1
|
Wu M, Wan Q, Dan X, Wang Y, Chen P, Chen C, Li Y, Yao X, He ML. Targeting Ser78 phosphorylation of Hsp27 achieves potent antiviral effects against enterovirus A71 infection. Emerg Microbes Infect 2024; 13:2368221. [PMID: 38932432 PMCID: PMC11212574 DOI: 10.1080/22221751.2024.2368221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
A positive-sense (+) single-stranded RNA (ssRNA) virus (e.g. enterovirus A71, EV-A71) depends on viral polypeptide translation for initiation of virus replication after entry. We reported that EV-A71 hijacks Hsp27 to induce hnRNP A1 cytosol redistribution to initiate viral protein translation, but the underlying mechanism is still elusive. Here, we show that phosphorylation-deficient Hsp27-3A (Hsp27S15/78/82A) and Hsp27S78A fail to translocate into the nucleus and induce hnRNP A1 cytosol redistribution, while Hsp27S15A and Hsp27S82A display similar effects to the wild type Hsp27. Furthermore, we demonstrate that the viral 2A protease (2Apro) activity is a key factor in regulating Hsp27/hnRNP A1 relocalization. Hsp27S78A dramatically decreases the IRES activity and viral replication, which are partially reduced by Hsp27S82A. However, Hsp27S15A displays the same activity as the wild-type Hsp27. Peptide S78 potently suppresses EV-A71 protein translation and reproduction through blockage of EV-A71-induced Hsp27 phosphorylation and Hsp27/hnRNP A1 relocalization. A point mutation (S78A) on S78 impairs its inhibitory functions on Hsp27/hnRNP A1 relocalization and viral replication. Taken together, we demonstrate the importance of Ser78 phosphorylation of Hsp27 regulated by virus infection in nuclear translocation, hnRNP A1 cytosol relocation, and viral replication, suggesting a new path (such as peptide S78) for target-based antiviral strategy.
Collapse
Affiliation(s)
- Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xuelian Dan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yiran Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Cien Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- CityU Shenzhen Research Institute, Shenzhen, People’s Republic of China
| |
Collapse
|
2
|
Zhang Z, Guo J, Zhu J. HSPB1 alleviates acute-on-chronic liver failure via the P53/Bax pathway. Open Life Sci 2024; 19:20220919. [PMID: 39071496 PMCID: PMC11282914 DOI: 10.1515/biol-2022-0919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
The mortality rate of acute-on-chronic liver failure (ACLF) remains significantly elevated; hence, this study aimed to investigate the impact of heat shock protein family B (small) member 1 (HSPB1) on ACLF in vivo and in vitro and the underlying mechanism. This study used the ACLF mouse model, and liver damage extent was studied employing Masson trichrome, hematoxylin and eosin (H&E), Sirius red staining, and serum biochemical indices. Similarly, hepatocyte injury in lipopolysaccharide (LPS)-induced L02 cells was evaluated using cell counting kit-8 assay, enzymatic activity, flow cytometry, and TUNEL assay, while the underlying mechanism was investigated using western blot. Results showed that the morphology of liver tissue in ACLF mice was changed and was characterized by cirrhosis, fibrosis, collagen fiber deposition, inflammatory cell infiltration, and elevated liver injury indices. Moreover, HSPB1 was upregulated in both ACLF patients and mice, where overexpressing HSPB1 was found to inhibit ACLF-induced liver damage. Similarly, the HSPB1 expression in LPS-treated L02 cell lines was also increased, where overexpressing HSPB1 was found to promote cell viability, inhibit liver injury-related enzyme activity, and suppress apoptosis. Mechanistic investigations revealed that HSPB1 was responsible for inhibiting p-P53 and Bax protein levels, where activated P53 counteracted HSPB1's effects on cellular behaviors. In conclusion, HSPB1 attenuated ACLF-induced liver injury in vivo and inhibited LPS-induced hepatocyte damage in vitro, suggesting that HSPB1 may be a novel target for ACLF therapy.
Collapse
Affiliation(s)
- Zhixiang Zhang
- Department of Infectious Diseases, Shenzhen Guangming District People’s Hospital, Shenzhen, Guangdong, 518106, China
| | - Jinwei Guo
- Department of Infectious Diseases, Shenzhen Guangming District People’s Hospital, Shenzhen, Guangdong, 518106, China
| | - Jincan Zhu
- Department of Infectious Diseases, Shenzhen Guangming District People’s Hospital, Shenzhen, Guangdong, 518106, China
| |
Collapse
|
3
|
Yousefli Z, Meshkat Z, Ghayour-Mobarhan M, Hosseini SM, Tavallaie S, Kazemianfar E, Soltanian H, Aminzadeh A, Ghasemi A, Kashmari M, Nasiraee M, Meshkat M, Jarrahi L, Gholoobi A. Association Between Serum Levels of Anti-heat Shock Protein 27 Antibody and Liver Cell Injury in Chronic Hepatitis B. Indian J Clin Biochem 2024; 39:365-372. [PMID: 39005869 PMCID: PMC11239617 DOI: 10.1007/s12291-023-01114-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Heat Shock Protein 27 (HSP27), an anti-HBV factor, exists in the intracellular and extracellular spaces. As an inflammatory modulator, serum HSP27 (sHSP27) is associated with elevated pro-inflammatory cytokines and a higher likelihood of hepatocellular carcinoma in chronic hepatitis. SHSP27 results in natural antibody production (anti-HSP27-Ab) that is more stable and easily detectable compared to sHSP27. We aimed to investigate any potential association between anti-HSP27-Ab level and chronic hepatitis B (CHB) progression and inflammation indicated by liver cell injury and HBV replication. This cross-sectional study was conducted on 91 patients with CHB and 92 individuals without CHB. Following demographic data collection, anti-HSP27-Ab, serum lipids including total cholesterol, triglyceride, LDL-C, HDL-C, and aminotransferase levels were measured using enzymatic assays in participants' serum samples. HBV DNA was also measured by quantitative PCR in CHB patients. Bivariate and multivariate analyses showed a significantly higher mean level of anti-HSP27-Ab in CHB than in healthy individuals (0.304 vs. 0.256AU/ml, P value = 0.015). These levels held significant differences in the CHB subgroups of male patients, at the age of 50 years and above, with non-smoking status, elevated aminotransferase levels, and hypotriglyceridemia (P value < 0.05). However, no difference was found between the antibody levels and HBV DNA copies (P value > 0.05). This study provides evidence that anti-HSP27 antibody levels can reflect the degree of liver necrosis indicated by aminotransferase levels. Regarding the higher incidence rate of HBV-associated complications in 50 to 60-year-old men, monitoring the antibody can be beneficial in managing this group of CHB patients, which deserves further investigation.
