1
|
李 梦, 雷 蕾, 刘 中, 李 健, 姜 婷. [Gene silencing of Nemo-like kinase promotes neuralized tissue engineered bone regeneration]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2025; 57:227-236. [PMID: 40219550 PMCID: PMC11992439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Indexed: 04/14/2025]
Abstract
OBJECTIVE To identify the role of gene silencing or overexpression of Nemo-like kinase (NLK) during the process of neural differentiation of human mesenchymal stem cells (hBMSCs), and to explore the effect of NLK downregulation by transfection of small interfering RNA (siRNA) on promoting neuralized tissue engineered bone regeneration. METHODS NLK-knockdown hBMSCs were established by transfection of siRNA (the experimental group was transfected with siRNA silencing the NLK gene, the control group was transfected with control siRNA and labeled as negative control group), and NLK-overexpression hBMSCs were established using lentivirus vector transfection technique (the experimental group was infected with lentivirus overexpressing the NLK gene, the control group was infected with an empty vector lentivirus and labeled as the empty vector group). After neurogenic induction, quantitative real-time polymerase chain reaction (qPCR) was used to detect the expression of neural-related gene, and Western blot as well as immunofluorescence staining about several specific neural markers were used to evaluate the neural differentiation ability of hBMSCs.6-week-old male nude mice were divided into 4 groups: ① β-tricalcium phosphate (β-TCP) group, ② β-TCP+ osteogenic induced hBMSCs group, ③ β-TCP+ siRNA-negative control (siRNA-NC) transfection hBMSCs group, ④ β-TCP+ siRNA-NLK transfection hBMSCs group. Four weeks after the subcutaneous ectopic osteogenesis models were established, the osteogenesis and neurogenesis were detected by hematoxylin-eosin (HE) staining, Masson staining and tissue immunofluorescence assay. Statistical analysis was conducted by independent sample t test. RESULTS After gene silencing of NLK by siRNA in hBMSCs, neural-related genes, including the class Ⅲ β-tubulin (TUBB3), microtubule association protein-2 (MAP2), soluble protein-100 (S100), nestin (NES), NG2 proteoglycan (NG2) and calcitonin gene-related peptide (CGRP), were increased significantly in NLK-knockdown hBMSCs compared with the negative control group(P < 0.05), and the expression levels of TUBB3 and MAP2 of the NLK silencing group were also increased. Oppositely, after NLK was overexpressed using lentivirus vector transfection technique, TUBB3, MAP2, S100 and NG2 were significantly decreased in NLK-overexpression hBMSCs compared with the empty vector group (P < 0.05), and the expression level of TUBB3 was also decreased. 4 weeks after the subcutaneous ectopic osteogenesis model was established, more mineralized tissues were formed in the β-TCP+ siRNA-NLK transfection hBMSCs group compared with the other three groups, and the expression of BMP2 and S100 was higher in the β-TCP+ siRNA-NLK transfection hBMSCs group than in the other groups. CONCLUSION Gene silencing of NLK by siRNA promoted the ability of neural differentiation of hBMSCs in vitro and promoted neuralized tissue engineered bone formation in subcutaneous ectopic osteogenic models in vivo in nude mice.
Collapse
Affiliation(s)
- 梦迪 李
- 北京大学口腔医学院·口腔医院修复科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - 蕾 雷
- 首都医科大学附属北京友谊医院口腔科,北京 100050Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - 中宁 刘
- 北京大学口腔医学院·口腔医院修复科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - 健 李
- 北京大学口腔医学院·口腔医院修复科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - 婷 姜
- 北京大学口腔医学院·口腔医院修复科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,北京 100081Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
2
|
Zhu Y, He Y, Gan R. Wnt Signaling in Hepatocellular Carcinoma: Biological Mechanisms and Therapeutic Opportunities. Cells 2024; 13:1990. [PMID: 39682738 PMCID: PMC11640042 DOI: 10.3390/cells13231990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), characterized by significant morbidity and mortality rates, poses a substantial threat to human health. The expression of ligands and receptors within the classical and non-classical Wnt signaling pathways plays an important role in HCC. The Wnt signaling pathway is essential for regulating multiple biological processes in HCC, including proliferation, invasion, migration, tumor microenvironment modulation, epithelial-mesenchymal transition (EMT), stem cell characteristics, and autophagy. Molecular agents that specifically target the Wnt signaling pathway have demonstrated significant potential for the treatment of HCC. However, the precise mechanism by which the Wnt signaling pathway interacts with HCC remains unclear. In this paper, we review the alteration of the Wnt signaling pathway in HCC, the mechanism of Wnt pathway action in HCC, and molecular agents targeting the Wnt pathway. This paper provides a theoretical foundation for identifying molecular agents targeting the Wnt pathway in hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | - Runliang Gan
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.Z.); (Y.H.)
