1
|
Raasveld FV, Liu WC, Renthal WR, Fleming ME, Valerio IL, Eberlin KR. Heterotopic Ossification Is Associated with Painful Neuromas in Transtibial Amputees Undergoing Surgical Treatment of Symptomatic Neuromas. Plast Reconstr Surg 2025; 155:185-193. [PMID: 38507565 DOI: 10.1097/prs.0000000000011402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND A relationship between nerve and osseous regeneration has been described. During the surgical treatment of symptomatic neuroma in transtibial amputees, the authors have found that heterotopic ossification (HO) depicted on preoperative radiographs appeared to be associated with the location of symptomatic neuromas in both the peroneal and tibial nerve distributions. METHODS Data were collected for transtibial amputees who underwent surgical management of symptomatic neuroma and were prospectively enrolled from 2018 through 2023. Preoperative radiographs were assessed for the presence of HO located at the distal fibula and tibia. The presence of a peroneal or tibial neuroma was based on findings contained within the operative reports. Pain levels were measured on a numeric rating scale (0 to 10). RESULTS Sixty-five limbs of 62 amputees were included. Peroneal neuroma and presence of fibular HO ( P = 0.001) and tibial neuroma and presence of tibial HO ( P = 0.038) demonstrated an association. The odds of having a symptomatic peroneal neuroma with fibular HO present were greater than the odds of a symptomatic peroneal neuroma when fibular HO was absent (OR, 9.3 [95% CI, 1.9 to -45.6]; P = 0.006). Preoperative pain scores were significantly higher for all patients with HO ( P < 0.001), those with fibular HO ( P < 0.001), and those with tibial HO ( P < 0.001), compared with patients without HO. CONCLUSIONS In patients with symptomatic neuromas, preoperative pain was worse when HO was present in the transtibial amputee's residual limb. Further research on the neuroma-HO complex in symptomatic amputees is required. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, III.
Collapse
Affiliation(s)
- Floris V Raasveld
- From the Hand and Arm Center
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Erasmus University
| | - Wen-Chih Liu
- From the Hand and Arm Center
- Department of Orthopaedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University
| | - William R Renthal
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| | | | - Ian L Valerio
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School
| | - Kyle R Eberlin
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
2
|
Ma L, Kang X, Tan J, Wang Y, Liu X, Tang H, Guo L, Tang K, Bian X. Denervation‑induced NRG3 aggravates muscle heterotopic ossification via the ErbB4/PI3K/Akt signaling pathway. Mol Med Rep 2025; 31:9. [PMID: 39450542 PMCID: PMC11529186 DOI: 10.3892/mmr.2024.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/14/2024] [Indexed: 10/26/2024] Open
Abstract
Peripheral nerve injury exacerbates progression of muscle heterotopic ossification (HO) and induces changes in expression of local cytokines in muscle tissue. The objective of the present study was to assess the impact of peripheral nerve injury on muscle HO development and the mechanism of cytokine modulation. A mouse model of gastrocnemius muscle HO was established and the sciatic nerve cut to simulate peripheral nerve injury. To evaluate the underlying factors contributing to the exacerbation of muscle HO resulting from denervation, fresh muscle tissue was collected and micro‑computed tomography, histochemical staining, RNA‑sequencing, reverse transcription‑quantitative PCR, Western blot, muscle tissue chip array were performed to analyze the molecular mechanisms. Sciatic nerve injury exacerbated HO in the gastrocnemius muscle of mice. Moreover the osteogenic differentiation of nerve‑injured muscle tissue‑derived fibro‑adipogenic progenitors (FAPs) increased in vitro. The expression of neuregulin 3 (NRG3) was demonstrated to be increased after nerve injury by muscle tissue chip array. Subsequent transcriptome sequencing analysis of muscle tissue revealed an enrichment of the PI3K/Akt pathway following nerve injury and an inhibitor of the PI3K/Akt pathway reduced the osteogenic differentiation of FAPs. Mechanistically, in vitro, peripheral nerve injury increased secretion of NRG3, which, following binding to ErbB4 on the cell surface of FAPs, promoted expression of osteogenesis‑associated genes via the PI3K/Akt signaling pathway, thus contributing to osteogenic differentiation of FAPs. In vivo, inhibition of the PI3K/Akt pathway effectively protected against muscle HO induced by peripheral nerve injury in mice. The present study demonstrated that the regulatory roles of NRG3 and the PI3K/Akt pathway in peripheral nerve injury exacerbated muscle HO and highlights a potential therapeutic intervention for treatment of peripheral nerve injury‑induced muscle HO.
Collapse
Affiliation(s)
- Lin Ma
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xia Kang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Jindong Tan
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Yunjiao Wang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xiao Liu
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Hong Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Lin Guo
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Kanglai Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
| | - Xuting Bian
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing 400038, P.R. China
- Department of Health Service, Shigatse Branch, Xinqiao Hospital, Army Medical University, Shigatse 857000, Tibet Autonomous Region. P.R. China
| |
Collapse
|
3
|
Pereira CT, Adams SH, Lloyd KCK, Knotts TA, James AW, Price TJ, Levi B. Exploring the role of peripheral nerves in trauma-induced heterotopic ossification. JBMR Plus 2025; 9:ziae155. [PMID: 39677925 PMCID: PMC11646309 DOI: 10.1093/jbmrpl/ziae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/08/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Recent studies have linked pain and the resultant nociception-induced neural inflammation (NINI) to trauma-induced heterotopic ossification (THO). It is postulated that nociception at the injury site stimulates the transient receptor potential vanilloid-1 (the transient receptor potential cation channel subfamily V member 1) receptors on sensory nerves within the injured tissues resulting in the expression of neuroinflammatory peptides, substance P (SP), and calcitonin gene-related peptide (CGRP). Additionally, BMP-2 released from fractured bones and soft tissue injury also selectively activates TRVP1 receptors, resulting in the release of SP and CGRP and causing neuroinflammation and degranulation of mast cells causing the breakdown the blood-nerve barrier (BNB), leading to release of neural crest derived progenitor cells (NCDPCs) into the injured tissue. Parallel to this process BMP-2 initiates the NCDPCs toward osteogenic differentiation. CGRP has direct osteogenic effects on osteoprogenitor cells/mesenchymal stem cells, by activating BMP-2 via canonical Wnt/β-catenin signaling and cAMP-cAMP-response element binding protein signaling. BMP-2 binds to TGF-βRI and activates TGF-β-activated kinase 1 (TAK1) leading to phosphorylation of SMAD1/5/8, which binds to the co-activator SMAD4 and translocates to the nucleus to serve as transcription factor for BMP responsive genes critical in osteogenesis such as Runx2 and others. Thus, NINI phenotypes, and specifically CGRP induction, play a crucial role in THO initiation and progression through the activation of the BMP pathway, breakdown of the BNB, leading to the escape of NCDPCs, and the osteogenic differentiation of the latter.
Collapse
Affiliation(s)
- Clifford T Pereira
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95816, United States
| | - Sean H Adams
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95816, United States
- University of California, Davis Center for Alimentary and Metabolic Science, Davis, CA 95816, United States
| | - K C Kent Lloyd
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95816, United States
- University of California, Davis Center for Alimentary and Metabolic Science, Davis, CA 95816, United States
| | - Trina A Knotts
- Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95816, United States
- University of California, Davis Center for Alimentary and Metabolic Science, Davis, CA 95816, United States
| | - Aaron W James
- Department of Pathology, John’s Hopkins University, Baltimore, MD 21287, United States
| | - Theodore J Price
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, United States
| | - Benjamin Levi
- University of Texas, Southwestern Medical Center, Dallas, TX 75080, United States
| |
Collapse
|
4
|
Jiang T, Ao X, Xiang X, Zhang J, Cai J, Fu J, Zhang W, Zheng Z, Chu J, Huang M, Zhang Z, Wang L. Mast cell activation by NGF drives the formation of trauma-induced heterotopic ossification. JCI Insight 2024; 10:e179759. [PMID: 39589893 PMCID: PMC11721298 DOI: 10.1172/jci.insight.179759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Soft tissue trauma can cause immune system disturbance and neuropathological invasion, resulting in heterotopic ossification (HO) due to aberrant chondrogenic differentiation of mesenchymal stem cells (MSCs). However, the molecular mechanisms behind the interaction between the immune and nervous systems in promoting HO pathogenesis are unclear. In this study, we found that mast cell-specific deletion attenuated localized tissue inflammation, with marked inhibition of HO endochondral osteogenesis. Likewise, blockage of nerve growth factor (NGF) receptor, known as tropomyosin receptor kinase A (TrkA), led to similar attenuations in tissue inflammation and HO. Moreover, while NGF/TrkA signaling did not directly affect MSCs chondrogenic differentiation, it modulated mast cell activation in traumatic soft tissue. Mechanistically, lipid A in LPS binding to TrkA enhanced NGF-induced TrkA phosphorylation, synergistically stimulating mast cells to release neurotrophin-3 (NT3), thereby promoting MSC chondrogenic differentiation in situ. Finally, analysis of single-cell datasets and human pathological specimens confirmed the important role of mast cell-mediated neuroinflammation in HO pathogenesis. In conclusion, NGF regulates mast cells in soft tissue trauma and drives HO progression via paracrine NT3. Targeted early inhibition of mast cells holds substantial promise for treating traumatic HO.
Collapse
Affiliation(s)
- Tao Jiang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang Ao
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Jieyi Cai
- Department of General Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaming Fu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wensheng Zhang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Zhenyu Zheng
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Jun Chu
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Minjun Huang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Division of Spine Surgery, Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou, China
| |
Collapse
|
5
|
Yan X, Siméon FG, Pike VW, Innis RB, Zanotti-Fregonara P. Increased TSPO, COX-1, and COX-2 Uptake in Bone Marrow Within a Falx Cerebri Ossification. Clin Nucl Med 2024; 49:e604-e605. [PMID: 39365041 PMCID: PMC11523207 DOI: 10.1097/rlu.0000000000005491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
ABSTRACT Ossification is uncommon, generally asymptomatic, and often incidentally identified in imaging studies. We report on a 54-year-old man who participated as a healthy volunteer in a clinical trial using PET imaging to investigate neuroinflammation. An incidental ossified lesion in the anterior falx cerebri was revealed by MRI. CT scan showed a small hypodense center in the lesion, probably corresponding to bone marrow. The PET scans using 18 F-SF51, 11 C-PS13, and 11 C-MC1 showed increased uptake within this lesion, which was probably related to bone marrow activity within the ossification.
