1
|
Bojarska J, Wolf WM. Short Peptides as Powerful Arsenal for Smart Fighting Cancer. Cancers (Basel) 2024; 16:3254. [PMID: 39409876 PMCID: PMC11476321 DOI: 10.3390/cancers16193254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Short peptides have been coming around as a strong weapon in the fight against cancer on all fronts-in immuno-, chemo-, and radiotherapy, and also in combinatorial approaches. Moreover, short peptides have relevance in cancer imaging or 3D culture. Thanks to the natural 'smart' nature of short peptides, their unique structural features, as well as recent progress in biotechnological and bioinformatics development, short peptides are playing an enormous role in evolving cutting-edge strategies. Self-assembling short peptides may create excellent structures to stimulate cytotoxic immune responses, which is essential for cancer immunotherapy. Short peptides can help establish versatile strategies with high biosafety and effectiveness. Supramolecular short peptide-based cancer vaccines entered clinical trials. Peptide assemblies can be platforms for the delivery of antigens, adjuvants, immune cells, and/or drugs. Short peptides have been unappreciated, especially in the vaccine aspect. Meanwhile, they still hide the undiscovered unlimited potential. Here, we provide a timely update on this highly active and fast-evolving field.
Collapse
Affiliation(s)
- Joanna Bojarska
- Chemistry Department, Institute of Inorganic and Ecological Chemistry, Łódź University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland;
| | | |
Collapse
|
2
|
Campanile M, Kurtul ED, Dec R, Möbitz S, Del Vecchio P, Petraccone L, Tatzelt J, Oliva R, Winter R. Morphological Transformations of SARS-CoV-2 Nucleocapsid Protein Biocondensates Mediated by Antimicrobial Peptides. Chemistry 2024; 30:e202400048. [PMID: 38483823 DOI: 10.1002/chem.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Indexed: 04/12/2024]
Abstract
Recently, the discovery of antimicrobial peptides (AMPs) as excellent candidates for overcoming antibiotic resistance has attracted significant attention. AMPs are short peptides active against bacteria, cancer cells, and viruses. It has been shown that the SARS-CoV-2 nucleocapsid protein (N-P) undergoes liquid-liquid phase separation in the presence of RNA, resulting in biocondensate formation. These biocondensates are crucial for viral replication as they concentrate the viral RNA with the host cell's protein machinery required for viral protein expression. Thus, N-P biocondensates are promising targets to block or slow down viral RNA transcription and consequently virion assembly. We investigated the ability of three AMPs to interfere with N-P/RNA condensates. Using microscopy techniques, supported by biophysical characterization, we found that the AMP LL-III partitions into the condensate, leading to clustering. Instead, the AMP CrACP1 partitions into the droplets without affecting their morphology but reducing their dynamics. Conversely, GKY20 leads to the formation of fibrillar structures after partitioning. It can be expected that such morphological transformation severely impairs the normal functionality of the N-P droplets and thus virion assembly. These results could pave the way for the development of a new class of AMP-based antiviral agents targeting biocondensates.
Collapse
Affiliation(s)
- Marco Campanile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126, Naples, Italy
| | - Emine Dila Kurtul
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Robert Dec
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Simone Möbitz
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126, Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126, Naples, Italy
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126, Naples, Italy
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
3
|
Du Q, Xing N, Guo S, Li R, Meng X, Wang S. Cycads: A comprehensive review of its botany, traditional uses, phytochemistry, pharmacology and toxicology. PHYTOCHEMISTRY 2024; 220:114001. [PMID: 38286200 DOI: 10.1016/j.phytochem.2024.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Cycads, which primarily consist of the families Cycadaceae and Zamiaceae, possess intrinsic therapeutic attributes that are prominently expressed across their morphological spectrum, including roots, leaves, flowers, and seeds. In Chinese traditional medicine, the leaves of cycads are particularly revered for their profound healing capabilities. This meticulous review engages with existing literature on cycads and presents insightful avenues for future research. Over 210 phytoconstituents have been isolated and identified from various cycad tissues, including flavonoids, azoxy metabolites, sterols, lignans, non-proteogenic amino acids, terpenoids, and other organic constituents. The contemporary pharmacological discourse highlights the antineoplastic, antimicrobial, and antidiabetic activities inherent in these ancient plants, which are of particular importance to the field of oncology. Despite the prevalent focus on crude extracts and total flavonoid content, our understanding of the nuanced pharmacodynamics of cycads lags considerably behind. The notoriety of cycads derived toxicity, notably within the context of Guam's neurological disease cluster, has precipitated an established emphasis on toxicological research within this field. As such, this critical review emphasizes nascent domains deserving of academic and clinical pursuit, whilst nested within the broader matrix of current scientific understanding. The systematic taxonomy, traditional applications, phytochemical composition, therapeutic potential, and safety profile of cycads are holistically interrogated, assimilating an indispensable repository for future scholarly inquiries. In conclusion, cycads stand as a veritable treasure trove of pharmacological virtue, displaying remarkable therapeutic prowess and holding vast promise for ongoing scientific discovery and clinical utilization.
Collapse
Affiliation(s)
- Qinyun Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Nan Xing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Li
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
RP-HPTLC fingerprinting of secondary metabolites from Nephrolepis exaltata and Cycas revoluta. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
5
|
Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021; 26:molecules26247453. [PMID: 34946535 PMCID: PMC8708364 DOI: 10.3390/molecules26247453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. Hence, specific candidates with confirmed anticancer effects are required to develop new drugs. Among the novel therapeutic options, proteins are considered a relevant source, given that they have bioactive peptides encrypted within their sequences. These bioactive peptides, which are molecules consisting of 2–50 amino acids, have specific activities when administered, producing anticancer effects. Current databases report the effects of peptides. However, uncertainty is found when their molecular mechanisms are investigated. Furthermore, analyses addressing their interaction networks or their directly implicated mechanisms are needed to elucidate their effects on cancer cells entirely. Therefore, relevant peptides considered as candidates for cancer therapeutics with specific sequences and known anticancer mechanisms were accurately reviewed. Likewise, those features which turn certain peptides into candidates and the mechanisms by which peptides mediate tumor cell death were highlighted. This information will make robust the knowledge of these candidate peptides with recognized mechanisms and enhance their non-toxic capacity in relation to healthy cells and further avoid cell resistance.