| |
Collapse
|
3
|
Sun Y, Hu T, Zhang M, Song J, Qin Z, Liu M, Ji J, Li Z, Qiu Z, Bian J. Structure-Guided Discovery of Potent and Selective CLK2 Inhibitors for the Treatment of Knee Osteoarthritis. J Med Chem 2024; 67:4603-4623. [PMID: 38500250 DOI: 10.1021/acs.jmedchem.3c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Osteoarthritis is the most common joint disorder. However, there are no disease-modifying drugs approved for OA treatment. CDC2-like kinase 2 (CLK2) could modulate Wnt signaling via alternative splicing of Wnt target genes and further affect bone differentiation, chondrocyte function, and inflammation, making CLK2 an attractive target for OA therapy. In this study, we designed and synthesized a series of highly potent CLK2 inhibitors based on Indazole 1. Among them, compound LQ23 showed more elevated inhibitory activity against CLK2 than the lead compound (IC50, 1.4 nM) with high CLK2/CLK3 selectivity (>70-fold). Furthermore, LQ23 showed outstanding antiosteoarthritis effects in vitro and in vivo, with the roles specific in decreased inflammatory cytokines, downregulated cartilage degradative enzymes, and increased joint cartilage via suppressing CLK2/Wnt signaling pathway. Overall, these data support LQ23 as a potential candidate for intra-articular knee OA therapy, leveraging its unique mechanism of action for targeted treatment.
Collapse
Affiliation(s)
- Yongqiang Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tianxing Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mengdi Zhang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiaxing Song
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhen Qin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mai Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinliang Ji
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhixia Qiu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
4
|
Yagound B, Sarma RR, Edwards RJ, Richardson MF, Rodriguez Lopez CM, Crossland MR, Brown GP, DeVore JL, Shine R, Rollins LA. Is developmental plasticity triggered by DNA methylation changes in the invasive cane toad ( Rhinella marina)? Ecol Evol 2024; 14:e11127. [PMID: 38450317 PMCID: PMC10917582 DOI: 10.1002/ece3.11127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Many organisms can adjust their development according to environmental conditions, including the presence of conspecifics. Although this developmental plasticity is common in amphibians, its underlying molecular mechanisms remain largely unknown. Exposure during development to either 'cannibal cues' from older conspecifics, or 'alarm cues' from injured conspecifics, causes reduced growth and survival in cane toad (Rhinella marina) tadpoles. Epigenetic modifications, such as changes in DNA methylation patterns, are a plausible mechanism underlying these developmental plastic responses. Here we tested this hypothesis, and asked whether cannibal cues and alarm cues trigger the same DNA methylation changes in developing cane toads. We found that exposure to both cannibal cues and alarm cues was associated with local changes in DNA methylation patterns. These DNA methylation changes affected genes putatively involved in developmental processes, but in different genomic regions for different conspecific-derived cues. Genetic background explains most of the epigenetic variation among individuals. Overall, the molecular mechanisms triggered by exposure to cannibal cues seem to differ from those triggered by alarm cues. Studies linking epigenetic modifications to transcriptional activity are needed to clarify the proximate mechanisms that regulate developmental plasticity in cane toads.
