1
|
Maharati A, Tolue Ghasaban F, Akhlaghipour I, Taghehchian N, Zangouei AS, Moghbeli M. MicroRNA-495: a therapeutic and diagnostic tumor marker. J Mol Histol 2023; 54:559-578. [PMID: 37759132 DOI: 10.1007/s10735-023-10159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Therapeutic and diagnostic progresses have significantly reduced the mortality rate among cancer patients during the last decade. However, there is still a high rate of mortality among cancer patients. One of the important reasons involved in the high mortality rate is the late diagnosis in advanced tumor stages that causes the failure of therapeutic strategies in these patients. Therefore, investigating the molecular mechanisms involved in tumor progression has an important role in introducing the efficient early detection markers. MicroRNAs (miRNAs) as stable factors in body fluids are always considered as non-invasive diagnostic and prognostic markers. In the present review, we investigated the role of miR-495 in tumor progression. It has been reported that miR-495 has mainly a tumor suppressor function through the regulation of transcription factors and tyrosine kinases as well as cellular processes such as multidrug resistance, chromatin remodeling, and signaling pathways. This review can be an effective step towards introducing the miR-495 as a non-invasive diagnostic/prognostic marker as well as a suitable target in tumor therapy.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Luo X, Zhang R, Schefczyk S, Liang Y, Lin SS, Liu S, Baba HA, Lange CM, Wedemeyer H, Lu M, Broering R. Nuclear translocation of YAP drives BMI-associated hepatocarcinogenesis in hepatitis B virus infection. Liver Int 2023; 43:2002-2016. [PMID: 37312627 DOI: 10.1111/liv.15628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC) development and progression. The aim of this study was to mechanistically investigate the involvement of Hippo signalling in HBV surface antigen (HBsAg)-dependent neoplastic transformation. METHODS Liver tissue and hepatocytes from HBsAg-transgenic mice were examined for the Hippo cascade and proliferative events. Functional experiments in mouse hepatoma cells included knockdown, overexpression, luciferase reporter assays and chromatin immunoprecipitation. Results were validated in HBV-related HCC biopsies. RESULTS Hepatic expression signatures in HBsAg-transgenic mice correlated with YAP responses, cell cycle control, DNA damage and spindle events. Polyploidy and aneuploidy occurred in HBsAg-transgenic hepatocytes. Suppression and inactivation of MST1/2 led to the loss of YAP phosphorylation and the induction of BMI1 expression in vivo and in vitro. Increased BMI1 directly mediated cell proliferation associated with decreased level of p16INK4a , p19ARF , p53 and Caspase 3 as well as increased Cyclin D1 and γ-H2AX expression. Chromatin immunoprecipitation and the analysis of mutated binding sites in dual-luciferase reporter assays confirmed that the YAP/TEAD4 transcription factor complex bound and activated the Bmi1 promoter. In chronic hepatitis B patients, paired liver biopsies of non-tumour and tumour tissue indicated a correlation between YAP expression and the abundance of BMI1. In a proof-of-concept, treatment of HBsAg-transgenic mice with YAP inhibitor verteporfin directly suppressed the BMI1-related cell cycle. CONCLUSION HBV-associated proliferative HCC might be related to the HBsAg-YAP-BMI1 axis and offer a potential target for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Xufeng Luo
- Institute for Lymphoma Research, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Rui Zhang
- Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Stefan Schefczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Yaojie Liang
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Shu S Lin
- Department of Hepato-Pancreato-Biliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hideo A Baba
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian M Lange
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Department of Internal Medicine II, LMU University Hospital Munich, Munich, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Glucose and Cell Context-Dependent Impact of BMI-1 Inhibitor PTC-209 on AKT Pathway in Endometrial Cancer Cells. Cancers (Basel) 2022; 14:cancers14235947. [PMID: 36497428 PMCID: PMC9739103 DOI: 10.3390/cancers14235947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE In our study, the glucose and cell context-dependent impact of the BMI-1 inhibitor PTC-209 on the AKT pathway in endometrial cancer cells was determined. METHODS The expression of BMI-1 was inhibited by PTC-209 in endometrial cancer cells HEC-1A and Ishikawa stimulated with insulin and grown in different glucose concentrations. The migration, invasion, viability, and proliferative potential after PTC-209 treatment was assessed using wound-healing, Transwell assay, Matrigel-coated inserts, and MTT tests. Chromatin immunoprecipitation was used to determine the localization of BMI-1 protein at promoter sites of the genes tested. RESULTS BMI-1 inhibition caused an increase in PHLPP1/2 expression and a decrease in phospho-AKT level in both cell lines. The glucose concentration and insulin stimulation differentially impact the AKT pathway through BMI-1 in cells differing in PTEN statuses. The expression of BMI-1 is dependent on the glucose concentration and insulin stimulation mostly in PTEN positive HEC-1A cells. In high glucose concentrations, BMI-1 affects AKT activity through PHLPPs and in hypoglycemia mostly through PTEN. BMI-1 inhibition impacts on genes involved in SNAIL, SLUG, and CDH1 and reduces endometrial cancer cells' migratory and invasive potential. CONCLUSIONS Our results indicate that the relationship between BMI-1 and phosphatases involved in AKT regulation depends on the glucose concentration and insulin stimulation.
Collapse
|
4
|
Lin EH, Hsu JW, Lee TF, Hsu CF, Lin TH, Jan YH, Chang HY, Cheng CM, Hsu HJ, Chen WW, Chen BH, Tsai HF, Li JJ, Huang CY, Chuang SH, Chang JM, Hsiao M, Wu CW. Targeting cancer stemness mediated by BMI1 and MCL1 for non-small cell lung cancer treatment. J Cell Mol Med 2022; 26:4305-4321. [PMID: 35794816 PMCID: PMC9401641 DOI: 10.1111/jcmm.17453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐associated death, with a global 5‐year survival rate <20%. Early metastasis and recurrence remain major challenges for lung cancer treatment. The stemness property of cancer cells has been suggested to play a key role in cancer plasticity, metastasis and drug‐resistance, and is a potential target for drug development. In this study, we found that in non‐small cell lung cancer (NSCLC), BMI1 and MCL1 play crucial roles of cancer stemness including invasion, chemo‐resistance and tumour initiation. JNK signalling serves as a link between oncogenic pathway or genotoxicity to cancer stemness. The activation of JNK, either by mutant EGFR or chemotherapy agent, stabilized BMI1 and MCL1 proteins through suppressing the expression of E3‐ubiquitin ligase HUWE1. In lung cancer patient samples, high level of BMI1 is correlated with poor survival, and the expression of BMI1 is positively correlated with MCL1. A novel small‐molecule, BI‐44, was developed, which effectively suppressed BMI1/MCL1 expressions and inhibited tumour formation and progression in preclinical models. Targeting cancer stemness mediated by BMI1/MCL1 with BI‐44 provides the basis for a new therapeutic approach in NSCLC treatment.
Collapse
Affiliation(s)
- Erh-Hsuan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jhen-Wei Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Fang Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chiung-Fang Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tsung-Hsien Lin
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hua Jan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yi Chang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Ming Cheng
- Department of Pharmacology, Development Center for Biotechnology, Institute for Drug Evaluation Platform, Taipei, Taiwan
| | - Hui-Jan Hsu
- Department of Medicinal Chemistry, Development Center for Biotechnology, Institute of Pharmaceutics, Taipei, Taiwan
| | - Wei-Wei Chen
- Department of Pharmacology, Development Center for Biotechnology, Institute for Drug Evaluation Platform, Taipei, Taiwan
| | - Bo-Hung Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Jung-Jung Li
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Ying Huang
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Hsien Chuang
- Department of Medicinal Chemistry, Development Center for Biotechnology, Institute of Pharmaceutics, Taipei, Taiwan
| | - Jia-Ming Chang
- Department of Pharmacology, Development Center for Biotechnology, Institute for Drug Evaluation Platform, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Wen Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
5
|
Abadi AJ, Mirzaei S, Mahabady MK, Hashemi F, Zabolian A, Hashemi F, Raee P, Aghamiri S, Ashrafizadeh M, Aref AR, Hamblin MR, Hushmandi K, Zarrabi A, Sethi G. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother Res 2021; 36:189-213. [PMID: 34697839 DOI: 10.1002/ptr.7305] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is a phytochemical isolated from Curcuma longa with potent tumor-suppressor activity, which has shown significant efficacy in pre-clinical and clinical studies. Curcumin stimulates cell death, triggers cycle arrest, and suppresses oncogenic pathways, thereby suppressing cancer progression. Cisplatin (CP) stimulates DNA damage and apoptosis in cancer chemotherapy. However, CP has adverse effects on several organs of the body, and drug resistance is frequently observed. The purpose of the present review is to show the function of curcumin in decreasing CP's adverse impacts and improving its antitumor activity. Curcumin administration reduces ROS levels to prevent apoptosis in normal cells. Furthermore, curcumin can inhibit inflammation via down-regulation of NF-κB to maintain the normal function of organs. Curcumin and its nanoformulations can reduce the hepatoxicity, neurotoxicity, renal toxicity, ototoxicity, and cardiotoxicity caused by CP. Notably, curcumin potentiates CP cytotoxicity via mediating cell death and cycle arrest. Besides, curcumin suppresses the STAT3 and NF-ĸB as tumor-promoting pathways, to enhance CP sensitivity and prevent drug resistance. The targeted delivery of curcumin and CP to tumor cells can be mediated nanostructures. In addition, curcumin derivatives are also able to reduce CP-mediated side effects, and increase CP cytotoxicity against various cancer types.
Collapse
Affiliation(s)
- Asal Jalal Abadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fardin Hashemi
- School of Rehabilitation, Department of Physical Therapy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Tuzla, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Vice President at Translational Sciences, Xsphera Biosciences Inc, Boston, Massachusetts, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey.,Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Tobeiha M, Rajabi A, Raisi A, Mohajeri M, Yazdi SM, Davoodvandi A, Aslanbeigi F, Vaziri M, Hamblin MR, Mirzaei H. Potential of natural products in osteosarcoma treatment: Focus on molecular mechanisms. Biomed Pharmacother 2021; 144:112257. [PMID: 34688081 DOI: 10.1016/j.biopha.2021.112257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most frequent type of bone cancer found in children and adolescents, and commonly arises in the metaphyseal region of tubular long bones. Standard therapeutic approaches, such as surgery, chemotherapy, and radiation therapy, are used in the management of osteosarcoma. In recent years, the mortality rate of osteosarcoma has decreased due to advances in treatment methods. Today, the scientific community is investigating the use of different naturally derived active principles against various types of cancer. Natural bioactive compounds can function against cancer cells in two ways. Firstly they can act as classical cytotoxic compounds by non-specifically affecting macromolecules, such as DNA, enzymes, and microtubules, which are also expressed in normal proliferating cells, but to a greater extent by cancer cells. Secondly, they can act against oncogenic signal transduction pathways, many of which are activated in cancer cells. Some bioactive plant-derived agents are gaining increasing attention because of their anti-cancer properties. Moreover, some naturally-derived compounds can significantly promote the effectiveness of standard chemotherapy drugs, and in certain cases are able to ameliorate drug-induced adverse effects caused by chemotherapy. In the present review we summarize the effects of various naturally-occurring bioactive compounds against osteosarcoma.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahshad Mohajeri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Aslanbeigi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - MohamadSadegh Vaziri
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Wu C, Lin W, Fu F. Long non-coding RNA DLX6-AS1 knockdown suppresses the tumorigenesis and progression of non-small cell lung cancer through microRNA-16-5p/BMI1 axis. Transl Cancer Res 2021; 10:3772-3787. [PMID: 35116677 PMCID: PMC8799293 DOI: 10.21037/tcr-21-1240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/19/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a huge threat to sufferers' life and overall health. Long non-coding RNA (lncRNA) distal-less homeobox 6 antisense RNA 1 (DLX6-AS1) has been revealed to function as a carcinogenesis factor in some cancers. This research aimed to scrutinize the role and mechanism underlying DLX6-AS1 in NSCLC tumorigenesis and progression. METHODS The levels of DLX6-AS1, microRNA-16-5p (miR-16-5p), and BMI1 mRNA were estimated via reverse transcription-quantitative PCR (RT-qPCR) assay. The protein levels were disclosed by western blot assay. Cell proliferative potential was estimated by colony formation and Cell Counting Kit-8 (CCK-8) assays. Cell migration was estimated by Transwell and wound healing assay. A Transwell assay was executed to estimate cell invasion. The relationships of DLX6-AS1, miR-16-5p, and BMI1 were forecasted by bioinformatics analysis, and confirmed by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. A xenograft mice model was employed to to inspect the function of DLX6-AS1 knockdown on NSCLC tumorigenesis in vivo. RESULTS DLX6-AS1 was overexpressed in NSCLC tissues and cells, and was inextricably linked with the poor prognosis of NSCLC patients. Depletion of DLX6-AS1 oppressed cell proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) but promoted apoptosis in NSCLC. MiR-16-5p is a target of DLX6-AS1 and directly targets BMI1. Moreover, the anti-tumor impacts of miR-16-5p were overturned by overexpression of DLX6-AS1 or BMI1 in NSCLC cells. Additionally, DLX6-AS1 silencing inhibited tumor growth of NSCLC in vivo. CONCLUSIONS In conclusion, lncRNA DLX6-AS1 downregulation suppressed the tumorigenesis and progression of NSCLC via miR-16-5p/BMI1 axis in vitro and in vivo, elucidating the vital roles and downstream targets of DLX6-AS1 in NSCLC.