Collapse
Affiliation(s)
- Zahra Yousefli
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mousalreza Hosseini
- Department of Gastroenterology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Tavallaie
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Kazemianfar
- Student Research Committee, Faculty of Paramedical Science, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Soltanian
- Student Research Committee, Faculty of Paramedical Science, Mashhad University of Medical Sciences, Mashhad, Iran
- Blood Borne Infections Research Center, Academic Center for Education, Culture & Research (ACECR), Razavi Khorasan Branch, Mashhad, Iran
| | - Afarin Aminzadeh
- Student Research Committee, Faculty of Paramedical Science, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Ghasemi
- Student Research Committee, Faculty of Paramedical Science, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Kashmari
- Student Research Committee, Faculty of Paramedical Science, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nasiraee
- Student Research Committee, Faculty of Paramedical Science, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Meshkat
- Department of Community Medicine, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Lida Jarrahi
- Department of Community Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aida Gholoobi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Dai WY, Yao GQ, Deng XC, Zang GC, Liu J, Zhang GY, Chen YM, Lv MQ, Chen TT. Heat shock protein: A double-edged sword linking innate immunity and hepatitis B virus infection. J Virus Erad 2023; 9:100322. [PMID: 37128472 PMCID: PMC10148040 DOI: 10.1016/j.jve.2023.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Heat shock proteins (HSPs), which have a variety of functions, are one of the stress protein families. In recent years, They have been reported to play a dual role in hepatitis B virus (HBV) which as persistent infection which is associated with, cirrhosis and liver cancer. In this article, we have summarized the regulatory mechanisms between HSPs and viruses, especially HBV and associated diseases based on HSP biological functions of in response to viral infections. In view of their potential as broad-spectrum antiviral targets, we have also discuss current progress and challenges in drug development based on HSPs, as well as the potential applications of agents that have been evaluated clinically in HBV treatment.
Collapse
|
5
|
HSP27 Interacts with Nonstructural Proteins of Porcine Reproductive and Respiratory Syndrome Virus and Promotes Viral Replication. Pathogens 2023; 12:pathogens12010091. [PMID: 36678439 PMCID: PMC9860683 DOI: 10.3390/pathogens12010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a multifunctional protein and belongs to the small HSP family. It has been shown that HSP27 is involved in viral replication as a cellular chaperone, but the function of HSP27 during porcine reproductive and respiratory syndrome virus (PRRSV) infections remains unexplored. Here, we found that PRRSV replication can induce HSP27 expression and phosphorylation in vitro. HSP27 overexpression promoted PRRSV replication, whereas its knockdown reduced PRRSV proliferation. Additionally, suppressing HSP27 phosphorylation reduced PRRSV replication and the level of viral double-stranded RNA (dsRNA), a marker of the viral replication and transcription complexes (RTCs). Furthermore, HSP27 can interact with multiple viral nonstructural proteins (nsps), including nsp1α, nsp1β, nsp5, nsp9, nsp11 and nsp12. Suppressing the phosphorylation of HSP27 almost completely disrupted its interaction with nsp1β and nsp12. Altogether, our study revealed that HSP27 plays an important role in PRRSV replication.
Collapse
|
6
|
Li X, Ma R, Wu B, Niu Y, Li H, Li D, Xie J, Idris A, Feng R. HSP27 Protein Dampens Encephalomyocarditis Virus Replication by Stabilizing Melanoma Differentiation-Associated Gene 5. Front Microbiol 2021; 12:788870. [PMID: 34899669 PMCID: PMC8664592 DOI: 10.3389/fmicb.2021.788870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/05/2021] [Indexed: 12/28/2022] Open
Abstract
Heat shock proteins (HSPs) are a protein family that respond to physiological stress, such as heat, starvation, and infection. As cellular protein chaperones, they play an important role in protein folding, assembly, and degradation. Though it is well known that HSP27 is involved in a range of viral infections, its role during an encephalomyocarditis virus (EMCV) infection is not known. Here, we report that EMCV degrades HSP27 and that EMCV proteins 2Cpro and 3Apro are primarily responsible for its degradation. Consequently, loss of cellular HSP27 augmented EMCV proliferation, an effect that could be reversed upon HSP27 overexpression. Importantly, we found that HSP27 positively regulated EMCV-triggered type I interferon (IFN) production. Moreover, overexpression of 2Cpro and 3Apro significantly blocked type I IFN production. We also found for the first time that HSP27, as a molecular chaperone, can specifically interact with MDA5 and stabilize the expression of MDA5. Collectively, this study shows that HSP27 dampens EMCV infectivity by positively regulating EMCV-triggered retinoic acid-inducible gene (RIG)-I-like receptor (RLR)/melanoma differentiation-associated gene 5 (MDA5) signal pathway, while EMCV proteins 2Cpro and 3Apro interact with HSP27 and degrade HSP27 protein expression to allow EMCV proliferation. Our findings provide further mechanistic evidence for EMCV partaking in immune escape mechanisms, and that 2Cpro and 3Apro could serve as potential antiviral targets.