Collapse
|
6
|
Trinidad-Calderón PA, Varela-Chinchilla CD, García-Lara S. Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules 2021. [DOI: https://doi.org/10.3390/molecules26247453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. Hence, specific candidates with confirmed anticancer effects are required to develop new drugs. Among the novel therapeutic options, proteins are considered a relevant source, given that they have bioactive peptides encrypted within their sequences. These bioactive peptides, which are molecules consisting of 2–50 amino acids, have specific activities when administered, producing anticancer effects. Current databases report the effects of peptides. However, uncertainty is found when their molecular mechanisms are investigated. Furthermore, analyses addressing their interaction networks or their directly implicated mechanisms are needed to elucidate their effects on cancer cells entirely. Therefore, relevant peptides considered as candidates for cancer therapeutics with specific sequences and known anticancer mechanisms were accurately reviewed. Likewise, those features which turn certain peptides into candidates and the mechanisms by which peptides mediate tumor cell death were highlighted. This information will make robust the knowledge of these candidate peptides with recognized mechanisms and enhance their non-toxic capacity in relation to healthy cells and further avoid cell resistance.
Collapse
|
7
|
Rana BK, Roymahapatra G, Das HS, Giri S, Cardoso MH, Franco OL, Nakka KK, Santra MK, Bag PP, Bertolasi V, Dinda J. Pyridine and pyrimidine functionalized half-sandwich Ru(II)-N heterocyclic carbene complexes: Synthesis, structures, spectra, electrochemistry and biological studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Luo X, Wu W, Feng L, Treves H, Ren M. Short Peptides Make a Big Difference: The Role of Botany-Derived AMPs in Disease Control and Protection of Human Health. Int J Mol Sci 2021; 22:11363. [PMID: 34768793 PMCID: PMC8583512 DOI: 10.3390/ijms222111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Botany-derived antimicrobial peptides (BAMPs), a class of small, cysteine-rich peptides produced in plants, are an important component of the plant immune system. Both in vivo and in vitro experiments have demonstrated their powerful antimicrobial activity. Besides in plants, BAMPs have cross-kingdom applications in human health, with toxic and/or inhibitory effects against a variety of tumor cells and viruses. With their diverse molecular structures, broad-spectrum antimicrobial activity, multiple mechanisms of action, and low cytotoxicity, BAMPs provide ideal backbones for drug design, and are potential candidates for plant protection and disease treatment. Lots of original research has elucidated the properties and antimicrobial mechanisms of BAMPs, and characterized their surface receptors and in vivo targets in pathogens. In this paper, we review and introduce five kinds of representative BAMPs belonging to the pathogenesis-related protein family, dissect their antifungal, antiviral, and anticancer mechanisms, and forecast their prospects in agriculture and global human health. Through the deeper understanding of BAMPs, we provide novel insights for their applications in broad-spectrum and durable plant disease prevention and control, and an outlook on the use of BAMPs in anticancer and antiviral drug design.
Collapse
Affiliation(s)
- Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
| | - Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel;
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
9
|
Rana BK, Roymahapatra G, Das HS, Giri S, Cardoso MH, Franco OL, Kiran N, Santra MK, Bag PP, Bertolasi V, Dinda J. Pyridine and pyrimidine functionalized half-sandwich Ru(II)-N heterocyclic carbene complexes: Synthesis, structures, spectra, electrochemistry and biological studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Chauhan S, Dhawan DK, Saini A, Preet S. Antimicrobial peptides against colorectal cancer-a focused review. Pharmacol Res 2021; 167:105529. [PMID: 33675962 DOI: 10.1016/j.phrs.2021.105529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022]
Abstract
Despite recent advances in the treatment of colorectal cancer (CRC), low patient survival rate due to emergence of drug resistant cancer cells, metastasis and multiple deleterious side effects of chemotherapy, is a cause of public concern globally. To negate these clinical conundrums, search for effective and harmless novel molecular entities for the treatment of CRC is an urgent necessity. Since antimicrobial peptides (AMPs) are part of innate immunity of living beings, it is quite imperative to look for essential attributes of these peptides which may contribute to their effectiveness against carcinogenesis. Once identified, those characteristics can be suitably modified using several synthetic and computational techniques to further enhance their selectivity and pharmacokinetic profiles. Hence, this review analyses scientific reports describing the antiproliferative action of AMPs derived from several sources, particularly focusing on various colon cancer in vitro/in vivo investigations. On perusal of the literature, it appears that AMPs based therapeutics would definitely find special place in CRC therapy in future either alone or as an adjunct to chemotherapy provided some necessary alterations are made in their natural structures to make them more compatible with modern clinical practice. In this context, further in-depth research is warranted in adequate in vivo models.
Collapse
Affiliation(s)
- Sonia Chauhan
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Devinder K Dhawan
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Avneet Saini
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| | - Simran Preet
- Department of Biophysics, Basic Medical Sciences, Panjab University, Block-II, South Campus, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
11
|
Prakash V, Kaur H, Kumari A, Kumar M, Bala R, Gupta S. Phytochemicals and biological studies on Cycas revoluta Thunb.: a review. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00520-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Gupta PK, Mishra L. Ecofriendly ruthenium-containing nanomaterials: synthesis, characterization, electrochemistry, bioactivity and catalysis. NANOSCALE ADVANCES 2020; 2:1774-1791. [PMID: 36132502 PMCID: PMC9418862 DOI: 10.1039/d0na00051e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/27/2020] [Indexed: 05/07/2023]
Abstract
Among transition metals, ruthenium being an in-demand element along with its complexes with multidimensional applications in biology, catalysis (especially photocatalysis), and several other aspects of industrial materials, is lacking regards for the potential aspect of its nanoparticles. In the modern synthetic scenario, green synthesis of novel ruthenium nanoparticles for the development of novel materials with potential applications has become a focus. Ru-containing nanomaterials (Ru-cNMs) combined with metals like platinum and palladium or with non-metals like phosphorus and oxygen have shown applications as an anticancer, antimicrobial, and antioxidant agents along with wide-ranging catalytic applications. Reduction of Ru salts using biomaterials including plants etc. has emerged enabling the synthesis of Ru-cNMs. In this context, authors realize that poor availability of literature in this area of research seems to be one of the major handicaps that perhaps could be limiting its attractiveness to researchers. Therefore, it was thought worthwhile to present a review article to encourage, guide, and facilitate scientific researches in green ruthenium nanochemistry embodying synthesis, characterization and biological as well as catalytic applications.
