1
|
von Elsner L, Hagemann S, Just I, Rohrbeck A. C3 exoenzyme impairs cell proliferation and apoptosis by altering the activity of transcription factors. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1021-31. [PMID: 27351882 PMCID: PMC4977334 DOI: 10.1007/s00210-016-1270-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022]
Abstract
C3 exoenzyme from C. botulinum is an ADP-ribosyltransferase that inactivates selectively RhoA, B, and C by coupling an ADP-ribose moiety. Rho-GTPases are involved in various cellular processes, such as regulation of actin cytoskeleton, cell proliferation, and apoptosis. Previous studies of our group with the murine hippocampal cell line HT22 revealed a C3-mediated inhibition of cell proliferation after 48 h and a prevention of serum-starved cells from apoptosis. For both effects, alterations of various signaling pathways are already known, including also changes on the transcriptional level. Investigations on the transcriptional activity in HT22 cells treated with C3 for 48 h identified five out of 48 transcription factors namely Sp1, ATF2, E2F-1, CBF, and Stat6 with a significantly regulated activity. For validation of identified transcription factors, studies on the protein level of certain target genes were performed. Western blot analyses exhibited an enhanced abundance of Sp1 target genes p21 and COX-2 as well as an increase in phosphorylation of c-Jun. In contrast, the level of p53 and apoptosis-inducing GADD153, a target gene of ATF2, was decreased. Our results reveal that C3 regulates the transcriptional activity of Sp1 and ATF2 resulting downstream in an altered protein abundance of various target genes. As the affected proteins are involved in the regulation of cell proliferation and apoptosis, thus the C3-mediated anti-proliferative and anti-apoptotic effects are consequences of the Rho-dependent alterations of the activity of certain transcriptional factors.
Collapse
Affiliation(s)
- Leonie von Elsner
- Institute of Toxicology, Hannover Medical School, Straße 1, D-30625, Hannover, Germany.
| | - Sandra Hagemann
- Institute of Toxicology, Hannover Medical School, Straße 1, D-30625, Hannover, Germany
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School, Straße 1, D-30625, Hannover, Germany
| | - Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School, Straße 1, D-30625, Hannover, Germany
| |
Collapse
|
2
|
Glidewell-Kenney CA, Trang C, Shao PP, Gutierrez-Reed N, Uzo-Okereke AM, Coss D, Mellon PL. Neurokinin B induces c-fos transcription via protein kinase C and activation of serum response factor and Elk-1 in immortalized GnRH neurons. Endocrinology 2014; 155:3909-19. [PMID: 25057795 PMCID: PMC4164922 DOI: 10.1210/en.2014-1263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in neurokinin B (NKB) and its receptor, NK3R, were identified in human patients with hypogonadotropic hypogonadism, a disorder characterized by lack of puberty and infertility. Further studies have suggested that NKB acts at the level of the hypothalamus to control GnRH neuron activity, either directly or indirectly. We recently reported that treatment with senktide, a NK3R agonist, induced GnRH secretion and expression of c-fos mRNA in GT1-7 cells. Here, we map the responsive region in the murine c-fos promoter to between -400 and -200 bp, identify the signal transducer and activator of transcription (STAT) (-345) and serum response element (-310) sites as required for induction, a modulatory role for the Ets site (-318), and show that induction is protein kinase C dependent. Using gel shift and Gal4 assays, we further show that phosphorylation of Elk-1 leads to binding to DNA in complex with serum response factor at serum response element and Ets sites within the c-fos promoter. Thus, we determine molecular mechanisms involved in NKB regulation of c-fos induction, which may play a role in modulation of GnRH neuron activation.