Collapse
Affiliation(s)
- Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Ruixian Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Bei Wu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yuhui Niu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Hongshan Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- School of Pharmacy and Medical Science, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
7
|
Iyer K, Chand K, Mitra A, Trivedi J, Mitra D. Diversity in heat shock protein families: functional implications in virus infection with a comprehensive insight of their role in the HIV-1 life cycle. Cell Stress Chaperones 2021; 26:743-768. [PMID: 34318439 PMCID: PMC8315497 DOI: 10.1007/s12192-021-01223-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are a group of cellular proteins that are induced during stress conditions such as heat stress, cold shock, UV irradiation and even pathogenic insult. They are classified into families based on molecular size like HSP27, 40, 70 and 90 etc, and many of them act as cellular chaperones that regulate protein folding and determine the fate of mis-folded or unfolded proteins. Studies have also shown multiple other functions of these proteins such as in cell signalling, transcription and immune response. Deregulation of these proteins leads to devastating consequences, such as cancer, Alzheimer's disease and other life threatening diseases suggesting their potential importance in life processes. HSPs exist in multiple isoforms, and their biochemical and functional characterization still remains a subject of active investigation. In case of viral infections, several HSP isoforms have been documented to play important roles with few showing pro-viral activity whereas others seem to have an anti-viral role. Earlier studies have demonstrated that HSP40 plays a pro-viral role whereas HSP70 inhibits HIV-1 replication; however, clear isoform-specific functional roles remain to be established. A detailed functional characterization of all the HSP isoforms will uncover their role in cellular homeostasis and also may highlight some of them as potential targets for therapeutic strategies against various viral infections. In this review, we have tried to comprehend the details about cellular HSPs and their isoforms, their role in cellular physiology and their isoform-specific functions in case of virus infection with a specific focus on HIV-1 biology.
Collapse
Affiliation(s)
- Kruthika Iyer
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Kailash Chand
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Alapani Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Jay Trivedi
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Debashis Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
8
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
9
|
Hsp27 Responds to and Facilitates Enterovirus A71 Replication by Enhancing Viral Internal Ribosome Entry Site-Mediated Translation. J Virol 2019; 93:JVI.02322-18. [PMID: 30814282 PMCID: PMC6475798 DOI: 10.1128/jvi.02322-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Outbreaks of infections with EV-A71, which causes hand, foot, and mouth disease, severe neurological disorders, and even death, have been repeatedly reported worldwide in recent decades and are a great public health problem for which no approved treatments are available. We show that Hsp27, a heat shock protein, supports EV-A71 infection in two distinct ways to promote viral IRES-dependent translation. A small-molecule Hsp27 inhibitor isolated from a traditional Chinese medicinal herb effectively reduces virus yields. Together, our findings demonstrate that Hsp27 plays an important role in EV-A71 infection and may serve as an antiviral target. Enterovirus 71 (EV-A71) is a human pathogen that causes hand, foot, and mouth disease (HFMD) and fatal neurological diseases, and no effective treatment is available. Characterization of key host factors is important for understanding its pathogenesis and developing antiviral drugs. Here we report that Hsp27 is one of the most upregulated proteins in response to EV-A71 infection, as revealed by two-dimensional gel electrophoresis-based proteomics studies. Depletion of Hsp27 by small interfering RNA or CRISPR/Cas9-mediated knockout significantly inhibited viral replication, protein expression, and reproduction, while restoration of Hsp27 restored such virus activities. Furthermore, we show that Hsp27 plays a crucial role in regulating viral internal ribosome entry site (IRES) activities by two different mechanisms. Hsp27 markedly promoted 2Apro-mediated eukaryotic initiation factor 4G cleavage, an important process for selecting and initiating IRES-mediated translation. hnRNP A1 is a key IRES trans-acting factor (ITAF) for enhancing IRES-mediated translation. Surprisingly, knockout of Hsp27 differentially blocked hnRNP A1 but not FBP1 translocation from the nucleus to the cytoplasm and therefore abolished the hnRNP A1 interaction with IRES. Most importantly, the Hsp27 inhibitor 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone (TDP), a compound isolated from a traditional Chinese herb, significantly protected against cytopathic effects and inhibited EV-A71 infection. Collectively, our results demonstrate new functions of Hsp27 in facilitating virus infection and provide novel options for combating EV-A71 infection by targeting Hsp27. IMPORTANCE Outbreaks of infections with EV-A71, which causes hand, foot, and mouth disease, severe neurological disorders, and even death, have been repeatedly reported worldwide in recent decades and are a great public health problem for which no approved treatments are available. We show that Hsp27, a heat shock protein, supports EV-A71 infection in two distinct ways to promote viral IRES-dependent translation. A small-molecule Hsp27 inhibitor isolated from a traditional Chinese medicinal herb effectively reduces virus yields. Together, our findings demonstrate that Hsp27 plays an important role in EV-A71 infection and may serve as an antiviral target.