Collapse
Affiliation(s)
- Pranshu K Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi-221005 India
| | - Lallan Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi-221005 India
| |
Collapse
|
13
|
Bhattacharya P, Mukherjee S, Mandal SM. Fluoroquinolone antibiotics show genotoxic effect through DNA-binding and oxidative damage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117634. [PMID: 31756649 DOI: 10.1016/j.saa.2019.117634] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/11/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The fluoroquinolones (FQs) are one the most successful class of synthetic antibiotics that primarily target the type II topoisomerases. With a pursuit to evaluate their genotoxicity, the present work established moderate to good DNA-damaging properties of some of the well-known and clinically prescribed fluoroquinolone antibiotics (2nd and 3rd generation). Hypochromic shift in UV-Vis absorption titration, fluorescence quenching in competitive ethidium bromide displacement assay (with calf-thymus DNA) and in-silico studies established DNA-intercalation with binding constants of the order 104. A basic Structure Activity Relationship (SAR) has been derived from the docking results. MTT assay has been also done to evaluate the effect of these antibiotics on cell viability. The expression level of specific DNA-glycosylase enzymes responsible for repairing the oxidized DNA bases are quantified through western blot analysis. The studies revealed that fluoroquinolone antibiotics initiate the genotoxic effect at a concentration of above 50 μg/mL. Recruitment of APE1 and NEIL1 was found to be significantly increased to remove the oxidized nucleobases.
Collapse
Affiliation(s)
| | - Srasta Mukherjee
- Department of Chemistry, Adamas University, Kolkata, 700126, India
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology, Kharagpur, 721302, WB, India.
| |
Collapse
|
14
|
Bera S, Das B, De A, Barua A, Das S, De B, Samanta A. Metabolite profiling and in-vitro colon cancer protective activity of Cycas revoluta cone extract. Nat Prod Res 2018; 34:599-603. [PMID: 30417669 DOI: 10.1080/14786419.2018.1491039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The methanolic extract of Cycas revoluta cone (MECR) was analyzed by GC-MS and UHPLC for metabolite profiling and was evaluated for anti-colon cancer property by using in vitro assays like Cell Viability Assay, Colony Formation Assay, ROS Determination, Flowcytometry, DAPI staining assay, Tunel assay. GC-MS and HPLC analysis confirmed the presence of different phytochemicals in the extract of Cycas revoluta cone. In-vitro studies showed MECR extract showed significant anti-colon cancer activity by reducing proliferation and inducing apoptosis in colon cancer cell (HCT-8) line, but no such activity was seen in normal colon cell (CCD-18Co) line. The investigation confirms that MECR may be a promising candidate in colon cancer protection.
Collapse
Affiliation(s)
- Samit Bera
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Bhaskar Das
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Arnab De
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Atish Barua
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, Kolkata, India
| | - Susmita Das
- Phytochemistry and Pharmacognosy Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Bratati De
- Phytochemistry and Pharmacognosy Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Amalesh Samanta
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
15
|
A structural perspective of plant antimicrobial peptides. Biochem J 2018; 475:3359-3375. [PMID: 30413680 DOI: 10.1042/bcj20180213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/12/2018] [Accepted: 10/14/2018] [Indexed: 12/26/2022]
Abstract
Among the numerous strategies plants have developed to fend off enemy attack, antimicrobial peptides (AMPs) stand out as one of the most prominent defensive barriers that grant direct and durable resistance against a wide range of pests and pathogens. These small proteins are characterized by a compact structure and an overall positive charge. AMPs have an ancient origin and widespread occurrence in the plant kingdom but show an unusually high degree of variation in their amino acid sequences. Interestingly, there is a strikingly conserved topology among the plant AMP families, suggesting that the defensive properties of these peptides are not determined by their primary sequences but rather by their tridimensional structure. To explore and expand this idea, we here discuss the role of AMPs for plant defense from a structural perspective. We show how specific structural properties, such as length, charge, hydrophobicity, polar angle and conformation, are essential for plant AMPs to act as a chemical shield that hinders enemy attack. Knowledge on the topology of these peptides is facilitating the isolation, classification and even structural redesign of AMPs, thus allowing scientists to develop new peptides with multiple agronomical and pharmacological potential.
Collapse
|
16
|
Mandal A, Mandal SM, Jana S, Bag SS, Das AK, Basak A. Synthesis of furan-fused 1,4-dihydrocarbazoles via an unusual Garratt-Braverman Cyclization of indolyl propargyl ethers and their antifungal activity. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Al Akeel R, Mateen A, Alharbi KK, Alyousef AA, Al-Mandeel HM, Syed R. Purification and MIC analysis of antimicrobial proteins from Cucumis sativus L. seeds. Altern Ther Health Med 2018; 18:121. [PMID: 29615020 PMCID: PMC5883520 DOI: 10.1186/s12906-018-2176-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cucumis sativus L. (cucumber), from the family Cucurbitaceae, is a therapeutic plant with various pharmacological benefits, broadly utilized as a part of complementary medicine (e.g., Unani, Ayurveda, Siddha, and Traditional Chinese). In light of past research discoveries, this plant had been chosen to consider its potential antibacterial action. METHODS Extracts were purified by dialysis and ion exchange chromatography strategy and then assayed for antibacterial activity against four standard pathogenic bacterial strains known to cause foodborne infections and spoilage of food and herbal drugs. Antimicrobial peptides were extracted from seeds using a sodium phosphate citrate (pH 7.2) - CTAB cradle (pH 6.0). RESULTS The highest protein concentration was seen with elute fractions 1 and 3 (370 mg/mL) compared with elute fractions 2 and 4 (340 mg/mL). Among the bacteria utilized, E. coli was clearly the most sensitive out of selected four strains. CONCLUSION Our results suggest that Cucumis sativus L seeds extracts have significant potentials as new antimicrobial agents.
