic metabolic disorder in high-fat diet-induced obese mice by activating mitochondrial respiratory functions. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.03.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
27
|
Kheni K, Vyas TK. Characterization of Exopolysaccharide Produced by Ganoderma sp TV1 and Its Potential as Antioxidant and Anticancer Agent. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/22311866.2017.1306461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kruti Kheni
- P.D. Patel Institute of Applied Science, Charotar University of Science & Technology, Changa, Gujarat, India
| | - Trupti K. Vyas
- P.D. Patel Institute of Applied Science, Charotar University of Science & Technology, Changa, Gujarat, India
- Food Quality Testing Laboratory, N.M. College of Agriculture, Navsari Agricultural University, Navsari-396450, Gujarat, India
| |
Collapse
|
28
|
Characterization of Compounds with Tumor-Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii) Mycelia Produced by Solid-State Fermentation. Molecules 2017; 22:molecules22050698. [PMID: 28448441 PMCID: PMC6154627 DOI: 10.3390/molecules22050698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 01/06/2023] Open
Abstract
The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol) fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC), high-speed countercurrent chromatography (HSCCC), and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic methods as ergosterol (RF1), ergosta-7,22-dien-3β-yl pentadecanoate (RF3), 3,4-dihydroxy benzaldehyde(RF6), inoscavinA (RF7), baicalein(RF10), and 24-ethylcholesta-5,22-dien-3β-ol (RF13). To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.
Collapse
|
29
|
Pires ADRA, Ruthes AC, Cadena SMSC, Iacomini M. Cytotoxic effect of a mannogalactoglucan extracted from Agaricus bisporus on HepG2 cells. Carbohydr Polym 2017; 170:33-42. [PMID: 28522001 DOI: 10.1016/j.carbpol.2017.04.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
A mannogalactoglucan (RK2-Ab; Mw 1.8×104gmol-1) composed by Man (27.3%), Gal (24.4%) and Glc (48.3%) was extracted and characterized from Agaricus bisporus, and its biological activity was evaluated on human hepatocarcinoma cells (HepG2). The partially-O-methylated alditol acetates together with the NMR data suggest the main chain to be composed of α-d-Galp (32.8%) and β-d-Glcp (37.0%) units (1→6)-linked, with β-d-Manp (14.6%), as non-reducing end units, substituting the side chains at O-2 (α-d-Galp units; 3.3%) and O-2 and O-4 (β-d-Glcp units; 3.6%). (1→2)-linked β-d-Glcp (2.7%) and β-d-Manp (6.0%) can also be observed. RK2-Ab reduced cellular viability of HepG2 cells, by both, the MTT and lactate dehydrogenase release assays, promoted the increase of cytochrome c release and decrease of ATP content. Suggesting that the mannogalactoglucan from A. bisporus may have antitumor activity by inducing apoptosis by the mitochondrial death pathway, and could be used in cancer therapy.
Collapse
Affiliation(s)
- Amanda do Rocio Andrade Pires
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, CEP 81531-980 Curitiba, PR, Brazil
| | - Andrea Caroline Ruthes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, CEP 81531-980 Curitiba, PR, Brazil; Division of Glycoscience, School of Biotechnology, AlbaNova University Centre, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden.
| | | | - Marcello Iacomini
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, CEP 81531-980 Curitiba, PR, Brazil.