Collapse
Affiliation(s)
- Chengde Wu
- Department of Thoracic Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou People's Hospital, Haidian Island, Haikou, China
| | - Wei Lin
- Department of Thoracic Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou People's Hospital, Haidian Island, Haikou, China
| | - Fangyong Fu
- Department of Thoracic Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou People's Hospital, Haidian Island, Haikou, China
| |
Collapse
|
8
|
LncAY controls BMI1 expression and activates BMI1/Wnt/β-catenin signaling axis in hepatocellular carcinoma. Life Sci 2021; 280:119748. [PMID: 34174322 DOI: 10.1016/j.lfs.2021.119748] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver. Long non-coding RNAs as master gene regulators play important roles in tumorigenesis and progression. However, the significance of lncRNAs and their regulatory mechanisms in HCC are largely unknown. Our study was to define the role of lncAY (long noncoding RNA AY927503) in HCC. METHODS Methylated RNA immunoprecipitation qPCR combined with bioinformatics were used to identify the m6A modification of lncAY. qRT-PCR, western blotting and immunofluorescence were used to identify the expression of the lncAY/YTHDF2/BMI1/Wnt axis in HCC tissues and cell lines. Gain- and loss-of functions of lncAY and BMI1 were implemented to confirm their roles in the behaviors of HCC cells. RESULTS Our findings suggested that m6A-modified lncAY expression relied on m6A "reader" protein YTHDF2. LncAY upregulated BMI1 expression in HCC cells and a notably positive relevance is evident between lncAY and BMI1 expression in TCGA HCC datasets. BMI1 was upregulated in HCC tissues and patients with higher BMI1 expression had a poor clinical prognosis. Besides, GSEA analysis showed remarkable enrichment of high BMI1 expression in gene sets associated with Wnt/β-catenin signaling. Rescue results revealed that BMI1 reversed the suppressive effects of lncAY depletion in HCC cells. CONCLUSIONS Our work suggested that lncAY might elevate BMI1 expression and further activate the Wnt/β-catenin signaling. BMI1 reverses the suppressive effects of lncAY depletion in HCC cells. Collectively, our work uncovers a novel undefined regulatory signaling pathway, namely lncAY/BMI1/Wnt/β-catenin axis, involved in liver cancer progression.
Collapse
|
9
|
Takeiwa T, Ikeda K, Horie-Inoue K, Inoue S. Mechanisms of Apoptosis-Related Long Non-coding RNAs in Ovarian Cancer. Front Cell Dev Biol 2021; 9:641963. [PMID: 33996797 PMCID: PMC8117355 DOI: 10.3389/fcell.2021.641963] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is a health-threatening malignancy of ovary in female reproductive systems and one of the most common gynecological malignancies worldwide. Due to rare early symptoms, ovarian cancers are often diagnosed at advanced stages and exhibit poor prognosis. Thus, efforts have been paid to develop alternative diagnostic and therapeutic strategies for the disease. Recent studies have presented that some long non-coding RNAs (lncRNAs) play roles in apoptosis of ovarian cancer cells through various mechanisms involved in the regulation of transcription factors, histone modification complexes, miRNAs, and protein stability. Because evasion of apoptosis in cancer cells facilitates to promote tumor progression and therapy resistance, apoptosis regulatory mechanisms of lncRNAs may be promising new targets in ovarian cancer. In this review, we introduce the recent findings in regard to the molecular mechanisms of apoptosis-related lncRNAs in ovarian cancer cells.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie-Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan
| | - Satoshi Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Saitama, Japan.,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
10
|
Zhou M, Xu Q, Huang D, Luo L. Regulation of gene transcription of B lymphoma Mo-MLV insertion region 1 homolog (Review). Biomed Rep 2021; 14:52. [PMID: 33884195 PMCID: PMC8056379 DOI: 10.3892/br.2021.1428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) is a core protein component of the polycomb repressive complex 1 that inhibits cell senescence and maintains the self-renewal ability of stem cells via downregulation of p16Ink4a and p19Arf expression. Bmi-1 serves an important role in hematopoietic stem cell maintenance and neurodevelopment during embryonic development, and it has been shown to enhance tumorigenesis by promoting cancer stem cell self-renewal and epithelial to mesenchymal transition. Emerging evidence suggests that Bmi-1 overexpression is closely related to the development and progression of various types of cancer, and that downregulation of Bmi-1 expression can inhibit the proliferation, invasion and metastasis of cancer cells. It is therefore important to elucidate the mechanisms underlying the regulation of Bmi-1 expression both under normal growth conditions and in malignant tissues. In the present review, the current body of knowledge pertaining to the transcriptional and post-transcriptional regulation of the BMI-1 gene is discussed, and the potential mechanisms by which Bmi-1 is dysregulated in various types of cancer are highlighted. Bmi-1 expression is primarily controlled via transcriptional regulation, and is regulated by the transcription https://www.ushuaia.pl/hyphen/?ln=en factors of the Myc family, including Myb, Twist1, SALL4 and E2F-1. Post-transcriptionally, regulation of Bmi-1 expression is inhibited by several microRNAs and certain small-molecule drugs. Thus, regulatory transcriptional factors are potential therapeutic targets to reduce Bmi-1 expression in cancer cells. Thus, the present review provides an up-to-date review on the regulation of BMI-1 gene expression at the transcriptional and post-transcriptional level.
Collapse
Affiliation(s)
- Meizhen Zhou
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qichao Xu
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Deqiang Huang
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyu Luo
- Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
11
|
Chen C, Mao X, Cheng C, Jiao Y, Zhou Y, Ren T, Wu Z, Lv Z, Sun X, Guo W. miR-135a Reduces Osteosarcoma Pulmonary Metastasis by Targeting Both BMI1 and KLF4. Front Oncol 2021; 11:620295. [PMID: 33828977 PMCID: PMC8019936 DOI: 10.3389/fonc.2021.620295] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Because of the modest response rate after surgery and chemotherapy, treatment of osteosarcoma (OS) remains challenging due to tumor recurrence and metastasis. miR-135a has been reported to act as an anticarcinogenic regulator of several cancers. However, its expression and function in osteosarcoma remain largely unknown. Here, we reported that abridged miR-135a expression in OS cells and tissues, and its expression is inversely correlated with the expression of BMI1 and KLF4, which are described as oncogenes in several cancers. Ectopic expression of miR-135a inhibited cell invasion and expression of BMI1 and KLF4 in OS cells. In vivo investigation confirmed that miR-135a acts as a tumor suppressor in OS to inhibit tumor growth and lung metastasis in xenograft nude mice. BMI1 and KLF4 were revealed to be direct targets of miR-135a, and miR-135a had a similar effect as the combination of si-BMI1 and si-KLF4 on inhibiting tumor progression and the expression of BMI1 and KLF4 in vivo. Altogether, our results demonstrate that the targeting of BMI1/KLF4 with miR-135a may provide an applicable strategy for exploring novel therapeutic approaches for OS.
Collapse
Affiliation(s)
- Chenglong Chen
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Xingjia Mao
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Caitong Cheng
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yurui Jiao
- Endocrinology Research Center, Xiangya Hospital Central South University, Changsha, China
| | - Yi Zhou
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Zhuangzhuang Wu
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhi Lv
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaojuan Sun
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| |
Collapse
|
12
|
The Role of Polycomb Group Protein BMI1 in DNA Repair and Genomic Stability. Int J Mol Sci 2021; 22:ijms22062976. [PMID: 33804165 PMCID: PMC7998361 DOI: 10.3390/ijms22062976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/31/2022] Open
Abstract
The polycomb group (PcG) proteins are a class of transcriptional repressors that mediate gene silencing through histone post-translational modifications. They are involved in the maintenance of stem cell self-renewal and proliferation, processes that are often dysregulated in cancer. Apart from their canonical functions in epigenetic gene silencing, several studies have uncovered a function for PcG proteins in DNA damage signaling and repair. In particular, members of the poly-comb group complexes (PRC) 1 and 2 have been shown to recruit to sites of DNA damage and mediate DNA double-strand break repair. Here, we review current understanding of the PRCs and their roles in cancer development. We then focus on the PRC1 member BMI1, discussing the current state of knowledge of its role in DNA repair and genome integrity, and outline how it can be targeted pharmacologically.
Collapse
|
13
|
Rodrigues MFSD, Tobouti PL, Molon AC, Sedassari BT, Nunes FD, Pinto DDS, de Sousa SCOM. Histopathological findings and immunohistochemical expression of the stem cell markers CD44, ALDH1, Bmi-1, and Nanog in oral solitary fibrous tumors. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 131:444-451. [PMID: 33610537 DOI: 10.1016/j.oooo.2020.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/25/2020] [Accepted: 11/08/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the histomorphologic presentation and the expression of stem cell-related markers in a series of oral solitary fibrous tumors (SFTs). STUDY DESIGN Histopathological variables and the expression of the standard stem cell markers CD34 and CD99, used for SFT diagnosis, as well as STAT6 were evaluated in 13 oral SFTs. The expression of the cancer stem cell markers CD44, ALDH1, Bmi-1, and Nanog and the tumor suppressor gene p16Ink4a were also investigated. RESULTS The majority of oral SFTs were circumscribed and characterized by a proliferation of spindle cells arranged in a hyalinized stroma. Only 2 oral SFTs showed >4 mitoses/10 high-power fields. Hypercellularity as well as nuclear and cellular pleomorphism were classified as low and moderate in most of the oral SFTs. All oral SFTs were positive for CD34, STAT6, CD44, ALDH1, Bmi-1, and p16Ink4a. CD99 and Nanog expression was observed in 11 and 10 oral SFT cases, respectively. CONCLUSION We suggest that STAT6 and ALDH1 have relevant diagnostic value. The expression of CD44, ALDH1, Bmi-1, and Nanog, which is observed in cancer stem cells, may confer advantages to oral SFT cells.
Collapse
Affiliation(s)
| | | | - Angela Cristina Molon
- Biophotonics Applied to Health Science, Nove de Julho University, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
14
|
Seipel K, Kopp B, Bacher U, Pabst T. BMI1-Inhibitor PTC596 in Combination with MCL1 Inhibitor S63845 or MEK Inhibitor Trametinib in the Treatment of Acute Leukemia. Cancers (Basel) 2021; 13:cancers13030581. [PMID: 33540760 PMCID: PMC7867282 DOI: 10.3390/cancers13030581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Prognosis for acute myeloid leukemia (AML) patients is poor, particularly in TP53 mutated AML, secondary, relapsed, and refractory AML, and in patients unfit for intensive treatment, thus highlighting an unmet need for novel therapeutic approaches. Targeting the stem cell oncoprotein BMI1 in leukemic cells may represent a promising novel treatment option for poor risk AML patients, especially in combination with other targeted therapies. Here we tested the BMI1 inhibitor PTC596 in combination with a variety of targeted therapies in AML cell lines and patient samples in vitro. In addition, we defined the biomarkers of response to the combination treatments in the leukemic cells. The combination treatment with the BMI1 inhibitor PTC596 and the MCL1 inhibitor S63845 may be an effective treatment in CD34+ adverse risk AML with elevated MN1 gene expression and MCL1 protein levels, while combination treatment with BMI1 inhibitor PTC596 and the MEK inhibitor trametinib may be more effective in CD34+ adverse risk AML with elevated BMI1 gene expression and MEK protein levels. The determination of gene and protein expression levels in leukemic cells as biomarkers of response to targeted combination therapies may be helpful to optimize treatment efficacy. Abstract Purpose: Prognosis for acute myeloid leukemia (AML) patients is poor, particularly in TP53 mutated AML, secondary, relapsed, and refractory AML, and in patients unfit for intensive treatment, thus highlighting an unmet need for novel therapeutic approaches. The combined use of compounds targeting the stem cell oncoprotein BMI1 and activating the tumor suppressor protein p53 may represent a promising novel treatment option for poor risk AML patients. Experimental Design: The BMI1 inhibitor PTC596, MCL1 inhibitor S63845, and MEK inhibitor trametinib, as well as the p53 activator APR-246 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells. AML cells represented all major morphologic and molecular subtypes including FLT3-ITD and FLT3 wild type, NPM1 mutant and wild type, as well as TP53 mutant and wild type AML cell lines and a variety of patient derived AML cells. Results: AML cell lines were variably susceptible to PTC596 and to combination treatments with PTC596 and MCL1 inhibitor S63845, MEK inhibitor trametinib, or TP53 activator APR-246, independent of TP53 mutational status. Susceptibility of patient samples for PTC596 in combination with S63845 or trametinib was significant for the majority of adverse risk primary and secondary AML with minimal efficacy in favorable risk AML, and correlated significantly with CD34 positivity of the samples. BMI1 and MN1 gene expression, and MCL1 and MEK1 protein levels were identified as biomarkers for response to PTC596 combination treatments. Conclusions: The combination of PTC596 and S63845 may be an effective treatment in CD34+ adverse risk AML with elevated MN1 gene expression and MCL1 protein levels, while PTC596 and trametinib may be more effective in CD34+ adverse risk AML with elevated BMI1 gene expression and MEK protein levels.
