1
|
Ramos M, Enguita FJ, Bonet F, Ayala R, Gómez-Pavón FJ, Campuzano O, Toro R, Quezada-Feijoó M. MicroRNA-143-3p and miR-452-5p: A Fingerprint for the Diagnosis of Aortic Stenosis in the Geriatric Population. Biomedicines 2025; 13:671. [PMID: 40149647 PMCID: PMC11940255 DOI: 10.3390/biomedicines13030671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Aortic stenosis (AS) is the most common valvular pathology in the geriatric population and is the primary cause of valve replacement. However, misdiagnoses and delays in treatment are common due to comorbidities, frailty, and sedentary lifestyles among elderly individuals. MicroRNAs (miRNAs) are highly conserved molecular regulators involved in various cellular processes and have gained recognition as reliable biomarkers in cardiovascular diseases. In the present study, we evaluated plasma miRNAs as potential biomarkers for the early diagnosis of AS in the geriatric population to identify early therapeutic strategies. Methods: This prospective, case-control study included 87 individuals over 75 years of age. The participants were divided into AS (n = 58) and control (n = 29) groups. Results: Fifty-four miRNAs were differentially expressed between patients with AS and controls. Among those genes, 29 were upregulated and 25 were downregulated in patients with AS relative to controls. We selected seven candidate genes (miR-185-5p, miR-143-3p, miR-370-3p, let-7d-3p, miR-452-5p, miR-6787-3p, and miR-21-3p) for experimental validation by qRT-PCR. Only miR-143-3p and miR-452-5p were significantly upregulated in the plasma of patients with AS compared with controls. We developed a multiparametric model by combining the two-miRNA signature with echocardiographic parameters (left ventricular ejection fraction, stroke volume, and global longitudinal strain) to increase diagnostic power; this model yielded sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) values of 78.2%, 70.7%, and 0.837, respectively. Conclusions: In clinical practice, the use of a multiparametric model involving this set of miRNAs combined with echocardiographic variables may improve the accuracy of AS diagnosis and risk stratification.
Collapse
Affiliation(s)
- Mónica Ramos
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (R.A.); (M.Q.-F.)
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain;
| | - Francisco Javier Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, Lisbon University, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal;
| | - Fernando Bonet
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain;
| | - Rocío Ayala
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (R.A.); (M.Q.-F.)
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain;
| | - Francisco Javier Gómez-Pavón
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain;
- Geriatrics Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, University of Girona, 17003 Girona, Spain;
- Institut d’Investigació Biomèdica de Girona (IDIBGI-CERCA), 17190 Salt, Spain
- Centro Investigación Biomèdica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Rocío Toro
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cádiz, Spain;
- Medicine Department, School of Medicine, University of Cadiz, 11003 Cádiz, Spain
| | - Maribel Quezada-Feijoó
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (R.A.); (M.Q.-F.)
- Medicine School, Alfonso X el Sabio University, 28007 Madrid, Spain;
| |
Collapse
|
2
|
Sivan S, Vijayakumar G, Pillai IC. Non-coding RNAs mediating the regulation of genes and signaling pathways in aortic valve calcification. Gene 2025; 936:149117. [PMID: 39580125 DOI: 10.1016/j.gene.2024.149117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Affiliation(s)
- Silpa Sivan
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, Kollam 690 525, Kerala, India
| | - Gayathri Vijayakumar
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, Kollam 690 525, Kerala, India
| | - Indulekha Cl Pillai
- Stem Cells and Regenerative Biology Lab, Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO, Kollam 690 525, Kerala, India.