| |
Collapse
|
30
|
Fan S, Zhang J, Nie W, Zhou W, Jin L, Chen X, Lu J. Antitumor effects of polysaccharide from Sargassum fusiforme against human hepatocellular carcinoma HepG2 cells. Food Chem Toxicol 2017; 102:53-62. [PMID: 28131629 DOI: 10.1016/j.fct.2017.01.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/27/2023]
Abstract
Sargassum fusiforme (Harv.) Setchel, a kind of brown algae, has been applied as a therapeutic for thousands of years. This study was designed to investigate the antitumor effects of the polysaccharide (SFPS) from S. fusiform in liver cancer. The mice inoculated with HepG2 cells were orally administrated with SFPS at the doses of 100, 200 and 400 mg/kg body weight for 28 days. The products from peritoneal macrophages and serum in HepG2-bearing mice were measured. The effect of SFPS-induced cell apoptosis was measured by flow cytometry. Meanwhile, the expression levels of Bax and Bcl-2 were detected. Furthermore, the cytotoxicity of SFPS was evaluated by CCK-8 assay. Results showed that SFPS significantly inhibited growth of human HepG2 cell-transplanted tumor in nude mice, and remarkably increased serum TNF-α, IL-1, NO and IgM levels in HepG2-bearing mice. SFPS also promoted the cytokines (IL-1 and TNF-α) secreted by peritoneal macrophages in HepG2-bearing mice. SFPS exerted a stimulatory effect on apoptosis of HepG2 cells, increased the expression of Bax, and decreased the expression of Bcl-2. The results indicated that SFPS has anti-tumor and immunomodulatory activities at the high concentration, and it could be used as a potential chemopreventative and/or adjuvant chemotherapeutic agent in liver cancer.
Collapse
Affiliation(s)
- Sairong Fan
- Institute of Glycobiological Engineering, School of Laboratory Medicine & Life Science, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Junfeng Zhang
- Institute of Glycobiological Engineering, School of Laboratory Medicine & Life Science, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenjian Nie
- Institute of Glycobiological Engineering, School of Laboratory Medicine & Life Science, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenyuan Zhou
- Institute of Glycobiological Engineering, School of Laboratory Medicine & Life Science, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Liqin Jin
- Institute of Glycobiological Engineering, School of Laboratory Medicine & Life Science, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoming Chen
- Institute of Glycobiological Engineering, School of Laboratory Medicine & Life Science, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Science, Wenzhou Medical University, Wenzhou 325035, China.
| | - Jianxin Lu
- Institute of Glycobiological Engineering, School of Laboratory Medicine & Life Science, Wenzhou Medical University, Wenzhou 325035, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine & Life Science, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
31
|
Na K, Li K, Sang T, Wu K, Wang Y, Wang X. Anticarcinogenic effects of water extract of sporoderm-broken spores of Ganoderma lucidum on colorectal cancer in vitro and in vivo. Int J Oncol 2017; 50:1541-1554. [PMID: 28358412 PMCID: PMC5403400 DOI: 10.3892/ijo.2017.3939] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023] Open
Abstract
Ganoderma lucidum (G. lucidum) polysaccharides (GLPs) have been used as traditional Chinese medicine for cancer prevention for many years. However, the mechanism by which GLP exerts its chemopreventive activities remains elusive. In addition, it is unclear whether sporoderm-broken spores of G. lucidum water extract (BSGLWE), which contains mainly GLPs, has anticancer effects on colorectal cancer. The present study investigated the anticancer effects and potential mechanisms of BSGLWE on colorectal cancer in vivo and in vitro. Our results showed that BSGLWE significantly inhibited colorectal cancer HCT116 cell viability in a time- and dose-dependent manner. Flow cytometry analysis indicated that BSGLWE disrupted cell cycle progression at G2/M phase via downregulation of cyclin B1 and cyclin A2, and upregulation of P21 at mRNA levels. Moreover, BSGLWE induced apoptosis by decreasing Bcl-2 and survivin at mRNA levels, and reduced Bcl-2, PARP, pro-caspase-3 and pro-caspase-9 at protein levels. Furthermore, BSGLWE suppressed tumor growth in vivo by regulating the expression of genes and proteins associated with cell cycle and apoptosis, which was further confirmed by a reduction of Ki67, PCNA, and Bcl-2 expression as determined by immunohistochemistry staining. NSAID activated gene-1 (NAG-1), a pro-apoptotic gene, was significantly upregulated in vivo and in vitro upon BSGLWE treatment at both mRNA and protein levels. In addition, the relative amounts of secreted NAG-1 in cell culture medium or serum of nude mice were all upregulated upon BSGLWE treatments, suggesting a role of NAG-1 in BSGLWE-induced anticolorectal cancer activity. This is the first study to show that BSGLWE inhibits colorectal cancer carcinogenesis through regulating genes responsible for cell proliferation, cell cycle and apoptosis cascades. These findings indicate that BSGLWE possesses chemopreventive potential in colorectal cancer which may serve as a promising anticancer agent for clinical applications.