Collapse
Affiliation(s)
- Christine A Glidewell-Kenney
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | | | | | | | | | | | | |
Collapse
|
3
|
The ATAC Acetyltransferase Complex Coordinates MAP Kinases to Regulate JNK Target Genes. Cell 2010; 142:726-36. [DOI: 10.1016/j.cell.2010.07.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/14/2010] [Accepted: 07/01/2010] [Indexed: 11/17/2022]
|
4
|
Jiang D, Jarrett HW, Haskins WE. Methods for proteomic analysis of transcription factors. J Chromatogr A 2009; 1216:6881-9. [PMID: 19726046 PMCID: PMC2778203 DOI: 10.1016/j.chroma.2009.08.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/12/2009] [Accepted: 08/17/2009] [Indexed: 02/08/2023]
Abstract
Investigation of the transcription factor (TF) proteome presents challenges including the large number of low abundance and post-translationally modified proteins involved. Specialized purification and analysis methods have been developed over the last decades which facilitate the study of the TF proteome and these are reviewed here. Generally applicable proteomics methods that have been successfully applied are also discussed. TFs are selectively purified by affinity techniques using the DNA response element (RE) as the basis for highly specific binding, and several agents have been discovered that either enhance binding or diminish non-specific binding. One such affinity method called "trapping" enables purification of TFs bound to nM concentrations and recovery of TF complexes in a highly purified state. The electrophoretic mobility shift assay (EMSA) is the most important assay of TFs because it provides both measures of the affinity and amount of the TF present. Southwestern (SW) blotting and DNA-protein crosslinking (DPC) allow in vitro estimates of DNA-binding-protein mass, while chromatin immunoprecipitation (ChIP) allows confirmation of promoter binding in vivo. Two-dimensional gel electrophoresis methods (2-DE), and 3-DE methods which combines EMSA with 2-DE, allow further resolution of TFs. The synergy of highly selective purification and analytical strategies has led to an explosion of knowledge about the TF proteome and the proteomes of other DNA- and RNA-binding proteins.
Collapse
Affiliation(s)
- Daifeng Jiang
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249 USA
| | - Harry W. Jarrett
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249 USA
| | - William E. Haskins
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249 USA
- RCMI Proteomics, University of Texas at San Antonio, San Antonio, TX, 78249 USA
- Protein Biomarkers Cores, University of Texas at San Antonio, San Antonio, TX, 78249 USA
- Department of Medicine, Division of Hematology & Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229 USA
| |
Collapse
|
5
|
Jiang D, Zhou Y, Moxley RA, Jarrett HW. Purification and identification of positive regulators binding to a novel element in the c-Jun promoter. Biochemistry 2008; 47:9318-34. [PMID: 18690718 PMCID: PMC2905795 DOI: 10.1021/bi800285q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A putative response element, GAGCCTC, was observed years ago in footprinting analysis of the c-jun promoter, and here we investigate its function in regulating c-jun expression and identify a protein complex that binds there. Electrophoretic mobility shift assays demonstrate a sequence-specific binding complex with this element in HEK293 cells. Additionally, unlabeled consensus AP-1 element DNA, but not a similar NF-jun element DNA, competes with complex formation. Mutations of this element decrease c-jun promoter reporter activity by nearly 5-fold in HEK293 cells. A new, two-step oligonucleotide trapping technique was developed to purify the element binding proteins. LC-nanospray-ESI-MS/MS identification and Western blotting show that the purified complex contains Ku80 and c-jun, which was further confirmed by antibody supershift, by immunoprecipitation with Southwestern blot or with UV cross-linking analysis in vitro as well as chromatin immunoprecipitation in vivo. c-Jun promoter activity and c-jun expression were decreased by Ku80 siRNA introduction. A mutant Ku80 plasmid with normal amino acid sequence but immune to the siRNA recovers c-jun promoter activity from siRNA inhibition. Similarly, Ku70 wild type transfection can also upregulate c-jun promoter activity. Thus, Ku80-c-jun activates c-jun expression by binding to this GAGCCTC element in the c-jun promoter and Ku70 may also serve a role.