Collapse
|
10
|
Tang X, Yan L, Li H, Du L, Shi Y, Huang F, Tang H. Increased expression of phosphoenolpyruvate carboxykinase cytoplasmic isoform by hepatitis B virus X protein affects hepatitis B virus replication. J Med Virol 2018; 91:258-264. [PMID: 30168585 DOI: 10.1002/jmv.25300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus X protein (HBx) can stimulate the transcription of phosphoenolpyruvate carboxykinase (PEPCK), a rate-determining enzyme in gluconeogenic pathway. Two isoforms of PEPCK exist, a cytoplasmic form (PCK1) and a mitochondrial isoform (PCK2). The current study investigated the direct effect of HBx-stimulated PEPCK on hepatitis B virus (HBV) replication. We showed that PCK1 rather than PCK2 was upregulated by HBx. We also demonstrated that overexpression of PCK1 decreased HBV replication, whereas inhibition of PCK1-enhanced HBV replication. Furthermore, we found overexpression of PCK1 led to reduced expression of peroxisome proliferator-activated receptor-coactivator 1α (PGC-1α) and peroxisome proliferator-activated receptor γ (PPAR-γ), whereas knocking down PCK1 resulted in an increased expression of PGC-1α and PPAR-γ. When PPAR-γ was inhibited, knocking down PCK1 could not induce the apparent enhanced HBV replication. Our data suggested that PCK1 induced by HBx led to decreased HBV replication through the downregulation of PGC-1α and PPAR-γ. Thus, our study demonstrates a negative-feedback loop involving PCK1 and HBV may provide a balanced cell environment for HBV persistent infection.
Collapse
Affiliation(s)
- Xiaoqiong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Li
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Shi
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Feijun Huang
- Department of Forensic Pathology, Medical School of Basic and Forensic Sciences, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Yan L, Yu Y, Zhang Q, Tang X, Bai L, Huang F, Tang H. Identification of p90 Ribosomal S6 Kinase 2 as a Novel Host Protein in HBx Augmenting HBV Replication by iTRAQ-Based Quantitative Comparative Proteomics. Proteomics Clin Appl 2018; 12:e1700090. [PMID: 29350888 PMCID: PMC5947307 DOI: 10.1002/prca.201700090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/28/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE The aim of this study was to screen for novel host proteins that play a role in HBx augmenting Hepatitis B virus (HBV) replication. EXPERIMENTAL DESIGN Three HepG2 cell lines stably harboring different functional domains of HBx (HBx, HBx-Cm6, and HBx-Cm16) were cultured. ITRAQ technology integrated with LC-MS/MS analysis was applied to identify the proteome differences among these three cell lines. RESULTS In brief, a total of 70 different proteins were identified among HepG2-HBx, HepG2-HBx-Cm6, and HepG2-HBx-Cm16 by double repetition. Several differentially expressed proteins, including p90 ribosomal S6 kinase 2 (RSK2), were further validated. RSK2 was expressed at higher levels in HepG2-HBx and HepG2-HBx-Cm6 compared with HepG2-HBx-Cm16. Furthermore, levels of HBV replication intermediates were decreased after silencing RSK2 in HepG2.2.15. An HBx-minus HBV mutant genome led to decreased levels of HBV replication intermediates and these decreases were restored to levels similar to wild-type HBV by transient ectopic expression of HBx. After silencing RSK2 expression, the levels of HBV replication intermediates synthesized from the HBx-minus HBV mutant genome were not restored to levels that were observed with wild-type HBV by transient HBx expression. CONCLUSION AND CLINICAL RELEVANCE Based on iTRAQ quantitative comparative proteomics, RSK2 was identified as a novel host protein that plays a role in HBx augmenting HBV replication.
Collapse
Affiliation(s)
- Li‐Bo Yan
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| | - You‐Jia Yu
- Department of Forensic PathologyMedical School of Basic and Forensic SciencesSichuan UniversityChengduChina
| | - Qing‐Bo Zhang
- Department of Forensic PathologyMedical School of Basic and Forensic SciencesSichuan UniversityChengduChina
| | - Xiao‐Qiong Tang
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| | - Lang Bai
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| | - FeiJun Huang
- Department of Forensic PathologyMedical School of Basic and Forensic SciencesSichuan UniversityChengduChina
| | - Hong Tang
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| |
Collapse
|
12
|
Ling S, Luo M, Jiang S, Liu J, Ding C, Zhang Q, Guo H, Gong W, Tu C, Sun J. Cellular Hsp27 interacts with classical swine fever virus NS5A protein and negatively regulates viral replication by the NF-κB signaling pathway. Virology 2018. [PMID: 29525670 DOI: 10.1016/j.virol.2018.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Classical swine fever virus (CSFV) nonstructural protein NS5A is a multifunctional protein functioning in regulation of viral genome replication, protein translation and assembly by interaction with viral or host proteins. Here, heat shock protein 27 (Hsp27) has been identified as a novel binding partner of NS5A by using His tag "pull down" coupled with shotgun LC-MS/MS, with interaction of both proteins further confirmed by co-immunoprecipitation and laser confocal assays. In PK-15 cells, silencing of Hsp27 expression by siRNA enhanced CSFV replication, and upregulation of Hsp27 inhibited viral proliferation. Additionally, we have shown that overexpression of Hsp27 increased NF-κB signaling induced by TNFα. Blocking NF-κB signaling in PK-15 cells overexpressing Hsp27 by ammonium pyrrolidinedithiocarbamate (PDTC) eliminated the inhibition of CSFV replication by Hsp27. These findings clearly demonstrate that the inhibition of CSFV replication by Hsp27 is mediated via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shifeng Ling
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Mingyang Luo
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Shengnan Jiang
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Jiayu Liu
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Chunying Ding
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Qinghuan Zhang
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China
| | - Huancheng Guo
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, No. 666 Liuying West Road, Changchun 130122, PR China
| | - Wenjie Gong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, No. 666 Liuying West Road, Changchun 130122, PR China
| | - Changchun Tu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, No. 666 Liuying West Road, Changchun 130122, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, No. 48 Wenhui East Road, Yangzhou 225009, China.