Collapse
Affiliation(s)
- Kun Na
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Kang Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Tingting Sang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Kaikai Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Ying Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xingya Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
32
|
Zhang H, Nie S, Cui SW, Xu M, Ding H, Xie M. Characterization of a bioactive polysaccharide from Ganoderma atrum: Re-elucidation of the fine structure. Carbohydr Polym 2017; 158:58-67. [DOI: 10.1016/j.carbpol.2016.11.088] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/04/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
|
33
|
Li WJ, Tang XF, Shuai XX, Jiang CJ, Liu X, Wang LF, Yao YF, Nie SP, Xie MY. Mannose Receptor Mediates the Immune Response to Ganoderma atrum Polysaccharides in Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:348-357. [PMID: 27931102 DOI: 10.1021/acs.jafc.6b04888] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of mannose receptor (MR) to recognize the carbohydrate structures is well-established. Here, we reported that MR was crucial for the immune response to a Ganoderma atrum polysaccharide (PSG-1), as evidenced by elevation of MR in association with increase of phagocytosis and concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in normal macrophages. Elevation of MR triggered by PSG-1 also led to control lipopolysaccharide (LPS)-triggered inflammatory response via the increase of interleukin-10 (IL-10) and inhibition of phagocytosis and IL-1β. Anti-MR antibody partly attenuated PSG-1-mediated anti-inflammatory responses, while it could not affect TNF-α secretion, suggesting that another receptor was involved in PSG-1-triggered immunomodulatory effects. MR and toll-like receptor (TLR)4 coordinated the influences on the TLR4-mediated signaling cascade by the nuclear factor-κB (NF-κB) pathway in LPS-stimulated macrophages subjected to PSG-1. Collectively, immune response to PSG-1 required recognition by MR in macrophages. The NF-κB pathway served as a central role for the coordination of MR and TLR4 to elicit immune response to PSG-1.
Collapse
Affiliation(s)
- Wen-Juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiao-Fang Tang
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiao-Xue Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Cheng-Jia Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiang Liu
- School of Basic Medical Sciences, Nanchang University , 999 Xuefu Road, Nanchang, Jiangxi 330031, People's Republic of China
| | - Le-Feng Wang
- School of Basic Medical Sciences, Nanchang University , 999 Xuefu Road, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yu-Fei Yao
- Chinese Liberation Army No. 94 Hospital , 1028 Jinggangshan Avenue, Nanchang, Jiangxi 330000, People's Republic of China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
34
|
Yao YF, Liu X, Li WJ, Shi ZW, Yan YX, Wang LF, Chen M, Xie MY. (-)-Epigallocatechin-3-gallate alleviates doxorubicin-induced cardiotoxicity in sarcoma 180 tumor-bearing mice. Life Sci 2016; 180:151-159. [PMID: 27956351 DOI: 10.1016/j.lfs.2016.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/23/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022]
Abstract
AIMS (-)-Epigallocatechin-3-gallate (EGCG), a major green tea polyphenol compound, plays an important role in the prevention of cardiovascular disease and cancer. The present study aimed to investigate the effects of EGCG on doxorubicin (DOX)-induced cardiotoxicity in Sarcoma 180 (S180) tumor-bearing mice. MAIN METHODS S180 tumor-bearing mice were established by subcutaneous inoculation of S180 cells attached to the axillary region. The extent of myocardial injury was accessed by the amount of lactate dehydrogenase (LDH) released in serum. Heart tissue was morphologically studied with transmission electron microscopy. Apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔѰm) as well as calcium concentration were measured by flow cytometric analysis. Expression levels of manganese superoxide dismutase (MnSOD) were analyzed by Western blot. KEY FINDINGS Results showed that the combination with EGCG and DOX significantly inhibited tumor growth and enhanced induction of apoptosis compared with DOX alone. Moreover, administration of EGCG could suppress DOX-induced cardiotoxicity as evidenced by alleviating LDH release and apoptosis in cardiomyocyte. EGCG-evoked cardioprotection was in association with the increase of ΔѰm and MnSOD expression. EGCG was also found to attenuate ROS generation and myocardial calcium overload in Sarcoma 180 tumor-bearing mice subjected to DOX. SIGNIFICANCE EGCG alleviated DOX-induced cardiotoxicity possibly in part mediated by increasing of MnSOD and Ѱm, reducing myocardial calcium overload and subsequently attenuating the apoptosis and LDH release. Our findings suggest that co-administration of EGCG and DOX have potential as a feasible strategy to mitigate cardiotoxicity of DOX without compromising its chemotherapeutic value.