Collapse
Affiliation(s)
- Boris Yagound
- Evolution & Ecology Research Centre, Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Roshmi R. Sarma
- Evolution & Ecology Research Centre, Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| | - Richard J. Edwards
- Evolution & Ecology Research Centre, School of Biotechnology and Biomedical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Minderoo OceanOmics Centre at UWA, Oceans InstituteDeakin UniversityGeelongVictoriaAustralia
| | - Mark F. Richardson
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
- Minderoo OceanOmics Centre at UWA, Oceans InstituteDeakin UniversityGeelongVictoriaAustralia
- Deakin Genomics Research and Discovery FacilityDeakin University, Locked BagGeelongVICAustralia
| | - Carlos M. Rodriguez Lopez
- Deakin Genomics Research and Discovery FacilityDeakin University, Locked BagGeelongVICAustralia
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- Environmental Epigenetics and Genetics Group, Department of HorticultureCollege of Agriculture, Food and Environment, University of KentuckyLexingtonKentuckyUSA
| | - Michael R. Crossland
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Gregory P. Brown
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Jayna L. DeVore
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- UMR 241 EIOUniversity of French Polynesia, IFREMER, ILM, IRDFaa’aTahitiFrench Polynesia
| | - Richard Shine
- School of Agriculture, Food and Wine, Waite Research InstituteThe University of AdelaideGlen OsmondSouth AustraliaAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- Department of Biological SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Lee A. Rollins
- Evolution & Ecology Research Centre, Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
5
|
Liu Z, Zhong Y, Chen YJ, Chen H. SOX11 regulates apoptosis and cell cycle in hepatocellular carcinoma via Wnt/β-catenin signaling pathway. Biotechnol Appl Biochem 2018; 66:240-246. [PMID: 30517979 DOI: 10.1002/bab.1718] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/02/2018] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer with high mortality. Identifying key molecules involved in the regulation of HCC development is of great clinical significance. SOX11 is a transcription factor belonging to group C of Sry-related high mobility group box family whose abnormal expression is frequently seen in many kinds of human cancers. Here, we noted that the expression of SOX11 was decreased in human HCC tumors compared with that in matched normal tissues. Overexpression of SOX11 promoted growth inhibition and apoptosis in HCC cell line HuH-7. Mechanistically, SOX11 enhanced the expression of nemo-like kinase and the phosphorylation of TCF4, thereby blunting the activation of oncogenic Wnt/β-catenin signaling pathway in HuH-7 cells. Finally, SOX11 was also found to sensitize HuH-7 cells to chemotherapy drugs cisplatin and 5-fluorouraci. Therefore, our study identifies SOX11 as a potential tumor suppressor in HCC and may hopefully be beneficial for the clinical diagnosis or treatment of HCC.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, People's Republic of China
| | - Yang Zhong
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, People's Republic of China
| | - Yu Jian Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, People's Republic of China
| | - Hui Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, People's Republic of China.,Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, People's Republic of China
| |
Collapse
|
6
|
Deshmukh V, Hu H, Barroga C, Bossard C, Kc S, Dellamary L, Stewart J, Chiu K, Ibanez M, Pedraza M, Seo T, Do L, Cho S, Cahiwat J, Tam B, Tambiah JRS, Hood J, Lane NE, Yazici Y. A small-molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying agent for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 2018; 26:18-27. [PMID: 28888902 DOI: 10.1016/j.joca.2017.08.015] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/18/2017] [Accepted: 08/30/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Osteoarthritis (OA) is a degenerative disease characterized by loss of cartilage and increased subchondral bone within synovial joints. Wnt signaling affects the pathogenesis of OA as this pathway modulates both the differentiation of osteoblasts and chondrocytes, and production of catabolic proteases. A novel small-molecule Wnt pathway inhibitor, SM04690, was evaluated in a series of in vitro and in vivo animal studies to determine its effects on chondrogenesis, cartilage protection and synovial-lined joint pathology. DESIGN A high-throughput screen was performed using a cell-based reporter assay for Wnt pathway activity to develop a small molecule designated SM04690. Its properties were evaluated in bone-marrow-derived human mesenchymal stem cells (hMSCs) to assess chondrocyte differentiation and effects on cartilage catabolism by immunocytochemistry and gene expression, and glycosaminoglycan breakdown. In vivo effects of SM04690 on Wnt signaling, cartilage regeneration and protection were measured using biochemical and histopathological techniques in a rodent acute cruciate ligament tear and partial medial meniscectomy (ACLT + pMMx) OA model. RESULTS SM04690 induced hMSC differentiation into mature, functional chondrocytes and decreased cartilage catabolic marker levels compared to vehicle. A single SM04690 intra-articular (IA) injection was efficacious in a rodent OA model, with increased cartilage thickness, evidence for cartilage regeneration, and protection from cartilage catabolism observed, resulting in significantly improved Osteoarthritis Research Society International (OARSI) histology scores and biomarkers, compared to vehicle. CONCLUSIONS SM04690 induced chondrogenesis and appeared to inhibit joint destruction in a rat OA model, and is a candidate for a potential disease modifying therapy for OA.