| | - Jinfu Sun
- Institute of Biotechnology, College of Life and Health Sciences, Northeastern University, No. 195, Chuangxin Road, Shenyang 110000, PR China.
| |
Collapse
|
13
|
Braga ACS, Carneiro BM, Batista MN, Akinaga MM, Bittar C, Rahal P. Heat shock proteins HSPB8 and DNAJC5B have HCV antiviral activity. PLoS One 2017; 12:e0188467. [PMID: 29182667 PMCID: PMC5705118 DOI: 10.1371/journal.pone.0188467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C is a disease caused by the hepatitis C virus (HCV), and an estimated 3% of the world population is infected with the virus. During replication, HCV interacts with several cellular proteins. Studies have shown that several heat shock proteins (HSPs) have an altered expression profile in the presence of the virus, and some HSPs interact directly with HCV proteins. In the present study, we evaluated the expression levels of heat shock proteins in vitro in the presence and absence of HCV. The differential expression of 84 HSPs and chaperones was observed using a qPCR array, comparing HCV uninfected and infected Huh7.5 cells. To validate qPCR array, the differentially expressed genes were tested by real-time PCR in three different HCV models: subgenomic HCV replicon cells (SGR-JFH-1), JFH-1 infected cells (both genotype 2a) and subgenomic S52 cells (genotype 3). The HSPB8 gene showed increased expression in all three viral models. We silenced HSPB8 expression and observed an increase in viral replication. In contrast, when we increased the expression of HSPB8, a decrease in the HCV replication rate was observed. The same procedure was adopted for DNAJC5B, and HCV showed a similar replication pattern as that observed for HSPB8. These results suggest that HSPB8 may act as an intracellular factor against hepatitis C virus replication and that DNAJC5B has the same function, with more relevant results for genotype 3. We also evaluated the direct interactions between HCV and HSP proteins, and the IP experiments showed that the HCV NS4B protein interacts with HSPB8. These results contribute to a better understanding of the mechanisms involved in HCV replication.
Collapse
Affiliation(s)
- Ana Claudia Silva Braga
- Laboratório de Estudos Genômicos, UNESP/IBILCE, São José do Rio Preto, São Paulo, Brazil
- * E-mail:
| | - Bruno Moreira Carneiro
- Laboratório de Estudos Genômicos, UNESP/IBILCE, São José do Rio Preto, São Paulo, Brazil
- Instituto de Ciências Exatas e Naturais, UFMT/CUR, Rondonópolis, Mato Grosso, Brazil
| | | | - Mônica Mayumi Akinaga
- Laboratório de Estudos Genômicos, UNESP/IBILCE, São José do Rio Preto, São Paulo, Brazil
| | - Cíntia Bittar
- Laboratório de Estudos Genômicos, UNESP/IBILCE, São José do Rio Preto, São Paulo, Brazil
| | - Paula Rahal
- Laboratório de Estudos Genômicos, UNESP/IBILCE, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
14
|
Le Y, Jia P, Jin Y, Liu W, Jia K, Yi M. The antiviral role of heat shock protein 27 against red spotted grouper nervous necrosis virus infection in sea perch. FISH & SHELLFISH IMMUNOLOGY 2017; 70:185-194. [PMID: 28860076 DOI: 10.1016/j.fsi.2017.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 08/27/2017] [Indexed: 05/07/2023]
Abstract
Heat shock protein 27 (HSP27), functioning as a stress induced protective protein, has been reported to participate in various biological processes, including apoptosis, thermal protection, and virus infection. In this study, a HSP27-like gene from the seawater fish sea perch, designated as LjHSP27, was characterized. The 1361 bp full-length cDNA of LjHSP27 encoded a 221 amino acid protein containing a conserved α-crystallin domain, two variable amino- and carboxy-terminal extensions, a WD/EPF motif, two serine phosphorylation sites, and two putative actin binding regions. Phylogenetic analysis showed that LjHSP27 shared the closest genetic relationship with HSP27 of the Asian seabass Lates calcarifer. LjHSP27 mRNA was ubiquitously expressed in all tissues examined, but significantly up-regulated in spleen and kidney and down-regulated in brain post red spotted grouper nervous necrosis virus (RGNNV) infection. In vitro, LjHSP27 transcript was remarkably reduced post RGNNV infection, but rapidly increased after polyinosinic-polycytidylic acid treatment. Up-regulation and down-regulation of LjHSP27 inhibited and promoted RGNNV replication in cultured LJB cells, respectively. Luciferase assay indicated that LjHSP27 could enhance the promoter activities of zebrafish interferon (IFN)1 and IFN3, suggesting its potential role in innate immune responses. Moreover, overexpression of LjHSP27 inhibited RGNNV-induced apoptosis, as indicated by the up-regulation of anti-apoptotic genes and down-regulation of pro-apoptotic genes, while KNK437 caused down-regulation of LjHSP27 dramatically led to opposite results, suggesting that LjHSP27 might exert its anti-RGNNV activities by regulating the apoptosis signaling pathway. Our results would provide a new insight into the underlying molecular mechanism of HSP and RGNNV interaction.