Collapse
Affiliation(s)
- Xuefeng Yan
- From the Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | | | | | | | | |
Collapse
|
6
|
Lin R, Lin H, Zhu C, Zeng J, Hou J, Xu T, Tan Y, Zhou X, Ma Y, Yang M, Wei K, Yu B, Wu H, Cui Z. Sensory nerve EP4 facilitates heterotopic ossification by regulating angiogenesis-coupled bone formation. J Orthop Translat 2024; 49:325-338. [PMID: 39568804 PMCID: PMC11576939 DOI: 10.1016/j.jot.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024] Open
Abstract
Objective Heterotopic ossification (HO) refers to the abnormal development of bone in soft tissue rather than within bone itself. Previous research has shown that sensory nerve prostaglandin E2 receptor 4 (EP4) signaling not only governs pain perception but also influences bone formation. However, the relationship between sensory nerve EP4 and the pathogenesis of HO in the Achilles tendon remains unclear. This study aims to investigate this relationship and the underlying mechanisms. Methods We generated sensory nerve EP4-specific knockout mice, with the genotype of Avil-CreEP4fl/fl, was propagated. Transcriptome sequencing and bioinformatics analysis techniques were used to identify the potential molecular pathways involving with sensory nerve EP4. Additionally, a neurectomy mouse model was created by transecting the sciatic nerve transection, to examine the effects and mechanisms of peripheral innervation on HO in vivo. Micro-CT, immunofluorescence (IF), Hematoxylin and Eosin (H&E) Staining, Safranin O-Fast Green staining and western blotting were used to analyze changes in cellular and tissue components. Results We here observed an increase in sensory nerve EP4 and H-type vessels during the pathogenesis of HO in both human subjects and mice. Proximal neurectomy through sciatic nerve transection or the targeted knockout of EP4 in sensory nerves hindered angiogenesis-dependent bone formation and the development of HO at the traumatic site of the Achilles tendon. Furthermore, we identified the Efnb2 (Ephrin-B2)/Dll4 (Delta-like ligand 4) axis as a potential downstream element influenced by sensory nerve EP4 in the regulation of HO. Notably, administration of an EP4 inhibitor demonstrated the ability to alleviate HO. Based on these findings, sensory nerve EP4 emerges as an innovative and promising approach for managing HO. Conclusion Our findings demonstrate that the sensory nerve EP4 promotes ectopic bone formation by modulating angiogenesis-associated osteogenesis during HO. The translational potential of this article Our results provide a mechanistic rationale for targeting sensory nerve EP4 as a promising candidate for HO therapy.
Collapse
Affiliation(s)
- Rongmin Lin
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hancheng Lin
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chencheng Zhu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jieming Zeng
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, Guangdong, 510515, China
| | - Jiahui Hou
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ting Xu
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yihui Tan
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510130, China
| | - Xuyou Zhou
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuan Ma
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Mankai Yang
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Kuanhai Wei
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hangtian Wu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhuang Cui
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Key laboratory of bone and cartilage regeneration medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
7
|
Zhu M, Yea JH, Li Z, Qin Q, Xu M, Xing X, Negri S, Archer M, Mittal M, Levi B, James AW. Pharmacologic or genetic targeting of peripheral nerves prevents peri-articular traumatic heterotopic ossification. Bone Res 2024; 12:54. [PMID: 39327413 PMCID: PMC11427465 DOI: 10.1038/s41413-024-00358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 09/28/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological process that commonly arises following severe polytrauma, characterized by the anomalous differentiation of mesenchymal progenitor cells and resulting in the formation of ectopic bone in non-skeletal tissues. This abnormal bone growth contributes to pain and reduced mobility, especially when adjacent to a joint. Our prior observations suggested an essential role of NGF (Nerve Growth Factor)-responsive TrkA (Tropomyosin Receptor Kinase A)-expressing peripheral nerves in regulating abnormal osteochondral differentiation following tendon injury. Here, we utilized a recently developed mouse model of hip arthroplasty-induced HO to further validate the role of peripheral nerve regulation of traumatic HO. Nerve ingrowth was either modulated using a knockin transgenic animals with point mutation in TrkA, or local treatment with an FDA-approved formulation of long acting Bupivacaine which prevents peripheral nerve growth. Results demonstrate exuberant sensory and sympathetic nerve growth within the peri-articular HO site, and that both methods to reduce local innervation significantly reduced heterotopic bone formation. TrkA inhibition led to a 34% reduction in bone volume, while bupivacaine treatment resulted in a 50% decrease. Mechanistically, alterations in TGFβ and FGF signaling activation accompanied both methods of local denervation, and a shift in macrophages from M1 to M2 phenotypes was observed. In sum, these studies reinforce the observations that peripheral nerves play a role in the etiopathogenesis of HO, and that targeting local nerves represents a potential therapeutic approach for disease prevention.
Collapse
Affiliation(s)
- Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ji-Hye Yea
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Orthopedic Unit, University of Verona, Verona, Italy
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Monisha Mittal
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Wang Z, Wu Y, Yi W, Yu Y, Fang X, Li Z, Yu A. Estrogen Deficiency Exacerbates Traumatic Heterotopic Ossification in Mice. J Inflamm Res 2024; 17:5587-5598. [PMID: 39193123 PMCID: PMC11348928 DOI: 10.2147/jir.s477382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Background Traumatic heterotopic ossification (HO) is a devastating sequela of orthopedic surgeries and traumatic injuries; however, few studies have explored the effects of the estrogen-deficient state on HO formation. In the present study, we investigated the impact of estrogen deficiency on ectopic cartilage and bone formation in tendon after Achilles tenotomy in an ovariectomized mouse model. Methods A total of 45 female C57BL/6 mice were randomly divided into three groups: sham-operated (control), estrogen depletion by ovariectomy (OVX) and OVX with 17β-estradiol supplementation (OVX + E2), with 15 animals in each group. Three weeks after OVX, all mice were subjected to an Achilles tenotomy using a posterior midpoint approach to induce HO. At 1, 3 and 9 weeks after tenotomy, the left hind limbs were harvested for histology, immunohistochemistry and immunofluorescence evaluations. The volume of ectopic bone was assessed by micro-CT. Results Mice in the OVX group formed more ectopic cartilage 3 weeks after tenotomy, as well as ectopic bone 9 weeks after tenotomy, compared to the control group. Estrogen deficiency resulted in more severe inflammatory infiltration at the injury sites 1 week after tenotomy, involving the recruitment of more macrophages and mast cells, as well as increasing the expressions of pro-inflammatory mediators, including IL-1β, IL-6, and TNF-α. Moreover, the local TGF-β/SMAD signaling pathway was dysregulated after OVX, which manifested as upregulated expressions of TGF-β and pSMAD2/3. E2 supplementation protected against OVX-induced HO deterioration, inhibited inflammatory infiltration, and downregulated the TGF-β/SMAD signaling pathway. Conclusion Estrogen deficiency exacerbated HO formation in the Achilles tenotomy model. These findings might be attributable to the disturbance of the inflammatory response and the activation of TGF-β/SMAD signaling at the injury sites during the early stages of HO development.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Yifan Wu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Wanrong Yi
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Yifeng Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Xue Fang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Zonghuan Li
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| | - Aixi Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Medical Research Center of Trauma and Microsurgery, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
9
|
Li SN, Ran RY, Chen J, Liu MC, Dang YM, Lin H. Angiogenesis in heterotopic ossification: From mechanisms to clinical significance. Life Sci 2024; 351:122779. [PMID: 38851421 DOI: 10.1016/j.lfs.2024.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/21/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Heterotopic ossification (HO) refers to the formation of pathologic bone in nonskeletal tissues (including muscles, tendons or other soft tissues). HO typically occurs after a severe injury and can occur in any part of the body. HO lesions are highly vascularized. Angiogenesis, which is the formation of new blood vessels, plays an important role in the pathophysiology of HO. Surgical resection is considered an effective treatment for HO. However, it is difficult to completely remove new vessels, which can lead to the recurrence of HO and is often accompanied by significant problems such as intraoperative hemorrhage, demonstrating the important role of angiogenesis in HO. Here, we broadly summarize the current understanding of how angiogenesis contributes to HO; in particular, we focus on new insights into the cellular and signaling mechanisms underlying HO angiogenesis. We also review the development and current challenges associated with antiangiogenic therapy for HO.
Collapse
Affiliation(s)
- Sai-Nan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ruo-Yue Ran
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Meng-Chao Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yan-Miao Dang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
10
|
Li D, Liu C, Wang H, Li Y, Wang Y, An S, Sun S. The Role of Neuromodulation and Potential Mechanism in Regulating Heterotopic Ossification. Neurochem Res 2024; 49:1628-1642. [PMID: 38416374 DOI: 10.1007/s11064-024-04118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-β, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Collapse
Affiliation(s)
- Dengju Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong First Medical University, Jinan, Shandong, China
| | - Changxing Liu
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Haojue Wang
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yunfeng Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yaqi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Senbo An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
| | - Shui Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
11
|
Juan C, Bancroft AC, Choi JH, Nunez JH, Pagani CA, Lin YS, Hsiao EC, Levi B. Intersections of Fibrodysplasia Ossificans Progressiva and Traumatic Heterotopic Ossification. Biomolecules 2024; 14:349. [PMID: 38540768 PMCID: PMC10968060 DOI: 10.3390/biom14030349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Heterotopic ossification (HO) is a debilitating pathology where ectopic bone develops in areas of soft tissue. HO can develop as a consequence of traumatic insult or as a result of dysregulated osteogenic signaling, as in the case of the orphan disease fibrodysplasia ossificans progressiva (FOP). Traumatic HO (tHO) formation is mediated by the complex interplay of signaling between progenitor, inflammatory, and nerve cells, among others, making it a challenging process to understand. Research into the pathogenesis of genetically mediated HO (gHO) in FOP has established a pathway involving uninhibited activin-like kinase 2 receptor (ALK2) signaling that leads to downstream osteogenesis. Current methods of diagnosis and treatment lag behind pre-mature HO detection and progressive HO accumulation, resulting in irreversible decreases in range of motion and chronic pain for patients. As such, it is necessary to draw on advancements made in the study of tHO and gHO to better diagnose, comprehend, prevent, and treat both.
Collapse
Affiliation(s)
- Conan Juan
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Alec C. Bancroft
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Ji Hae Choi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Johanna H. Nunez
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Chase A. Pagani
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Yen-Sheng Lin
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Edward C. Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, the Institute for Human Genetics, and the Program in Craniofacial Biology, University of California San Francisco Medical Center, San Francisco, CA 94143, USA;
| | - Benjamin Levi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| |
Collapse
|
12
|
Fan H, Cheng Q, Lin K, Gong L, Kan C, Wang S, Zheng H. Metformin alleviates genetic and traumatic heterotopic ossification by inhibiting infiltration and mitochondrial metabolism of myeloid cells. Am J Transl Res 2024; 16:255-271. [PMID: 38322576 PMCID: PMC10839392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/15/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVES Heterotopic ossification (HO), whether hereditary or traumatic, refers to the abnormal formation of bone in extraskeletal sites, often triggered by inflammation or flare-ups. Unfortunately, there are currently no effective treatments for HO. Metformin is well-known for its anti-diabetic, anti-inflammatory, anti-aging, and anti-cancer effects. However, its potential role in treating HO remains uncertain. METHODS Metformin was dissolved into water and given to mice. All the mice in this study were examined by microCT and myeloid cell quantification using flow cytometry. Complex activity kit was used to examine the activity of mitochondrial complexes of myeloid cells. RESULTS In this study, we discovered that metformin effectively inhibits genetic and traumatic HO formation and progression. Additionally, we observed a significant increase in myeloid cells in the genetic and traumatic HO mouse model compared to uninjured mice. Notably, metformin specifically reduced the infiltration of myeloid cells into the injured sites of the genetic and traumatic HO model mice. Further investigations revealed that metformin targets mitochondrial complex I and suppresses mitochondrial metabolism in myeloid cells. CONCLUSION These findings suggest that metformin suppresses HO development by potentially downregulating the mitochondrial metabolism of myeloid cells, offering a promising therapeutic option for HO treatment.