Collapse
Affiliation(s)
| | - H Hu
- Samumed, LLC, San Diego, CA, USA.
| | | | | | - S Kc
- Samumed, LLC, San Diego, CA, USA.
| | | | | | - K Chiu
- Samumed, LLC, San Diego, CA, USA.
| | - M Ibanez
- Samumed, LLC, San Diego, CA, USA.
| | | | - T Seo
- Samumed, LLC, San Diego, CA, USA.
| | - L Do
- Samumed, LLC, San Diego, CA, USA.
| | - S Cho
- Samumed, LLC, San Diego, CA, USA.
| | | | - B Tam
- Samumed, LLC, San Diego, CA, USA.
| | | | - J Hood
- Samumed, LLC, San Diego, CA, USA.
| | - N E Lane
- University of California, Davis, CA, USA.
| | - Y Yazici
- Samumed, LLC, San Diego, CA, USA.
| |
Collapse
|
7
|
Zanotti S, Canalis E. Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes. Bone 2017; 103:159-167. [PMID: 28676438 PMCID: PMC5568480 DOI: 10.1016/j.bone.2017.06.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
Parathyroid hormone (PTH) and Notch receptors regulate bone formation by governing the function of osteoblastic cells. To determine whether PTH interacts with Notch signaling as a way to control osteoblast function, we tested the effects of PTH on Notch activity in osteoblast- and osteocyte-enriched cultures. Notch signaling was activated in osteoblast-enriched cells from wild-type C57BL/6J mice following exposure to the Notch ligand Delta-like (Dll)1 or by the transient transfection of the Notch intracellular domain (NICD), the transcriptionally active fragment of Notch1. To induce Notch signaling in osteocyte-enriched cultures, a murine model of Notch2 gain-of-function was used. PTH opposed the stimulatory effects of Dll1 on Hey1, Hey2 and HeyL mRNA levels in osteoblast-enriched cells and suppressed the expression of selected Notch target genes in osteocyte-enriched cultures, either under basal conditions or in the context of Notch2 gain-of-function. Induction of Notch signaling in osteocytes did not alter the inhibitory effect of PTH on Sost expression, but reduced the stimulation of Tnfsf11 mRNA levels by PTH. In agreement with these in vitro observations, male mice administered with PTH displayed suppressed Hey1 and HeyL expression in parietal bones. Transactivation experiments with a Notch reporter construct and electrophoretic mobility shift assays in osteoblast-enriched cells suggest that PTH acts by decreasing the capacity of Rbpjκ to bind to DNA. In conclusion, downregulation of Notch in osteoblasts and osteocytes may represent a mechanism contributing to the anabolic effects of PTH in bone.
Collapse
Affiliation(s)
- Stefano Zanotti
- Departments of Orthopaedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030-5456, USA.
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, CT 06030-5456, USA
| |
Collapse
|
8
|
TCF-1 participates in the occurrence of dedifferentiated chondrosarcoma. Tumour Biol 2016; 37:14129-14140. [PMID: 27522523 PMCID: PMC5097086 DOI: 10.1007/s13277-016-5235-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/15/2016] [Indexed: 01/03/2023] Open
Abstract
The present study demonstrated that T cell factor 1 (TCF-1) protein, a component of the canonical Wnt/β-catenin signaling pathway, can regulate the expression of runt-related transcription factor 2 (runx2) gene and Sry-related HMG box 9 (sox9) gene, which may participate in the differentiation of chondrosarcoma. Dedifferentiated chondrosarcoma (DDCS) is a special variant of conventional chondrosarcoma (CCS), associated with poor survival and high metastasis rate. However, little is known about the mechanism of its occurrence; thus, no effective treatment is available except surgery. Earlier, high expression of runx2 and low expression of sox9 were found in DDCS compared with CCS. Using Western blot to detect clinical tissue samples (including 8 CCS samples and 8 DDCS samples) and immunohistochemistry to detect 85 different-grade chondrosarcoma specimens, a high expression of TCF-1 in DDCS tissues was found compared with CCS tissues. This difference in expression was related to patients' prognosis. Results of luciferase, chromatin immunoprecipitation, and gel electrophoresis mobility shift assays demonstrated that TCF-1 protein could bind to the promoter of runx2 gene directly and sox9 gene indirectly. Hence, it could regulate expression of runx2 gene positively and sox9 gene negatively. Furthermore, in vitro and in vivo experiments showed that TCF-1 protein was closely related to the phenotype and aggressiveness of chondrosarcoma. In conclusion, this study proved that TCF-1 participates in the dedifferentiation of DDCS, which may be mediated by runx2 gene and sox9 gene. Also, TCF-1 can be of important prognostic value and a promising therapeutic target for DDCS patients.