Collapse
Affiliation(s)
- Katja Seipel
- Department for Biomedical Research (DBMR), University of Berne, 3008 Bern, Switzerland or (K.S.); (B.K.)
- Department of Medical Oncology, University Hospital Berne, 3010 Bern, Switzerland
| | - Basil Kopp
- Department for Biomedical Research (DBMR), University of Berne, 3008 Bern, Switzerland or (K.S.); (B.K.)
| | - Ulrike Bacher
- Department of Hematology, University Hospital Berne, 3010 Bern, Switzerland;
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital Berne, 3010 Bern, Switzerland
- Correspondence: ; Tel.: +41-31-632-8430; Fax: +41-31-632-3410
| |
Collapse
|
15
|
The combination of the tubulin binding small molecule PTC596 and proteasome inhibitors suppresses the growth of myeloma cells. Sci Rep 2021; 11:2074. [PMID: 33483574 PMCID: PMC7822878 DOI: 10.1038/s41598-021-81577-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
The novel small molecule PTC596 inhibits microtubule polymerization and its clinical development has been initiated for some solid cancers. We herein investigated the preclinical efficacy of PTC596 alone and in combination with proteasome inhibitors in the treatment of multiple myeloma (MM). PTC596 inhibited the proliferation of MM cell lines as well as primary MM samples in vitro, and this was confirmed with MM cell lines in vivo. PTC596 synergized with bortezomib or carfilzomib to inhibit the growth of MM cells in vitro. The combination treatment of PTC596 with bortezomib exerted synergistic effects in a xenograft model of human MM cell lines in immunodeficient mice and exhibited acceptable tolerability. Mechanistically, treatment with PTC596 induced cell cycle arrest at G2/M phase followed by apoptotic cell death, associated with the inhibition of microtubule polymerization. RNA sequence analysis also revealed that PTC596 and the combination with bortezomib affected the cell cycle and apoptosis in MM cells. Importantly, endoplasmic reticulum stress induced by bortezomib was enhanced by PTC596, providing an underlying mechanism of action of the combination therapy. Our results indicate that PTC596 alone and in combination with proteasome inhibition are potential novel therapeutic options to improve outcomes in patients with MM.
Collapse
|
16
|
Shapiro GI, O'Mara E, Laskin OL, Gao L, Baird JD, Spiegel RJ, Kaushik D, Weetall M, Colacino J, O'Keefe K, Branstrom A, Goodwin E, Infante J, Bedard PL, Kong R. Pharmacokinetics and Safety of PTC596, a Novel Tubulin-Binding Agent, in Subjects With Advanced Solid Tumors. Clin Pharmacol Drug Dev 2021; 10:940-949. [PMID: 33440067 DOI: 10.1002/cpdd.904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
PTC596 is a novel, orally bioavailable, small-molecule tubulin-binding agent that reduces B-cell-specific Moloney murine leukemia virus insertion site 1 activity and is being developed for the treatment of solid tumors. A phase 1, open-label, multiple-ascending-dose study was conducted to evaluate the pharmacokinetics and safety of the drug in subjects with advanced solid tumors. PTC596 was administered orally biweekly based on body weight. Dose escalation followed a modified 3 + 3 scheme using doses of 0.65, 1.3, 2.6, 5.2, 7.0, and 10.4 mg/kg. Following oral administration, PTC596 was rapidly absorbed, and between 0.65 and 7.0 mg/kg reached a maximum plasma concentration 2 to 4 hours after dosing. Area under the plasma concentration-time curve increased proportionally with body weight-adjusted doses. Maximum plasma concentration increased with dose, although the increase was less than dose proportional at dose levels >2.6 mg/kg. No accumulation occurred after multiple administrations up to 7.0 mg/kg. PTC596 had a terminal half-life ranging 12 to 15 hours at all doses except for the highest dose of 10.4 mg/kg, where the half-life was approximately 20 hours. Overall, PTC596 was well tolerated. The most frequently reported PTC596-related treatment-emergent adverse events were mild to moderate gastrointestinal symptoms, including diarrhea (54.8%), nausea (45.2%), vomiting (35.5%), and fatigue (35.5%). Only 1 patient treated with 10.4 mg/kg experienced dose-limiting toxicity of neutropenia and thrombocytopenia, both of which were reversible. Stable disease as best overall response was observed among 7 patients, with 2 patients receiving the study drug up to 16 weeks. These results support the further development of PTC596 for the treatment of solid tumors.
Collapse
Affiliation(s)
- Geoffrey I Shapiro
- Dana-Farber Cancer Institute, Department of Medical Oncology, Boston, Massachusetts, USA
| | - Edward O'Mara
- PTC Therapeutics, Inc., South Plainfield, New Jersey, USA
| | - Oscar L Laskin
- PTC Therapeutics, Inc., South Plainfield, New Jersey, USA
| | - Lan Gao
- PTC Therapeutics, Inc., South Plainfield, New Jersey, USA
| | - John D Baird
- PTC Therapeutics, Inc., South Plainfield, New Jersey, USA
| | | | - Diksha Kaushik
- PTC Therapeutics, Inc., South Plainfield, New Jersey, USA
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, New Jersey, USA
| | | | - Kylie O'Keefe
- PTC Therapeutics, Inc., South Plainfield, New Jersey, USA
| | | | | | - Jeffrey Infante
- Sarah Cannon Research Institute and Tennessee Oncology PLLC, Nashville, Tennessee, USA
| | - Philippe L Bedard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ronald Kong
- PTC Therapeutics, Inc., South Plainfield, New Jersey, USA
| |
Collapse
|
17
|
Dev A, Sardoiwala MN, Kushwaha AC, Karmakar S, Choudhury SR. Genistein nanoformulation promotes selective apoptosis in oral squamous cell carcinoma through repression of 3PK-EZH2 signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153386. [PMID: 33113500 DOI: 10.1016/j.phymed.2020.153386] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/22/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Overexpression of polycomb protein contributes to epigenetic repression in oral squamous cell carcinoma (OSCC) ensuing in poor prognosis and aggressive phenotype. Several plant-based compounds could help prevent epigenome alteration and cancer progression, but their low bioavailability limits their therapeutic activity. HYPOTHESIS In this study, we have synthesized genistein nanoformulation (GLNPs) and evaluated its epigenetic regulation mechanism for selective apoptosis induction in OSCC. METHODS Lactalbumin was used to prepare nanoformulation of Genistein. The mechanism of epigenetic regulation and selective apoptosis by Genistein loaded nanoparticles was studied in OSCC cell line JHU011 and fibroblast cell line L929 using immunofluorescence, Western blotting and ChIP-qPCR assay. RESULTS We have found that GLNPs treatment selectively induced apoptosis in OSCC compared to the normal fibroblast cells. This selective effect in OSCC is achieved through enhanced reactive oxygen species (ROS) generation followed by Bax mitochondrial translocation and caspase 3 activation. Further, GLNPs induced withdrawal of epigenetic transcription repression through concurrent downregulation of the polycomb group proteins (PcG) Bmi 1 and EZH2 along with their successive targets, UbH2AK119 and H3K27me3, which have immense therapeutic implications in the treatment of OSCC. Last, we have established that GLNPs regulate EZH2expression through proteasomal mediated degradation and 3PK inhibition; 3PK protein was found physically linked with EZH2 protein and its promoter region (-1107 to -1002). This event indicates that 3PK might play some crucial role in EZH2 expression and epigenetic control of OSCC. Moreover, the formulation showed improved biodistribution, aqueous dispersibility and enhanced biocompatibility In-vivo. CONCLUSIONS These results provide evidence that GLNPs may withdraw epigenetic transcriptional repression and selectively induce apoptosis in human oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Atul Dev
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India
| | | | - Avinash Chandra Kushwaha
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India.
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India.
| |
Collapse
|
18
|
New 1,3-Disubstituted Benzo[ h]Isoquinoline Cyclen-Based Ligand Platform: Synthesis, Eu 3+ Multiphoton Sensitization and Imaging Applications. Molecules 2020; 26:molecules26010058. [PMID: 33374449 PMCID: PMC7795479 DOI: 10.3390/molecules26010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
The development of lanthanide-based luminescent probes with a long emission lifetime has the potential to revolutionize imaging-based diagnostic techniques. By a rational design strategy taking advantage of computational predictions, a novel, water-soluble Eu3+ complex from a cyclen-based ligand bearing 1,3-disubstituted benzo[h]isoquinoline arms was realized. The ligand has been obtained overcoming the lack of reactivity of position 3 of the isoquinoline moiety. Notably, steric hindrance of the heteroaromatic chromophore allowed selective and stoichiometry-controlled insertion of two or three antennas on the cyclen platform without any protection strategy. The complex bears a fourth heptanoic arm for easy conjugation to biomolecules. This new chromophore allowed the sensitization of the metal center either with one or two photons excitation. The suitability as a luminescent bioprobe was validated by imaging BMI1 oncomarker in lung carcinoma cells following an established immunofluorescence approach. The use of a conventional epifluorescence microscope equipped with a linear structured illumination module disclosed a simple and inexpensive way to image confocally Ln-bioprobes by single photon excitation in the 350–400 nm window, where ordinary confocal systems have no excitation sources.