Collapse
Affiliation(s)
- Daifeng Jiang
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | | | |
Collapse
|
6
|
Increased CCN2 Transcription in Keloid Fibroblasts Requires Cooperativity Between AP-1 and SMAD Binding Sites. Ann Surg 2007; 246:886-95. [DOI: 10.1097/sla.0b013e318070d54f] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Jiang D, Moxley RA, Jarrett HW. Promoter trapping of c-jun promoter-binding transcription factors. J Chromatogr A 2006; 1133:83-94. [PMID: 16934821 DOI: 10.1016/j.chroma.2006.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/29/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
A new method called promoter trapping was developed to purify promoter-protein complex using the c-jun promoter (-200+81) as a model, which was shown to have significant promoter activity. Polymerase chain reaction (PCR), lambda exonuclease digestion combined with (AC)(5)-Sepharose DNA affinity chromatography were used to produce c-jun promoter with a (GT)(5) tail at each 3' end. The intact promoter and different length pieces with one or two (GT)(5) tails had almost the same capacity to bind with (AC)(5)-Sepharose. In solution, tailed c-jun promoter (60 nM) and competitor poly dI:dC (30 ng/microl) was incubated with crude HEK293 nuclear extract to form a large protein-promoter complex, and the complex was then trapped by (AC)(5)-Sepharose by centrifugation or on a column. Compared with a popular alternative method, called here the immobilized promoter method, the products of promoter trapping were purer. The preinitiation complex purified by promoter trapping had the expected components including RNA polymerase II, TATA-box binding protein (TBP), TFIIF subunit RAP74, and transcription factor SP1, and transcribed RNA in vitro. Thus, the promoter trapping approach provides a useful tool for the purification and investigation of transcription complexes.
Collapse
Affiliation(s)
- Daifeng Jiang
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | |
Collapse
|
8
|
Mathonnet G, Lachance S, Alaoui-Jamali M, Drobetsky EA. Expression of hepatitis B virus X oncoprotein inhibits transcription-coupled nucleotide excision repair in human cells. Mutat Res 2004; 554:305-18. [PMID: 15450428 DOI: 10.1016/j.mrfmmm.2004.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 05/25/2004] [Accepted: 05/26/2004] [Indexed: 12/18/2022]
Abstract
The hepatitis B virus X protein (HBx) is implicated in liver cancer development, and this presumably involves its ability to bind and functionally inactivate the p53 tumour suppressor. For example expression of HBx in cultured cells has been shown to inhibit global nucleotide excision repair, a p53-dependent subpathway of nucleotide excision repair (NER) which eliminates helix-distorting DNA adducts, e.g., UV-induced cyclobutane pyrimidine dimers (CPDs), from the genome overall. However it remains undetermined whether HBx also interferes with transcription-coupled NER (TCNER), another NER subpathway which removes DNA adducts uniquely from the transcribed strand (TS) of active genes. To address this, we employed the model human lymphoblastoid strain TK6 and its isogenic p53-null counterpart NH32, in conjunction with derivatives of these strains constitutively expressing HBx (TK6-HBx and NH32-HBx). Relative to TK6, following exposure to either UVB (290-320 nm) or UVC (254 nm), TK6-HBx, NH32 and NH32-HBx manifested significantly reduced apoptotic capacity to varying degrees, although no striking differences in clonogenic survival between the four strains were observed. As previously documented in our laboratory [Proc. Natl. Acad. Sci. 100 (2003) 7219-7224], ligation-mediated PCR analysis revealed NH32 to be deficient compared with TK6 in CPD removal along the TS strand of the chromosomal c-jun locus following UVB exposure, but to be proficient in this respect following UVC exposure, i.e., the requirement for p53 in TCNER exhibits wavelength dependence in human cells. Remarkably however, in contrast to the situation for NH32, TK6-HBx and NH32-HBx manifested defective repair along the TS of c-jun after irradiation with either UVB or UVC. The data demonstrate that HBx expression can reduce the efficiency of TCNER in addition to GNER in human cells via p53-independent as well as p53-dependent pathways.