Collapse
Affiliation(s)
- Yao Le
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Peng Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Yilin Jin
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Kuntong Jia
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| | - Meisheng Yi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
15
|
Annexin A2 promotes liver fibrosis by mediating von Willebrand factor secretion. Dig Liver Dis 2017; 49:780-788. [PMID: 28377286 DOI: 10.1016/j.dld.2017.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Liver fibrosis can lead to cirrhosis and hepatocellular carcinoma if not treated in the early stages. The molecular mechanisms of the pathogenesis of hepatic fibrosis remain unclear. AIM To identify the molecules involved in the pathogenesis of liver fibrosis and to investigate the potential effect and mechanism of Annexin A2 up-regulation during liver fibrosis progression. METHODS Twenty Sprague-Dawley rats were divided into two groups: the carbon tetrachloride (CCl4)-induced liver fibrosis group and the normal control group. Hematoxylin and eosin staining or Masson Trichrome staining and enzyme-linked immunosorbent assay were applied to assess the degree of liver damage and fibrosis in rats with CCl4-induced liver fibrosis. Liver tissue protein profiles were analyzed using iTRAQ and mass spectrometry. RT-PCR and western blotting analyses were employed to validate differentially expressed proteins. Small interfering RNA-based silencing was performed to study the function of Annexin A2. RESULTS Twelve weeks after CCl4 injection, significant body weight changes and liver injury and liver fibrosis were observed in rats. In addition, 130 proteins were differentially expressed in the liver fibrosis group. Overexpression of Annexin A2 was confirmed by RT-PCR and Western blotting analysis. Silencing of Annexin A2 expression in HepG2 and LX-2 cells significantly reduced the secretion of von Willebrand factor (vWF). CONCLUSION Annexin A2 promotes liver fibrosis by mediating vWF secretion, which can be used to mitigate the progression of liver fibrosis.
Collapse
|
16
|
Sun M, Yu Z, Ma J, Pan Z, Lu C, Yao H. Down-regulating heat shock protein 27 is involved in porcine epidemic diarrhea virus escaping from host antiviral mechanism. Vet Microbiol 2017. [DOI: 10.1016/j.vetmic.2017.04.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Yu Y, He Z, Cao Y, Tang H, Huang F. TAGLN2, a novel regulator involved in Hepatitis B virus transcription and replication. Biochem Biophys Res Commun 2016; 477:1051-1058. [PMID: 27402267 DOI: 10.1016/j.bbrc.2016.07.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 07/06/2016] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) infection is one of the major health problems in the world. Transgelin-2 (TAGLN2) expression has been revealed to be significantly altered in previous studies concerning HBV-host interaction. The present study investigated TAGLN2 expression patterns in HBV related hepatocellular carcinoma (HCC) tissues and its role in HBV transcription and replication. We collected 59 HBV related HCC tissue samples, their adjacent non-tumoral tissues and 16 normal livers to make the tissue microarray. TAGLN2 protein was detected by immunohistochemistry and the transcriptional levels of TAGLN2, HBc, HBs and HBx were detected by qRT-PCR. Then we investigated the function of TAGLN2 on HBV transcription and replication in vitro by ectopic expressing or knocking down TAGLN2 in HepG2 and HepG2.2.15 cell lines. We further studied the effect of HBx on TAGLN2 expression with a Tet-on HBx expressing cell line. TAGLN2 protein expression was lower in normal livers and HBV-HCC tissues comparing to adjacent non-tumoral tissues. The transcriptional levels of TAGLN2 in HBV-HCC tissues and their adjacent tissues were positively related to that of HBc, HBs and HBx (P < 0.05). Ectopic expression of TAGLN2 in vitro could enhance HBV transcription and replication while suppressing TAGLN2 had the contrary effect. TAGLN2 could be induced by HBx in a dose-dependent manner. Our data demonstrated that TAGLN2 might be an HBx induced positive host factor involved in HBV transcription and replication and HBx related liver fibrosis and tumorigenesis.
Collapse
Affiliation(s)
- Youjia Yu
- Department of Forensic Pathology, West China School of Basic Science and Forensic Medicine, Sichuan University, 17 3rd Renmin Road, Chengdu, 610041, China; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.
| | - Zhiliang He
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China.
| | - Yong Cao
- Department of Forensic Pathology, West China School of Basic Science and Forensic Medicine, Sichuan University, 17 3rd Renmin Road, Chengdu, 610041, China
| | - Hong Tang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China; Center of Infectious Diseases, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China.
| | - Feijun Huang
- Department of Forensic Pathology, West China School of Basic Science and Forensic Medicine, Sichuan University, 17 3rd Renmin Road, Chengdu, 610041, China.
| |
Collapse
|
18
|
Cai XZ, Zeng WQ, Xiang Y, Liu Y, Zhang HM, Li H, She S, Yang M, Xia K, Peng SF. iTRAQ-Based Quantitative Proteomic Analysis of Nasopharyngeal Carcinoma. J Cell Biochem 2015; 116:1431-41. [PMID: 25648846 DOI: 10.1002/jcb.25105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 01/23/2015] [Indexed: 01/08/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a common disease in the southern provinces of China with a poor prognosis. To better understand the pathogenesis of NPC and identify proteins involved in NPC carcinogenesis, we applied iTRAQ coupled with two-dimensional LC-MS/MS to compare the proteome profiles of NPC tissues and the adjacent non-tumor tissues. We identified 54 proteins with differential expression in NPC and the adjacent non-tumor tissues. The differentially expressed proteins were further determined by RT-PCR and Western blot analysis. In addition, the up-regulation of HSPB1, NPM1 and NCL were determined by immunohistochemistry using tissue microarray. Functionally, we found that siRNA mediated knockdown of NPM1 inhibited the migration and invasion of human NPC CNE1 cell line. In summary, this is the first study on proteome analysis of NPC tissues using an iTRAQ method, and we identified many new differentially expressed proteins which are potential targets for the diagnosis and therapy of NPC.