Collapse
|
9
|
Pawaputanon Na Mahasarakham C, Ezura Y, Kawasaki M, Smriti A, Moriya S, Yamada T, Izu Y, Nifuji A, Nishimori K, Izumi Y, Noda M. BMP-2 Enhances Lgr4 Gene Expression in Osteoblastic Cells. J Cell Physiol 2015; 231:887-95. [PMID: 26332449 DOI: 10.1002/jcp.25180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 01/21/2023]
Abstract
Osteoporosis is one of the most prevalent diseases and the number of patients suffering from this disease is soaring due to the increase in the aged population in the world. The severity of bone loss in osteoporosis is based on the levels of impairment in the balance between bone formation and bone resorption, two arms of the bone metabolism, and bone remodeling. However, determination of bone formation levels is under many layers of control that are as yet fully defined. Bone morphogenetic protein (BMP) plays a key role in regulation of bone formation while its downstream targets are still incompletely understood. Lgr4 gene encodes an orphan receptor and has been identified as a genetic determinant for bone mass in osteoporotic patients. Here, we examine the effects of BMP on the expression of Lgr4 in osteoblastic cells. Lgr4 gene is expressed in an osteoblastic cell line, MC3T3E1 in a time dependent manner during the culture. BMP treatment enhances Lgr4 mRNA expression at least in part via transcriptional event. When Lgr4 mRNA is knocked down, the levels of BMP-induced increase in alkaline phosphatase (Alp) activity and Alp mRNA are suppressed. BMP enhancement of Lgr4 gene expression is suppressed by FGF and reversed by dexamethasone. BMP also enhances Lgr4 expression in primary cultures of calvarial osteoblasts. These data indicate that Lgr4 gene is regulated by BMP and is required for BMP effects on osteoblastic differentiation. J. Cell. Physiol. 231: 887-895, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chantida Pawaputanon Na Mahasarakham
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan.,Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Yoichi Ezura
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | - Makiri Kawasaki
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | - Arayal Smriti
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | - Shuichi Moriya
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | - Takayuki Yamada
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | - Yayoi Izu
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | - Akira Nifuji
- Department of Pharmacology, Tsurumi University, School of Dental Medicine, Japan
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Masaki Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Japan
| |
Collapse
|
10
|
Jiang T, Guo L, Ni S, Zhao Y. Upregulation of cell proliferation via Shc and ERK1/2 MAPK signaling in SaOS-2 osteoblasts grown on magnesium alloy surface coating with tricalcium phosphate. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:158. [PMID: 25783501 DOI: 10.1007/s10856-015-5479-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Magnesium (Mg) alloys have been demonstrated to be viable orthopedic implants because of mechanical and biocompatible properties similar to natural bone. In order to improve its osteogenic properties, a porous β-tricalcium phosphate (β-TCP) was coated on the Mg-3AI-1Zn alloy by alkali-heat treatment technique. The human bone-derived cells (SaOS-2) were cultured on (β-TCP)-Mg-3AI-1Zn in vitro, and the osteoblast response, the morphology and the elements on this alloy surface were investigated. Also, the regulation of key intracellular signalling proteins was investigated in the SaOS-2 cells cultured on alloy surface. The results from scanning electron microscope and immunofluorescence staining demonstrated that (β-TCP)-Mg-3AI-1Zn induced significant osteogenesis. SaOS-2 cell proliferation was improved by β-TCP coating. Moreover, the (β-TCP)-Mg-3AI-1Zn surface induced activation of key intracellular signalling proteins in SaOS-2 cells. We observed an enhanced activation of Src homology and collagen (Shc), a common point of integration between bone morphogenetic protein 2, and the Ras/mitogen-activated protein kinase (MAPK) pathway. ERK1/2 MAP kinase activation was also upregulated, suggesting a role in mediating osteoblastic cell interactions with biomaterials. The signalling pathway involving c-fos (member of the activated protein-1) was also shown to be upregulated in osteoblasts cultured on the (β-TCP)-Mg-3AI-1Zn. These results suggest that β-TCP coating may contribute to successful osteoblast function on Mg alloy surface. (β-TCP)-Mg-3AI-1Zn may upregulate cell proliferation via Shc and ERK1/2 MAPK signaling in SaOS-2 osteoblasts grown on Mg alloy surface.