Collapse
Affiliation(s)
- Haitao Fan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical UniversityNo. 81 Meishan Road, Hefei 230022, Anhui, China
- Department of Neurospinal Surgery, The First Affiliated Hospital of Ningbo UniversityNingbo 315010, Zhejiang, China
| | - Qirong Cheng
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical UniversityNo. 81 Meishan Road, Hefei 230022, Anhui, China
| | - Keqiong Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical UniversityNo. 81 Meishan Road, Hefei 230022, Anhui, China
| | - Liangju Gong
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical UniversityNo. 81 Meishan Road, Hefei 230022, Anhui, China
| | - Chen Kan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical UniversityNo. 81 Meishan Road, Hefei 230022, Anhui, China
| | - Siying Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical UniversityNo. 81 Meishan Road, Hefei 230022, Anhui, China
| | - Hong Zheng
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical UniversityNo. 81 Meishan Road, Hefei 230022, Anhui, China
| |
Collapse
|
13
|
Grunert R, Winkler D, Frank F, Moebius R, Kropla F, Meixensberger J, Hepp P, Elze M. 3D-printing of the elbow in complex posttraumatic elbow-stiffness for preoperative planning, surgery-simulation and postoperative control. 3D Print Med 2023; 9:28. [PMID: 37801133 PMCID: PMC10559461 DOI: 10.1186/s41205-023-00191-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Restoration of mobility of the elbow after post-traumatic elbow stiffening due to osteophytes is often a problem. METHODS The anatomical structures were segmented within the CT-scan. Afterwards, the Multi Jet Fusion 3D-printing was applied to create the model made of biocompatible and steam-sterilizable plastic. Preoperative simulation of osteophyte resection at the 3D-model was performed as well as the direct comparison with the patient anatomy intraoperatively. RESULTS The patient-specific was very helpful for the preoperative simulation of the resection of elbow osteophytes. The 3D anatomical representation improved the preoperative plan its implementation. A high degree of fidelity was found between the 3D Printed Anatomical representation and the actual joint pathology. CONCLUSIONS Arthrolysis of complex post-traumatic bony changes is an important indication for the use of 3D models for preoperative planning. Due to the use of 3D printing and software simulation, accurate resection planning is feasible and residual bony stiffening can be avoided. 3D printing models can lead to an improvement in surgical quality.
Collapse
Affiliation(s)
- Ronny Grunert
- Department of Neurosurgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany.
- Fraunhofer Institute for Machine Tools and Forming Technology, Theodor-Koerner-Allee 6, Zittau, 02763, Germany.
| | - Dirk Winkler
- Department of Neurosurgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany
| | - Franziska Frank
- Department of Neurosurgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany
| | - Robert Moebius
- Department of Neurosurgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany
| | - Fabian Kropla
- Department of Neurosurgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany
| | - Juergen Meixensberger
- Department of Neurosurgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany
| | - Pierre Hepp
- Department Orthopedics, Trauma Surgery and Plastic Surgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany
| | - Maria Elze
- Department Orthopedics, Trauma Surgery and Plastic Surgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany
| |
Collapse
|
14
|
Hong WM, Xie YW, Zhao MY, Yu TH, Wang LN, Xu WY, Gao S, Cai HB, Guo Y, Zhang F. Vasoprotective Effects of Hyperoside against Cerebral Ischemia/Reperfusion Injury in Rats: Activation of Large-Conductance Ca 2+-Activated K + Channels. Neural Plast 2023; 2023:5545205. [PMID: 37609123 PMCID: PMC10442186 DOI: 10.1155/2023/5545205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
Hyperoside (Hyp), a kind of Chinese herbal medicine, exerts multiple therapeutic effects on many diseases. However, the role and mechanisms of Hyp in vascular pathophysiology in ischemic stroke need to be further established. The study aimed to investigate the role of (large-conductance Ca2+-activated K+) BK channels on the vasoprotection of Hyp against cerebral ischemia and reperfusion (I/R) injury in rats. The concentration gradient of Hyp was pretreated in both the middle cerebral artery occlusion and reperfusion model and oxygen-glucose deprivation/reoxygenation (OGD/R) model of primary vascular smooth muscle cells (VSMCs) in rats. A series of indicators were detected, including neurological deficit score, infarct volume, malondialdehyde (MDA), superoxide dismutase (SOD), cerebral blood flow (CBF), cell viability, membrane potential, and BK channels α- and β1-subunits expression. The results showed that Hyp significantly reduced infarct volume and ameliorated neurological dysfunction in I/R-injured rats. Besides, the effects of I/R-induced reduction of BK channels α- and β1-subunits expression were significantly reversed by Hyp in endothelial-denudated cerebral basilar arteries. Furthermore, the protective effect against I/R-induced increases of MDA and reduction of SOD as well as CBF induced by Hyp was significantly reversed by iberiotoxin (IbTX). In OGD/R-injured VSMCs, downregulated cellular viability and BK channels β1-subunits expression were remarkably reversed by Hyp. However, neither OGD/R nor Hyp affected BK channels α-subunits expression, and Hyp failed to induced hyperpolarization of VSMCs. Moreover, the protective effect against OGD/R-induced reduction of cell viability and SOD level and increases of MDA production induced by Hyp was significantly reversed by IbTX in VSMCs. The study indicates that Hyp has the therapeutic potential to improve vascular outcomes, and the mechanism is associated with suppressing oxidative stress and improving CBF through upregulating BK channels.
Collapse
Affiliation(s)
- Wen-Ming Hong
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
- School of Nursing, Anhui Medical University, Hefei 230032, China
- Open Project of Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Yue-Wu Xie
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Meng-Yu Zhao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Tian-Hang Yu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Li-Na Wang
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Wan-Yan Xu
- School of Nursing, Anhui Medical University, Hefei 230032, China
| | - Shen Gao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Hua-Bao Cai
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yan Guo
- Department of Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Fang Zhang
- School of Nursing, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
15
|
Ausk BJ, Tucker AN, Huber P, Firoozabadi R, Gross JM, Gross TS, Bain SD. A microCT-based platform to quantify drug targeting. Eur Radiol Exp 2023; 7:38. [PMID: 37532922 PMCID: PMC10397158 DOI: 10.1186/s41747-023-00355-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/12/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Heterotopic ossification (HO) is a frequent and debilitating complication of traumatic musculoskeletal injuries and orthopedic procedures. Prophylactic dosing of botulinum toxin type A (BTxA) holds potential as a novel treatment option if accurately distributed throughout soft-tissue volumes where protection is clinically desired. We developed a high-resolution, microcomputed tomography (microCT)-based imaging strategy to assess drug distribution and validated this platform by quantifying distribution achieved via a prototype delivery system versus a single-bolus injection. METHODS We injected an iodine-containing contrast agent (iodixanol 320 mg I/mL) into dissected rabbit musculature followed by microCT imaging and analysis. To contrast the performance of distributed versus bolus injections, a three-dimensional (3D) 64-cm3-printed soft-tissue holder was developed. A centered 2-cm3 volume of interest (VOI) was targeted with a single-bolus injection or an equal volume distributed injection delivered via a 3D-printed prototype. VOI drug coverage was quantified as a percentage of the VOI volume that was < 1.0 mm from the injected fluid. RESULTS The microCT-based approach enabled high-resolution quantification of injection distribution within soft tissue. The distributed dosing prototype provided significantly greater tissue coverage of the targeted VOI (72 ± 3%, mean ± standard deviation) when compared to an equal volume bolus dose (43 ± 5%, p = 0.031) while also enhancing the precision of injection targeting. CONCLUSIONS A microCT-based imaging technique precisely quantifies drug distribution within a soft-tissue VOI, providing a path to overcome a barrier for clinical translation of prophylactic inhibition of HO by BTxA. RELEVANCE STATEMENT This platform will facilitate rapid optimization of injection parameters for clinical devices used to effectively and safely inhibit the formation of heterotopic ossification. KEY POINTS • MicroCT provides high-resolution quantification of soft-tissue drug distribution. • Distributed dosing is required to maximize soft-tissue drug coverage. • Imaging platform will enable rapid screening of 3D-printed drug distribution prototypes.
Collapse
Affiliation(s)
| | - Adam N Tucker
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, USA
| | - Philippe Huber
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, USA
| | - Reza Firoozabadi
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, USA
| | | | - Ted S Gross
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, USA
| | - Steven D Bain
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, USA
| |
Collapse
|
16
|
Zheng Z, Hao R, Yang C, Jiao Y, Wang Q, Huang R, Liao Y, Jian J, Ming Y, Yin L, He W, Wang Z, Li C, He Q, Chen K, Deng Y, Du X. Genome-wide association study analysis to resolve the key regulatory mechanism of biomineralization in Pinctada fucata martensii. Mol Ecol Resour 2023; 23:680-693. [PMID: 36458936 DOI: 10.1111/1755-0998.13743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Biomineralization-controlled exo-/endoskeleton growth contributes to body growth and body size diversity. Molluscan shells undergo ectopic biomineralization to form the exoskeleton and biocalcified "pearl" involved in invading defence. Notably, exo-/endoskeletons have a common ancestral origin, but their regulation and body growth are largely unknown. This study employed the pearl oyster, Pinctada fucata marntensii, a widely used experimental model for biomineralization in invertebrates, to perform whole-genome resequencing of 878 individuals from wild and breeding populations. This study characterized the genetic architecture of biomineralization-controlled growth and ectopic biomineralization. The insulin-like growth factor (IGF) endocrine signal interacted with ancient single-copy transcription factors to form the regulatory network. Moreover, the "cross-phylum" regulation of key long noncoding RNA (lncRNA) in bivalves and mammals indicated the conserved genetic and epigenetic regulation in exo-/endoskeleton growth. Thyroid hormone signal and apoptosis regulation in pearl oysters affected ectopic biomineralization in pearl oyster. These findings provide insights into the mechanism underlying the evolution and regulation of biomineralization in exo-/endoskeleton animals and ectopic biomineralization.