Collapse
Affiliation(s)
- Géraldine Mathonnet
- Faculty of Medicine, University of Montreal, Maisonneuve-Rosemont Hospital, Quebec, Canada HIT 2M4
| | | | | | | |
Collapse
|
9
|
Papeleu P, Loyer P, Vanhaecke T, Elaut G, Geerts A, Guguen-Guillouzo C, Rogiers V. Trichostatin A induces differential cell cycle arrests but does not induce apoptosis in primary cultures of mitogen-stimulated rat hepatocytes. J Hepatol 2003; 39:374-82. [PMID: 12927923 DOI: 10.1016/s0168-8278(03)00288-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS The effects of Trichostatin A (TSA), a drug candidate for cancer therapy, on proliferation and survival of primary hepatocytes, the major site of xenobiotic biotransformation and primary target of drug-induced toxicity, were investigated. METHODS DNA replication was measured using [methyl-3H]-thymidine incorporation. Cell cycle markers were analyzed by Western and Northern blottings. Necrosis and apoptosis were monitored by LDH release, caspase-3-activation, respectively. RESULTS We identified two distinct cell cycle arrests, prior DNA replication, in two experimental conditions. First, perfusion of the liver in presence of TSA, prevented c-jun and cyclin D1 induction, characteristic for G1 entry and progression through late G1, respectively. Secondly, TSA treatment of isolated hepatocytes, located in early G1, led to an early S-phase arrest evidenced by the absence of the S/G2/M marker, CDK1. TSA upregulated the expression of the anti-apoptotic protein Bcl(xL) and did not increase caspase-3-activity and LDH release. CONCLUSIONS TSA inhibits hepatocyte proliferation at different steps of the cell cycle. Our data suggest that this inhibition may involve downregulation of distinct subsets of genes. TSA does not induce apoptosis in primary hepatocytes, in contrast to what has been observed in hepatoma cells. This finding supports its use in the treatment of proliferative disorders.
Collapse
Affiliation(s)
- Peggy Papeleu
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
10
|
Reddy SPM, Mossman BT. Role and regulation of activator protein-1 in toxicant-induced responses of the lung. Am J Physiol Lung Cell Mol Physiol 2002; 283:L1161-78. [PMID: 12424143 DOI: 10.1152/ajplung.00140.2002] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aberrant cell proliferation and differentiation after toxic injury to airway epithelium can lead to the development of various lung diseases including cancer. The activator protein-1 (AP-1) transcription factor, composed of mainly Jun-Jun and Jun-Fos protein dimers, acts as an environmental biosensor to various external toxic stimuli and regulates gene expression involved in various biological processes. Gene disruption studies indicate that the AP-1 family members c-jun, junB, and fra1 are essential for embryonic development, whereas junD, c-fos, and fosB are required for normal postnatal growth. However, broad or target-specific transgenic overexpression of the some of these proteins gives very distinct phenotype(s), including tumor formation. This implies that, although they are required for normal cellular processes, their abnormal activation after toxic injury can lead to the pathogenesis of the lung disease. Consistent with this view, various environmental toxicants and carcinogens differentially regulate Jun and Fos expression in cells of the lung both in vivo and in vitro. Moreover, Jun and Fos proteins distinctly bind to the promoter regions of a wide variety of genes to differentially regulate their expression in epithelial injury, repair, and differentiation. Importantly, lung tumors induced by various carcinogens display a sustained expression of certain AP-1 family members. Therefore a better understanding of the mechanisms of regulation and functional role(s), as well as identification of target genes of members of the AP-1 family in airway epithelial cells, will provide additional insight into toxicant-induced lung diseases. These studies might offer a unique opportunity to use AP-1 family members and transactivation as potential diagnostic markers or drug targets for early detection and/or prevention of various lung diseases.