Collapse
|
19
|
Wei F, Jing H, Wei M, Liu L, Wu J, Wang M, Han D, Yang F, Yang B, Jiao D, Zheng G, Zhang L, Xi W, Guo Z, Yang AG, Qin W, Zhou Y, Wen W. Ring finger protein 2 promotes colorectal cancer progression by suppressing early growth response 1. Aging (Albany NY) 2020; 12:26199-26220. [PMID: 33346749 PMCID: PMC7803491 DOI: 10.18632/aging.202396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Ring finger protein 2 (RNF2) is an important component of polycomb repressive complex 1. RNF2 is upregulated in many kinds of tumors, and elevated RNF2 expression is associated with a poor prognosis in certain cancers. To assess the function of RNF2 in colorectal cancer, we examined RNF2 protein levels in 313 paired colorectal cancer tissues and adjacent normal tissues. We then analyzed the association of RNF2 expression with the patients’ clinicopathologic features and prognoses. RNF2 expression was upregulated in colorectal cancer tissues and was associated with the tumor differentiation status, tumor stage and prognosis. In colorectal cancer cell lines, downregulation of RNF2 inhibited cell proliferation and induced apoptosis. Gene microarray analysis revealed that early growth response 1 (EGR1) was upregulated in RNF2-knockdown cells. Knocking down EGR1 partially reversed the inhibition of cell proliferation and the induction of apoptosis in RNF2-knockdown cells. RNF2 was enriched at the EGR1 promoter, where it mono-ubiquitinated histone H2A, thereby inhibiting EGR1 expression. These results indicate that RNF2 is oncogenic in colorectal cancer and may promote disease progression by inhibiting EGR1 expression. RNF2 is thus a potential prognostic marker and therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Feilong Wei
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Haoren Jing
- Department of Anorectal Surgery, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300013, China
| | - Ming Wei
- Urology Department of No. 989 Hospital, Joint Logistics Support Force of PLA, Luoyang 471000, China
| | - Lei Liu
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Jieheng Wu
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Meng Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Bo Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Dian Jiao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China
| | - Guoxu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Lingling Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Zhangyan Guo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an 710032, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yi Zhou
- Department of Anorectal Surgery, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300013, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
20
|
Jiang X, Huang Y. Curcumin Derivative C086 Combined with Cisplatin Inhibits Proliferation of Osteosarcoma Cells. Med Sci Monit 2020; 26:e924507. [PMID: 32734935 PMCID: PMC7414526 DOI: 10.12659/msm.924507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Curcumin derivative C086 (cur C086) is a potential chemotherapeutic agent for patients with osteosarcoma. In this study, the effects of cur C086 combined with cisplatin on the biological processes of osteosarcoma cells were investigated. Material/Methods In this study, expression of BMIL1 was detected by real-time quantitative reverse transcription polymerase chain reaction and Western blotting in MG-63 cells treated with cur C086+cisplatin. Functions of cur C086+cisplatin on proliferation ability, apoptosis response, and metastatic potential of MG-63 cells were determined by MTT, flow cytometry, Hoechst 33258 staining and Transwell assays, respectively. In additionally, expression of P16, E-cadherin, epidermal growth factor (EGFR), and Notch1 was measured by Western blotting. Results Expression of BMIL1 decreased significantly in MG-63 cells treated with cur C086 (20 μM)+cisplatin (1.28 nM). Treatment with cur C086+cisplatin considerably inhibited growth, migration, and invasion potential in MG-63 cells, whereas apoptosis was obviously upregulated. Moreover, cur C086+cisplatin suppressed BMIL1 expression or its potential downstream targets, P16, E-cadherin, EGFR, and Notch1. Conclusions The current results demonstrate that combined treatment with cur C086+cisplatin may be an effective form of chemotherapy for patients with osteosarcoma.
Collapse
Affiliation(s)
- Xi Jiang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing, China (mainland)
| | - Yulin Huang
- Department of Clinical Laboratory, The Traditional Chinese Medicine Hospital of Wuxi, Chongqing, China (mainland)
| |
Collapse
|
21
|
Forgione MO, McClure BJ, Yeung DT, Eadie LN, White DL. MLLT10 rearranged acute leukemia: Incidence, prognosis, and possible therapeutic strategies. Genes Chromosomes Cancer 2020; 59:709-721. [PMID: 32720323 DOI: 10.1002/gcc.22887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
Rearrangements of the MLLT10 gene occur in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), most commonly T-lineage ALL (T-ALL), in patients of all ages. MLLT10 rearranged (MLLT10r) acute leukemia presents a complex diagnostic and therapeutic challenge due to frequent presentation of immature or mixed phenotype, and a lack of consensus regarding optimal therapy. Cases of MLLT10r AML or T-ALL bearing immature phenotype are at high risk of poor outcome, but the underlying molecular mechanisms and sensitivity to targeted therapies remain poorly characterized. This review addresses the incidence and prognostic significance of MLLT10r in acute leukemia, and how the aberrant gene expression profile of this disease can inform potential targeted therapeutic strategies. Understanding the underlying genomics of MLLT10r acute leukemia, both clinically and molecularly, will improve prognostic stratification and accelerate the development of targeted therapeutic strategies, to improve patient outcomes.
Collapse
Affiliation(s)
- Michelle O Forgione
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Barbara J McClure
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - David T Yeung
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Laura N Eadie
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
- Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Australian and New Zealand Children's Oncology Group (ANZCHOG), Hudson Institute, Clayton, Victoria, Australia
| |
Collapse
|
22
|
Breast cancer stem cells: A fallow research ground in Africa. Pathol Res Pract 2020; 216:153118. [PMID: 32853953 DOI: 10.1016/j.prp.2020.153118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
|
23
|
A three-gene signature might predict prognosis in patients with acute myeloid leukemia. Biosci Rep 2020; 40:224913. [PMID: 32436945 PMCID: PMC7269913 DOI: 10.1042/bsr20193808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/13/2020] [Accepted: 04/29/2020] [Indexed: 01/24/2023] Open
Abstract
The identification of effective signatures is crucial to predict the prognosis of acute myeloid leukemia (AML). The investigation aimed to identify a new signature for AML prognostic prediction by using the three-gene expression (octamer-binding transcription factor 4 (OCT4), POU domain type 5 transcription factor 1B (POU5F1B) and B-cell-specific Moloney murine leukemia virus integration site-1 pseudogene 1 (BMI1P1). The expressions of genes were obtained from our previous study. Only the specimens in which three genes were all expressed were included in this research. A three-gene signature was constructed by the multivariate Cox regression analyses to divide patients into high-risk and low-risk groups. Receiver operating characteristic (ROC) analysis of the three-gene signature (area under ROC curve (AUC) = 0.901, 95% CI: 0.821–0.981, P<0.001) indicated that it was a more valuable signature for distinguishing between patients and controls than any of the three genes. Moreover, white blood cells (WBCs, P=0.004), platelets (PLTs, P=0.017), percentage of blasts in bone marrow (BM) (P=0.011) and complete remission (CR, P=0.027) had significant differences between two groups. Furthermore, high-risk group had shorter leukemia-free survival (LFS) and overall survival (OS) than low-risk group (P=0.026; P=0.006), and the three-gene signature was a prognostic factor. Our three-gene signature for prognosis prediction in AML may serve as a prognostic biomarker.
Collapse
|
24
|
Liu Q, Li Q, Zhu S, Yi Y, Cao Q. B lymphoma Moloney murine leukemia virus insertion region 1: An oncogenic mediator in prostate cancer. Asian J Androl 2020; 21:224-232. [PMID: 29862993 PMCID: PMC6498728 DOI: 10.4103/aja.aja_38_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
B lymphoma Moloney murine leukemia virus insertion region 1 (BMI1), a core member of polycomb repressive complex 1 (PRC1), has been intensely investigated in the field of cancer epigenetics for decades. Widely known as a critical regulator in cellular physiology, BMI1 is essential in self-renewal and differentiation in different lineages of stem cells. BMI1 also plays a significant role in cancer etiology for its involvement in pathological progress such as epithelial–mesenchymal transition (EMT) and cancer stem cell maintenance, propagation, and differentiation. Importantly, overexpression of BMI1 is predictive for drug resistance, tumor recurrence, and eventual therapy failure of various cancer subtypes, which renders the pharmacological targeting at BMI1 as a novel and promising therapeutic approach. The study on prostate cancer, a prevalent hormone-related cancer among men, has promoted enormous research advancements in cancer genetics and epigenetics. This review summarizes the role of BMI1 as an oncogenic and epigenetic regulator in tumor initiation, progression, and relapse of prostate cancer.
Collapse
Affiliation(s)
- Qipeng Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA.,Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Qiaqia Li
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA.,Xiangya School of Medicine, Central South University, Changsha 410008, China
| | - Sen Zhu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yang Yi
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA.,Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qi Cao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA.,Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
25
|
Zhao L, Wang L, Wang Y, Ma P. Long non‑coding RNA CCAT1 enhances human non‑small cell lung cancer growth through downregulation of microRNA‑218. Oncol Rep 2020; 43:1045-1052. [PMID: 32323859 PMCID: PMC7057767 DOI: 10.3892/or.2020.7500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/23/2018] [Indexed: 01/19/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have critical functions in non-small cell lung cancer (NSCLC) growth. In the present study, we showed that lncRNA-CCAT1 was upregulated in NSCLC tissues. High expression of lncRNA-CCAT1 was related to tumor growth and reduced survival rate. We used short hairpin RNAs (shRNAs) to inhibit the expression of lncRNA-CCAT1 in NSCLC cells. In vitro and in vivo results demonstrated that lncRNA-CCAT1 knockdown suppressed tumor proliferation and induced apoptosis. Furthermore, microRNA-218 (miR-218) was confirmed as an effective target of lncRNA-CCAT1 in NSCLC. B lymphoma Mo-MLV insertion region 1 homolog (BMI-1), which served as a downstream target of miR-218, was also inhibited by lncRNA-CCAT1 knockdown. In conclusion, the present study indicated that upregulation of lncRNA-CCAT1 in NSCLC is associated with tumor malignant potential. lncRNA-CCAT1 enhances tumor growth in NSCLC by directly inhibiting miR-218 and indirectly increasing BMI-1 expression.
Collapse
Affiliation(s)
- Lijiang Zhao
- Department of Respiratory Medicine, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Limin Wang
- Department of Respiratory Medicine, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Yongfeng Wang
- Department of Respiratory Medicine, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Ping Ma
- Department of Respiratory Medicine, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
26
|
Zaczek A, Jóźwiak P, Ciesielski P, Forma E, Wójcik-Krowiranda K, Cwonda Ł, Bieńkiewicz A, Bryś M, Krześlak A. Relationship between polycomb-group protein BMI-1 and phosphatases regulating AKT phosphorylation level in endometrial cancer. J Cell Mol Med 2019; 24:1300-1310. [PMID: 31863623 PMCID: PMC6991679 DOI: 10.1111/jcmm.14782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
The PI3K/AKT pathway is frequently activated in endometrial carcinoma. BMI‐1 (B‐lymphoma Mo‐MLV insertion region 1) protein affects expression of PTEN (phosphatase and tensin homolog) in some cancers, but its significance for endometrial tumorigenesis is not known. The objective of this study was to determine the relationship between BMI‐1 and expression of factors affecting AKT (protein kinase B) phosphorylation level in endometrial cancer. The expression of proteins and mRNAs was investigated in endometrial cancer specimens and samples of non‐neoplastic endometrial tissue by Western blot and RT‐PCR, respectively. The impact of BMI‐1 down‐regulation on AKT phosphorylation and expression of genes coding for several phosphatases were studied in HEC1A cells. The results showed that BMI‐1 depletion caused increase in PHLPP1 and PHLPP2 (PH domain and leucine‐rich repeat protein phosphatases 1/2) expression and decrease in phospho‐AKT (pAKT) level. In more advanced tumours with higher metastatic potential, the expression of BMI‐1 was lower compared to tumours less advanced and without lymph node metastasis. There were significant inverse correlations between BMI‐1 and PHLPPs, especially PHLPP1 in normal endometrial samples. The inverse correlation between BMI‐1 and PHLPP1/PHLPP2 expression was observed in PTEN positive but not PTEN negative cancers. Low PHLPP2 expression in tumours predicted poorer overall survival. BMI‐1 impacts on AKT phosphorylation level in endometrial cells by regulation of PHLPP expression.