Collapse
Affiliation(s)
- Tianlong Jiang
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| | | | | | | |
Collapse
|
11
|
Abdallah BM, Jafari A, Zaher W, Qiu W, Kassem M. Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation. Bone 2015; 70:28-36. [PMID: 25138551 DOI: 10.1016/j.bone.2014.07.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 01/06/2023]
Abstract
Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy for identifying druggable targets for enhancing bone formation. This review will discuss the functions and the molecular mechanisms of action on osteoblast differentiation and bone formation; of a number of recently identified regulatory molecules: the non-canonical Notch signaling molecule Delta-like 1/preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone.
Collapse
Affiliation(s)
- Basem M Abdallah
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Abbas Jafari
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; DanStem (Danish Stem Cell Center), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Walid Zaher
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Saudi Arabia
| | - Weimin Qiu
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; DanStem (Danish Stem Cell Center), Panum Institute, University of Copenhagen, Copenhagen, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Saudi Arabia.
| |
Collapse
|
12
|
Canalis E, Kranz L, Zanotti S. Nemo-like kinase regulates postnatal skeletal homeostasis. J Cell Physiol 2014; 229:1736-43. [PMID: 24664870 DOI: 10.1002/jcp.24625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 01/04/2023]
Abstract
Nemo-like kinase (Nlk) is related to the mitogen-activated protein (MAP) kinases and known to regulate signaling pathways involved in osteoblastogenesis. In vitro Nlk suppresses osteoblastogenesis, but the consequences of the Nlk inactivation in the skeleton in vivo are unknown. To study the function of Nlk, Nlk(loxP/loxP) mice, where the Nlk exon2 is flanked by lox(P) sequences, were mated with mice expressing the Cre recombinase under the control of the paired-related homeobox gene 1 (Prx1) enhancer (Prx1-Cre), the Osterix (Osx-Cre) or the osteocalcin/bone gamma carboxyglutamate protein (Bglap-Cre) promoter. Prx1-Cre;Nlk(Δ/Δ) mice did not exhibit a skeletal phenotype except for a modest increase in trabecular number and connectivity observed only in 3-month-old male mice. Osx-Cre;Nlk(Δ/Δ) male and female mice exhibited an increase in trabecular bone volume secondary to an increased trabecular number at 3 months of age. Bone histomorphometry revealed a decrease in osteoclast number and eroded surface in male mice, and decreased osteoblast number and function in female mice. Expression of osteoprotegerin mRNA was increased in calvarial extracts, explaining the decreased osteoclast and osteoblast number. The conditional deletion of Nlk in mature osteoblasts (Bglap-Cre;Nlk(Δ/Δ) ) resulted in no skeletal phenotype in 1- to 6-month-old male or female mice. In conclusion, when expressed in undifferentiated osteoblasts, Nlk is a negative regulator of skeletal homeostasis possibly by targeting signals that regulate osteoclastogenesis and bone resorption.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Center, Hartford, Connecticut; The University of Connecticut School of Medicine, Farmington, Connecticut
| | | | | |
Collapse
|
13
|
Lv L, Wan C, Chen B, Li M, Liu Y, Ni T, Yang Y, Liu Y, Cong X, Mao G, Xue Q. Nemo-Like Kinase (NLK) Inhibits the Progression of NSCLC via Negatively Modulating WNT Signaling Pathway. J Cell Biochem 2013; 115:81-92. [PMID: 23904219 DOI: 10.1002/jcb.24635] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/24/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Liting Lv
- Department of Oncology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Chunhua Wan
- Department of Public Health; Nantong University; Nantong 226001 Jiangsu China
| | - Buyou Chen