Collapse
|
18
|
Bhattacharya P, Singha M, Senapati K, Saha S, Mandal S, Mandal SM, Ghosh AK, Basak A. Chloramphenicol-borate/boronate complex for controlling infections by chloramphenicol-resistant bacteria. RSC Adv 2018; 8:18016-18022. [PMID: 35542065 PMCID: PMC9080503 DOI: 10.1039/c8ra02227e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/06/2018] [Indexed: 11/21/2022] Open
Abstract
Increasing bacterial resistance to antibiotics is a pressing problem worldwide, with many health organisations prioritizing this issue. Whilst there is a desperate need for new effective antimicrobials, it is also important to understand the mechanisms and epidemiology of the resistant pathogens currently present in the community. Chloramphenicol is one such well known antibiotic which had lost its efficacy due to bacterial resistance. In this paper, we report the design, synthesis, and bio-studies of novel chloramphenicol-borate/boronate derivatives which showed the ability to control the infections caused by chloramphenicol-resistant bacteria. Activity profiling against P. aeruginosa strain EXR1 with catB gene indicated the inability of acetyl transferase to acetylate the chloramphenicol-borate/boronate complex, unlike chloramphenicol. Results obtained from the antimicrobial assays were further rationalized by molecular docking studies. The latter revealed that the probable reason for the enhanced antibacterial activity may be attributed to the change in the binding site of chloramphenicol-borate/boronate with chloramphenicol acetyl transferase (CAT) with respect to chloramphenicol itself. Hemolytic and genotoxic studies established the reduced toxicity of these synthetic derivatives with respect to chloramphenicol. We report the design, synthesis, and bio-studies of novel chloramphenicol-borate/boronate derivatives which could control the infections caused by chloramphenicol-resistant bacteria.![]()
Collapse
Affiliation(s)
- Prabuddha Bhattacharya
- Department of Chemistry
- Central Research Facility
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur 721302
| | - Monisha Singha
- Department of Chemistry
- Central Research Facility
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur 721302
| | | | - Suman Saha
- Priyamvada Birla Aravind Eye Hospital
- Kolkata
- India
| | | | - Santi M. Mandal
- Department of Chemistry
- Central Research Facility
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur 721302
| | - Ananta K. Ghosh
- Department of Chemistry
- Central Research Facility
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur 721302
| | - Amit Basak
- Department of Chemistry
- Central Research Facility
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur 721302
| |
Collapse
|
19
|
Mandal SM, Khan J, Mahata D, Saha S, Sengupta J, Silva ON, Das S, Mandal M, Franco OL. A self-assembled clavanin A-coated amniotic membrane scaffold for the prevention of biofilm formation by ocular surface fungal pathogens. BIOFOULING 2017; 33:881-891. [PMID: 29047302 DOI: 10.1080/08927014.2017.1383400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Amniotic membrane (AM) is frequently used in ophthalmologic surgery for rapid ocular surface reconstruction. Sometimes it may create a major problem with associated infections after biofilm formation over the membrane. To overcome this problem, AM was coated with the antimicrobial peptide clavanin A. The antifungal activity of clavanin A in the native and self-assembled form was determined against the common ocular surface pathogens Candida albicans, Aspergillus fumigatus, Alternaria sp. and Fusarium sp. Biofilm formation over the coated surface was significantly reduced in comparison with the uncoated membrane. The coated membrane revealed effectiveness in terms of biocompatibility, cell attachment colonization when tested in non-cancerous 3T3 and human embryonic kidney (HEK)-293 cell lines. Clavanin A-coated AM also exhibited excellent physical, morphological and antifungal characteristics, indicating potential applicability for ocular surface infection control.
Collapse
Affiliation(s)
- Santi M Mandal
- a Central Research Facility , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Jahangir Khan
- a Central Research Facility , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Denial Mahata
- b Rubber Technology Centre , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Suman Saha
- c Priyamvada Birla Aravind Eye Hospital , Kolkata , India
| | | | - Osmar N Silva
- d S-Inova Biotech, Pos-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Brazil
| | - Subhayan Das
- e School of Medical Science and Technology , Indian Institute of Technology , Kharagpur , India
| | - Mahitosh Mandal
- e School of Medical Science and Technology , Indian Institute of Technology , Kharagpur , India
| | - Octavio L Franco
- d S-Inova Biotech, Pos-Graduação em Biotecnologia , Universidade Católica Dom Bosco , Campo Grande , Brazil
- f Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Analises Proteômicas e Bioquímicas , Universidade Católica de Brasília , Brasília , Brazil
| |
Collapse
|
20
|
Mahata D, Nag A, Mandal SM, Nando GB. Antibacterial coating on in-line suction respiratory catheter to inhibit the bacterial biofilm formation using renewable cardanyl methacrylate copolymer. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 28:365-379. [PMID: 28025903 DOI: 10.1080/09205063.2016.1277623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Health-care materials associated with infections are very common in hospital admitted patients. There are generally infected by contact with the catheter or other multipurpose devices which are contacted with microbes. The respiratory infections associated with the pathogens having strong biofilm forming ability on catheter surface, causes life-threatening in every year. Therefore, a catheter coating material is of great interest which inhibits the biofilm formation of pathogens on a catheter to prevent respiratory infections. In this study, we synthesized cardanol containing copolymers as antimicrobial healthcare material via radical polymerization of cardanyl methacrylate (CMA) with styrene (St) monomer in presence of free radical initiator. The rate of polymerization was drastically reduced with the increase of feeding CMA monomer in copolymer. The thermal and mechanical properties were found to increase with incorporation of cardanol moiety in brittle and hard polystyrene. This soft copolymer was grafted onto polyvinyl chloride respiratory catheter which showed high antibacterial activity, inhibit the biofilm formation and also prevent bacterial adhesion. Therefore, the developed coating material on respiratory catheter surface is effective way to control the respiratory catheter-associated nosocomial infections.
Collapse
Affiliation(s)
- Denial Mahata
- a Rubber Technology Centre , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Ahindra Nag
- b Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Santi M Mandal
- c Central Research Facility, Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Golok B Nando
- a Rubber Technology Centre , Indian Institute of Technology Kharagpur , Kharagpur , India
| |
Collapse
|
21
|
Migliolo L, Felício MR, Cardoso MH, Silva ON, Xavier MAE, Nolasco DO, de Oliveira AS, Roca-Subira I, Vila Estape J, Teixeira LD, Freitas SM, Otero-Gonzalez AJ, Gonçalves S, Santos NC, Franco OL. Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa -MAP2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1488-98. [DOI: 10.1016/j.bbamem.2016.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 11/26/2022]
|
22
|
Das M, Senapati K, Panda SS, Bhattacharya P, Jana S, Mandal SM, Basak A. π-Stacking assisted redox active peptide–gallol conjugate: synthesis of a new generation of low-toxicity antimicrobial silver nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra13075e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have synthesized, via click-chemistry, a redox-active peptide–gallol conjugate which facilitates rapid formation of antimicrobial silver nanoparticles with prominent antifungal activity.
Collapse
Affiliation(s)
- Manisit Das
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Kalyan Senapati
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Sayak Subhra Panda
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | | | - Saibal Jana
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Santi M. Mandal
- Central Research Facility
- Indian Institute of Technology
- Kharagpur 721302
- India
| | - Amit Basak
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| |
Collapse
|
23
|
Tam JP, Wang S, Wong KH, Tan WL. Antimicrobial Peptides from Plants. Pharmaceuticals (Basel) 2015; 8:711-57. [PMID: 26580629 PMCID: PMC4695807 DOI: 10.3390/ph8040711] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/06/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022] Open
Abstract
Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.