Collapse
Affiliation(s)
- Yu-Fei Yao
- Chinese Liberation Army No. 94 Hospital, No. 1028, Jinggangshan Avenue, Nanchang 330000, China; The Great Wall Affiliated Hospital, Nanchang University, No. 1028, Jinggangshan Avenue, Nanchang 330000, China
| | - Xiang Liu
- School of Basic Medical Sciences, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, China
| | - Wen-Juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Zi-Wei Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yu-Xin Yan
- School of Basic Medical Sciences, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, China
| | - Le-Feng Wang
- School of Basic Medical Sciences, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, China
| | - Ming Chen
- School of Basic Medical Sciences, Nanchang University, No. 999 Xuefu Road, Nanchang 330031, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
35
|
Synthesis, characterization and in vitro biological activities of ruthenium(II) polypyridyl complexes. TRANSIT METAL CHEM 2016. [DOI: 10.1007/s11243-016-0096-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
|
37
|
Huang X, Nie S. The structure of mushroom polysaccharides and their beneficial role in health. Food Funct 2016; 6:3205-17. [PMID: 26345165 DOI: 10.1039/c5fo00678c] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mushroom is a kind of fungus that has been popular for its special flavour and renowned biological values. The polysaccharide contained in mushroom is regarded as one of the primary bioactive constituents and is beneficial for health. The structural features and bioactivities of mushroom polysaccharides have been studied extensively. It is believed that the diverse biological bioactivities of polysaccharides are closely related to their structure or conformation properties. In this review, the structural characteristics, conformational features and bioactivities of several mushroom polysaccharides are summarized, and their beneficial mechanisms and the relationships between their structure and bioactivities are also discussed.
Collapse
Affiliation(s)
- Xiaojun Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | | |
Collapse
|
38
|
Anti-tumor and immunomodulatory activities of an exopolysaccharide from Rhizopus nigricans on CT26 tumor-bearing mice. Int Immunopharmacol 2016; 36:218-224. [DOI: 10.1016/j.intimp.2016.04.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/31/2016] [Accepted: 04/18/2016] [Indexed: 01/05/2023]
|
39
|
Cao J, Hou D, Lu J, Zhu L, Zhang P, Zhou N, Chen K. Anti-tumor activity of exopolysaccharide from Rhizopus nigricans Ehrenb on S180 tumor-bearing mice. Bioorg Med Chem Lett 2016; 26:2098-104. [DOI: 10.1016/j.bmcl.2016.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/24/2016] [Accepted: 02/04/2016] [Indexed: 11/25/2022]
|
40
|
Yu Q, Nie SP, Wang JQ, Huang DF, Li WJ, Xie MY. Signaling pathway involved in the immunomodulatory effect of Ganoderma atrum polysaccharide in spleen lymphocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2734-2740. [PMID: 25715057 DOI: 10.1021/acs.jafc.5b00028] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this study was to investigate the molecular mechanism underlying the immunomodulatory effect of Ganoderma atrum polysaccharide (PSG-1) in spleen lymphocytes. Our results showed that PSG-1 increased the intracellular Ca2+ concentration and calcineurin (CaN) activity. Moreover, PSG-1 was found to elevate nuclear factor of activated T cells (NFAT) activity, but this effect could be diminished by the treatment of CaN inhibitors (cyclosporin A and FK506). PSG-1-induced interleukin (IL)-2 production was also inhibited by cyclosporin A and FK506. In addition, PSG-1 was found to significantly enhance protein kinase C (PKC) activity. PKC was involved in induction of NFAT activity by PSG-1, as evidenced by abrogation of NFAT activity by PKC inhibitor calphostin C, which significantly decreased PSG-1-induced IL-2 production. On the basis of these results, we concluded that PSG-1 may induce activation of spleen lymphocytes at least in part via the Ca2+/CaN/NFAT/IL-2 signaling pathway and the PKC/NFAT/IL-2 signaling pathway cooperatively regulated PSG-1-induced activation of spleen lymphocytes.