Collapse
Affiliation(s)
- Agnieszka Zaczek
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Piotr Ciesielski
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | - Łukasz Cwonda
- Clinical Division of Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Andrzej Bieńkiewicz
- Clinical Division of Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Anna Krześlak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
27
|
Wang J, Xing Y, Wang Y, He Y, Wang L, Peng S, Yang L, Xie J, Li X, Qiu W, Yi Z, Liu M. A novel BMI-1 inhibitor QW24 for the treatment of stem-like colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:422. [PMID: 31640758 PMCID: PMC6805542 DOI: 10.1186/s13046-019-1392-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
Background Cancer-initiating cell (CIC), a functionally homogeneous stem-like cell population, is resonsible for driving the tumor maintenance and metastasis, and is a source of chemotherapy and radiation-therapy resistance within tumors. Targeting CICs self-renewal has been proposed as a therapeutic goal and an effective approach to control tumor growth. BMI-1, a critical regulator of self-renewal in the maintenance of CICs, is identified as a potential target for colorectal cancer therapy. Methods Colorectal cancer stem-like cell lines HCT116 and HT29 were used for screening more than 500 synthetic compounds by sulforhodamine B (SRB) cell proliferation assay. The candidate compound was studied in vitro by SRB cell proliferation assay, western blotting, cell colony formation assay, quantitative real-time PCR, flow cytometry analysis, and transwell migration assay. Sphere formation assay and limiting dilution analysis (LDA) were performed for measuring the effect of compound on stemness properties. In vivo subcutaneous tumor growth xenograft model and liver metastasis model were performed to test the efficacy of the compound treatment. Student’s t test was applied for statistical analysis. Results We report the development and characterization of a small molecule inhibitor QW24 against BMI-1. QW24 potently down-regulates BMI-1 protein level through autophagy-lysosome degradation pathway without affecting the BMI-1 mRNA level. Moreover, QW24 significantly inhibits the self-renewal of colorectal CICs in stem-like colorectal cancer cell lines, resulting in the abrogation of their proliferation and metastasis. Notably, QW24 significantly suppresses the colorectal tumor growth without obvious toxicity in the subcutaneous xenograft model, as well as decreases the tumor metastasis and increases mice survival in the liver metastasis model. Moreover, QW24 exerts a better efficiency than the previously reported BMI-1 inhibitor PTC-209. Conclusions Our preclinical data show that QW24 exerts potent anti-tumor activity by down-regulating BMI-1 and abrogating colorectal CICs self-renewal without obvious toxicity in vivo, suggesting that QW24 could potentially be used as an effective therapeutic agent for clinical colorectal cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1392-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinhua Wang
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yajing Xing
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yundong He
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liting Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shihong Peng
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lianfang Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jiuqing Xie
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaotao Li
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wenwei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Zhengfang Yi
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China. .,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
| | - Mingyao Liu
- East China Normal University and Shanghai Fengxian District Central Hospital Joint Center for Translational Medicine, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
28
|
Karvonen H, Barker H, Kaleva L, Niininen W, Ungureanu D. Molecular Mechanisms Associated with ROR1-Mediated Drug Resistance: Crosstalk with Hippo-YAP/TAZ and BMI-1 Pathways. Cells 2019; 8:cells8080812. [PMID: 31382410 PMCID: PMC6721603 DOI: 10.3390/cells8080812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Signaling via the Wnt-related receptor tyrosine kinase-like orphan receptor 1 (ROR1) triggers tumorigenic features associated with cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT), while aberrant expression of ROR1 is strongly linked to advanced disease progression and chemoresistance. Several recent studies have shown that Wnt5a binding to ROR1 promotes oncogenic signaling by activating multiple pathways such as RhoA/Rac1 GTPases and PI3K/AKT, which in turn could induce transcriptional coactivator YAP/TAZ or polycomb complex protein BMI-1 signaling, respectively, to sustain stemness, metastasis and ultimately drug-resistance. These data point towards a new feedback loop during cancer development, linking Wnt5a-ROR1 signaling activation to YAP/TAZ or BMI-1 upregulation that could play an important role in disease progression and treatment resistance. This review focuses on the crosstalk between Wnt5a-ROR1 and YAP/TAZ or the BMI-1 signaling network, together with the current advancements in targeted strategies for ROR1-positive cancers.
Collapse
Affiliation(s)
- Hanna Karvonen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Laura Kaleva
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Wilhelmiina Niininen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland
| | - Daniela Ungureanu
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland.
- Tays Cancer Center, Tampere University Hospital, 33520 Tampere, Finland.
| |
Collapse
|
29
|
Shimoda H, Doi S, Nakashima A, Sasaki K, Doi T, Masaki T. Inhibition of the H3K4 methyltransferase MLL1/WDR5 complex attenuates renal senescence in ischemia reperfusion mice by reduction of p16 INK4a. Kidney Int 2019; 96:1162-1175. [PMID: 31570196 DOI: 10.1016/j.kint.2019.06.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022]
Abstract
Renal function declines with aging and is pathologically characterized by chronic inflammation and fibrosis. Renal senescence is induced not only by aging but also by various stimuli, including ischemia reperfusion injury. Recently, the accumulation of p16INK4a-positive cells in the kidney has been considered a molecular feature of renal senescence, with the p16INK4a gene reportedly regulated by mixed-lineage leukemia 1 (MLL1)/WD-40 repeat protein 5 (WDR5)-mediated histone 3 lysine 4 trimethylation (H3K4me3). Here, we determined whether inhibition of MLL1/WDR5 activity attenuates renal senescence, inflammation, and fibrosis in mice with ischemia reperfusion injury and in cultured rat renal fibroblasts. MM-102 or OICR-9429, both MLL1/WDR5 protein-protein interaction inhibitors, and small interfering RNA (siRNA) for MLL1 or WDR5 suppressed the expression of p16INK4a in mice with ischemia reperfusion injury, accompanied by downregulation of H3K4me3 expression. MM-102 attenuated renal fibrosis and inflammation in the kidney of mice with ischemia reperfusion injury. Moreover, in vitro study showed that transforming growth factor-β1 induced the expression of MLL1, WDR5, H3K4me3, and p16INK4a. Finally, chromatin immunoprecipitation identified the p16INK4a promoter at an H3K4me3 site in renal fibroblasts. Thus, our findings show that H3K4me3 inhibition ameliorates ischemia reperfusion-induced renal senescence along with fibrosis and inflammation.
Collapse
Affiliation(s)
- Hironori Shimoda
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan.
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshiki Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan.
| |
Collapse
|
30
|
Xiao Q, Zhao XY, Jiang RC, Chen XH, Zhu X, Chen KF, Chen SY, Zhang XL, Qin Y, Liu YH, Luo JD. Increased expression of Sonic hedgehog restores diabetic endothelial progenitor cells and improves cardiac repair after acute myocardial infarction in diabetic mice. Int J Mol Med 2019; 44:1091-1105. [PMID: 31524224 PMCID: PMC6657988 DOI: 10.3892/ijmm.2019.4277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
Damaged endothelial progenitor cells (EPCs) are associated with poor prognosis in diabetic myocardial infarction (DMI). Our previous studies revealed that an impaired Sonic hedgehog (Shh) pathway contributes to insufficient function in diabetic EPCs; however, the roles of the Shh pathway in diabetic EPC apoptosis under basal and hypoxic/ischemic conditions remain unknown. Therefore, the present study investigated whether Shh revitalized diabetic EPCs and consequently improved the deteriorative status of DMI. For this purpose, streptozotocin injection was used in male C57/BL6 mice to induce type-1 diabetes, and diabetic EPCs were isolated from the bone marrow. Apoptosis, cell function, and protein expression were investigated in EPCs in vitro. Mouse hearts were injected with adenovirus Shh-modified diabetic EPCs (DM-EPCShh) or control DM-EPCNull immediately after coronary artery ligation in vivo. Cardiac function, capillary numbers, fibrosis, and cell apoptosis were then detected. First, the in vitro results demonstrated that the apoptosis of diabetic EPCs was reduced following treatment with Shh protein for 24 h, under normal or hypoxic conditions. BMI1 proto-oncogene (Bmi1), an antiapoptotic protein found in several cells, was reduced in diabetic EPCs under normal or hypoxic conditions, but was upregulated after Shh protein stimulation. When Bmi1-siRNA was administered, the antiapoptotic effect of Shh protein was significantly reversed. In addition, p53, a Bmi1-targeted gene, was demonstrated to mediate the antiapoptotic effect of the Shh/Bmi1 pathway in diabetic EPCs. The Shh/Bmi1/p53 axis also enhanced the diabetic EPC function. In vivo, Shh-modified diabetic EPCs exhibited increased EPC retention and decreased apoptosis at 3 days post-DMI. At 14 days post-DMI, these cells presented enhanced capillary density, reduced myocardial fibrosis and improved cardiac function. In conclusion, the present results demonstrated that the Shh pathway restored diabetic EPCs through the Shh/Bmi1/p53 axis, suppressed myocardial apoptosis and improved myocardial angiogenesis, thus reducing cardiac fibrosis and finally restoring myocardial repair and cardiac function in DMI. Thus, the Shh pathway may serve as a potential target for autologous cell therapy in diabetic myocardial ischemia.
Collapse
Affiliation(s)
- Qing Xiao
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiao-Ya Zhao
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ru-Chao Jiang
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiu-Hui Chen
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiang Zhu
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Kai-Feng Chen
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Sheng-Ying Chen
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xiao-Ling Zhang
- Maternal and Children Hospital of Guangdong Province, Guangzhou, Guangdong 510260, P.R. China
| | - Yuan Qin
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Ying-Hua Liu
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jian-Dong Luo
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
31
|
Storti B, Civita S, Faraci P, Maroni G, Krishnan I, Levantini E, Bizzarri R. Fluorescence imaging of biochemical relationship between ubiquitinated histone 2A and Polycomb complex protein BMI1. Biophys Chem 2019; 253:106225. [PMID: 31323431 DOI: 10.1016/j.bpc.2019.106225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/20/2023]
Abstract
Several in vitro experiments have highlighted that the Polycomb group protein BMI1 plays a pivotal role in determining the biological functions of the Polycomb Repressor Complex 1 (PRC1), including its E3-ligase activity towards the Lys119 of histone H2A to yield ubiquitinated uH2A. The role of BMI1 in the epigenetic activity of PRC1 is particularly relevant in several cancers, particularly Non-Small Cell Lung Cancer (NSCLC). In this study, using indirect immunofluorescence protocols implemented on a confocal microscopy apparatus, we investigated the relationship between BMI1 and uH2A at different resolutions, in cultured (A549) and clinical NSCLC tissues, at the single cell level. In both cases, we observed a linear dependence of uH2A concentration upon BMI1 expression at the single nucleus level, indicating that the association of BMI1 to PRC1, which is needed for E3-ligase activity, occurs linearly in the physiological BMI1 concentration range. Additionally, in the NSCLC cell line model, a minor pool of uH2A may exist in absence of concurrent BMI1 expression, indicating non-exclusive, although predominant, role of BMI1 in the amplification of the E3-ligase activity of PRC1. A pharmacological downregulator of BMI1, PTC-209, was also tested in this context. Finally, the absence of significant colocalization (as measured by the Pearson's coefficient) between BMI1 and uH2A submicron clusters hints to a dynamic model where PRC1 resides transiently at ubiquitination sites. Beside unveiling subtle functional relationships between BMI1 and uH2A, these results also validate the use of uH2A as downstream "reporter" for BMI1 activity at the nuclear level in NSCLC contexts.
Collapse
Affiliation(s)
- Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Simone Civita
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Paolo Faraci
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Giorgia Maroni
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, MA, Boston 02215, USA; Harvard Medical School, 25 Shattuck St, MA, Boston 02115, USA; Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, via Moruzzi 1, 56124 Pisa, Italy
| | - Indira Krishnan
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, MA, Boston 02215, USA; Harvard Medical School, 25 Shattuck St, MA, Boston 02115, USA
| | - Elena Levantini
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, MA, Boston 02215, USA; Harvard Medical School, 25 Shattuck St, MA, Boston 02115, USA; Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, via Moruzzi 1, 56124 Pisa, Italy; Harvard Stem Cell Institute, 7 Divinity Ave, MA, Cambridge 02138, USA
| | - Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy; Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, via Roma 67, Pisa 56126, Italy
| |
Collapse
|
32
|
Yokoyama Y, Arai MA, Hara Y, Ishibashi M. Identification of BMI1 promoter inhibitors from Streptomyces sp. IFM-11958. Bioorg Med Chem 2019; 27:2998-3003. [PMID: 31079965 DOI: 10.1016/j.bmc.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023]
Abstract
B-cell-specific Moloney murine leukemia virus region 1 (BMI1) is a central component of polycomb repressive complex 1 (PRC1), which maintains epigenetic repression of genes expression via chromatin condensation. BMI1 overexpression downregulates the expression of tumor suppressor genes, such as p16Ink4a and PTEN. BMI1 expression is upregulated in cancer stem cells (CSCs). Therefore, inhibitors of BMI1 expression have potential as therapeutic agents for cancer. This study aimed to identify BMI1 promoter inhibitors from actinomycetes. Using a recently constructed BMI1 promoter assay, we isolated three known compounds, elaiophylin (1), 2-methylelaiophylin (2), and nocardamin (3), from Streptomyces sp. IFM-11958 that inhibited BMI1 promoter activity with IC50 values of 30 nM, 447 nM, 22 µM, respectively. Elaiophylin (1) was the most potent. Western blot and PCR analyses revealed that elaiophylin (1) inhibited BMI1 expression at the mRNA level in human prostate cancer cells (DU145). Elaiophylin (1) also inhibited the sphere-forming activity of human hepatocellular carcinoma cells (Huh7), indicating that elaiophylin (1) suppresses the self-renewal capacity of CSCs. Elaiophylin (1) is the first BMI1 promoter inhibitor isolated from actinomycete metabolites.