Collapse
Affiliation(s)
- Sekhar P M Reddy
- Department of Environmental Health Sciences and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
11
|
Kukushkin AN, Abramova MV, Svetlikova SB, Darieva ZA, Pospelova TV, Pospelov VA. Downregulation of c-fos gene transcription in cells transformed by E1A and cHa-ras oncogenes: a role of sustained activation of MAP/ERK kinase cascade and of inactive chromatin structure at c-fos promoter. Oncogene 2002; 21:719-30. [PMID: 11850800 DOI: 10.1038/sj.onc.1205118] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2001] [Revised: 10/30/2001] [Accepted: 10/30/2001] [Indexed: 12/20/2022]
Abstract
REF cells transformed by oncogenes E1A and cHa-ras reveal high and constitutive DNA-binding activity of AP-1 factor lacking in c-Fos protein. Consistently, the transcription of c-fos gene has been found to be downregulated. To elucidate the mechanisms of c-fos downregulation in E1A+cHa-ras transformants, we studied the levels of activity of ERK, JNK/SAPK and p38 kinases and phosphorylation state of Elk-1 transcription factor involved in regulation of c-fos gene. Using two approaches, Western blot analysis with phospho-specific antibodies to MAP kinases and in vitro kinase assay with specific substrates, we show here that ectopic expression of E1A and ras oncogenes leads to a sustained activation of ERK and p38 kinases, whereas JNK/SAPK kinase activity is similar to that in non-transformed REF52 cells. Due to sustained activity of the MAP kinase cascades, Elk-1 transcription factor is being phosphorylated even in serum-starved E1A+cHa-ras cells; moreover, serum does not additionally increase phosphorylation of Elk-1, which is predominant TCF protein bound to SRE region of c-fos gene promoter in these cells. Although the amount of ternary complexes SRE/SRF/TCF estimated by EMSA was similar both in serum-starved and serum-stimulated transformed cells, serum addition still caused a modest activation of c-fos gene transcription at the level of 20% to normal REF cells. In attempt to determine how serum caused the stimulatory effect, we found that PD98059, an inhibitor of MEK/ERK kinase cascade, completely suppressed serum-induced c-fos transcription both in REF and E1A+cHa-ras cells, implicating the ERK as primary kinase for c-fos transcription in these cells. In contrast, SB203580, an inhibitor of p38 kinase, augmented noticeably serum-stimulated transcription of c-fos gene in REF cells, implying the involvement of p38 kinase in negative regulation of c-fos. Furthermore, sodium butyrate, an inhibitor of histone deacetylase activity, was capable of activating c-fos transcription both in serum-stimulated and even in serum-starved E1A+cHa-ras cells. Conversely, serum-starved REF cells fail to respond to sodium butyrate treatment by c-fos activation confirming necessity of prior Elk-1 phosphorylation. Taken together, these data suggest that downregulation of c-fos in E1A+cHa-ras cells seems to occur due to a maintenance of a refractory state that arises in normal REF cells after serum-stimulation. The refractory state of c-fos in E1A+cHa-ras cells is likely a consequence of Ras-induced sustained activation of MAPK (ERK) cascade and persistent phosphorylation of TCF (Elk-1) bound to SRE. Combination of these events eventually does contribute to formation of an inactive chromatin structure at c-fos promoter mediated through recruitment of histone deacetylase activity.
Collapse
|
12
|
Hazzalin CA, Mahadevan LC. MAPK-regulated transcription: a continuously variable gene switch? Nat Rev Mol Cell Biol 2002; 3:30-40. [PMID: 11823796 DOI: 10.1038/nrm715] [Citation(s) in RCA: 322] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Switching mechanisms that control genes could be viewed either as stable binary switches, in which genes exist in 'on' or 'off' states; or as quantitative rheostat-like switches, in which the rate of transcription is continuously variable and coupled directly to the strength of intracellular signalling events. Here, we discuss the biological need for quantitative gene regulation and, using mitogen-activated protein kinase (MAPK)-controlled transcription as a model, assess the evidence for its existence and postulate mechanisms by which it might occur.
Collapse
Affiliation(s)
- Catherine A Hazzalin
- Nuclear Signalling Laboratory, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
13
|
Komura J, Ikehata H, Hosoi Y, Riggs AD, Ono T. Mapping psoralen cross-links at the nucleotide level in mammalian cells: suppression of cross-linking at transcription factor- or nucleosome-binding sites. Biochemistry 2001; 40:4096-105. [PMID: 11300790 DOI: 10.1021/bi002539f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a new genomic sequencing method for detecting, with resolution at the nucleotide level, the interstrand DNA cross-links induced by 4,5',8-trimethylpsoralen along single-copy genes in mammalian cells. The cross-links (diadducts) initially formed are converted into monoadducts by alkali reversal prior to the use of terminal transferase-dependent PCR (TD-PCR). After alkali reversal, but not before, the DNA strands can be separated and used as templates for gene-specific primer extension, which is the first step in the TD-PCR procedure. The converted psoralen adducts block primer extension, and the prematurely terminated single-stranded products are then amplified by TD-PCR and visualized on a sequencing gel. Adducts formed by angelicin, a psoralen derivative that forms only monoadducts, were also investigated by use of TD-PCR. Comparison of the adduct distribution patterns of in vivo-treated DNA with those of in vitro-treated DNA revealed that the binding of transcription factors inhibited both psoralen cross-linking and angelicin monoadduct formation in the c-JUN and c-FOS promoters in living human cells. Adduct formation was also inhibited in the region of a putative positioned nucleosome in the c-FOS promoter. These methods should be of general use for study of in vivo protein-DNA interactions and DNA repair.