Collapse
Affiliation(s)
- Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Ruijuan Hao
- Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yu Jiao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Ronglian Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yongshan Liao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | | | - Yao Ming
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Lixin Yin
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Weiming He
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Ziman Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Chuyi Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Qi He
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Kun Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Development and Research Center for Biological Marine Resources, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China.,Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China.,Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
17
|
Johnson MB, Suptela SR, Sipprell SE, Marriott I. Substance P Exacerbates the Inflammatory and Pro-osteoclastogenic Responses of Murine Osteoclasts and Osteoblasts to Staphylococcus aureus. Inflammation 2023; 46:256-269. [PMID: 36040535 PMCID: PMC10314328 DOI: 10.1007/s10753-022-01731-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/05/2022]
Abstract
Staphylococcus aureus infections of bone tissue are associated with inflammatory bone loss. Resident bone cells, including osteoblasts and osteoclasts, can perceive S. aureus and produce an array of inflammatory and pro-osteoclastogenic mediators, thereby contributing to such damage. The neuropeptide substance P (SP) has been shown to exacerbate microbially induced inflammation at sites such as the gut and the brain and has previously been shown to affect bone cell differentiation and activity. Here we demonstrate that the interaction of SP with its high affinity receptor, neurokinin-1 receptor (NK-1R), expressed on murine osteoblasts and osteoclasts, augments the inflammatory responses of these cells to S. aureus challenge. Additionally, SP alters the production of pro- and anti-osteoclastogenic factors by bacterially challenged bone cells and their proteolytic functions in a manner that would be anticipated to exacerbate inflammatory bone loss at sites of infection. Furthermore, we have demonstrated that the clinically approved NK-1R antagonist, aprepitant, attenuates local inflammatory and pro-osteoclastogenic mediator expression in an in vivo mouse model of post-traumatic staphylococcal osteomyelitis. Taken together, these results indicate that SP/NK-1R interactions could play a significant role in the initiation and/or progression of damaging inflammation in S. aureus bone infections and suggest that the repurposing of currently approved NK-1R antagonists might represent a promising new adjunct therapy for such conditions.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Samantha R Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Sophie E Sipprell
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA.
| |
Collapse
|
18
|
Qin Q, Lee S, Patel N, Walden K, Gomez-Salazar M, Levi B, James AW. Neurovascular coupling in bone regeneration. Exp Mol Med 2022; 54:1844-1849. [PMID: 36446849 PMCID: PMC9722927 DOI: 10.1038/s12276-022-00899-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
The mammalian skeletal system is densely innervated by both neural and vascular networks. Peripheral nerves in the skeleton include sensory and sympathetic nerves. The crosstalk between skeletal and neural tissues is critical for skeletal development and regeneration. The cellular processes of osteogenesis and angiogenesis are coupled in both physiological and pathophysiological contexts. The cellular and molecular regulation of osteogenesis and angiogenesis have yet to be fully defined. This review will provide a detailed characterization of the regulatory role of nerves and blood vessels during bone regeneration. Furthermore, given the importance of the spatial relationship between nerves and blood vessels in bone, we discuss neurovascular coupling during physiological and pathological bone formation. A better understanding of the interactions between nerves and blood vessels will inform future novel therapeutic neural and vascular targeting for clinical bone repair and regeneration.
Collapse
Affiliation(s)
- Qizhi Qin
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Seungyong Lee
- grid.260024.20000 0004 0627 4571Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308 USA ,grid.412977.e0000 0004 0532 7395Department of Physical Education, Incheon National University, Incheon, 22012 South Korea
| | - Nirali Patel
- grid.260024.20000 0004 0627 4571Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 USA
| | - Kalah Walden
- grid.260024.20000 0004 0627 4571Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 USA
| | - Mario Gomez-Salazar
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Benjamin Levi
- grid.267313.20000 0000 9482 7121Departments of Surgery, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Aaron W. James
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
19
|
Cherief M, Negri S, Qin Q, Pagani CA, Lee S, Yang YP, Clemens TL, Levi B, James AW. TrkA+ Neurons Induce Pathologic Regeneration After Soft Tissue Trauma. Stem Cells Transl Med 2022; 11:1165-1176. [PMID: 36222619 PMCID: PMC9672853 DOI: 10.1093/stcltm/szac073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/03/2022] [Indexed: 11/13/2022] Open
Abstract
Heterotopic ossification (HO) is a dynamic, complex pathologic process that often occurs after severe polytrauma trauma, resulting in an abnormal mesenchymal stem cell differentiation leading to ectopic bone growth in soft-tissues including tendons, ligaments, and muscles. The abnormal bone structure and location induce pain and loss of mobility. Recently, we observed that NGF (Nerve growth factor)-responsive TrkA (Tropomyosin receptor kinase A)-expressing nerves invade sites of soft-tissue trauma, and this is a necessary feature for heterotopic bone formation at sites of injury. Here, we assayed the effects of the partial TrkA agonist Gambogic amide (GA) in peritendinous heterotopic bone after extremity trauma. Mice underwent HO induction using the burn/tenotomy model with or without systemic treatment with GA, followed by an examination of the injury site via radiographic imaging, histology, and immunohistochemistry. Single-cell RNA Sequencing confirmed an increase in neurotrophin signaling activity after HO-inducing extremity trauma. Next, TrkA agonism led to injury site hyper-innervation, more brisk expression of cartilage antigens within the injured tendon, and a shift from FGF to TGFβ signaling activity among injury site cells. Nine weeks after injury, this culminated in higher overall levels of heterotopic bone among GA-treated animals. In summary, these studies further link injury site hyper-innervation with increased vascular ingrowth and ultimately heterotopic bone after trauma. In the future, modulation of TrkA signaling may represent a potent means to prevent the trauma-induced heterotopic bone formation and improve tissue regeneration.
Collapse
Affiliation(s)
- Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Orthopaedics and Traumatology, University of Verona, Verona, Italy
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Chase A Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas, Southwestern, TX, USA
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Thomas L Clemens
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD, USA.,Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas, Southwestern, TX, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
20
|
Hwang CD, Pagani CA, Nunez JH, Cherief M, Qin Q, Gomez-Salazar M, Kadaikal B, Kang H, Chowdary AR, Patel N, James AW, Levi B. Contemporary perspectives on heterotopic ossification. JCI Insight 2022; 7:158996. [PMID: 35866484 PMCID: PMC9431693 DOI: 10.1172/jci.insight.158996] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of ectopic bone that is primarily genetically driven (fibrodysplasia ossificans progressiva [FOP]) or acquired in the setting of trauma (tHO). HO has undergone intense investigation, especially over the last 50 years, as awareness has increased around improving clinical technologies and incidence, such as with ongoing wartime conflicts. Current treatments for tHO and FOP remain prophylactic and include NSAIDs and glucocorticoids, respectively, whereas other proposed therapeutic modalities exhibit prohibitive risk profiles. Contemporary studies have elucidated mechanisms behind tHO and FOP and have described new distinct niches independent of inflammation that regulate ectopic bone formation. These investigations have propagated a paradigm shift in the approach to treatment and management of a historically difficult surgical problem, with ongoing clinical trials and promising new targets.
Collapse
Affiliation(s)
- Charles D Hwang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts, USA
| | - Chase A Pagani
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Johanna H Nunez
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Balram Kadaikal
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Heeseog Kang
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashish R Chowdary
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicole Patel
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis Research and Trauma, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
21
|
Pathophysiology and Emerging Molecular Therapeutic Targets in Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23136983. [PMID: 35805978 PMCID: PMC9266941 DOI: 10.3390/ijms23136983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
The term heterotopic ossification (HO) describes bone formation in tissues where bone is normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells, probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms through a combination of endochondral and intramembranous ossification, depending on the aetiology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types and biological pathways have been studied in efforts to find effective therapeutic strategies for the disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been implicated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR), and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has resulted in the emergence of several novel investigational therapeutic avenues, including palovarotene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent advances in emerging molecular therapies to treat and prevent HO that have had early success in the monogenic disease and are currently being explored in the common complex forms of HO.
Collapse
|
22
|
Bohner M, Maazouz Y, Ginebra MP, Habibovic P, Schoenecker JG, Seeherman H, van den Beucken JJ, Witte F. Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomater 2022; 145:1-24. [PMID: 35398267 DOI: 10.1016/j.actbio.2022.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Heterotopic ossification (HO) is a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues. Despite being a frequent complication of orthopedic and trauma surgery, brain and spinal injury, the etiology of HO is poorly understood. The aim of this study is to evaluate the hypothesis that a sustained local ionic homeostatic imbalance (SLIHI) created by mineral formation during tissue calcification modulates inflammation to trigger HO. This evaluation also considers the role SLIHI could play for the design of cell-free, drug-free osteoinductive bone graft substitutes. The evaluation contains five main sections. The first section defines relevant concepts in the context of HO and provides a summary of proposed causes of HO. The second section starts with a detailed analysis of the occurrence and involvement of calcification in HO. It is followed by an explanation of the causes of calcification and its consequences. This allows to speculate on the potential chemical modulators of inflammation and triggers of HO. The end of this second section is devoted to in vitro mineralization tests used to predict the ectopic potential of materials. The third section reviews the biological cascade of events occurring during pathological and material-induced HO, and attempts to propose a quantitative timeline of HO formation. The fourth section looks at potential ways to control HO formation, either acting on SLIHI or on inflammation. Chemical, physical, and drug-based approaches are considered. Finally, the evaluation finishes with a critical assessment of the definition of osteoinduction. STATEMENT OF SIGNIFICANCE: The ability to regenerate bone in a spatially controlled and reproducible manner is an essential prerequisite for the treatment of large bone defects. As such, understanding the mechanism leading to heterotopic ossification (HO), a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues, would be very useful. Unfortunately, the mechanism(s) behind HO is(are) poorly understood. The present study reviews the literature on HO and based on it, proposes that HO can be caused by a combination of inflammation and calcification. This mechanism helps to better understand current strategies to prevent and treat HO. It also shows new opportunities to improve the treatment of bone defects in orthopedic and dental procedures.
Collapse
|
23
|
Qin Q, Gomez-Salazar M, Cherief M, Pagani CA, Lee S, Hwang C, Tower RJ, Onggo S, Sun Y, Piplani A, Li Z, Ramesh S, Clemens TL, Levi B, James AW. Neuron-to-vessel signaling is a required feature of aberrant stem cell commitment after soft tissue trauma. Bone Res 2022; 10:43. [PMID: 35641477 PMCID: PMC9156761 DOI: 10.1038/s41413-022-00216-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
The functional interdependence of nerves and blood vessels is a well-established concept during tissue morphogenesis, yet the role of neurovascular coupling in proper and aberrant tissue repair is an emerging field of interest. Here, we sought to define the regulatory relationship of peripheral nerves on vasculature in a severe extremity trauma model in mice, which results in aberrant cell fate and heterotopic ossification (HO). First, a high spatial degree of neurovascular congruency was observed to exist within extremity injury associated heterotopic ossification. Vascular and perivascular cells demonstrate characteristic responses to injury, as assessed by single cell RNA sequencing. This vascular response to injury was blunted in neurectomized mice, including a decrease in endothelial proliferation and type H vessel formation, and a downregulation of key transcriptional networks associated with angiogenesis. Independent mechanisms to chemically or genetically inhibit axonal ingrowth led to similar deficits in HO site angiogenesis, a reduction in type H vessels, and heterotopic bone formation. Finally, a combination of single cell transcriptomic approaches within the dorsal root ganglia identified key neural-derived angiogenic paracrine factors that may mediate neuron-to-vascular signaling in HO. These data provide further understanding of nerve-to-vessel crosstalk in traumatized soft tissues, which may reflect a key determinant of mesenchymal progenitor cell fate after injury.
Collapse
Affiliation(s)
- Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mario Gomez-Salazar
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Chase A Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas, Southwestern, TX, USA
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Charles Hwang
- Department of Plastic Surgery, Harvard, Cambridge, MA, 02138, USA
| | - Robert J Tower
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas, Southwestern, TX, USA
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sharon Onggo
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yuxiao Sun
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas, Southwestern, TX, USA
| | - Abhinav Piplani
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Sowmya Ramesh
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Thomas L Clemens
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD, 21205, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD, 21201, USA
| | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas, Southwestern, TX, USA.