Collapse
Affiliation(s)
- Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Jun-Qiao Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Dan-Fei Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Wen-Juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
41
|
Yu Q, Nie SP, Wang JQ, Huang DF, Li WJ, Xie MY. Toll-like receptor 4 mediates the antitumor host response induced by Ganoderma atrum polysaccharide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:517-525. [PMID: 25549720 DOI: 10.1021/jf5041096] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this study is to investigate the role of Toll-like receptor (TLR) 4 in Ganoderma atrum polysaccharide (PSG-1)-induced antitumor activity. In vitro, the apoptosis rate of S-180 cells was increased in PSG-1-induced peritoneal macrophage derived from C3H/HeN (wild-type) mice, but not from C3H/HeJ (TLR4-deficient) mice. In the S-180 tumor model, phagocytosis, NO and ROS release, phosphorylation of MAPKs and Akt, and expression of NF-κB were increased by PSG-1 in peritoneal macrophage derived from C3H/HeN mice. Furthermore, PSG-1 elevated Th1 cytokine production and enhanced the cytotoxic activity of CTL and NK cells in C3H/HeN mice. In addition, PSG-1 decreased the tumor weight and increased the apoptosis rate and caspase-3 and caspase-9 activities of tumor derived from the C3H/HeN mice. However, none of these activities were observed in C3H/HeJ mice. In summary, these findings demonstrated that the antitumor activity of PSG-1 is mediated by TLR4.
Collapse
Affiliation(s)
- Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | | | | | | | | | | |
Collapse
|
42
|
Huang F, Zhang R, Dong L, Guo J, Deng Y, Yi Y, Zhang M. Antioxidant and antiproliferative activities of polysaccharide fractions from litchi pulp. Food Funct 2015; 6:2598-606. [DOI: 10.1039/c5fo00249d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three litchi polysaccharide fractions (LPFs), LP-4, LP-6 and LP-8, were obtained by fractional precipitation using 40%, 60% and 80% ethanol, respectively.
Collapse
Affiliation(s)
- Fei Huang
- Sericultural & Agri-food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- P. R. China
| | - Ruifen Zhang
- Sericultural & Agri-food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- P. R. China
| | - Lihong Dong
- Sericultural & Agri-food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- P. R. China
| | - Jinxin Guo
- Sericultural & Agri-food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- P. R. China
| | - Yuanyuan Deng
- Sericultural & Agri-food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- P. R. China
| | - Yang Yi
- College of Food Science & Engineering
- Wuhan Polytechnic University
- Wuhan 430023
- P. R. China
| | - Mingwei Zhang
- Sericultural & Agri-food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- P. R. China
| |
Collapse
|
43
|
Zhang S, Nie S, Huang D, Huang J, Feng Y, Xie M. A polysaccharide from Ganoderma atrum inhibits tumor growth by induction of apoptosis and activation of immune response in CT26-bearing mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9296-9304. [PMID: 25179589 DOI: 10.1021/jf503250d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ganoderma atrum is one species of edible and pharmaceutical mushroom with various biological activities. Recently, a novel polysaccharide, PSG-1, was purified from G. atrum. The antitumor activity and its mechanism of action were studied. In vitro, PSG-1 has little effect on inhibiting proliferation of CT26 tumor cells. However, the tumor size was significantly decreased in PSG-1-treated mice. The results showed that PSG-1 induced apoptosis in CT26 cells. Moreover, the intracellular cyclic AMP (cAMP) level and protein kinase A (PKA) activity were markedly increased in PSG-1-treated mice. In contrast, the contents of cyclic GMP and DAG and the PKC activity were decreased. Similarly, the expression of PKA protein was upregulated, while PKC protein expression in PSG-1-treated group was lowered. Additionally, PSG-1 increased the immune organ index and serum biochemistry parameter. In general, PSG-1 enhances the antitumor immune response, induces apoptosis in CT26-bearing mice, and could be a safe and effective adjuvant for tumor therapy or functional food.