Collapse
Affiliation(s)
- J Komura
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.
| | | | | | | | | |
Collapse
|
14
|
Zanger K, Radovick S, Wondisford FE. CREB binding protein recruitment to the transcription complex requires growth factor-dependent phosphorylation of its GF box. Mol Cell 2001; 7:551-8. [PMID: 11463380 DOI: 10.1016/s1097-2765(01)00202-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Growth factors such as epidermal growth factor (EGF) and insulin regulate development and metabolism via genes containing both POU homeodomain (Pit-1) and phorbol ester (AP-1) response elements. Although CREB binding protein (CBP) functions as a coactivator on these elements, the mechanism of transactivation was previously unclear. We now demonstrate that CBP is recruited to these elements only after it is phosphorylated at serine 436 by growth factor-dependent signaling pathways. In contrast, p300, a protein closely related to CBP that lacks this phosphorylation site, binds only weakly to the transcription complex and in a growth factor-independent manner. A small region of CBP (amino acids 312-440), which we term GF box, contains a potent transactivation domain and mediates this effect. Direct phosphorylation represents a novel mechanism controlling coactivator recruitment to the transcription complex.
Collapse
Affiliation(s)
- K Zanger
- Division of Pediatric Endocrinology, The University of Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
15
|
Marinissen MJ, Chiariello M, Gutkind JS. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway. Genes Dev 2001; 15:535-53. [PMID: 11238375 PMCID: PMC312639 DOI: 10.1101/gad.855801] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Small GTP-binding proteins of the Rho-family, Rho, Rac, and Cdc42, have been traditionally linked to the regulation of the cellular actin-based cytoskeleton. Rac and Cdc42 can also control the activity of JNK, thus acting in a molecular pathway transmitting extracellular signals to the nucleus. Interestingly, Rho can also regulate gene expression, albeit by a not fully understood mechanism. Here, we found that activated RhoA can stimulate c-jun expression and the activity of the c-jun promoter. As the complexity of the signaling pathways controlling the expression of c-jun has begun to be unraveled, this finding provided a unique opportunity to elucidate the biochemical routes whereby RhoA regulates nuclear events. We found that RhoA can initiate a linear kinase cascade leading to the activation of ERK6 (p38 gamma), a recently identified member of the p38 family of MAPKs. Furthermore, we present evidence that RhoA, PKN, MKK3/MKK6, and ERK6 (p38 gamma) are components of a novel signal transduction pathway involved in the regulation of gene expression and cellular transformation.