Collapse
Affiliation(s)
- James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Shujing Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Ka H Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Wei Liang Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
24
|
Hernández-Ledesma B, Hsieh CC. Chemopreventive role of food-derived proteins and peptides: A review. Crit Rev Food Sci Nutr 2015; 57:2358-2376. [DOI: 10.1080/10408398.2015.1057632] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| | - Chia-Chien Hsieh
- Department of Human Development and Family Studies (Nutritional Science and Education), National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
25
|
Mandal SM, Chakraborty A, Hossain M, Mahata D, Porto WF, Chakraborty R, Mukhopadhyay CK, Franco OL, Hazra TK, Basak A. Amphotericin B and anidulafungin directly interact with DNA and induce oxidative damage in the mammalian genome. MOLECULAR BIOSYSTEMS 2015; 11:2551-9. [PMID: 26194629 DOI: 10.1039/c5mb00366k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphotericin B and anidulafungin are widely used antifungal drugs for the treatment of systemic and serious mycoses. Amphotericin B is a relatively toxic drug which has long been established. This study is first of its kind to systematically investigate the nature of binding to DNA, and to evaluate intercalation of AMP-B or ANIDULA with the aid of UV-Vis, ITC, and CD spectroscopy. The binding affinity of AMP-B with exclusion sites of 4.68 base pairs (1.2 × 10(5) M(-1)) was found to be higher than that of ANIDULA with exclusion sites of 6.67 base pairs (3.78 × 10(4) M(-1)); consistent with the binding affinity values obtained for AMP-B (10(5) M(-1)) and ANIDULA (10(4) M(-1)). The binding of two drugs with double-stranded DNA was favoured by negative enthalpy as well as negative entropy changes. The intercalation of drugs to duplex polynucleotide induced changes in the intrinsic CD spectra and revealed comparatively higher affinity towards AMP-B than ANIDULA. Molecular docking studies revealed that the negative binding energy was higher in the case of AMP-B reflecting more affinity towards single-stranded DNA. The results of the cytotoxicity, immunoblotting, and gene specific LA-QPCR assay have indicated that ANIDULA is less genotoxic than AMP-B. Hence, the superiority of ANIDULA over AMP-B as a systemic antifungal drug has been established beyond doubt.
Collapse
Affiliation(s)
- Santi M Mandal
- Central Research Facility, Department of Chemistry, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Plant antimicrobial peptides as potential anticancer agents. BIOMED RESEARCH INTERNATIONAL 2015; 2015:735087. [PMID: 25815333 PMCID: PMC4359852 DOI: 10.1155/2015/735087] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/17/2022]
Abstract
Antimicrobial peptides (AMPs) are part of the innate immune defense mechanism of many organisms and are promising candidates to treat infections caused by pathogenic bacteria to animals and humans. AMPs also display anticancer activities because of their ability to inactivate a wide range of cancer cells. Cancer remains a cause of high morbidity and mortality worldwide. Therefore, the development of methods for its control is desirable. Attractive alternatives include plant AMP thionins, defensins, and cyclotides, which have anticancer activities. Here, we provide an overview of plant AMPs anticancer activities, with an emphasis on their mode of action, their selectivity, and their efficacy.
Collapse
|
27
|
Santana MJ, de Oliveira AL, Queiroz Júnior LHK, Mandal SM, Matos CO, Dias RDO, Franco OL, Lião LM. Structural insights into Cn-AMP1, a short disulfide-free multifunctional peptide from green coconut water. FEBS Lett 2015; 589:639-44. [PMID: 25639464 DOI: 10.1016/j.febslet.2015.01.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 01/16/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
Abstract
Multifunctional and promiscuous antimicrobial peptides (AMPs) can be used as an efficient strategy to control pathogens. However, little is known about the structural properties of plant promiscuous AMPs without disulfide bonds. CD and NMR were used to elucidate the structure of the promiscuous peptide Cn-AMP1, a disulfide-free peptide isolated from green coconut water. Data here reported shows that peptide structure is transitory and could be different according to the micro-environment. In this regard, Cn-AMP1 showed a random coil in a water environment and an α-helical structure in the presence of SDS-d25 micelles. Moreover, deuterium exchange experiments showed that Gly4, Arg5 and Met9 residues are less accessible to solvent, suggesting that flexibility and cationic charges seem to be essential for Cn-AMP1 multiple activities.
Collapse
Affiliation(s)
- Mábio J Santana
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, Brazil
| | | | | | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | - Carolina O Matos
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Renata de O Dias
- S-Inova, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Octavio L Franco
- Centro de Analises Proteomicas e Bioquímicas, Pós-graduação em Ciências Genomicas e Biotecnologia, Brasília, DF, Brazil; S-Inova, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil.
| | - Luciano M Lião
- Institute of Chemistry, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
28
|
Zheng Q, Qiu D, Liu X, Zhang L, Cai S, Zhang X. Antiproliferative effect of Dendrobium catenatum Lindley polypeptides against human liver, gastric and breast cancer cell lines. Food Funct 2015; 6:1489-1495. [DOI: 10.1039/c5fo00060b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Ten sub-peptides from Dendrobium catenatum Lindley contained in fraction A3 were separated. Fraction A3 exhibited anti-proliferative activity against cancer cells.
Collapse
Affiliation(s)
- Qiuping Zheng
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou
- China
| | - Daoshou Qiu
- Crops Research Institute
- Guangdong Academy of Agricultural Sciences
- Guangzhou
- China
| | - Xiaojin Liu
- Crops Research Institute
- Guangdong Academy of Agricultural Sciences
- Guangzhou
- China
| | - Lei Zhang
- Crops Research Institute
- Guangdong Academy of Agricultural Sciences
- Guangzhou
- China
| | - Shike Cai
- Crops Research Institute
- Guangdong Academy of Agricultural Sciences
- Guangzhou
- China
| | - Xuewu Zhang
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou
- China
| |
Collapse
|
29
|
Prabhu S, Dennison SR, Mura M, Lea RW, Snape TJ, Harris F. Cn
-AMP2 from green coconut water is an anionic anticancer peptide. J Pept Sci 2014; 20:909-15. [DOI: 10.1002/psc.2684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/07/2014] [Accepted: 07/27/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Saurabh Prabhu
- School of Pharmacy and Biomedical Sciences; University of Central Lancashire; Preston PR1 2HE UK
| | - Sarah R. Dennison
- School of Pharmacy and Biomedical Sciences; University of Central Lancashire; Preston PR1 2HE UK
| | - Manuela Mura
- School of Computing Engineering and Physical Science; University of Central Lancashire; Preston PR1 2HE UK
| | - Robert W. Lea
- School of Pharmacy and Biomedical Sciences; University of Central Lancashire; Preston PR1 2HE UK
| | - Timothy J. Snape
- School of Pharmacy and Biomedical Sciences; University of Central Lancashire; Preston PR1 2HE UK
| | - Frederick Harris
- School of Forensic and Investigative Science; University of Central Lancashire; Preston PR1 2HE UK
| |
Collapse
|
30
|
Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability. Int J Biol Macromol 2014; 69:5-11. [PMID: 24836571 DOI: 10.1016/j.ijbiomac.2014.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/14/2014] [Accepted: 05/03/2014] [Indexed: 02/07/2023]
Abstract
Cardanol is a non-isoprenoic phenolic lipid-mixture of distilled cashew nut shell liquid obtained from Anacardium occidentale. Herein, cardanol is purified from cashew nut shell liquid (CNSL) and synthesized to new compounds with different azo amphiphiles. These synthesized compounds are allowed to self-assembled in hydrophobic environment and checked antifungal activity against Candida albicans. Self-assembled structure of CABA showed higher antifungal activity (16μg/mL) and chitin-binding ability in comparison to CAP and CANB. Furthermore, the self-assembled azo amphiphiles are immobilized with silver ions to prepare hydrogel which showed eight folds enhanced antifungal activity. Toxicity is reduced by several folds of self-assembled or hydrogel structure in comparison to pure compounds. Thus, the self-assembled structure of amphiphiles and their hydrogels have been found to be new macromolecules of interest with potential use as antifungal drugs.