Collapse
Affiliation(s)
- Shenshen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | | | | | | | | | | |
Collapse
|
44
|
Meng LZ, Xie J, Lv GP, Hu DJ, Zhao J, Duan JA, Li SP. A comparative study on immunomodulatory activity of polysaccharides from two official species of Ganoderma (Lingzhi). Nutr Cancer 2014; 66:1124-31. [PMID: 25204488 DOI: 10.1080/01635581.2014.948215] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two Ganoderma species, G. lucidum and G. sinense, are listed as Lingzhi in Chinese Pharmacopoeia and they are considered to have the same therapeutic effects. Polysaccharides were the main immunomodulatory and anticancer components in Ganoderma. In this study, the chemical characters and the effects of polysaccharides from G. lucidum (GLPS) and G. sinense (GSPS) on macrophage functions were investigated and compared. Chemical studies showed that GLPS and GSPS were different, displaying various molecular weight distribution and ratio of monosaccharide components. In vitro pharmacological studies showed that both GLPS and GSPS had potent effects on macrophage functions, such as promoting macrophage phagocytosis, increasing their release of nitric oxide and cytokines interleukin (IL)-1α, IL-6, IL-10, and tumor necrosis factor-α. Generally, GLPS was more powerful than GSPS. This study is helpful to elucidate the active components and pharmacological variation between the 2 Ganoderma species. The structure-activity relationship of polysaccharides from Ganoderma needs further study.
Collapse
Affiliation(s)
- Lan-Zhen Meng
- a State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences , University of Macau , Macao SAR , China
| | | | | | | | | | | | | |
Collapse
|
45
|
Chen Y, Zhang H, Wang Y, Nie S, Li C, Xie M. Acetylation and carboxymethylation of the polysaccharide from Ganoderma atrum and their antioxidant and immunomodulating activities. Food Chem 2014; 156:279-88. [DOI: 10.1016/j.foodchem.2014.01.111] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
|
46
|
Ficus carica polysaccharides promote the maturation and function of dendritic cells. Int J Mol Sci 2014; 15:12469-79. [PMID: 25026176 PMCID: PMC4139854 DOI: 10.3390/ijms150712469] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/25/2014] [Accepted: 03/20/2014] [Indexed: 12/20/2022] Open
Abstract
Various polysaccharides purified from plants are considered to be biological response modifiers and have been shown to enhance immune responses. Ficus carica L. is a Chinese traditional plant and has been widely used in Asian countries for its anti-tumor properties. Ficus carica polysaccharides (FCPS), one of the most essential and effective components in Ficus carica L., have been considered to be a beneficial immunomodulator and may be used in immunotherapy. However, the immunologic mechanism of FCPS is still unclear. Dectin-1 is a non-toll-like pattern recognition receptor, predominately expressed on dendritic cells (DCs). Activation of DCs through dectin-1 signaling can lead to the maturation of DC, thus inducing both innate and adaptive immune responses against tumor development and microbial infection. In our study, we found that FCPS could effectively stimulate DCs, partially through the dectin-1/Syk pathway, and promote their maturation, as shown by the up-regulation of CD40, CD80, CD86, and major histocompatibility complex II (MHCII). FCPS also enhanced the production of cytokines by DCs, including IL-12, IFN-γ, IL-6, and IL-23. Moreover, FCPS-treated DCs showed an enhanced capability to stimulate T cells and promote T cell proliferation. Altogether, these results demonstrate that FCPS are able to activate and maturate DCs, thereby up-regulating the immunostimulatory capacity of DCs, which leads to enhanced T cell responses.