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
24
|
Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med 2021; 6:70. [PMID: 34702860 PMCID: PMC8548514 DOI: 10.1038/s41536-021-00178-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Heterotopic ossification (HO) is the formation of extraskeletal bone in non-osseous tissues. It is caused by an injury that stimulates abnormal tissue healing and regeneration, and inflammation is involved in this process. It is worth noting that macrophages are crucial mediators of inflammation. In this regard, abundant macrophages are recruited to the HO site and contribute to HO progression. Macrophages can acquire different functional phenotypes and promote mesenchymal stem cell (MSC) osteogenic differentiation, chondrogenic differentiation, and angiogenesis by expressing cytokines and other factors such as the transforming growth factor-β1 (TGF-β1), bone morphogenetic protein (BMP), activin A (Act A), oncostatin M (OSM), substance P (SP), neurotrophin-3 (NT-3), and vascular endothelial growth factor (VEGF). In addition, macrophages significantly contribute to the hypoxic microenvironment, which primarily drives HO progression. Thus, these have led to an interest in the role of macrophages in HO by exploring whether HO is a "butterfly effect" event. Heterogeneous macrophages are regarded as the "butterflies" that drive a sequence of events and ultimately promote HO. In this review, we discuss how the recruitment of macrophages contributes to HO progression. In particular, we review the molecular mechanisms through which macrophages participate in MSC osteogenic differentiation, angiogenesis, and the hypoxic microenvironment. Understanding the diverse role of macrophages may unveil potential targets for the prevention and treatment of HO.
Collapse
|
25
|
Rabiller L, Labit E, Guissard C, Gilardi S, Guiard BP, Moulédous L, Silva M, Mithieux G, Pénicaud L, Lorsignol A, Casteilla L, Dromard C. Pain sensing neurons promote tissue regeneration in adult mice. NPJ Regen Med 2021; 6:63. [PMID: 34650070 PMCID: PMC8516997 DOI: 10.1038/s41536-021-00175-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 09/14/2021] [Indexed: 01/01/2023] Open
Abstract
Tissue repair after injury in adult mammals, usually results in scarring and loss of function in contrast to lower vertebrates such as the newt and zebrafish that regenerate. Understanding the regulatory processes that guide the outcome of tissue repair is therefore a concerning challenge for regenerative medicine. In multiple regenerative animal species, the nerve dependence of regeneration is well established, but the nature of the innervation required for tissue regeneration remains largely undefined. Using our model of induced adipose tissue regeneration in adult mice, we demonstrate here that nociceptive nerves promote regeneration and their removal impairs tissue regeneration. We also show that blocking the receptor for the nociceptive neuropeptide calcitonin gene-related peptide (CGRP) inhibits regeneration, whereas CGRP administration induces regeneration. These findings reveal that peptidergic nociceptive neurons are required for adult mice tissue regeneration.
Collapse
Affiliation(s)
- Lise Rabiller
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France.,Department of Physiology and Cell Information Systems, McGill University, Montreal, QC, Canada.,Alan Edwards Center for Research on Pain, McGill University, Montreal, QC, Canada
| | - Elodie Labit
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Christophe Guissard
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France
| | - Silveric Gilardi
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS UMR-5169, UPS, Toulouse, France
| | - Lionel Moulédous
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS UMR-5169, UPS, Toulouse, France
| | | | | | - Luc Pénicaud
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France
| | - Anne Lorsignol
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France
| | - Louis Casteilla
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France
| | - Cécile Dromard
- RESTORE, UMR INSERM 1301/CNRS 5070/Université Paul Sabatier/EFS/ENVT, Toulouse, France.
| |
Collapse
|
26
|
Olmsted-Davis E, Mejia J, Salisbury E, Gugala Z, Davis AR. A Population of M2 Macrophages Associated With Bone Formation. Front Immunol 2021; 12:686769. [PMID: 34712222 PMCID: PMC8547272 DOI: 10.3389/fimmu.2021.686769] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
We previously identified transient brown adipocyte-like cells associated with heterotopic ossification (HO). These ancillary cells support new vessel synthesis essential to bone formation. Recent studies have shown that the M2 macrophage contributes to tissue regeneration in a similar way. To further define the phenotype of these brown adipocyte-like cells they were isolated and characterized by single-cell RNAseq (scRNAseq). Analysis of the transcriptome and the presence of surface markers specific for macrophages suggest that these cells are M2 macrophages. To validate these findings, clodronate liposomes were delivered to the tissues during HO, and the results showed both a significant reduction in these macrophages as well as bone formation. These cells were isolated and shown in culture to polarize towards either M1 or M2 similar to other macrophages. To confirm that these are M2 macrophages, mice received lipopolysacheride (LPS), which induces proinflammation and M1 macrophages. The results showed a significant decrease in this specific population and bone formation, suggesting an essential role for M2 macrophages in the production of bone. To determine if these macrophages are specific to HO, we isolated these cells using fluorescence-activated cell sorting (FACS) from a bone defect model and subjected them to scRNAseq. Surprisingly, the macrophage populations overlapped between the two groups (HO-derived versus callus) suggesting that they may be essential ancillary cells for bone formation in general and not selective to HO. Of further note, their unique metabolism and lipogenic properties suggest the potential for unique cross talk between these cells and the newly forming bone.
Collapse
Affiliation(s)
- Elizabeth Olmsted-Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States,Department of Pediatrics – Section Hematology/Oncology, Baylor College of Medicine, Houston, TX, United States,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Julio Mejia
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Elizabeth Salisbury
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, United States
| | - Zbigniew Gugala
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, United States
| | - Alan R. Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States,Department of Pediatrics – Section Hematology/Oncology, Baylor College of Medicine, Houston, TX, United States,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Alan R. Davis,
| |
Collapse
|
27
|
NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma. Nat Commun 2021; 12:4939. [PMID: 34400627 PMCID: PMC8368242 DOI: 10.1038/s41467-021-25143-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Pain is a central feature of soft tissue trauma, which under certain contexts, results in aberrant osteochondral differentiation of tissue-specific stem cells. Here, the role of sensory nerve fibers in this abnormal cell fate decision is investigated using a severe extremity injury model in mice. Soft tissue trauma results in NGF (Nerve growth factor) expression, particularly within perivascular cell types. Consequently, NGF-responsive axonal invasion occurs which precedes osteocartilaginous differentiation. Surgical denervation impedes axonal ingrowth, with significant delays in cartilage and bone formation. Likewise, either deletion of Ngf or two complementary methods to inhibit its receptor TrkA (Tropomyosin receptor kinase A) lead to similar delays in axonal invasion and osteochondral differentiation. Mechanistically, single-cell sequencing suggests a shift from TGFβ to FGF signaling activation among pre-chondrogenic cells after denervation. Finally, analysis of human pathologic specimens and databases confirms the relevance of NGF-TrkA signaling in human disease. In sum, NGF-mediated TrkA-expressing axonal ingrowth drives abnormal osteochondral differentiation after soft tissue trauma. NGF-TrkA signaling inhibition may have dual therapeutic use in soft tissue trauma, both as an analgesic and negative regulator of aberrant stem cell differentiation.
Collapse
|
28
|
Li J, Sun Z, Luo G, Wang S, Cui H, Yao Z, Xiong H, He Y, Qian Y, Fan C. Quercetin Attenuates Trauma-Induced Heterotopic Ossification by Tuning Immune Cell Infiltration and Related Inflammatory Insult. Front Immunol 2021; 12:649285. [PMID: 34093537 PMCID: PMC8173182 DOI: 10.3389/fimmu.2021.649285] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is one of the most intractable disorders following musculoskeletal injury and is characterized by the ectopic presence of bone tissue in the soft tissue leading to severe loss of function in the extremities. Recent studies have indicated that immune cell infiltration and inflammation are involved in aberrant bone formation. In this study, we found increased monocyte/macrophage and mast cell accumulation during early HO progression. Macrophage depletion by clodronate liposomes and mast cell stabilization by cromolyn sodium significantly impeded HO formation. Therefore, we proposed that the dietary phytochemical quercetin could also suppress immune cell recruitment and related inflammatory responses to prevent HO. As expected, quercetin inhibited the monocyte-to-macrophage transition, macrophage polarization, and mast cell activation in vitro in a dose-dependent manner. Using a murine burn/tenotomy model, we also demonstrated that quercetin attenuated inflammatory responses and HO in vivo. Furthermore, elevated SIRT1 and decreased acetylated NFκB p65 expression were responsible for the mechanism of quercetin, and the beneficial effects of quercetin were reversed by the SIRT1 antagonist EX527 and mimicked by the SIRT agonist SRT1720. The findings in this study suggest that targeting monocyte/macrophage and mast cell activities may represent an attractive approach for therapeutic intervention of HO and that quercetin may serve as a promising therapeutic candidate for the treatment of trauma-induced HO by modulating SIRT1/NFκB signaling.
Collapse
Affiliation(s)
- Juehong Li
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyang Sun
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Luo
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haomin Cui
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixiao Yao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Xiong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunwei He
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Qian
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cunyi Fan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Are pain coping strategies and neuropathic pain associated with a worse outcome after conservative treatment for Achilles tendinopathy? A prospective cohort study. J Sci Med Sport 2021; 24:871-875. [PMID: 33934973 DOI: 10.1016/j.jsams.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To analyse whether (1) passive or active pain coping strategies and (2) presence of neuropathic pain component influences the change of Achilles tendinopathy (AT) symptoms over a course of 24 weeks in conservatively-treated patients. DESIGN Prospective cohort study. METHODS Patients with clinically-diagnosed chronic midportion AT were conservatively treated. At baseline, the Pain Coping Inventory (PCI) was used to determine scores of coping, which consisted of two domains, active and passive (score ranging from 0 to 1; the higher, the more active or passive). Presence of neuropathic pain (PainDETECT questionnaire, -1 to 38 points) was categorized as (a) unlikely (≤12 points), (b) unclear (13-18 points) and (c) likely (≥19 points). The symptom severity was determined with the validated Victorian Institute of Sports Assessment-Achilles (VISA-A) questionnaire (0-100) at baseline, 6, 12 and 24 weeks. We analysed the correlation between (1) PCI and (2) PainDETECT baseline scores with change in VISA-A score using an adjusted Generalized Estimating Equations model. RESULTS Of 80 included patients, 76 (95%) completed the 24-weeks follow-up. The mean VISA-A score (standard deviation) increased from 43 (16) points at baseline to 63 (23) points at 24 weeks. Patients had a mean (standard deviation) active coping score of 0.53 (0.13) and a passive score of 0.43 (0.10). Twelve patients (15%) had a likely neuropathic pain component. Active and passive coping mechanisms and presence of neuropathic pain did not influence the change in AT symptoms (p=0.459, p=0.478 and p=0.420, respectively). CONCLUSIONS Contrary to widespread belief, coping strategy and presence of neuropathic pain are not associated with a worse clinical outcome in this homogeneous group of patients with clinically diagnosed AT.
Collapse
|
30
|
Wan Q, Qin W, Ma Y, Shen M, Li J, Zhang Z, Chen J, Tay FR, Niu L, Jiao K. Crosstalk between Bone and Nerves within Bone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003390. [PMID: 33854888 PMCID: PMC8025013 DOI: 10.1002/advs.202003390] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Indexed: 05/11/2023]
Abstract
For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.