Collapse
Affiliation(s)
- Yusuke Yokoyama
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Midori A Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Yasumasa Hara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
33
|
dos Santos HT, de Souza do Nascimento J, Meireles F, Scarini JF, Egal ES, Montalli VA, Fonseca FP, Mariano FV, Altemani A. Evaluation of the expression of Bmi-1 stem cell marker in sinonasal melanomas and its correlation with the expression of cell cycle proteins. SURGICAL AND EXPERIMENTAL PATHOLOGY 2019. [DOI: 10.1186/s42047-019-0034-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Sinonasal melanomas (SNM) are aggressive neoplasms, which present distinct clinicopathological and molecular aspects when compared to cutaneous melanomas (CM). B-cell-specific moloney murine leukemia virus integration site-1 (Bmi-1) is a stem cell marker involved in the regulation of the cell cycle and has been found to be expressed in 70% of CM and 100% of benign nevi. Regarding the cell cycle, Bmi-1 is known to be an upstream repressor of p16, which is a tumor suppressor encoded by the INK4a/Arf locus. Considering this, the aim of this study is to evaluate the immunohistochemical expression of Bmi-1 in a series of SNM and its correlation with the expression of cell cycle proteins (p16 and Ki-67, a nuclear antigen of proliferating cells).
Methods
In 16 cases of SNM, nuclear expression of Bmi-1 and nuclear and cytoplasmic of p16 was classified as: absent, low (> 5 to < 50% of cells) and high (≥50%). Ki-67 proliferation index was represented by the ratio positive cells/ total cells.
Results
Histologically, all cases presented varying amount of necrosis and 75% contained undifferentiated cells. Bmi-1 was detected in 6 cases (37.5%) with high level of expression in 2; p16 expression was seen in 10 cases (62.5%) with high level in 7. The frequency of p16 expression did not differ significantly between tumors with or without Bmi-1 expression. Ki-67 index ranged from 8 to 22%. Neither Bmi-1 nor p16 expression showed correlation with Ki-67 index. Bmi-1 negative tumors presented more extensive necrosis (71.4%); no association between Bmi-1 expression and undifferentiated phenotype was observed.
Conclusions
In our SNM series, low immunohistochemical expression of Bmi-1 was a common phenomenon favoring the hypothesis that mucosal melanoma possibly presents molecular pathways different from the cutaneous counterpart. In SNM, Bmi-1 and p16 expression levels did not correlate with each other or with the cell proliferative index.
Collapse
|
34
|
Zhang HL, Wang P, Lu MZ, Zhang SD, Zheng L. c-Myc maintains the self-renewal and chemoresistance properties of colon cancer stem cells. Oncol Lett 2019; 17:4487-4493. [PMID: 30944638 PMCID: PMC6444394 DOI: 10.3892/ol.2019.10081] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are responsible for cancer formation, recurrence and drug resistance. c-Myc, one of the core markers for stem cells, has recently been considered to serve as a link between malignancy and ‘stemness’. However, the precise function of c-Myc in colon CSCs is still unclear. In the present study, a subpopulation of colon CSCs expressing a CD133 surface phenotype was isolated from the human HT-29 cell line, which possess greater tumor sphere-forming efficiency and have higher expression of ‘stemness’-associated genes compared with CD133-negative cells. Furthermore, it was demonstrated that c-Myc was highly expressed in CD133+ colon CSCs. Knockdown of c-Myc expression with small interfering RNA in colon CSCs can significantly inhibit tumor sphere formation, reduce the invasive and migratory capacity of CD133+ cells in vitro, and suppress the tumorigenicity of colon CSCs in vivo. In addition, it was suggested that c-Myc silencing may sensitize colon CSCs to chemotherapy-induced cytotoxicity via the downregulation of ABCG2 and ABCB5. These findings support a central role for c-Myc in maintaining the self-renewing and chemoresistant properties of colon CSCs.
Collapse
Affiliation(s)
- Huan-Le Zhang
- Department of Oncology, Lihuili Hospital of Ningbo Medical Center, Ningbo, Zhejiang 315000, P.R. China
| | - Ping Wang
- Department of Molecular Biology, Ningbo University School of Medicine, Ningbo, Zhejiang 315000, P.R. China
| | - Miao-Zhen Lu
- Department of Oncology, Lihuili Hospital of Ningbo Medical Center, Ningbo, Zhejiang 315000, P.R. China
| | - San-Dian Zhang
- Department of Oncology, Lihuili Hospital of Ningbo Medical Center, Ningbo, Zhejiang 315000, P.R. China
| | - Lu Zheng
- Department of Oncology, Lihuili Hospital of Ningbo Medical Center, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
35
|
Wang X, Wu K, Xiao LK, Wu XY. ShRNA-mediated BMI-1 gene silencing inhibits gastrointestinal stromal tumor cell telomerase activity and enhances apoptosis. Kaohsiung J Med Sci 2018; 34:606-615. [PMID: 30392567 DOI: 10.1016/j.kjms.2018.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 11/15/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most frequently occurring mesenchymal tumors of the gastrointestinal tract. Telomerase activity is well acknowledged as a critical factor in oncogenesis. The objective of the present study is to evaluate the effect of BMI gene silencing on proliferation, apoptosis and telomerase activity in human GIST882 cells. GIST882 cells were transfected with a eukaryotic expression vector of an shRNA fragment. The silencing efficiency in the GIST882 cells was determined by RT-qPCR and a western blot analysis. After the shRNA-BMI-1 plasmid was transfected into the GIST882 cells and nude mice, a cell counting kit-8 (CCK-8) assay and flow cytometry were utilized to detect the GIST882 cell proliferation, the apoptosis rate and the cell cycle. Tumor growth was observed by tumor xenograft in nude mice. Telomerase activity and telomere length were detected by a Southern blot and a target region amplified polymorphism. The shRNA-BMI-1 recombinant plasmid was successfully constructed. The mRNA and protein expression of the BMI-1 gene in GIST882 cells was suppressed by the shRNA-BMI-1 recombinant plasmid. Meanwhile, BMI-1 gene silencing inhibited the cell proliferation, tumor growth, and cell cycle in the GIST882 cells. However, cell apoptosis was increased and telomerase activity was decreased with the silencing of the BMI-1 gene. Collectively, the results of this study suggest that silencing the BMI-1 gene may provide a new target for the treatment of GISTs.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Chongqing General Hospital (Zhongshan Branch), Chongqing, PR China.
| | - Kun Wu
- Department of General Surgery, Chongqing General Hospital (Zhongshan Branch), Chongqing, PR China
| | - Lin-Kang Xiao
- Department of General Surgery, Chongqing General Hospital (Zhongshan Branch), Chongqing, PR China
| | - Xing-Ye Wu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
36
|
Rodrigues MFSD, Miguita L, De Andrade NP, Heguedusch D, Rodini CO, Moyses RA, Toporcov TN, Gama RR, Tajara EE, Nunes FD. GLI3 knockdown decreases stemness, cell proliferation and invasion in oral squamous cell carcinoma. Int J Oncol 2018; 53:2458-2472. [PMID: 30272273 PMCID: PMC6203148 DOI: 10.3892/ijo.2018.4572] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an extremely aggressive disease associated with a poor prognosis. Previous studies have established that cancer stem cells (CSCs) actively participate in OSCC development, progression and resistance to conventional treatments. Furthermore, CSCs frequently exhibit a deregulated expression of normal stem cell signalling pathways, thereby acquiring their distinctive abilities, of which self-renewal is an example. In this study, we examined the effects of GLI3 knockdown in OSCC, as well as the differentially expressed genes in CSC-like cells (CSCLCs) expressing high (CD44high) or low (CD44low) levels of CD44. The prognostic value of GLI3 in OSCC was also evaluated. The OSCC cell lines were sorted based on CD44 expression; gene expression was evaluated using a PCR array. Following this, we examined the effects of GLI3 knockdown on CD44 and ESA expression, colony and sphere formation capability, stem-related gene expression, proliferation and invasion. The overexpression of genes related to the Notch, transforming growth factor (TGF)β, FGF, Hedgehog, Wnt and pluripotency maintenance pathways was observed in the CD44high cells. GLI3 knockdown was associated with a significant decrease in different CSCLC fractions, spheres and colonies in addition to the downregulation of the CD44, Octamer-binding transcription factor 4 (OCT4; also known as POU5F1) and BMI1 genes. This downregulation was accompanied by an increase in the expression of the Involucrin (IVL) and S100A9 genes. Cellular proliferation and invasion were inhibited following GLI3 knockdown. In OSCC samples, a high GLI3 expression was associated with tumour size but not with prognosis. On the whole, the findings of this study demonstrate for the first time, at least to the best of our knowledge, that GLI3 contributes to OSCC stemness and malignant behaviour. These findings suggest the potential for the development of novel therapies, either in isolation or in combination with other drugs, based on CSCs in OSCC.
Collapse
Affiliation(s)
| | - Lucyene Miguita
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo 05508000, Brazil
| | - Nathália Paiva De Andrade
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo 05508000, Brazil
| | - Daniele Heguedusch
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo 05508000, Brazil
| | | | - Raquel Ajub Moyses
- Department of Head and Neck Surgery, School of Medicine, University of São Paulo, São Paulo 03178200, Brazil
| | | | - Ricardo Ribeiro Gama
- Department of Head and Neck Surgery, Barretos Cancer Hospital, Barretos 014784400, Brazil
| | - Eloiza Elena Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto, São José do Rio Preto 15090000, Brazil
| | - Fabio Daumas Nunes
- Department of Oral Pathology, School of Dentistry, University of São Paulo, São Paulo 05508000, Brazil
| |
Collapse
|
37
|
BMI1 Roles in Cancer Stem Cells and Its Association with MicroRNAs Dysregulation in Cancer: Emphasis on Colorectal Cancer. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.82926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
M JR, S V. BMI1 and PTEN are key determinants of breast cancer therapy: A plausible therapeutic target in breast cancer. Gene 2018; 678:302-311. [PMID: 30096458 DOI: 10.1016/j.gene.2018.08.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/11/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022]
Abstract
BMI-1 (B-lymphoma Mo-MLV insertion region 1) is a key protein partner in polycomb repressive complex 1 (PRC1) that helps in maintaining the integrity of the complex. It is also a key player in ubiquitination of histone H2A which affects gene expression pattern involved in various cellular processes such as cell proliferation, growth, DNA repair, apoptosis and senescence. In many cancers, Overexpression of BMI1correlates with advanced stages of disease, aggressive clinicopathological behavior, poor prognosis resistance to radiation and chemotherapy. BMI1 is emerging as a key player in EMT, chemo-resistance and cancer stemness. Overexpression is observed in various cancer types such as breast, primary hepatocellular carcinoma (HCC), gastric, ovarian, head and neck, pancreatic and lung cancer. Studies have shown that experimental reduction of BMI protein level in tumor cells results in inhibition of cell proliferation, induction of apoptosis and/or senescence, and increases susceptibility to cytotoxic agents and radiation therapy. Thus, inhibition of BMI1 expression particularly in breast cancer stem cells can be used as a potential strategy for the complete elimination of tumor and to prevent disease relapse. On other hand PTEN is known to be an important tumor suppressor next to p53. In many cancers particularly in breast cancer, p53 and PTEN undergo mutations. Studies have indicated the functional and mechanistic link between the BMI-1oncoprotein and tumor suppressor PTEN in the development and progression of cancer. The current review focuses on recent findings of how oncogenicity and chemo-resistance are caused by BMI1. It also highlights the transcriptional regulation between BMI1 and PTEN that dictates the therapeutic outcome in cancers where the functional p53 is absent. Herein, we have clearly demonstrated the regulation of transcription at genomic loci of BMI1 and PTEN in cancerous tissue or cells and the possible epigenetic regulation by histone deacetylase inhibitors (HDACi) at BMI1 and PTEN loci that may provide some clue for the possible therapy against TNBC in near future.
Collapse
Affiliation(s)
- Janaki Ramaiah M
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, India.
| | - Vaishnave S
- School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, India
| |
Collapse
|
39
|
Bartucci M, Hussein MS, Huselid E, Flaherty K, Patrizii M, Laddha SV, Kui C, Bigos RA, Gilleran JA, El Ansary MMS, Awad MAM, Kimball SD, Augeri DJ, Sabaawy HE. Synthesis and Characterization of Novel BMI1 Inhibitors Targeting Cellular Self-Renewal in Hepatocellular Carcinoma. Target Oncol 2018; 12:449-462. [PMID: 28589491 DOI: 10.1007/s11523-017-0501-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) represents one of the most lethal cancers worldwide due to therapy resistance and disease recurrence. Tumor relapse following treatment could be driven by the persistence of liver cancer stem-like cells (CSCs). The protein BMI1 is a member of the polycomb epigenetic factors governing cellular self-renewal, proliferation, and stemness maintenance. BMI1 expression also correlates with poor patient survival in various cancer types. OBJECTIVE We aimed to elucidate the extent to which BMI1 can be used as a potential therapeutic target for CSC eradication in HCC. METHODS We have recently participated in characterizing the first known pharmacological small molecule inhibitor of BMI1. Here, we synthesized a panel of novel BMI1 inhibitors and examined their ability to alter cellular growth and eliminate cancer progenitor/stem-like cells in HCC with different p53 backgrounds. RESULTS Among various molecules examined, RU-A1 particularly downregulated BMI1 expression, impaired cell viability, reduced cell migration, and sensitized HCC cells to 5-fluorouracil (5-FU) in vitro. Notably, long-term analysis of HCC survival showed that, unlike chemotherapy, RU-A1 effectively reduced CSC content, even as monotherapy. BMI1 inhibition with RU-A1 diminished the number of stem-like cells in vitro more efficiently than the model compound C-209, as demonstrated by clonogenic assays and impairment of CSC marker expression. Furthermore, xenograft assays in zebrafish showed that RU-A1 abrogated tumor growth in vivo. CONCLUSIONS This study demonstrates the ability to identify agents with the propensity for targeting CSCs in HCC that could be explored as novel treatments in the clinical setting.