Collapse
|
47
|
Exopolysaccharide from Ganoderma applanatum as a promising bioactive compound with cytostatic and antibacterial properties. BIOMED RESEARCH INTERNATIONAL 2014; 2014:743812. [PMID: 25114920 PMCID: PMC4120920 DOI: 10.1155/2014/743812] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/26/2014] [Indexed: 12/31/2022]
Abstract
A new exopolysaccharide preparation isolated from stationary cultures of the white rot fungus Ganoderma applanatum (GpEPS) was tested in terms of its bioactive properties including its cytotoxic and immunostimulatory effect. The results indicate that the tested GpEPS (at concentrations above 22.85 µg/mL and 228.5 µg/mL) may exhibit selective activity against tumor cells (cell lines SiHa) and stimulate production of TNF-α THP-1-derived macrophages at the level of 752.17 pg/mL. The GpEPS showed antibacterial properties against Staphyloccoccus aureus and a toxic effect against Vibrio fischeri cells (82.8% cell damage). High cholesterol-binding capacity and triglycerides-binding capacity (57.9% and 41.6% after 24 h of incubation with the tested substances, resp.) were also detected for the investigated samples of GpEPS.
Collapse
|
48
|
Structural characterization of a heterogalactan purified from fruiting bodies of Ganoderma atrum. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2013.08.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Yu Q, Nie SP, Wang JQ, Liu XZ, Yin PF, Huang DF, Li WJ, Gong DM, Xie MY. Chemoprotective effects of Ganoderma atrum polysaccharide in cyclophosphamide-induced mice. Int J Biol Macromol 2014; 64:395-401. [DOI: 10.1016/j.ijbiomac.2013.12.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/07/2013] [Accepted: 12/18/2013] [Indexed: 01/01/2023]
|
50
|
Tan YF, Li HL, Lai WY, Zhang JQ. Crude dietary polysaccharide fraction isolated from jackfruit enhances immune system activity in mice. J Med Food 2014; 16:663-8. [PMID: 23875906 DOI: 10.1089/jmf.2012.2565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Crude polysaccharides (PSs) were isolated from the fruit pulp of jackfruit, and their chemical composition determined and evaluated for an immune regulatory activity in mice. The PSs were isolated from water extracts of jackfruit pulp (JFP) using the ethanol precipitation method. The resulting precipitates were further purified by dialysis and protein depletion by the Sevage method. The phenol-sulfuric method was used to determine the content of the PSs. The composition of PSs was determined by the Sephadex-G200 column chromatography and high-performance liquid chromatography methods. The thymus index and macrophage phagocytic function methods in mice were used to evaluate the immune regulatory activity of JFP-PSs. The JFP-PSs content in jackfruit was about 21% (w/w) and the yield of crude PSs was 3.91%. The single molecular mass weight PS was the main constituent of JFP-PSs. The major monosaccharide residues were rhamnose, glucose, galactose, and arabinose. The JFP-PSs enhanced the thymus weight index and the phagocytic rate after 30 days of subchronic p.o. administration to mice at 4.5 mg/kg. The JFP contains single molecular PS and JFP-PS has immune-stimulating activities in mice. These data suggest that at least some of the traditional uses of JFP can be ascribed to its immunomodulatory effects.
Collapse
Affiliation(s)
- Yin-Feng Tan
- Hainan Provincial Key Laboratory of Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical College, Haikou, China
| | | | | | | |
Collapse
|