Collapse
Affiliation(s)
- Qian‐Qian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Wen‐Pin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Yu‐Xuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Min‐Juan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zi‐Bin Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ji‐Hua Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Franklin R. Tay
- College of Graduate StudiesAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
31
|
Zhang J, Tang J, Liu J, Yan B, Yan B, Huang M, Zhang Z, Wang L. Melatonin Promotes Heterotopic Ossification Through Regulation of Endothelial-Mesenchymal Transition in Injured Achilles Tendons in Rats. Front Cell Dev Biol 2021; 9:629274. [PMID: 33644068 PMCID: PMC7905064 DOI: 10.3389/fcell.2021.629274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
Although heterotopic ossification (HO) has been reported to be a common complication of the posttraumatic healing process, the underlying mechanism remains unknown. Endothelial-mesenchymal transition (EndMT) is known to play a role in HO, and our recent study observed that neuroendocrine signals can promote HO by modulating EndMT. Melatonin, a neuroendocrine hormone secreted mainly by the pineal gland, has been documented to perform its function in the skeletal system. This study aimed at describing the expression of melatonin during the formation of HO in rat models of Achilles tendon injury and to further investigate its role in regulating EndMT in HO. Histological staining revealed the expression of melatonin throughout the formation of heterotopic bone in injured Achilles tendons, and the serum melatonin levels were increased after the initial injury. Double immunofluorescence showed that the MT2 melatonin receptor was notably expressed at the sites of injury. Micro-CT showed the enhancement of heterotopic bone volume and calcified areas in rats treated with melatonin. Additionally, our data showed that melatonin induced EndMT in primary rat aortic endothelial cells (RAOECs), which acquired traits including migratory function, invasive function and EndMT and MSC marker gene and protein expression. Furthermore, our data exhibited that melatonin promoted the osteogenic differentiation of RAOECs undergoing EndMT in vitro. Importantly, inhibition of the melatonin-MT2 pathway by using the MT2 selective inhibitor 4-P-PDOT inhibited melatonin-induced EndMT and osteogenesis both in vivo and in vitro. In conclusion, these findings demonstrated that melatonin promoted HO through the regulation of EndMT in injured Achilles tendons in rats, and these findings might provide additional directions for the management of HO.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Jiajun Tang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Jie Liu
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Bo Yan
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Bin Yan
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Minjun Huang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Academy of Orthopedics, Guangzhou, China
| |
Collapse
|
32
|
Cardiopulmonary and Neurologic Dysfunctions in Fibrodysplasia Ossificans Progressiva. Biomedicines 2021; 9:biomedicines9020155. [PMID: 33562570 PMCID: PMC7915901 DOI: 10.3390/biomedicines9020155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is an ultra-rare but debilitating disorder characterized by spontaneous, progressive, and irreversible heterotopic ossifications (HO) at extraskeletal sites. FOP is caused by gain-of-function mutations in the Activin receptor Ia/Activin-like kinase 2 gene (Acvr1/Alk2), with increased receptor sensitivity to bone morphogenetic proteins (BMPs) and a neoceptor response to Activin A. There is extensive literature on the skeletal phenotypes in FOP, but a much more limited understanding of non-skeletal manifestations of this disease. Emerging evidence reveals important cardiopulmonary and neurologic dysfunctions in FOP including thoracic insufficiency syndrome, pulmonary hypertension, conduction abnormalities, neuropathic pain, and demyelination of the central nervous system (CNS). Here, we review the recent research and discuss unanswered questions regarding the cardiopulmonary and neurologic phenotypes in FOP.
Collapse
|
33
|
Wong KR, Mychasiuk R, O'Brien TJ, Shultz SR, McDonald SJ, Brady RD. Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res 2020; 8:42. [PMID: 33298867 PMCID: PMC7725771 DOI: 10.1038/s41413-020-00119-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Neurological heterotopic ossification (NHO) is a debilitating condition where bone forms in soft tissue, such as muscle surrounding the hip and knee, following an injury to the brain or spinal cord. This abnormal formation of bone can result in nerve impingement, pain, contractures and impaired movement. Patients are often diagnosed with NHO after the bone tissue has completely mineralised, leaving invasive surgical resection the only remaining treatment option. Surgical resection of NHO creates potential for added complications, particularly in patients with concomitant injury to the central nervous system (CNS). Although recent work has begun to shed light on the physiological mechanisms involved in NHO, there remains a significant knowledge gap related to the prognostic biomarkers and prophylactic treatments which are necessary to prevent NHO and optimise patient outcomes. This article reviews the current understanding pertaining to NHO epidemiology, pathobiology, biomarkers and treatment options. In particular, we focus on how concomitant CNS injury may drive ectopic bone formation and discuss considerations for treating polytrauma patients with NHO. We conclude that understanding of the pathogenesis of NHO is rapidly advancing, and as such, there is the strong potential for future research to unearth methods capable of identifying patients likely to develop NHO, and targeted treatments to prevent its manifestation.
Collapse
Affiliation(s)
- Ker Rui Wong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Stuart J McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia. .,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
34
|
Li L, Tuan RS. Mechanism of traumatic heterotopic ossification: In search of injury-induced osteogenic factors. J Cell Mol Med 2020; 24:11046-11055. [PMID: 32853465 PMCID: PMC7576286 DOI: 10.1111/jcmm.15735] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Heterotopic ossification (HO) is a pathological condition of abnormal bone formation in soft tissue. Three factors have been proposed as required to induce HO: (a) osteogenic precursor cells, (b) osteoinductive agents and (c) an osteoconductive environment. Since Urist's landmark discovery of bone induction in skeletal muscle tissue by demineralized bone matrix, it is generally believed that skeletal muscle itself is a conductive environment for osteogenesis and that resident progenitor cells in skeletal muscle are capable of differentiating into osteoblast to form bone. However, little is known about the naturally occurring osteoinductive agents that triggered this osteogenic response in the first place. This article provides a review of the emerging findings regarding distinct types of HO to summarize the current understanding of HO mechanisms, with special attention to the osteogenic factors that are induced following injury. Specifically, we hypothesize that muscle injury‐induced up‐regulation of local bone morphogenetic protein‐7 (BMP‐7) level, combined with glucocorticoid excess‐induced down‐regulation of circulating transforming growth factor‐β1 (TGF‐β1) level, could be an important causative mechanism of traumatic HO formation.
Collapse
Affiliation(s)
- La Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
35
|
Zhang F, Chen S, Wen JY, Chen ZW. 3-Mercaptopyruvate sulfurtransferase/hydrogen sulfide protects cerebral endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury via mitoprotection and inhibition of the RhoA/ROCK pathway. Am J Physiol Cell Physiol 2020; 319:C720-C733. [PMID: 32813542 DOI: 10.1152/ajpcell.00014.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
3-Mercaptopyruvate sulfurtransferase (3-MST) is the major source of hydrogen sulfide (H2S) production in the brain and participates in many physiological and pathological processes. The present study was designed to investigate the role of 3-MST-derived H2S (3-MST/H2S) on oxygen-glucose deprivation/reoxygenation (OGD/R) injury in cerebrovascular endothelial cells (ECs). Using cerebrovascular specimens from patients with acute massive cerebral infarction (MCI), we found abnormal morphology of the endothelium and mitochondria, as well as decreases in H2S and 3-MST levels. In an OGD/R model of ECs, 3-mercaptopyruvate (3-MP) and l-aspartic acid (l-Asp) were used to stimulate or inhibit the production of 3-MST/H2S. The results showed that OGD/R induced significant decreases in H2S and 3-MST levels in both ECs and mitochondria, as well as increases in oxidative stress and mitochondrial energy imbalance. Cellular oxidative stress, destruction of mitochondrial ultrastructure, accumulation of mitochondrial reactive oxygen species (ROS), reduction of mitochondrial adenosine triphosphate (ATP) synthase activity and ATP production, and decreased mitochondrial membrane potential were all significantly ameliorated by 3-MP, whereas they were exacerbated by l-Asp pretreatment. Contrary to the effects of l-Asp, the increase in RhoA activity and expression of ROCK1 and ROCK2 induced by OGD/R were markedly inhibited by 3-MP pretreatment in subcellular fractions without mitochondria and mitochondrial fractions. In addition, 3-MST-/- rat ECs displayed greater oxidative stress than 3-MST+/+ rat ECs after OGD/R injury. These findings suggest that 3-MST/H2S protects ECs against OGD/R-induced injury, which may be related to preservation of mitochondrial function and inhibition of the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Shuo Chen
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Ji-Yue Wen
- Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Zhi-Wu Chen
- Department of Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
36
|
Anthonissen J, Steffen CT, Alessandri B, Baranowski A, Rommens PM, Victor J, Hofmann A. Traumatic brain injury enhances the formation of heterotopic ossification around the hip: an animal model study. Arch Orthop Trauma Surg 2020; 140:1029-1035. [PMID: 31834481 DOI: 10.1007/s00402-019-03326-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The incidence of heterotopic ossification (HO) is at its highest when trauma of the hip or pelvis concurs with traumatic brain injury (TBI). The pathogenic mechanisms underlying the neurogenic enhancement of the formation of HO remain, however, poorly understood. Hence, the goal of the present study was to develop a novel small animal model that combines hip and brain trauma that can prove the enhancement of HO around the hip after TBI. MATERIALS AND METHODS Forty male Wistar rats were divided into four groups, to undergo hip surgery alone (group 1), hip surgery + moderate TBI (group 2), hip surgery + severe TBI (group 3) and only severe TBI (group 4). The femoral canal was reamed up to 2 mm and a muscle lesion was made to simulate hip surgery. An established controlled cortical impact model was used to create a TBI. Twelve weeks after surgery, the hip with the proximal half of the femur and the pelvic bone was removed and subjected to micro-computed tomography (µCT) analysis. A quantitative analysis using a modified Brooker score as well as a quantitative analysis using a bone-to-tissue ratio was used. RESULTS No HO could be found in all the ten animals that did not undergo hip surgery (group 4). In the animals that did undergo surgery to the hip, no HO was found in only one animal (group 1). All the other animals developed HO. In this study, significantly more HO was found in animals that underwent an additional severe TBI. CONCLUSION The newly developed rat model, with a combined hip and brain trauma, showed an enhancement of the HO formation around the hip after severe TBI.
Collapse
Affiliation(s)
- Joris Anthonissen
- Department of Orthopaedics and Trauma Surgery, University Hospital Mainz, Langenbeckstraße 1, 55131, Mainz, Germany. .,Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| | - Clara Theressa Steffen
- Department of Orthopaedics and Trauma Surgery, University Hospital Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Beat Alessandri
- Institute for Neurosurgical Pathophysiology, University Hospital Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Andreas Baranowski
- Department of Orthopaedics and Trauma Surgery, University Hospital Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Pol Maria Rommens
- Department of Orthopaedics and Trauma Surgery, University Hospital Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Jan Victor
- Department of Orthopaedic Surgery and Traumatology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Alexander Hofmann
- Department of Orthopaedics and Trauma Surgery, University Hospital Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
37
|
Murthy NK, Fritchie KJ, Amrami KK, Rose PS, Spinner RJ. Diffuse Neuritis Ossificans of the Brachial Plexus: Case Report and Review of the Literature. World Neurosurg 2020; 141:363-366. [PMID: 32599197 DOI: 10.1016/j.wneu.2020.06.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Neuritis ossificans (intraneural heterotopic ossification) is a rare disorder described as heterotopic ossification of a nerve. We describe the presentation and management of the first reported case of neuritis ossificans with diffuse brachial plexus involvement and review the literature. CASE DESCRIPTION A 35-year-old man presented to our clinic for evaluation of right upper extremity weakness without history of trauma. He had significant, debilitating pain and magnetic resonance imaging demonstrated a complex contrast-enhancing mass with significant associated edema. Positron emission tomography demonstrated a 18F-fluorodeoxyglucose avid lesion within the brachial plexus that was confirmed by biopsy to be neuritis ossificans. The patient was treated with indomethacin and had clinical and radiologic improvement. CONCLUSIONS We present the only case of diffuse, brachial plexus neuritis ossificans. Given the challenges of resecting neuritis ossificans in this region, we believe medical management for complex brachial plexus lesions should be considered first, unless the sequela of the disease is sufficiently prolonged or there is concern for permanent neurovascular compromise.