Collapse
Affiliation(s)
- Xin-Zhang Cai
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Wei-Qun Zeng
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong-Min Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Li
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sha She
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Min Yang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Shi-Fang Peng
- Department of Hepatology and Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
She S, Xiang Y, Yang M, Ding X, Liu X, Ma L, Liu Q, Liu B, Lu Z, Li S, Liu Y, Ran X, Xu X, Hu H, Hu P, Zhang D, Ren H, Yang Y. C-reactive protein is a biomarker of AFP-negative HBV-related hepatocellular carcinoma. Int J Oncol 2015; 47:543-54. [PMID: 26058824 DOI: 10.3892/ijo.2015.3042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/04/2015] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive cancers worldwide and is associated with the high rates of morbidity and mortality. α-fetoprotein (AFP) is common used in diagnosis of HCC; however, a growing body of research is questioning the diagnostic power of AFP. There is, therefore, an urgent need to develop additional novel non-invasive techniques for the early diagnosis of HCC, particularly for patients with AFP-negative [AFP(-)] HCC. Accordingly, in the present study, we employed iTRAQ-based mass spectro-metry to analyze the plasma proteins of subjects with AFP(-) HBV-related HCC, AFP(+) HBV-related HCC and non-malignant cirrhosis. We identified 14 aberrantly expressed proteins specific to the HCC patients, including 10 upregulated and 4 downregulated proteins. We verified C-reactive protein (CRP) overexpression by ELISA and immunohistochemical staining of clinical samples. Per ROC curve analyses, CRP was positive in 73.3% of patients with HBV-related HCC, and CRP overexpression had significant diagnostic power for AFP(-) HBV-related HCC. Furthermore, we found that silencing CRP caused a >2-fold decease in HBV replication. Additionally, we determined that this reduction in HBV replication involved the interferon-signaling pathway. However, silencing CRP also promoted HCC invasion and migration in vitro. In conclusion, we demonstrated that CRP can serve as a diagnostic biomarker for AFP(-) HBV-related HCC.
Collapse
Affiliation(s)
- Sha She
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yi Xiang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Min Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiangchun Ding
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoyan Liu
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Lina Ma
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Qing Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Bin Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhenhui Lu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Shiying Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yi Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoping Ran
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoming Xu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Huaidong Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Peng Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Dazhi Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hong Ren
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yixuan Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
20
|
Zeng S, Zhang H, Ding Z, Luo R, An K, Liu L, Bi J, Chen H, Xiao S, Fang L. Proteome analysis of porcine epidemic diarrhea virus (PEDV)-infected Vero cells. Proteomics 2015; 15:1819-28. [PMID: 25604190 PMCID: PMC7167732 DOI: 10.1002/pmic.201400458] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/04/2014] [Accepted: 01/16/2015] [Indexed: 12/16/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes an acute, highly contagious, and devastating viral enteric disease with a high mortality rate in suckling pigs. A large‐scale outbreak of PED occurred in China in 2010, with PEDV emerging in the United States in 2013 and spreading rapidly, posing significant economic and public health concerns. In this study, LC–MS/MS coupled to iTRAQ labeling was used to quantitatively identify differentially expressed cellular proteins in PEDV‐infected Vero cells. We identified 49 differentially expressed cellular proteins, of which 8 were upregulated and 41 downregulated. These differentially expressed proteins were involved in apoptosis, signal transduction, and stress responses. Based on these differentially expressed proteins, we propose that PEDV might utilize apoptosis and extracellular signal regulated kinases pathways for maximum viral replication. Our study is the first attempt to analyze the protein profile of PEDV‐infected cells by quantitative proteomics, and we believe our findings provide valuable information with respect to better understanding the host response to PEDV infection.
Collapse
Affiliation(s)
- Songlin Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Zhen Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Kang An
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Lianzeng Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Jing Bi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
21
|
Hu H, Ding X, Yang Y, Zhang H, Li H, Tong S, An X, Zhong Q, Liu X, Ma L, Liu Q, Liu B, Lu Z, Zhang D, Hu P, Ren H. Changes in glucose-6-phosphate dehydrogenase expression results in altered behavior of HBV-associated liver cancer cells. Am J Physiol Gastrointest Liver Physiol 2014; 307:G611-22. [PMID: 24994855 DOI: 10.1152/ajpgi.00160.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocellular carcinoma (HCC) is regarded as a major global health care issue, and chronic hepatitis B virus (HBV) infection is considered to be involved in pathogenesis of HCC. To increase knowledge of HCC pathogenesis, as well as discover potential novel molecules for anti-cancer therapy, mass spectrometry and isobaric tag for relative and absolute quantitation (iTARQ) were employed. The differences between nine HBV-related HCC and adjacent non-HCC tissue specimens were studied. In total, 222 proteins were analyzed for differential expression in the two types of samples. Among these proteins, several were further confirmed by immunohistochemical, immunoblotting, and real-time RT-PCR analysis. RNA interference induced downregulation of glucose-6-phosphate dehydrogenase (G6PD) and decreased HBV replication by fivefold by the IFN pathway. Decreased G6PD expression resulted in decreased hepatoma cell migration and invasion in cell culture. In summary, the investigation provides new information on pathogenesis of HBV infection and suggests G6PD as a novel anti-HCC target. G6PD suppression may contribute to treatment strategies for inhibiting tumor progression.