- Department of Oncology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Mei Li
- Department of Oncology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Yifei Liu
- Department of Pathology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Tingting Ni
- Department of Oncology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Yi Yang
- Department of Oncology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Yanhua Liu
- Department of Gastroenterology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Xia Cong
- Department of Gastroenterology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Guoxin Mao
- Department of Oncology; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| | - Qun Xue
- Department of Thoracic Surgery; Affiliated Hospital of Nantong University; Nantong 226001 Jiangsu China
| |
Collapse
|
14
|
Abstract
Osteoporosis is a skeletal disorder characterized by bone loss, which results in architectural deterioration of the skeleton, compromised bone strength and an increased risk of fragility fractures. Most current therapies for osteoporosis stabilize the skeleton by inhibiting bone resorption (antiresorptive agents), but the development of anabolic therapies that can increase bone formation and bone mass is of great interest. Wnt signalling induces differentiation of bone-forming cells (osteoblasts) and suppresses the development of bone-resorbing cells (osteoclasts). The Wnt pathway is controlled by antagonists that interact either directly with Wnt proteins or with Wnt co-receptors. The importance of Wnt signalling in bone formation is indicated by skeletal disorders such as sclerosteosis and van Buchem syndrome, which are caused by mutations in the gene encoding the Wnt antagonist sclerostin (SOST). Experiments in mice have shown that downregulation or neutralization of Wnt antagonists enhances bone formation. Phase II clinical trials show that 1-year treatment with antisclerostin antibodies increases bone formation, decreases bone resorption and leads to a substantial increase in BMD. Consequently, Wnt signalling can be targeted by the neutralization of its extracellular antagonists to obtain a skeletal anabolic response.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Research, Saint Francis Hospital and Medical Centre, 114 Woodland Street, Hartford, CT 06105-1299, USA.
| |
Collapse
|
15
|
Li M, Zhang S, Wang Z, Zhang B, Wu X, Weng H, Ding Q, Tan Z, Zhang N, Mu J, Yang J, Shu Y, Bao R, Ding Q, Wu W, Cao Y, Liu Y. Prognostic significance of nemo-like kinase (NLK) expression in patients with gallbladder cancer. Tumour Biol 2013; 34:3995-4000. [PMID: 23857283 DOI: 10.1007/s13277-013-0988-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/01/2013] [Indexed: 12/13/2022] Open
Abstract
Nemo-like kinase (NLK), a serine/threonine protein kinase, has been implicated in tumor development and progression, and plays an important role in diverse signaling pathways by phosphorylating a variety of transcription factors. Recent studies demonstrated that altered expression of NLK was observed in various types of human cancers. However, the clinical significance of NLK expression in gallbladder cancer (GBC) remains largely unknown. In this study, we focused on the clinical significance of NLK in GBC, and found that nuclear NLK protein overexpression was frequently detected in GBC tissues. The overexpression of NLK was significantly correlated with histological grade, TNM stage, and perineural invasion. The results of Kaplan-Meier analysis indicated that a high expression level of NLK resulted in a significantly poorer prognosis of GBC patients (P = 0.002). Furthermore, multivariate Cox regression analysis showed that high NLK expression was an independent prognostic factor for GBC patients (HR = 3.077). In conclusion, overexpression of NLK is closely related to progression of GBC, and NLK could be used as a potential prognostic marker for GBC patients.