Collapse
Affiliation(s)
- Nikhil K Murthy
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota
| | - Karen J Fritchie
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Peter S Rose
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
38
|
Kaji DA, Tan Z, Johnson GL, Huang W, Vasquez K, Lehoczky JA, Levi B, Cheah KS, Huang AH. Cellular Plasticity in Musculoskeletal Development, Regeneration, and Disease. J Orthop Res 2020; 38:708-718. [PMID: 31721278 PMCID: PMC7213644 DOI: 10.1002/jor.24523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/04/2019] [Indexed: 02/04/2023]
Abstract
In this review, we highlight themes from a recent workshop focused on "Plasticity of Cell Fate in Musculoskeletal Tissues" held at the Orthopaedic Research Society's 2019 annual meeting. Experts in the field provided examples of mesenchymal cell plasticity during normal musculoskeletal development, regeneration, and disease. A thorough understanding of the biology underpinning mesenchymal cell plasticity may offer a roadmap for promoting regeneration while attenuating pathologic differentiation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:708-718, 2020.
Collapse
Affiliation(s)
- Deepak A. Kaji
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, NYC, NY, USA
| | - Zhijia Tan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Gemma L. Johnson
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA,Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Wesley Huang
- Department of Plastic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kaetlin Vasquez
- Department of Plastic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jessica A. Lehoczky
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Benjamin Levi
- Department of Plastic Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Alice H. Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, NYC, NY, USA
| |
Collapse
|
39
|
Bone Anabolic Response in the Calvaria Following Mild Traumatic Brain Injury is Mediated by the Cannabinoid-1 Receptor. Sci Rep 2019; 9:16196. [PMID: 31700010 PMCID: PMC6838196 DOI: 10.1038/s41598-019-51720-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022] Open
Abstract
Brain trauma was clinically associated with increased osteogenesis in the appendicular skeleton. We showed previously in C57BL/6J mice that mild traumatic brain injury (mTBI) transiently induced bone formation in the femur via the cannabinoid-1 (CB1) receptor. Here, we subjected ICR mice to mTBI and examined the bone response in the skull using microCT. We also measured mast cell degranulation (MCD)72 h post-injury. Finally, we measured brain and calvarial endocannabinoids levels post-mTBI. mTBI led to decreased bone porosity on the contralateral (untouched) side. This effect was apparent both in young and mature mice. Administration of rimonabant (CB1 inverse agonist) completely abrogated the effect of mTBI on calvarial porosity and significantly reduced MCD, compared with vehicle-treated controls. We also found that mTBI resulted in elevated levels of anandamide, but not 2-arachidonoylglycerol, in the contralateral calvarial bone, whereas brain levels remained unchanged. In C57BL/6J CB1 knockout mice, mTBI did not reduce porosity but in general the porosity was significantly lower than in WT controls. Our findings suggest that mTBI induces a strain-specific CB1-dependent bone anabolic response in the skull, probably mediated by anandamide, but seemingly unrelated to inflammation. The endocannabinoid system is therefore a plausible target in management of bone response following head trauma.
Collapse
|
40
|
Kokubu N, Tsujii M, Akeda K, Iino T, Sudo A. BMP-7/Smad expression in dedifferentiated Schwann cells during axonal regeneration and upregulation of endogenous BMP-7 following administration of PTH (1-34). J Orthop Surg (Hong Kong) 2019; 26:2309499018812953. [PMID: 30442072 DOI: 10.1177/2309499018812953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE: To determine the expression and distribution of bone morphogenetic protein (BMP)-7 and related molecules during peripheral nerve regeneration and to assess whether administration of parathyroid hormone (PTH) drug (1-34) potentiates the intrinsic upregulation of BMP-7/Smad signaling. METHODS: The rat sciatic nerves were crushed with an aneurysm clip resulting in axonal degeneration. In the normal nerve, and at 1, 2, 4, and 8 weeks after injury, BMP-7, BMP receptors, p-Smad 1/5/8, and Noggin, the endogenous BMP antagonist, were evaluated. Additionally, the distribution of BMP-7 was assessed by fluorescent double immunostaining. In vitro studies were also performed to examine the effect of BMP-7 and PTH (1-34) administration on rat Schwann cells (SCs). RESULTS: Aneurysm clip made reliable animal model of the nerve injury with recovery at 8 weeks after the injury. BMP-7/Smad protein and mRNA were significantly upregulated on axon-SCs units at 1 week after injury, and this upregulated expression was maintained for 4 weeks. Besides, significant upregulation of Noggin's expression was observed on axon-SCs units at 2 weeks after injury. Moreover, fluorescent double immunostaining showed co-localization between expression of BMP-7 and p75NTR during axonal regeneration. In the in vitro study, administration of BMP-7 induced significant proliferation of SCs. Application of PTH (1-34) upregulated BMP-7 on SCs. DISCUSSION/CONCLUSION: BMPs were reported to be involved in protection and recovery after injury as well as in neurogenesis. Our current study showed that BMP/Smad signaling molecules were upregulated on dedifferentiated SCs after peripheral nerve injury and that administration of BMP-7 increased SC viability in vitro. These results suggested that axonal regeneration could be induced via upregulation of endogenous BMP-7 on SCs by PTH (1-34) administration.
Collapse
Affiliation(s)
| | | | | | | | - Akihiro Sudo
- Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
41
|
Heterotopic ossification: radiological and pathological review. Radiol Oncol 2019; 53:275-284. [PMID: 31553710 PMCID: PMC6765162 DOI: 10.2478/raon-2019-0039] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background Heterotopic Ossification (HO) is a common condition referring to ectopic bone formation in soft tissues. It has two major etiologies, acquired (more common) and genetic. The acquired form is closely related to tissue trauma. The exact pathogenesis of this disease remains unclear; however, there is ongoing research in prophylactic and therapeutic treatments that is promising. Conclusions Due to HO potential to cause disability, it is so important to differentiate it from other causes in order to establish the best possible management.
Collapse
|
42
|
Minarelli J, Davis EL, Dickerson A, Moore WC, Mejia JA, Gugala Z, Olmsted-Davis EA, Davis AR. Characterization of neuromas in peripheral nerves and their effects on heterotopic bone formation. Mol Pain 2019; 15:1744806919838191. [PMID: 30813850 PMCID: PMC6440042 DOI: 10.1177/1744806919838191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The formation of neuromas involves expansion of the cellular components of peripheral nerves. The onset of these disorganized tumors involves activation of sensory nerves and neuroinflammation. Particularly problematic in neuroma is arborization of axons leading to extreme, neuropathic pain. The most common sites for neuroma are the ends of transected nerves following injury; however, this rodent model does not reliably result in neuroma formation. In this study, we established a rodent model of neuroma in which the sciatic nerve was loosely ligated with two chromic gut sutures. This model formed neuromas reliably (∼95%), presumably through activation of the neural inflammatory cascade. Resulting neuromas had a disorganized structure and a significant number of replicating cells. Quantification of changes in perineurial and Schwann cells showed a significant increase in these populations. Immunohistochemical analysis showed the presence of β-tubulin 3 in the rapidly expanding nerve and a decrease in neurofilament heavy chain compared to the normal nerve, suggesting the axons forming a disorganized structure. Measurement of the permeability of the blood-nerve barrier shows that it opened almost immediately and remained open as long as 10 days. Studies using an antagonist of the β3-adrenergic receptor (L-748,337) or cromolyn showed a significant reduction in tumor size and cell expansion as determined by flow cytometry, with an improvement in the animal's gait detected using a Catwalk system. Previous studies in our laboratory have shown that heterotopic ossification is also a result of the activation of neuroinflammation. Since heterotopic ossification and neuroma often occur together in amputees, they were induced in the same limbs of the study animals. More heterotopic bone was formed in animals with neuromas as compared to those without. These data collectively suggest that perturbation of early neuroinflammation with compounds such as L-748,337 and cromolyn may reduce formation of neuromas.
Collapse
Affiliation(s)
- Jordan Minarelli
- 1 Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Eleanor L Davis
- 1 Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Austin Dickerson
- 1 Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - William C Moore
- 1 Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Julio A Mejia
- 1 Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA
| | - Zbigniew Gugala
- 2 Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, USA
| | - Elizabeth A Olmsted-Davis
- 1 Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA.,3 Department of Pediatrics - Section Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,4 Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Alan R Davis
- 1 Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, USA.,3 Department of Pediatrics - Section Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA.,4 Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
43
|
Sang X, Wang Z, Shi P, Li Y, Cheng L. CGRP accelerates the pathogenesis of neurological heterotopic ossification following spinal cord injury. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2569-2574. [PMID: 31219353 DOI: 10.1080/21691401.2019.1626865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiguang Sang
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, P. R. China
| | - Zhiyong Wang
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, P. R. China
| | - Ping Shi
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, P. R. China
| | - Yonggang Li
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, P. R. China
| | - Lin Cheng
- Department of Emergency Surgery, Qilu Hospital of Shandong University, Jinan, P. R. China
| |
Collapse
|
44
|
Rosina M, Langone F, Giuliani G, Cerquone Perpetuini A, Reggio A, Calderone A, Fuoco C, Castagnoli L, Gargioli C, Cesareni G. Osteogenic differentiation of skeletal muscle progenitor cells is activated by the DNA damage response. Sci Rep 2019; 9:5447. [PMID: 30931986 PMCID: PMC6443689 DOI: 10.1038/s41598-019-41926-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/19/2019] [Indexed: 12/27/2022] Open
Abstract
Heterotopic ossification (HO) is a pathological condition characterized by the deposition of mineralized tissue in ectopic locations such as the skeletal muscle. The precise cellular origin and molecular mechanisms underlying HO are still debated. In our study we focus on the differentiation of mesoangioblasts (MABs), a population of multipotent skeletal muscle precursors. High-content screening for small molecules that perturb MAB differentiation decisions identified Idoxuridine (IdU), an antiviral and radiotherapy adjuvant, as a molecule that promotes MAB osteogenic differentiation while inhibiting myogenesis. IdU-dependent osteogenesis does not rely on the canonical BMP-2/SMADs osteogenic pathway. At pro-osteogenic conditions IdU induces a mild DNA Damage Response (DDR) that activates ATM and p38 eventually promoting the phosphorylation of the osteogenesis master regulator RUNX2. By interfering with this pathway IdU-induced osteogenesis is severely impaired. Overall, our study suggests that induction of the DDR promotes osteogenesis in muscle resident MABs thereby offering a new mechanism that may be involved in the ectopic deposition of mineralized tissue in the muscle.