Collapse
Affiliation(s)
- Monica Bartucci
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Mohamed S Hussein
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA.,Clinical and Chemical Pathology, National Research Centre, Cairo, Egypt
| | - Eric Huselid
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA.,Graduate Program in Cellular and Molecular Pharmacology, Graduate School of Biomedical Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Kathleen Flaherty
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Michele Patrizii
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA.,Graduate Program in Cellular and Molecular Pharmacology, Graduate School of Biomedical Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Saurabh V Laddha
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA.,Graduate Program in Quantitative Biomedicine, Institute for Quantitative Biomedicine at Rutgers University, New Brunswick, NJ, 08901, USA
| | - Cindy Kui
- Molecular Design and Synthesis Laboratory, Rutgers Translational Sciences, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Medicinal Chemistry, EMSOP, Rutgers University, Piscataway, NJ, 08854, USA
| | - Rachel A Bigos
- Molecular Design and Synthesis Laboratory, Rutgers Translational Sciences, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Medicinal Chemistry, EMSOP, Rutgers University, Piscataway, NJ, 08854, USA
| | - John A Gilleran
- Molecular Design and Synthesis Laboratory, Rutgers Translational Sciences, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Medicinal Chemistry, EMSOP, Rutgers University, Piscataway, NJ, 08854, USA
| | - Mervat M S El Ansary
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona A M Awad
- Clinical and Chemical Pathology, National Research Centre, Cairo, Egypt
| | - S David Kimball
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA.,Molecular Design and Synthesis Laboratory, Rutgers Translational Sciences, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Medicinal Chemistry, EMSOP, Rutgers University, Piscataway, NJ, 08854, USA
| | - David J Augeri
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA.,Molecular Design and Synthesis Laboratory, Rutgers Translational Sciences, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Medicinal Chemistry, EMSOP, Rutgers University, Piscataway, NJ, 08854, USA
| | - Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA. .,Graduate Program in Cellular and Molecular Pharmacology, Graduate School of Biomedical Sciences, Rutgers University, New Brunswick, NJ, 08901, USA. .,Department of Medicine, RBHS-Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
40
|
Rodrigues MFSD, Xavier FCDA, Andrade NP, Lopes C, Miguita Luiz L, Sedassari BT, Ibarra AMC, López RVM, Kliemann Schmerling C, Moyses RA, Tajara da Silva EE, Nunes FD. Prognostic implications of CD44, NANOG, OCT4, and BMI1 expression in tongue squamous cell carcinoma. Head Neck 2018; 40:1759-1773. [PMID: 29607565 DOI: 10.1002/hed.25158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/23/2017] [Accepted: 02/08/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (SCC) contains a cell subpopulation referred to as cancer stem cells (CSCs), which are responsible for tumor growth, metastasis, and resistance to chemotherapy and radiotherapy. The CSC markers have been used to isolate these cells and as biomarkers to predict overall survival. METHODS The CSC markers CD44, NANOG, OCT4, and BMI1 were investigated using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry and correlated with clinicopathological parameters. RESULTS The CD44 overexpression was associated with disease-related death (P = 0.02) and worst prognosis. NANOG was upregulated in nontumoral margins and associated with T1/T2 classification, lymph node metastasis, and worst prognosis. OCT4 was associated with lymph node metastasis and worst overall survival. BMI1 and CD44v3 were overexpressed in tongue SCC. Coexpression of CD44++ /NANOG++ was associated with worst overall survival when compared with patients with CD44-/+ /NANOG-/+ . CONCLUSION The CSC markers might play an important role not only in CSC trait acquisition but also in tongue SCC development and progression.
Collapse
Affiliation(s)
- Maria Fernanda Setúbal Destro Rodrigues
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil.,Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, São Paulo, Brazil
| | | | - Nathália Paiva Andrade
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Camila Lopes
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Lucyene Miguita Luiz
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Bruno Tavares Sedassari
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Ana Melissa Ccopa Ibarra
- Postgraduate Program in Biophotonics Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, São Paulo, Brazil
| | | | - Claudia Kliemann Schmerling
- Department of Molecular Biology, São José do Rio Preto School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | - Raquel Ajub Moyses
- Department of Molecular Biology, São José do Rio Preto School of Medicine, São José do Rio Preto, São Paulo, Brazil
| | | | - Fabio Daumas Nunes
- Oral and Maxillofacial Pathology Department, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
The putative tumor suppressor gene EphA7 is a novel BMI-1 target. Oncotarget 2018; 7:58203-58217. [PMID: 27533460 PMCID: PMC5295425 DOI: 10.18632/oncotarget.11279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/08/2016] [Indexed: 11/25/2022] Open
Abstract
Bmi1 was originally identified as a gene that contributes to the development of mouse lymphoma by inhibiting MYC-induced apoptosis through repression of Ink4a and Arf. It codes for the Polycomb group protein BMI-1 and acts primarily as a transcriptional repressor via chromatin modifications. Although it binds to a large number of genomic regions, the direct BMI-1 target genes described so far do not explain the full spectrum of BMI-1-mediated effects. Here we identify the putative tumor suppressor gene EphA7 as a novel direct BMI-1 target in neural cells and lymphocytes. EphA7 silencing has been reported in several different human tumor types including lymphomas, and our data suggest BMI1 overexpression as a novel mechanism leading to EphA7 inactivation via H3K27 trimethylation and DNA methylation.
Collapse
|
42
|
Yang PY, Hsieh PL, Wang TH, Yu CC, Lu MY, Liao YW, Lee TH, Peng CY. Andrographolide impedes cancer stemness and enhances radio-sensitivity in oral carcinomas via miR-218 activation. Oncotarget 2018; 8:4196-4207. [PMID: 27926533 PMCID: PMC5354823 DOI: 10.18632/oncotarget.13755] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022] Open
Abstract
Current evidence suggests that oral cancer stem cells (OCSCs) possess high tumorigenic and metastatic properties as well as chemo- and radioresistance. In this study, we demonstrated that andrographolide, the main bioactive component in the medicinal plant Andrographis, significantly reduced oncogenicity and restored radio-sensitivity of ALDH1+CD44+ OCSCs. Mechanistic studies showed that andrographolide treatment increased the expression of microRNA-218 (miR-218), leading to the downregulation of Bmi1. We showed that knockdown of miR-218 in ALDH1−CD44− non-OCSCs enhanced cancer stemness, while silencing of Bmi1 significantly counteracted it. Furthermore, we found tumor growth was reduced in mice bearing xenograft tumors after andrographolide treatment via activation of miR-218/Bmi1 axis. Together, these data demonstrated that the inhibition of tumor aggressiveness in OCSCs by andrographolide was mediated through the upregulation of miR-218, thereby reducing Bmi1 expression. These findings suggest that andrographolide may be a valuable natural compound for anti-CSCs treatment of OSCC.
Collapse
Affiliation(s)
- Po-Yu Yang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Oral Medicine Center, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ling Hsieh
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Tong Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan.,Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Oral Medicine Center, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Oral Medicine Center, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Hsin Lee
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Oral Medicine Center, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
43
|
Pseudogene BMI1P1 expression as a novel predictor for acute myeloid leukemia development and prognosis. Oncotarget 2018; 7:47376-47386. [PMID: 27329719 PMCID: PMC5216948 DOI: 10.18632/oncotarget.10156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022] Open
Abstract
The BMI1P1 levels of 144 de novo AML patients and 36 healthy donors were detected by real-time quantitative PCR (RQ-PCR). BMI1P1 was significantly down-regulated in AML compared with control (P < 0.001). A receiver operating characteristic (ROC) curve revealed that BMI1P1 expression could differentiate patients with AML from control subjects (AUC = 0.895, 95% CI: 0.835–0.954, P < 0.001). The percentage of blasts in bone marrow (BM) was significantly lower in BMI1P1 high-expressed group versus low-expressed group (P = 0.008). BMI1P1 high-expressed cases had significantly higher complete remission (CR) than BMI1P1 low-expressed cases (P = 0.023). Furthermore, Kaplan–Meier demonstrated that both whole AML cohort and non-M3-AML patients with low BMI1P1 expression showed shorter leukemia free survival (LFS, P = 0.002 and P = 0.01, respectively) and overall survival (OS, P < 0.001 and P = 0.011, respectively) than those with high BMI1P1 expression. Multivariate analysis also showed that BMI1P1 over-expression was an independent favorable prognostic factor for OS in both whole and non-M3 cohort of AML patients (HR = 0.462, 95% CI = 0.243–0.879, P = 0.019 and HR = 0.483, 95% CI = 0.254–0.919, P = 0.027). To further investigate the significance of BMI1P1 expression in the follow-up of AML patients, we monitored the BMI1P1 level in 26 de novo AML patients and found that the BMI1P1 level increased significantly from the initial diagnosis to post-CR (P < 0.001). These results indicated that BMI1P1 might contribute to the diagnosis of AML and the assessment of therapeutic effect.
Collapse
|
44
|
Gong XF, Yu AL, Tang J, Wang CL, He JR, Chen GQ, Zhao Q, He M, Zhou CX. MicroRNA-630 inhibits breast cancer progression by directly targeting BMI1. Exp Cell Res 2018; 362:378-385. [DOI: 10.1016/j.yexcr.2017.11.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 01/24/2023]
|
45
|
Yong KJ, Basseres DS, Welner RS, Zhang WC, Yang H, Yan B, Alberich-Jorda M, Zhang J, de Figueiredo-Pontes LL, Battelli C, Hetherington CJ, Ye M, Zhang H, Maroni G, O'Brien K, Magli MC, Borczuk AC, Varticovski L, Kocher O, Zhang P, Moon YC, Sydorenko N, Cao L, Davis TW, Thakkar BM, Soo RA, Iwama A, Lim B, Halmos B, Neuberg D, Tenen DG, Levantini E. Targeted BMI1 inhibition impairs tumor growth in lung adenocarcinomas with low CEBPα expression. Sci Transl Med 2017; 8:350ra104. [PMID: 27488898 DOI: 10.1126/scitranslmed.aad6066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 06/30/2016] [Indexed: 12/16/2022]
Abstract
Lung cancer is the most common cause of cancer deaths. The expression of the transcription factor C/EBPα (CCAAT/enhancer binding protein α) is frequently lost in non-small cell lung cancer, but the mechanisms by which C/EBPα suppresses tumor formation are not fully understood. In addition, no pharmacological therapy is available to specifically target C/EBPα expression. We discovered a subset of pulmonary adenocarcinoma patients in whom negative/low C/EBPα expression and positive expression of the oncogenic protein BMI1 (B lymphoma Mo-MLV insertion region 1 homolog) have prognostic value. We also generated a lung-specific mouse model of C/EBPα deletion that develops lung adenocarcinomas, which are prevented by Bmi1 haploinsufficiency. BMI1 activity is required for both tumor initiation and maintenance in the C/EBPα-null background, and pharmacological inhibition of BMI1 exhibits antitumor effects in both murine and human adenocarcinoma lines. Overall, we show that C/EBPα is a tumor suppressor in lung cancer and that BMI1 is required for the oncogenic process downstream of C/EBPα loss. Therefore, anti-BMI1 pharmacological inhibition may offer a therapeutic benefit for lung cancer patients with low expression of C/EBPα and high BMI1.