Collapse
|
31
|
Porto WF, Nolasco DO, Franco OL. Native and recombinant Pg-AMP1 show different antibacterial activity spectrum but similar folding behavior. Peptides 2014; 55:92-7. [PMID: 24582624 DOI: 10.1016/j.peptides.2014.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 11/26/2022]
Abstract
Glycine-rich proteins (GRPs) derived from plants compose a family of proteins and peptides that share a glycine repeat domain and they can perform diverse functions. Two structural conformations have been proposed for GRPs: glycine loops arranged as a Velcro and an anti-parallel β-sheet with several β-strands. The antimicrobial peptide Pg-AMP1 is the only plant GRP with antibacterial activity reported so far and its structure remains unclear. Recently, its recombinant expression was reported, where the recombinant peptide had an additional methionine residue at the N-terminal and a histidine tag at the C-terminal (His6-tag). These changes seem to change the peptide's activity, generating a broader spectrum of antibacterial activity. In this report, through ab initio molecular modelling and molecular dynamics, it was observed that both native and recombinant peptide structures were composed of an N-terminal α-helix and a dynamic loop that represents two-thirds of the protein. In contrast to previous reports, it was observed that there is a tendency to adopt a globular fold instead of an extended one, which could be in both, glycine loops or anti-parallel β-sheet conformation. The recombinant peptide showed a slightly higher solvated potential energy compared to the native form, which could be related to the His6-tag exposition. In fact, the His6-tag could be mainly responsible for the broader spectrum of activity, but it does not seem to cause great structural changes. However, novel studies are needed for a better characterization of its pharmacological properties so that in the future novel drugs may be produced based on this peptide.
Collapse
Affiliation(s)
- William F Porto
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Diego O Nolasco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Curso de Física, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
32
|
Mandal SM, Porto WF, De D, Phule A, Korpole S, Ghosh AK, Roy SK, Franco OL. Screening of serine protease inhibitors with antimicrobial activity using iron oxide nanoparticles functionalized with dextran conjugated trypsin and in silico analyses of bacterial serine protease inhibition. Analyst 2014; 139:464-72. [PMID: 24294628 DOI: 10.1039/c3an01132a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Plants produce a variety of proteins and peptides which are involved in their defense against pathogens. Serine protease inhibitors are a well-established class of inhibitors correlated with plant defense. Increased levels of protease inhibitors delay cell damage and expand the cell's life-span. Recently, the rapid emergence of antibiotic-resistant microbial pathogens has prompted immense interest in purifying novel antimicrobial proteins or peptides from plant sources. Usually, the purification of protease inhibitors is accomplished by salt-extraction, ultrafiltration and affinity chromatography. Here, we developed a novel approach based on iron oxide nanoparticles conjugated to dextran functionalized with trypsin beads that accelerate the quick screening and purification of antimicrobial peptides with serine protease inhibitor activity. The method described here also works for screening other inhibitors using particular protein kinases, and it is therefore a novel tool for use as the leading method in the development of novel antimicrobial agents with protease inhibitory activity. Finally, and no less important, molecular modelling and dynamics studies of a homologous inhibitor studied here with Escherichia coli trypsin and chymotrypsin are provided in order to shed some light on inhibitor-enzyme interactions.
Collapse
Affiliation(s)
- Santi M Mandal
- Central Research Facility, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mulder KCL, Lima LA, Miranda VJ, Dias SC, Franco OL. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol 2013; 4:321. [PMID: 24198814 PMCID: PMC3813893 DOI: 10.3389/fmicb.2013.00321] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/11/2013] [Indexed: 01/21/2023] Open
Abstract
Cationic antimicrobial peptides (AMPs) and host defense peptides (HDPs) show vast potential as peptide-based drugs. Great effort has been made in order to exploit their mechanisms of action, aiming to identify their targets as well as to enhance their activity and bioavailability. In this review, we will focus on both naturally occurring and designed antiviral and antitumor cationic peptides, including those here called promiscuous, in which multiple targets are associated with a single peptide structure. Emphasis will be given to their biochemical features, selectivity against extra targets, and molecular mechanisms. Peptides which possess antitumor activity against different cancer cell lines will be discussed, as well as peptides which inhibit virus replication, focusing on their applications for human health, animal health and agriculture, and their potential as new therapeutic drugs. Moreover, the current scenario for production and the use of nanotechnology as delivery tool for both classes of cationic peptides, as well as the perspectives on improving them is considered.
Collapse
Affiliation(s)
- Kelly C L Mulder
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília Brasília, Brazil
| | | | | | | | | |
Collapse
|
34
|
Mandal SM, Porto WF, Dey P, Maiti MK, Ghosh AK, Franco OL. The attack of the phytopathogens and the trumpet solo: Identification of a novel plant antifungal peptide with distinct fold and disulfide bond pattern. Biochimie 2013; 95:1939-48. [PMID: 23835303 DOI: 10.1016/j.biochi.2013.06.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/28/2013] [Indexed: 02/08/2023]
Abstract
Phytopathogens cause economic losses in agribusiness. Plant-derived compounds have been proposed to overcome this problem, including the antimicrobial peptides (AMPs). This paper reports the identification of Ps-AFP1, a novel AMP isolated from the Pisum sativum radicle. Ps-AFP1 was purified and evaluated against phytopathogenic fungi, showing clear effectiveness. In silico analyses were performed, suggesting an unusual fold and disulfide bond pattern. A novel fold and a novel AMP class were here proposed, the αβ-trumpet fold and αβ-trumpet peptides, respectively. The name αβ-trumpet was created due to the peptide's fold, which resembles the musical instrument. The Ps-AFP1 mechanism of action was also proposed. Microscopic analyses revealed that Ps-AFP1 could affect the fungus during the hyphal elongation from spore germination. Furthermore, confocal microscopy performed with Ps-AFP1 labeled with FITC shows that the peptide was localized at high concentration along the fungal cell surface. Due to low cellular disruption rates, it seems that the main target is the fungal cell wall. The binding thermogram and isothermal titration, molecular dynamics and docking analyses were also performed, showing that Ps-AFP1 could bind to chitin producing a stable complex. Data here reported provided novel structural-functional insights into the αβ-trumpet peptide fold.