Collapse
Affiliation(s)
- M Rosina
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - F Langone
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - G Giuliani
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | | | - A Reggio
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Calderone
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - C Fuoco
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - L Castagnoli
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - C Gargioli
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| | - G Cesareni
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.
| |
Collapse
|
45
|
Qing Q, Zhang YJ, Yang JL, Ning LJ, Zhang YJ, Jiang YL, Zhang Y, Luo JC, Qin TW. Effects of hydrogen peroxide on biological characteristics and osteoinductivity of decellularized and demineralized bone matrices. J Biomed Mater Res A 2019; 107:1476-1490. [PMID: 30786151 DOI: 10.1002/jbm.a.36662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/30/2019] [Accepted: 02/15/2019] [Indexed: 02/05/2023]
Abstract
Due to the similar collagen composition and closely physiological relationship with soft connective tissues, demineralized bone matrices (DBMs) were used to repair the injured tendon or ligament. However, the osteoinductivity of DBMs would be a huge barrier of these applications. Hydrogen peroxide (H2 O2 ) has been proved to reduce the osteoinductivity of DBMs. Nevertheless, the biological properties of H2 O2 -treated DBMs have not been evaluated completely, while the potential mechanism of H2 O2 compromising osteoinductivity is also unclear. Hence, the purpose of this study was to characterize the biological properties of H2 O2 -treated DBMs and search for the proof that H2 O2 could compromise osteoinductivity of DBMs. Decellularized and demineralized bone matrices (DCDBMs) were washed by 3% H2 O2 for 12 h to fabricate the H2 O2 -treated DCDBMs (HPTBMs). Similar biological properties including collagen, biomechanics, and biocompatibility were observed between DCDBMs and HPTBMs. The immunohistochemistry staining of bone morphogenetic protein 2 (BMP-2) was negative in HPTBMs. Furthermore, HPTBMs exhibited significantly reduced osteoinductivity both in vitro and in vivo. Taken together, these findings suggest that the BMP-2 in DCDBMs could be the target of H2 O2 . HPTBMs could be expected to be used as a promising scaffold for tissue engineering. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Quan Qing
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Faculty of Basic Medicine, Sichuan College of Traditional Chinese Medicine, Mianyang 621000, China
| | - Yan-Jing Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie-Liang Yang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang-Ju Ning
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ya-Jing Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing-Cong Luo
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting-Wu Qin
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
46
|
Meyers C, Lisiecki J, Miller S, Levin A, Fayad L, Ding C, Sono T, McCarthy E, Levi B, James AW. Heterotopic Ossification: A Comprehensive Review. JBMR Plus 2019; 3:e10172. [PMID: 31044187 PMCID: PMC6478587 DOI: 10.1002/jbm4.10172] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/31/2018] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is a diverse pathologic process, defined as the formation of extraskeletal bone in muscle and soft tissues. HO can be conceptualized as a tissue repair process gone awry and is a common complication of trauma and surgery. This comprehensive review seeks to synthesize the clinical, pathoetiologic, and basic biologic features of HO, including nongenetic and genetic forms. First, the clinical features, radiographic appearance, histopathologic diagnosis, and current methods of treatment are discussed. Next, current concepts regarding the mechanistic bases for HO are discussed, including the putative cell types responsible for HO formation, the inflammatory milieu and other prerequisite “niche” factors for HO initiation and propagation, and currently available animal models for the study of HO of this common and potentially devastating condition. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carolyn Meyers
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | | | - Sarah Miller
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Adam Levin
- Department of Orthopaedic Surgery Johns Hopkins University Baltimore MD USA
| | - Laura Fayad
- Department of Radiology Johns Hopkins University Baltimore MD USA
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| | - Takashi Sono
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Edward McCarthy
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Benjamin Levi
- Department of Surgery University of Michigan Ann Arbor MI USA
| | - Aaron W James
- Department of Pathology Johns Hopkins University Baltimore MD USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| |
Collapse
|
47
|
Dermal nerve fibre and mast cell density, and proximity of mast cells to nerve fibres in the skin of patients with complex regional pain syndrome. Pain 2019; 159:2021-2029. [PMID: 29905655 DOI: 10.1097/j.pain.0000000000001304] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An interaction between cutaneous nerves and mast cells may contribute to pain in complex regional pain syndrome (CRPS). To explore this, we investigated the density of dermal nerve fibres, and the density and proximity of mast cells to nerve fibres, in skin biopsies obtained from the affected and unaffected limbs of 57 patients with CRPS and 28 site-matched healthy controls. The percentage of the dermis stained by the pan-neuronal marker protein gene-product 9.5 was lower in the affected limb of patients than in controls (0.12 ± 0.01% vs 0.22 ± 0.04%, P < 0.05), indicating a reduction in dermal nerve fibre density. This parameter did not correlate with CRPS duration. However, it was lower in the affected than unaffected limb of patients with warm CRPS. Dermal mast cell numbers were similar in patients and controls, but the percentage of mast cells less than 5 µm from nerve fibres was significantly lower in the affected and unaffected limbs of patients than in controls (16.8 ± 1.7%, 16.5 ± 1.7%, and 31.4 ± 2.3% respectively, P < 0.05). We confirm previous findings of a mild neuropathy in CRPS. Our findings suggest that this either develops very early after injury or precedes CRPS onset. Loss of dermal nerve fibres in CRPS might result in loss of chemotactic signals, thus halting mast cell migration toward surviving nerve fibres. Failure of normal nerve fibre-mast cell interactions could contribute to the pathophysiology of CRPS.
Collapse
|
48
|
Zhang J, Wang L, Cao H, Chen N, Yan B, Ao X, Zhao H, Chu J, Huang M, Zhang Z. Neurotrophin-3 acts on the endothelial-mesenchymal transition of heterotopic ossification in rats. J Cell Mol Med 2019; 23:2595-2609. [PMID: 30672120 PMCID: PMC6433730 DOI: 10.1111/jcmm.14150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022] Open
Abstract
Despite the fact that extensive studies have focused on heterotopic ossification (HO), its molecular mechanism remains unclear. The endothelial-mesenchymal transition (EndMT), which may be partially modulated by neuroendocrine cytokines is thought to play a major role in HO. Neurotrophin-3 (NT-3), which has neuroendocrine characteristics is believed to promote skeletal remodeling. Herein, we suggest that that NT-3 may promote HO formation through regulation of EndMT. Here, we used an in vivo model of HO and an in vitro model of EndMT induction to elucidate the effect and underlying mechanism of NT-3 on EndMT in HO. Our results showed that heterotopic bone and cartilage arose from EndMT and NT-3 promoted HO formation in vivo. Our in vitro results showed that NT-3 up-regulated mesenchymal markers (FSP-1, α-SMA and N-cadherin) and mesenchymal stem cell (MSC) markers (STRO-1, CD44 and CD90) and down-regulated endothelial markers (Tie-1, VE-cadherin and CD31). Moreover, NT-3 enhanced a chondrogenesis marker (Sox9) and osteogenesis markers (OCN and Runx2) via activation of EndMT. However, both EndMT specific inhibitor and tropomyosin-related kinase C (TrkC) specific inhibitor rescued NT-3-induced HO formation and EndMT induction in vivo and in vitro. In conclusion, our findings demonstrate that NT-3 promotes HO formation via modulation of EndMT both in vivo and in vitro, which offers a new potential target for the prevention and therapy of HO.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - He Cao
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - Nan Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China
| | - Bin Yan
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - Xiang Ao
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - Huiyu Zhao
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - Jun Chu
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - Minjun Huang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| | - Zhongmin Zhang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.,Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, PR China
| |
Collapse
|
49
|
Tuzmen C, Campbell PG. Crosstalk between neuropeptides SP and CGRP in regulation of BMP2-induced bone differentiation. Connect Tissue Res 2018; 59:81-90. [PMID: 29745819 PMCID: PMC6448777 DOI: 10.1080/03008207.2017.1408604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM OF THE STUDY The peripheral nervous system is involved in regulation of bone metabolism via sensory and sympathetic innervation. Substance P (SP) and calcitonin gene-related peptide (CGRP) are two sensory neuropeptides that have been associated with regulation of osteogenic differentiation. However, the interaction between SP and CGRP both with each other and the bone morphogenetic protein 2 (BMP2) in regulation of osteogenic differentiation has not been studied. Therefore, the aim of this study was to investigate the interaction between SP and CGRP on BMP2-induced bone differentiation using model progenitor cells. MATERIALS AND METHODS C2C12 myoblasts and MC3T3 pre-osteoblasts were treated with SP and CGRP, both individually and in combination, in the presence of BMP2. The effects of the neuropeptides on BMP2-induced osteogenic differentiation were assessed by measuring alkaline phosphatase (ALP) activity, mineralization, and expression of osteogenic markers. RESULTS Both SP and CGRP enhanced BMP2 signaling, Runx2 mRNA expression, as well as mineralization in vitro. Co-stimulation with SP and CGRP resulted in down-regulation of BMP2-induced bone differentiation, suggesting potential crosstalk between the two neuropeptides in regulation of BMP2 signaling. CONCLUSIONS Based on the results shown here, CGRP can mitigate augmenting effects of SP on BMP2 signaling and the three pathways potentially converge on Runx2 to regulate BMP2-induced bone differentiation.
Collapse
Affiliation(s)
- Ceren Tuzmen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Phil G. Campbell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA,Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA 15213, USA,Corresponding Author: Phil Campbell, Ph.D., Engineering Research Accelerator, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall, Pittsburgh, PA 15213, USA,
| |
Collapse
|
50
|
Dorsal Root Ganglion Maintains Stemness of Bone Marrow Mesenchymal Stem Cells by Enhancing Autophagy through the AMPK/mTOR Pathway in a Coculture System. Stem Cells Int 2018; 2018:8478953. [PMID: 30363977 PMCID: PMC6186314 DOI: 10.1155/2018/8478953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/10/2018] [Accepted: 08/14/2018] [Indexed: 12/28/2022] Open
Abstract
Our previous studies found that sensory nerve tracts implanted in tissue-engineered bone (TEB) could result in better osteogenesis. To explore the mechanism of the sensory nerve promoting osteogenesis in TEB in vitro, a transwell coculture experiment was designed between dorsal root ganglion (DRG) cells and bone marrow mesenchymal stem cells (BMSCs). BMSC proliferation was determined by CCK8 assay, and osteo-, chondro-, and adipogenic differentiation were assessed by alizarin red, alcian blue, and oil red staining. We found that the proliferation and multipotent differentiation of BMSCs were all enhanced in the coculture group compared to the BMSCs group. Crystal violet staining showed that the clone-forming ability of BMSCs in the coculture group was also enhanced and mRNA levels of Sox2, Nanog, and Oct4 were significantly upregulated in the coculture group. Moreover, the autophagy level of BMSCs, regulating their stemness, was promoted in the coculture group, mediated by the AMPK/mTOR pathway. In addition, AMPK inhibitor compound C could significantly downregulate the protein expression of LC3 and the mRNA level of stemness genes in the coculture group. Finally, we found that the NK1 receptor antagonist, aprepitant, could partly block this effect, which indicated that substance P played an important role in the effect. Together, we conclude that DRG could maintain the stemness of BMSCs by enhancing autophagy through the AMPK/mTOR pathway in a transwell coculture system, which may help explain the better osteogenesis after implantation of the sensory nerve into TEB.
Collapse
|