Collapse
Affiliation(s)
- M J Marinissen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
16
|
Cloutier JF, Drouin R, Castonguay A. Treatment of human cells with N-Nitroso(acetoxymethyl)methylamine: distribution patterns of piperidine-sensitive DNA damage at the nucleotide level of resolution are related to the sequence context. Chem Res Toxicol 1999; 12:840-9. [PMID: 10490506 DOI: 10.1021/tx990025f] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) present in tobacco smoke is a major carcinogen involved in tobacco-induced lung cancer. Its complex bioactivation along two pathways, which leads to methylation and pyridyloxobutylation of DNA, makes the study of NNK-induced DNA damage difficult. We selected two nitroso compounds, N-methyl-N-nitrosourea (MNU) and N-nitroso(acetoxymethyl)methylamine (NDMAOAc), with which to map NNK-induced DNA methylation frequency at every nucleotide position. We address the issue of how sequence context and complex chromatin structures, present in living cells, regulate the formation of modified purines through methylation generated by MNU and NDMAOAc. For comparison purposes, purified DNA was treated with dimethyl sulfate (DMS). We used ligation-mediated polymerase chain reaction to map and conduct a high-resolution footprinting analysis of the DNA damage along the p53 gene (exons 5-8), the ras gene family (exons 1 and 2 of H-, K-, and N-ras genes), and the c-jun promoter in living cells. The distribution of piperidine-sensitive DNA damage induced in cellular DNA and purified DNA by MNU or NDMAOAc was identical. MNU and NDMAOAc methylate more frequently the central guanines in a run of guanines, suggesting a regioselective mechanism for DNA methylation. In contrast, DMS methylates more frequently guanines at the 5'-end of a guanine run; this frequency decreased from the 5'- to the 3'-end. While the presence of adenines in a guanine run does not affect the distribution pattern, the presence of pyrimidines does change said pattern. Our data lead us to suggest that NNK would also methylate DNA sequences in a way similar to that of MNU or NDMAOAc. Footprinted areas of DNA methylated with MNU or NDMAOAc correspond to a consensus sequence for transcription factors AP-1, NF-Jun, CCAAT box, SP-1, and RSRF, as observed in c-jun promoters. Our results are in line with the fact that NNK metabolites, generated through the alpha-hydroxylation pathways, could potentially be mutagenic, since these activated metabolites can methylate guanines. In p53 and ras genes, the frequency of methylation of guanines parallels the frequency of mutations of those same guanines in lung cancer.
Collapse
Affiliation(s)
- J F Cloutier
- Laboratory of Cancer Etiology and Chemoprevention, Faculty of Pharmacy, Laval University, Quebec City, Québec G1K 7P4, Canada
| | | | | |
Collapse
|
17
|
Marinissen MJ, Chiariello M, Pallante M, Gutkind JS. A network of mitogen-activated protein kinases links G protein-coupled receptors to the c-jun promoter: a role for c-Jun NH2-terminal kinase, p38s, and extracellular signal-regulated kinase 5. Mol Cell Biol 1999; 19:4289-301. [PMID: 10330170 PMCID: PMC104389 DOI: 10.1128/mcb.19.6.4289] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The expression of the c-jun proto-oncogene is rapidly induced in response to mitogens acting on a large variety of cell surface receptors. The resulting functional activity of c-Jun proteins appears to be critical for cell proliferation. Recently, we have shown that a large family of G protein-coupled receptors (GPCRs), represented by the m1 muscarinic receptor, can initiate intracellular signaling cascades that result in the activation of mitogen-activated protein kinases (MAPK) and c-Jun NH2-terminal kinases (JNK) and that the activation of JNK but not of MAPK correlated with a remarkable increase in the expression of c-jun mRNA. Subsequently, however, we obtained evidence that GPCRs can potently stimulate the activity of the c-jun promoter through MEF2 transcription factors, which do not act downstream from JNK. In view of these observations, we set out to investigate further the nature of the signaling pathway linking GPCRs to the c-jun promoter. Utilizing NIH 3T3 cells, we found that GPCRs can activate the c-jun promoter in a JNK-independent manner. Additionally, we demonstrated that these GPCRs can elevate the activity of novel members of the MAPK family, including ERK5, p38alpha, p38gamma, and p38delta, and that the activation of certain kinases acting downstream from MEK5 (ERK5) and MKK6 (p38alpha and p38gamma) is necessary to fully activate the c-jun promoter. Moreover, in addition to JNK, ERK5, p38alpha, and p38gamma were found to stimulate the c-jun promoter by acting on distinct responsive elements. Taken together, these results suggest that the pathway linking GPCRs to the c-jun promoter involves the integration of numerous signals transduced by a highly complex network of MAPK, rather than resulting from the stimulation of a single linear protein kinase cascade. Furthermore, our findings suggest that each signaling pathway affects one or more regulatory elements on the c-jun promoter and that the transcriptional response most likely results from the temporal integration of each of these biochemical routes.