Collapse
Affiliation(s)
- Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | | | | | | | | |
Collapse
|
35
|
Chang VHS, Yang DHA, Lin HH, Pearce G, Ryan CA, Chen YC. IbACP, a sixteen-amino-acid peptide isolated from Ipomoea batatas leaves, induces carcinoma cell apoptosis. Peptides 2013; 47:148-56. [PMID: 23428969 DOI: 10.1016/j.peptides.2013.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 01/18/2023]
Abstract
A 16-amino-acid peptide was isolated from the leaves of sweet potato. The peptide caused a rapid alkalinization response in tomato suspension culture media, a characteristic of defense peptides in plants. No post-translational modification was observed on the peptide according to MALDI-MS analysis. We have named the peptide Ipomoea batatas anti-cancer peptide (IbACP). IbACP also was shown with the ability to dose-dependently inhibit Panc-1, a pancreatic cancer line, cell proliferation. The morphological observations of the Panc-1 cells by phase contrast microscopy showed significant changes after treatment with IbACP. Moreover, caspase-3 and PARP [poly(ADP-ribose) polymerase] were activated by IbACP treatment, followed by cell death. An increase in the levels of cleaved caspase-3 and -9 was also detected by an immunoblot assay after treatment with IbACP. In addition, genomic DNA fragmentation and decreased cellular proliferation were induced when IbACP was supplied to the Panc-1 cells, further demonstrating its biological relevance. The combined data indicates that IbACP peptide may have an important role in the regulation of cellular proliferation by inducing and promoting apoptosis through the mitochondrial apoptotic pathway. This report also showed that IbACP peptide contains potent anti-cancer effects and may play an important role in herbal medicine development.
Collapse
Affiliation(s)
- Vincent H-S Chang
- Program for Translation Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Porto WF, Franco OL. Theoretical structural insights into the snakin/GASA family. Peptides 2013; 44:163-7. [PMID: 23578978 DOI: 10.1016/j.peptides.2013.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/14/2013] [Accepted: 03/14/2013] [Indexed: 11/20/2022]
Abstract
Among the main classes of cysteine-stabilized antimicrobial peptides, the snakin/GASA family has not yet had any structural characterization. Through the combination of ab initio and comparative modeling with a disulfide bond predictor, the three-dimensional structure prediction of snakin-1 is reported here. The structure was composed of two long α-helices with a disulfide pattern of Cys(I)-Cys(IX), Cys(II)-Cys(VII), Cys(III)-Cys(IV), Cys(V)-Cys(XI), Cys(VI)-Cys(XII) and Cys(VIII)-Cys(X). The overall structure was maintained throughout molecular dynamics simulation. Snakin-1 showed a small degree of structural similarity with thionins and α-helical hairpins. This is the first report of snakin-1 structural characterization, shedding some light on the snakin/GASA family.
Collapse
Affiliation(s)
- William F Porto
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | | |
Collapse
|
37
|
Samanta T, Roymahapatra G, Porto WF, Seth S, Ghorai S, Saha S, Sengupta J, Franco OL, Dinda J, Mandal SM. N, N'-Olefin functionalized bis-imidazolium gold(I) salt is an efficient candidate to control keratitis-associated eye infection. PLoS One 2013; 8:e58346. [PMID: 23554886 PMCID: PMC3598898 DOI: 10.1371/journal.pone.0058346] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 02/03/2013] [Indexed: 01/20/2023] Open
Abstract
Keratitis treatment has become more complicated due to the emergence of bacterial or fungal pathogens with enhanced antibiotic resistance. The pharmaceutical applications of N-heterocyclic carbene complexes have received remarkable attention due to their antimicrobial properties. In this paper, the new precursor, 3,3′-(p-phenylenedimethylene) bis{1-(2- methyl-allyl)imidazolium} bromide (1a) and its analogous PF6 salt (1b) were synthesized. Furthermore, silver(I) and gold(I) -N-heterocyclic carbene (NHC) complexes [Ag2LBr2/Au2LBr2; 2a/3a], [(Ag2L2)(PF6)2/(Au2L2)(PF6)2; 2b/3b] were developed from their corresponding ligands. All compounds were screened for their antimicrobial activities against multiple keratitis-associated human eye pathogens, including bacteria and fungi. Complexes 2a and 3a showed highest activity, and the effectiveness of 3a was also studied, focusing eradication of pathogen biofilm. Furthermore, the structures of 1a, 2a and 3b were determined using single crystal X-ray analysis, 2b and 3a were optimized theoretically. The mechanism of action of 3a was evaluated by scanning electron microscopy and docking experiments, suggesting that its target is the cell membrane. In summary, 3a may be helpful in developing antimicrobial therapies in patients suffering from keratitis-associated eye infections caused by multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Tapastaru Samanta
- School of Applied Sciences, Haldia Institute of Technology, Haldia, West Bengal, India
| | | | - William F. Porto
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia UCB, Brasília-DF, Brazil
| | - Saikat Seth
- Mugberia Gangadhar College, Egra Sarada Sashibhusan Mahavidyalaya, West Bengal, India
| | - Sudipta Ghorai
- Mugberia Gangadhar College, Egra Sarada Sashibhusan Mahavidyalaya, West Bengal, India
| | - Suman Saha
- Priyamvada Birla Aravind Eye Hospital, Kolkata, West Bengal, India
| | | | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia UCB, Brasília-DF, Brazil
| | - Joydev Dinda
- School of Applied Sciences, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Santi M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
- * E-mail:
| |
Collapse
|
38
|
Silva ON, Porto WF, Migliolo L, Mandal SM, Gomes DG, Holanda HHS, Silva RSP, Dias SC, Costa MP, Costa CR, Silva MR, Rezende TMB, Franco OL. Cn-AMP1: a new promiscuous peptide with potential for microbial infections treatment. Biopolymers 2013. [PMID: 23193596 DOI: 10.1002/bip.22071] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The antimicrobial peptides (AMPs) are evolutionarily ancient molecules that act as components of the innate immune system. Recently, it was demonstrated that a single AMP can perform various functions; this ability is known as "peptide promiscuity." However, little is known about promiscuity in plant AMPs without disulfide bonds. This study was carried out to evaluate the promiscuity of Cn-AMP1: a promising disulfide-free plant peptide with reduced size and cationic and hydrophobic properties. Its activity against human pathogenic bacteria and fungal pathogens, as well as its in vitro immunostimulatory activity and effects on cancerous and healthy mammalian cell proliferation were studied here. Cn-AMP1 exerts antimicrobial effects against Gram-positive bacteria, Gram-negative bacteria, and fungi. Moreover, tumor cell viability activity in Caco-2 cells, as well as immunostimulatory activity by evaluating upregulated inflammatory-cytokine secretion by monocytes was also positively observed. Cn-AMP1 does not exhibit a well-defined conformation in aqueous solution and probably undergoes a 3(10)-helix transition in hydrophobic environments. The experimental results support the promiscuous activity of Cn-AMP1, presenting a wide range of activities, including antibacterial, antifungal, and immunostimulatory activity. In the future, Cn-AMP1 should be used in the development of novel biopharmaceuticals, mainly due to its reduced size and broad spectrum of activity.