Collapse
Affiliation(s)
- Maolan Li
- Research Institute of Biliary Tract Disease Affiliated to School of Medicine, Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Takeo S, Kawahara-Miki R, Goto H, Cao F, Kimura K, Monji Y, Kuwayama T, Iwata H. Age-associated changes in gene expression and developmental competence of bovine oocytes, and a possible countermeasure against age-associated events. Mol Reprod Dev 2013; 80:508-21. [PMID: 23712640 DOI: 10.1002/mrd.22187] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/25/2013] [Indexed: 12/11/2022]
Abstract
In general, maternal age affects the quality of oocytes and embryos. The present study aimed to examine the features and age-associated gene expression profiles of bovine oocytes and embryos as well as to discover possible countermeasures against age-associated events. Comprehensive gene expression assays of germinal vesicle and metaphase II (MII)-stage oocytes and 8- to 16-cell-stage embryos were conducted using next-generation sequencing technology. The gene expression profiles of aged cows showed high expression of genes related to oxidative phosphorylation, eIF4 and p70S6K signaling, and mitochondrial dysfunction in MII-stage oocytes. Oocytes derived from aged cows, compared with those derived from their younger counterparts, exhibited high levels of abnormal fertilization and blastocysts with low total cell numbers. Levels of reactive oxygen species (ROS) and SIRT1 were higher in in vitro-matured oocytes derived from aged cows than in those derived from their younger counterparts. Supplementation of maturation medium with N-acetyl-cysteine (NAC), but not resveratrol, reduced the levels of ROS in the oocytes derived from cows of both age groups; however, resveratrol, but not NAC, improved the fertilization ratio. Conversely, EX 527, an inhibitor of SIRT1, increased the ratio of abnormal fertilization. In conclusion, gene expression profiles of oocytes and embryos derived from aged cows differ from those of oocytes and embryos derived from young cows; in particular, oocytes derived from aged cows show protein and mitochondrial dysfunction. In addition, activation of SIRT1 in oocytes may be a potential countermeasure against age-associated events in oocytes derived from aged cows.
Collapse
Affiliation(s)
- S Takeo
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Greenblatt MB, Shim JH, Glimcher LH. Mitogen-activated protein kinase pathways in osteoblasts. Annu Rev Cell Dev Biol 2013; 29:63-79. [PMID: 23725048 DOI: 10.1146/annurev-cellbio-101512-122347] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are ancient signal transducers well characterized as mediators of inflammation and neoplastic transformation. Recent work has expanded our understanding of their developmental functions, particularly in the regulation of bone mass via control of osteoblast differentiation. Here, we review the functions of MAPK pathways in osteoblasts, including a consideration of MAPK substrates. In particular, MAPKs function to regulate the key transcriptional mediators of osteoblast differentiation, with ERK and p38 MAPKs phosphorylating RUNX2, the master regulator of osteoblast differentiation. ERK also activates RSK2, which in turn phosphorylates ATF4, a transcriptional regulator of late-stage osteoblast synthetic functions. The MAP3Ks and MAP2Ks upstream of MAPKs have also been investigated, and significant differences have been found in the wiring of MAPK pathways in osteoblasts relative to other tissues. Thus, the investigation of MAPKs in osteoblasts has both revealed critical mechanisms for the maintenance of bone mass and added to our understanding of how the individual components of MAPK pathways function in concert in a complex in vivo system.
Collapse
Affiliation(s)
- Matthew B Greenblatt
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
18
|
Ishitani T, Ishitani S. Nemo-like kinase, a multifaceted cell signaling regulator. Cell Signal 2012; 25:190-7. [PMID: 23000342 DOI: 10.1016/j.cellsig.2012.09.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/03/2012] [Accepted: 09/13/2012] [Indexed: 12/15/2022]
Abstract
Nemo-like kinase (NLK) is an evolutionarily conserved MAP kinase-related kinase. Although NLK was originally identified as a Drosophila gene affecting cell movement during eye development, recent studies show that NLK also contributes to cell proliferation, differentiation, and morphological changes during early embryogenesis and nervous system development in vertebrates. In addition, NLK has been reported to be involved in the development of several human cancers. NLK is able to play a role in multiple processes due to its capacity to regulate a diverse array of signaling pathways, including the Wnt/β-catenin, Activin, IL-6, and Notch signaling pathways. Although the molecular mechanisms that regulate NLK activity remain unclear, our recent research has presented a new model for NLK activation. Here, we summarize the current understanding of the function and regulation of NLK and discuss the aspects of NLK regulation that remain to be resolved.
Collapse
Affiliation(s)
- Tohru Ishitani
- Division of Cell Regulation Systems, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | | |
Collapse
|