Collapse
Affiliation(s)
- M J Marinissen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4330, USA
| | | | | | | |
Collapse
|
18
|
Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 1999; 14:167-96. [PMID: 9891782 DOI: 10.1146/annurev.cellbio.14.1.167] [Citation(s) in RCA: 804] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metazoans contain multiple types of muscle cells that share several common properties, including contractility, excitability, and expression of overlapping sets of muscle structural genes that mediate these functions. Recent biochemical and genetic studies have demonstrated that members of the myocyte enhancer factor-2 (MEF2) family of MADS (MCM1, agamous, deficiens, serum response factor)-box transcription factors play multiple roles in muscle cells to control myogenesis and morphogenesis. Like other MADS-box proteins, MEF2 proteins act combinatorially through protein-protein interactions with other transcription factors to control specific sets of target genes. Genetic studies in Drosophila have also begun to reveal the upstream elements of myogenic regulatory hierarchies that control MEF2 expression during development of skeletal, cardiac, and visceral muscle lineages. Paradoxically, MEF2 factors also regulate cell proliferation by functioning as endpoints for a variety of growth factor-regulated intracellular signaling pathways that are antagonistic to muscle differentiation. We discuss the diverse functions of this family of transcription factors, the ways in which they are regulated, and their mechanisms of action.
Collapse
Affiliation(s)
- B L Black
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas 75235-9148, USA.
| | | |
Collapse
|
19
|
Clarke N, Arenzana N, Hai T, Minden A, Prywes R. Epidermal growth factor induction of the c-jun promoter by a Rac pathway. Mol Cell Biol 1998; 18:1065-73. [PMID: 9448004 PMCID: PMC108819 DOI: 10.1128/mcb.18.2.1065] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The c-jun proto-oncogene encodes a transcription factor which is activated by mitogens both transcriptionally and by phosphorylation by Jun N-terminal kinase (JNK). We have investigated the cellular signalling pathways involved in epidermal growth factor (EGF) induction of the c-jun promoter. We find that two sequence elements, which bind ATF1 and MEF2D transcription factors, are required in HeLa cells, although they are not sufficient for maximal induction. Activated forms of Ras, RacI, Cdc42Hs, and MEKK increased expression of the c-jun promoter, while dominant negative forms of Ras, RacI, and MEK kinase (MEKK) inhibited EGF induction. These and previously published results suggest that EGF activates the c-jun promoter by a Ras-to-Rac-to-MEKK pathway. This pathway is similar to that used for posttranslational activation of c-jun by JNK.
Collapse
Affiliation(s)
- N Clarke
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
20
|
Tu Y, Bates S, Pfeifer GP. Sequence-specific and domain-specific DNA repair in xeroderma pigmentosum and Cockayne syndrome cells. J Biol Chem 1997; 272:20747-55. [PMID: 9252397 DOI: 10.1074/jbc.272.33.20747] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) cells have specific DNA repair defects. We had previously analyzed repair rates of cyclobutane pyrimidine dimers at nucleotide resolution along the human JUN gene in normal fibroblasts and found very efficient repair of sequences near the transcription initiation site but slow repair along the promoter. To investigate sequence-specific repair rate patterns in XP and CS cells, we conducted a similar analysis in XPA, XPB, XPC, XPD, and CSB fibroblasts. XPA cells were almost completely repair-deficient at all sequences analyzed. XPC cells repaired only the transcribed DNA strand beginning at position -20 relative to the transcription start site. Both XBP and XPD cells were deficient in repair of nontranscribed DNA and also very inefficiently repaired the transcribed strand including sequences near the transcription start site. CSB cells exhibited rapid repair near the transcription initiation site but were deficient in repair of sequences encountered by RNA polymerase during elongation (beginning at position +20). Since transcription of the JUN gene was UV-induced in all fibroblast strains, including CSB, the defective repair of the transcribed strand in CSB cannot be explained by a lack of transcription; rather, it appears to be a true DNA repair defect.
Collapse
Affiliation(s)
- Y Tu
- Beckman Research Institute of the City of Hope, Department of Biology, Duarte, California 91010, USA
| | | | | |
Collapse
|