Collapse
Affiliation(s)
- Osmar N Silva
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mandal SM, Saha S, Sengupta J, Pratihar S. Kaajal fights against eye pathogens and is safe for eye make-up: a reinvestigation of an ancient practice. Analyst 2013; 138:5197-9. [DOI: 10.1039/c3an01085f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Porto WF, Pires ÁS, Franco OL. CS-AMPPred: an updated SVM model for antimicrobial activity prediction in cysteine-stabilized peptides. PLoS One 2012; 7:e51444. [PMID: 23240023 PMCID: PMC3519874 DOI: 10.1371/journal.pone.0051444] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/01/2012] [Indexed: 12/03/2022] Open
Abstract
The antimicrobial peptides (AMP) have been proposed as an alternative to control resistant pathogens. However, due to multifunctional properties of several AMP classes, until now there has been no way to perform efficient AMP identification, except through in vitro and in vivo tests. Nevertheless, an indication of activity can be provided by prediction methods. In order to contribute to the AMP prediction field, the CS-AMPPred (Cysteine-Stabilized Antimicrobial Peptides Predictor) is presented here, consisting of an updated version of the Support Vector Machine (SVM) model for antimicrobial activity prediction in cysteine-stabilized peptides. The CS-AMPPred is based on five sequence descriptors: indexes of (i) α-helix and (ii) loop formation; and averages of (iii) net charge, (iv) hydrophobicity and (v) flexibility. CS-AMPPred was based on 310 cysteine-stabilized AMPs and 310 sequences extracted from PDB. The polynomial kernel achieves the best accuracy on 5-fold cross validation (85.81%), while the radial and linear kernels achieve 84.19%. Testing in a blind data set, the polynomial and radial kernels achieve an accuracy of 90.00%, while the linear model achieves 89.33%. The three models reach higher accuracies than previously described methods. A standalone version of CS-AMPPred is available for download at <http://sourceforge.net/projects/csamppred/> and runs on any Linux machine.
Collapse
Affiliation(s)
- William F. Porto
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Állan S. Pires
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Octavio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília-DF, Brazil
- * E-mail:
| |
Collapse
|
41
|
Migliolo L, Silva ON, Silva PA, Costa MP, Costa CR, Nolasco DO, Barbosa JARG, Silva MRR, Bemquerer MP, Lima LMP, Romanos MTV, Freitas SM, Magalhães BS, Franco OL. Structural and functional characterization of a multifunctional alanine-rich peptide analogue from Pleuronectes americanus. PLoS One 2012; 7:e47047. [PMID: 23056574 PMCID: PMC3466273 DOI: 10.1371/journal.pone.0047047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/07/2012] [Indexed: 01/01/2023] Open
Abstract
Recently, defense peptides that are able to act against several targets have been characterized. The present work focuses on structural and functional evaluation of the peptide analogue Pa-MAP, previously isolated as an antifreeze peptide from Pleuronectes americanus. Pa-MAP showed activities against different targets such as tumoral cells in culture (CACO-2, MCF-7 and HCT-116), bacteria (Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 25923), viruses (HSV-1 and HSV-2) and fungi (Candida parapsilosis ATCC 22019, Trichophyton mentagrophytes (28d&E) and T. rubrum (327)). This peptide did not show toxicity against mammalian cells such as erythrocytes, Vero and RAW 264.7 cells. Molecular mechanism of action was related to hydrophobic residues, since only the terminal amino group is charged at pH 7 as confirmed by potentiometric titration. In order to shed some light on its structure-function relations, in vitro and in silico assays were carried out using circular dichroism and molecular dynamics. Furthermore, Pa-MAP showed partial unfolding of the peptide changes in a wide pH (3 to 11) and temperature (25 to 95°C) ranges, although it might not reach complete unfolding at 95°C, suggesting a high conformational stability. This peptide also showed a conformational transition with a partial α-helical fold in water and a full α-helical core in SDS and TFE environments. These results were corroborated by spectral data measured at 222 nm and by 50 ns dynamic simulation. In conclusion, data reported here show that Pa-MAP is a potential candidate for drug design against pathogenic microorganisms due to its structural stability and wide activity against a range of targets.
Collapse
Affiliation(s)
- Ludovico Migliolo
- Centro de Análises Proteômicas e Bioquímicas-Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Osmar N. Silva
- Centro de Análises Proteômicas e Bioquímicas-Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
- Programa de Pós-Graduação em Genética e Biotecnologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Paula A. Silva
- Centro de Análises Proteômicas e Bioquímicas-Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
- Departamento de Virologia-Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maysa P. Costa
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Carolina R. Costa
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Diego O. Nolasco
- Centro de Análises Proteômicas e Bioquímicas-Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - João A. R. G. Barbosa
- Centro de Análises Proteômicas e Bioquímicas-Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
- Laboratório de Biofísica-Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Maria R. R. Silva
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Marcelo P. Bemquerer
- Laboratório de Sîntese de Peptídeos, EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, Brazil
| | - Lidia M. P. Lima
- Centro de Análises Proteômicas e Bioquímicas-Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Maria T. V. Romanos
- Departamento de Virologia-Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sonia M. Freitas
- Laboratório de Biofísica-Departamento de Biologia Celular, Universidade de Brasília, Brasília, Distrito Federal, Brazil
| | - Beatriz S. Magalhães
- Centro de Análises Proteômicas e Bioquímicas-Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Octavio L. Franco
- Centro de Análises Proteômicas e Bioquímicas-Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|