Collapse
Affiliation(s)
- Huaidong Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiangchun Ding
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China; and
| | - Yixuan Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmin Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shiwen Tong
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan An
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Zhong
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Liu
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China; and
| | - Lina Ma
- Department of Infectious Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China; and
| | - Qing Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China
| | - Bin Liu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China
| | - Zhenhui Lu
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ning Xia, China
| | - Dazhi Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Viral Hepatitis of Chongqing Medical University, Chongqing, China; Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China;
| |
Collapse
|
22
|
Zhong Q, An X, Yang YX, Hu HD, Ren H, Hu P. Keratin 8 is involved in hepatitis B virus replication. J Med Virol 2013; 86:687-94. [PMID: 24375072 DOI: 10.1002/jmv.23873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2013] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection can result in fatal liver diseases, including cirrhosis or liver failure, and its replication and pathogenesis depend on the critical interplay between viral and host factors. This study investigated HBV replication-related host proteins and the effect of candidate proteins on HBV replication. Isobaric tags for relative and absolute quantitation (iTRAQ) were used to measure HBV replication-related proteins in HepG2 cells and HepG2.2.15 cells. KRT8 was up-regulated in HepG2.2.15 cells but not in HepG2 cells, and KRT8 was overexpressed in an HBV-infected patient's liver tissue. This result suggested that KRT8 is involved in HBV replication. To further clarify the relationship between KRT8 and HBV replication, KRT8 gene expression was inhibited by siRNA. The silencing of KRT8 mildly suppressed HBV replication. Moreover, overexpressed KRT8 significantly increased HBV replication, and the inhibition of HBV DNA did not suppress KRT8 expression. Thus, the host protein KRT8 is involved in the replication of HBV DNA, and it dramatically enhances HBV replication.
Collapse
Affiliation(s)
- Qing Zhong
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
23
|
Zhang H, Li H, Yang Y, Li S, Ren H, Zhang D, Hu H. Differential regulation of host genes including hepatic fatty acid synthase in HBV-transgenic mice. J Proteome Res 2013; 12:2967-79. [PMID: 23675653 DOI: 10.1021/pr400247f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) is the most common of the hepatitis viruses that cause chronic liver infections in humans, and it is considered to be a major global health problem. To gain a better understanding of HBV pathogenesis, and identify novel putative targets for anti-HBV therapy, this study was designed to elucidate the differential expression of host proteins in liver tissue from HBV-transgenic mice. Liver samples from two groups, (1) HBV-transgenic (Tg) mice, (2) corresponding background normal mice, wild-type (WT) mice, were collected and subjected to iTRAQ and mass spectrometry analysis. In total, 1950 unique proteins were identified, and 68 proteins were found to be differentially expressed in HBV-Tg mice as compared with that in WT mice. Several differentially expressed proteins were further validated by real-time quantitative RT-PCR, Western blot and immunohistochemical analysis. Furthermore, the association of HBV replication with fatty acid synthase (FASN), one of the highly expressed proteins in HBV-Tg mice, was verified. Silencing of FASN expression in HepG2.2.15 cells suppressed viral replication through the IFN signaling pathway, and some downstream antiviral effectors. The implicated role of FASN in HBV replication provides an opportunity to test existing compounds against FASN for adjuvant therapy and/or treatment of HBV replication.
Collapse
Affiliation(s)
- Hongmin Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Arrigo AP, Gibert B. Protein interactomes of three stress inducible small heat shock proteins: HspB1, HspB5 and HspB8. Int J Hyperthermia 2013; 29:409-22. [DOI: 10.3109/02656736.2013.792956] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
25
|
Shin GC, Ahn SH, Choi HS, Lim KH, Choi DY, Kim KP, Kim KH. Hepatocystin/80K-H inhibits replication of hepatitis B virus through interaction with HBx protein in hepatoma cell. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1569-81. [PMID: 23644164 DOI: 10.1016/j.bbadis.2013.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/11/2013] [Accepted: 04/25/2013] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) X protein (HBx) is a key player in HBV replication as well as HBV-induced hepatocellular carcinoma (HCC). However, the pathogenesis of HBV infection and the mechanisms of host-virus interactions are still elusive. In this study, a combination of affinity purification and mass spectrometry was applied to identify the host factors interacting with HBx in hepatoma cells. Thirteen proteins were identified as HBx binding partners. Among them, we first focused on determining the functional significance of the interaction between HBx and hepatocystin. A physical interaction between HBx and hepatocystin was confirmed by co-immunoprecipitation and Western blotting. Immunocytochemistry demonstrated that HBx and hepatocystin colocalized in the hepatoma cells. Domain mapping of both proteins revealed that the HBx C-terminus (amino acids 110-154) was responsible for binding to the mannose 6-phosphate receptor homology domain (amino acids, 419-525) of hepatocystin. Using translation and proteasome inhibitors, we found that hepatocystin overexpression accelerated HBx degradation via a ubiquitin-independent proteasome pathway. We demonstrated that this effect was mediated by an interaction between both proteins using a HBx deletion mutant. Hepatocystin overexpression significantly inhibited HBV DNA replication and expression of HBs antigen concomitant with HBx degradation. Using the hepatocystin mutant constructs that bind HBx, we also confirmed that hepatocystin inhibited HBx-dependent HBV replication. In conclusion, we demonstrated for the first time that hepatocystin functions as a chaperon-like molecule by accelerating HBx degradation, and thereby inhibits HBV replication. Our results suggest that inducing hepatocystin may provide a novel therapeutic approach to control HBV infection.
Collapse
Affiliation(s)
- Gu-Choul Shin
- Department of Pharmacology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|