Collapse
Affiliation(s)
- Kol Jia Yong
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Daniela S Basseres
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo 05508, Brazil. Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA. Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Robert S Welner
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA. Harvard Stem Cell Institute, Boston, MA 02215, USA. Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Wen Cai Zhang
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA. Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Henry Yang
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Benedict Yan
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore 119074, Singapore
| | - Meritxell Alberich-Jorda
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA. Harvard Stem Cell Institute, Boston, MA 02215, USA. Institute of Molecular Genetics of the ASCR, Prague 14200, Czech Republic
| | - Junyan Zhang
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA. Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Lorena Lobo de Figueiredo-Pontes
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA. Harvard Stem Cell Institute, Boston, MA 02215, USA. Hematology Division, Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14020, Brazil
| | - Chiara Battelli
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA
| | - Christopher J Hetherington
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA. Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Min Ye
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA. Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Hong Zhang
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA. Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Giorgia Maroni
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa 56124, Italy
| | - Karen O'Brien
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA. Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Maria Cristina Magli
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa 56124, Italy
| | - Alain C Borczuk
- Department of Pathology, Weill Cornell University Medical Center, New York, NY 10065, USA
| | - Lyuba Varticovski
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA
| | - Olivier Kocher
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA
| | - Pu Zhang
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA. Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Young-Choon Moon
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Nadiya Sydorenko
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Liangxian Cao
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Thomas W Davis
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Bhavin M Thakkar
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore
| | - Ross A Soo
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore. Department of Haematology-Oncology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Bing Lim
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA. Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Balazs Halmos
- Division of Hematology/Oncology, Montefiore Hospital, Bronx, NY 10461, USA
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, Singapore 117599, Singapore. Harvard Medical School, Boston, MA 02215, USA. Harvard Stem Cell Institute, Boston, MA 02215, USA.
| | - Elena Levantini
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Harvard Medical School, Boston, MA 02215, USA. Harvard Stem Cell Institute, Boston, MA 02215, USA. Institute of Biomedical Technologies, National Research Council (CNR), Pisa 56124, Italy.
| |
Collapse
|
46
|
Wang Q, Li Z, Wu Y, Huang R, Zhu Y, Zhang W, Wang Y, Cheng J. Pharmacological inhibition of Bmi1 by PTC-209 impaired tumor growth in head neck squamous cell carcinoma. Cancer Cell Int 2017; 17:107. [PMID: 29200967 PMCID: PMC5697105 DOI: 10.1186/s12935-017-0481-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022] Open
Abstract
Background Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog) contributes to human tumorigenesis via epigenetic transcriptional silencing and represents a novel therapeutic target with great potentials. Here we sought to determine the therapeutic efficiency of PTC-209, a potent and selective Bmi1 inhibitor, in head neck squamous cell carcinoma (HNSCC) cells and a HNSCC xenograft model. Methods The mutation pattern, mRNA level of Bmi1 in HNSCC and its associations with clinicopathological parameters were determined through comprehensive data mining and interrogation using publicly available databases GENT, cBioPortal, Oncomine and TCGA. The PTC-209, a selective and potent Bmi1 inhibitor, was exploited and its effect on Bmi1 expression was measured in two HNSCC cell lines Cal27 and FaDu. The phenotypical changes of HNSCC cells were observed upon PTC-209 treatment in vitro. Moreover, the therapeutic effects of PTC-209 for HNSCC were determined in a xenograft animal model. Results Through comprehensive data mining and interrogation, we found that Bmi1 mRNA was frequently overexpressed in a subset of HNSCC samples. Our data revealed that PTC-209 robustly reduced the expression of Bmi1 in Cal27 and FaDu cells presumably by post-transcriptional repression and ubiquitin-proteasomal degradation. PTC-209 treatment resulted in impaired cell proliferation, G1-phase cell cycle arrest, compromised migration and invasiveness, and increased cell apoptosis and chemosensitivity to 5-FU and cisplatin in vitro. Moreover, PTC-209 exposure reduced colony formation, tumorsphere formation and the percentage of ALDH1+ subpopulation in both Cal27 and FaDu cells. Importantly, in vivo PTC-209 administration significantly reduced tumor growth in a HNSCC xenograft model probably by Bmi1 inhibition and impaired cell proliferation. Conclusions Our findings indicate that pharmacological inhibition of Bmi1 is a novel therapeutic strategy for HNSCC patients, especially with those with aberrant Bmi1 overexpression. Electronic supplementary material The online version of this article (10.1186/s12935-017-0481-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiong Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Zhongwu Li
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Yaping Wu
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Rong Huang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China.,Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Yumin Zhu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Wei Zhang
- Department of Oral Pathology, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Yanling Wang
- Department of Oral Pathology, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China.,Department of Oral Pathology, School of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029 Jiangsu China
| |
Collapse
|
47
|
Adeyeni TA, Khatwani N, San K, Ezekiel UR. BMI1 is downregulated by the natural compound curcumin, but not by bisdemethoxycurcumin and dimethoxycurcumin. Physiol Rep 2017; 4:4/16/e12906. [PMID: 27550987 PMCID: PMC5002914 DOI: 10.14814/phy2.12906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
The B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1) locus encodes a 37-kD protein that is a key regulatory component of the polycomb regulatory complex 1 (PRC1). When overexpressed in various cancer types, the BMI1 protein induces cell growth and promotes tumor growth in vitro and in vivo. Curcumin, a major phytochemical in turmeric (Curcuma longa), inhibits the proliferation and survival of many types of cancer cells, both in vitro and in vivo, and has been reported to reduce BMI1 expression in breast cancer cells. In this study, effects of curcumin and two analogs (bisdemethoxycurcumin and dimethoxycurcumin) on BMI1 expression were evaluated in DLD-1 colorectal cancer cells. Bisdemethoxycurcumin (BDMC) is naturally occurring in turmeric, whereas dimethoxycurcumin (DMC) is a synthetic analog of curcumin. All three compounds reduced cell survival, but only the natural compound downregulated BMI1 protein expression; curcumin significantly reduced BMI1 levels more than bisdemethoxycurcumin and dimethoxycurcumin. In addition, curcumin and BDMC inhibit survival of the DLD-1 colorectal cancer cells by inducing apoptosis, whereas DMC inhibits survival by a mechanism other than apoptosis.
Collapse
Affiliation(s)
- Temitope A Adeyeni
- Department of Biomedical Laboratory Science, Saint Louis University, St. Louis, Missouri Department of Health Science and Informatics, Saint Louis University, St. Louis, Missouri
| | - Natasha Khatwani
- Department of Biomedical Laboratory Science, Saint Louis University, St. Louis, Missouri
| | - KayKay San
- Department of Biomedical Laboratory Science, Saint Louis University, St. Louis, Missouri
| | | |
Collapse
|
48
|
Torr E, Heath M, Mee M, Shaw D, Sharp TV, Sayers I. Expression of polycomb protein BMI-1 maintains the plasticity of basal bronchial epithelial cells. Physiol Rep 2017; 4:4/16/e12847. [PMID: 27558999 PMCID: PMC5002903 DOI: 10.14814/phy2.12847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/07/2016] [Indexed: 11/24/2022] Open
Abstract
The airway epithelium is altered in respiratory disease and is thought to contribute to disease etiology. A caveat to disease research is that the technique of isolation of bronchial epithelial cells from patients is invasive and cells have a limited lifespan. The aim of this study was to extensively characterize the plasticity of primary human bronchial epithelial cells that have been engineered to delay cell senescence including the ability of these cells to differentiate. Cells were engineered to express BMI‐1 or hTERT using viral vector systems. Cells were characterized at passage (p) early (p5), mid (p10), and late (p15) stage for: BMI‐1, p16, and CK14 protein expression, viability and the ability to differentiate at air–liquid interface (ALI), using a range of techniques including immunohistochemistry (IHC), immunofluorescence (IF), transepithelial electrical resistance (TEER), scanning electron microscopy (SEM), MUC5AC and beta tubulin (BTUB) staining. BMI‐1‐expressing cells maintained elevated levels of the BMI‐1 protein and the epithelial marker CK14 and showed a suppression of p16. BMI‐1‐expressing cells had a viability advantage, differentiated at ALI, and had a normal karyotype. In contrast, hTERT‐expressing cells had a reduced viability, showed limited differentiation, and had an abnormal karyotype. We therefore provide extensive characterization of the plasticity of BMI‐1 expressing cells in the context of the ALI model. These cells retain properties of wild‐type cells and may be useful to characterize respiratory disease mechanisms in vitro over sustained periods.
Collapse
Affiliation(s)
- Elizabeth Torr
- Division of Respiratory Medicine, Queens Medical Centre University of Nottingham, Nottingham, United Kingdom
| | - Meg Heath
- Cytogenetics Unit, Nottingham City Hospital, Hucknall Road, Nottingham, United Kingdom
| | - Maureen Mee
- School of Life Sciences, Queens Medical Centre University of Nottingham, Nottingham, United Kingdom
| | - Dominick Shaw
- Division of Respiratory Medicine, Queens Medical Centre University of Nottingham, Nottingham, United Kingdom
| | - Tyson V Sharp
- Centre for Molecular Oncology, Barts Cancer Institute Queen Mary University of London, London, United Kingdom
| | - Ian Sayers
- Division of Respiratory Medicine, Queens Medical Centre University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
49
|
Epigenetics in multiple myeloma: From mechanisms to therapy. Semin Cancer Biol 2017; 51:101-115. [PMID: 28962927 DOI: 10.1016/j.semcancer.2017.09.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/25/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
Abstract
Multiple myeloma (MM) is a tumor of antibody producing plasmablasts/plasma cells that resides within the bone marrow (BM). In addition to the well-established role of genetic lesions and tumor-microenvironment interactions in the development of MM, deregulated epigenetic mechanisms are emerging as important in MM pathogenesis. Recently, MM sequencing and expression projects have revealed that mutations and copy number variations as well as deregulation in the expression of epigenetic modifiers are characteristic features of MM. In the past decade, several studies have suggested epigenetic mechanisms via DNA methylation, histone modifications and non-coding RNAs as important contributing factors in MM with impacts on disease initiation, progression, clonal heterogeneity and response to treatment. Herein we review the present view and knowledge that has accumulated over the past decades on the role of epigenetics in MM, with focus on the interplay between epigenetic mechanisms and the potential use of epigenetic inhibitors as future treatment modalities for MM.
Collapse
|
50
|
Lee YC, Chang WW, Chen YY, Tsai YH, Chou YH, Tseng HC, Chen HL, Wu CC, Chang-Chien J, Lee HT, Yang HF, Wang BY. Hsp90α Mediates BMI1 Expression in Breast Cancer Stem/Progenitor Cells through Facilitating Nuclear Translocation of c-Myc and EZH2. Int J Mol Sci 2017; 18:ijms18091986. [PMID: 28914785 PMCID: PMC5618635 DOI: 10.3390/ijms18091986] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that facilitates the correct folding and functionality of its client protein. Numerous Hsp90-client proteins are involved in cancer development. Thus, Hsp90 inhibitors have potential applications as anti-cancer drugs. We previously discovered that Hsp90α expression increased in breast cancer stem cells (BCSCs), which can initiate tumorigenesis and metastasis and resist treatment. In the present study, we further demonstrated that 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), an inhibitor of Hsp90, could suppress the self-renewal of BCSCs by downregulating B lymphoma Mo-MLV insertion region 1 homolog (BMI1), a polycomb family member with oncogenic activity in breast cancer. Through immunoprecipitation analysis, we found that BMI1 did not interact with Hsp90α and that the downregulation of BMI1 by 17-DMAG was mediated by the inhibition of c-Myc and enhancement of zeste homolog 2 (EZH2) expression. The transcriptional and BMI1 promoter-binding activities of c-Myc in BCSCs were inhibited by 17-DMAG treatment. The overexpression of EZH2 attenuated the inhibitory effect of 17-DMAG on BMI1 and c-Myc expression. Furthermore, Hsp90α could be co-immunoprecipitated with c-Myc and EZH2 and bind to the BMI1 promoter. Treatment with 17-DMAG decreased the nuclear expression of EZH2 and c-Myc but not that of Hsp90α. In conclusion, our data suggested that Hsp90α could positively regulate the self-renewal of BCSCs by facilitating the nuclear translocation of c-Myc and EZH2 to maintain BMI1 expression.
Collapse
Affiliation(s)
- Yueh-Chun Lee
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Wen-Wei Chang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Yi-Ying Chen
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Yu-Hung Tsai
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Ying-Hsiang Chou
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Hsien-Chun Tseng
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Hsin-Lin Chen
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Chun-Chieh Wu
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Ju Chang-Chien
- School of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Hsueh-Te Lee
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming University, Taipei 11529, Taiwan.
| | - Huei-Fan Yang
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Department of Nursing, Chung shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Bing-Yen Wang
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Changhua City 50006, Taiwan.
- School of Medicine, Chung Shan Medical University, 40201 Taichung, Taiwan.
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 40201, Taiwan.
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|