| |
Collapse
|
3
|
Gao G, Liu SM, Hao FB, Wang QN, Wang XP, Wang MJ, Bao XY, Han C, Duan L. Factors Influencing Collateral Circulation Formation After Indirect Revascularization for Moyamoya Disease: a Narrative Review. Transl Stroke Res 2024; 15:1005-1014. [PMID: 37592190 DOI: 10.1007/s12975-023-01185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Indirect revascularization is one of the main techniques for the treatment of Moyamoya disease. The formation of good collateral circulation is a key measure to improve cerebral blood perfusion and reduce the risk of secondary stroke, and is the main method for evaluating the effect of indirect revascularization. Therefore, how to predict and promote the formation of collateral circulation before and after surgery is important for improving the success rate of indirect revascularization in Moyamoya disease. Previous studies have shown that vascular endothelial growth factor, endothelial progenitor cells, Caveolin-1, and other factors observed in patients with Moyamoya disease may play a key role in the generation of collateral vessels after indirect revascularization through endothelial hyperplasia and smooth muscle migration. In addition, mutations in the genetic factor RNF213 have also been associated with this process. This study summarizes the factors and mechanisms influencing collateral circulation formation after indirect revascularization in Moyamoya disease.
Collapse
Affiliation(s)
- Gan Gao
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Si-Meng Liu
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Fang-Bin Hao
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Qian-Nan Wang
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Xiao-Peng Wang
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Min-Jie Wang
- Chinese PLA Medical School, Beijing, China
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Xiang-Yang Bao
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Cong Han
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China
| | - Lian Duan
- Department of Neurosurgery, Chinese PLA General Hospital, 8 Dong-Da Street, Fengtai District, 100071, Beijing, China.
| |
Collapse
|
4
|
Le Nezet E, Marqueze-Pouey C, Guisle I, Clavel MA. Molecular Features of Calcific Aortic Stenosis in Female and Male Patients. CJC Open 2024; 6:1125-1137. [PMID: 39525825 PMCID: PMC11544188 DOI: 10.1016/j.cjco.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 11/16/2024] Open
Abstract
Over the past 15 years, sex-related differences in aortic valve (AV) stenosis (AS) have been highlighted, affecting various aspects of AS, such as the pathophysiology, AV lesions, left ventricle remodelling, and outcomes. Female patients were found to present a more profibrotic pattern of leaflet remodelling and/or thickening, whereas male patients have a preponderance of calcification within stenosed leaflets. The understanding of these sex differences is still limited, owing to the underrepresentation of female patients in many basic and clinical research studies and trials. A better understanding of sex differences in the pathophysiology of AS may highlight new therapeutic targets that potentially could be sex-specific. This review aims to summarize sex-related differences in AS, as discovered from basic research experiments, covering aspects of the disease ranging from leaflet composition to signalling pathways, sex hormones, genetics and/or transcriptomics, and potential sex-adapted medical treatments.
Collapse
Affiliation(s)
- Emma Le Nezet
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Chloé Marqueze-Pouey
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Isabelle Guisle
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| | - Marie-Annick Clavel
- Institut universitaire de cardiologie et pneumologie de Québec [Quebec Heart & Lung Institute], Université Laval, Québec City, Québec, Canada
| |
Collapse
|
5
|
Snyder Y, Mann FAT, Middleton J, Murashita T, Carney J, Bianco RW, Jana S. Non-immune factors cause prolonged myofibroblast phenotype in implanted synthetic heart valve scaffolds. APPLIED MATERIALS TODAY 2024; 39:102323. [PMID: 39131741 PMCID: PMC11308761 DOI: 10.1016/j.apmt.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The clinical application of heart valve scaffolds is hindered by complications associated with the activation of valvular interstitial cell-like (VIC-like) cells and their transdifferentiation into myofibroblasts. This study aimed to examine several molecular pathway(s) that may trigger the overactive myofibroblast phenotypes in the implanted scaffolds. So, we investigated the influence of three molecular pathways - macrophage-induced inflammation, the TGF-β1-SMAD2, and WNT/β-catenin β on VIC-like cells during tissue engineering of heart valve scaffolds. We implanted electrospun heart valve scaffolds in adult sheep for up to 6 months in the right ventricular outflow tract (RVOT) and analyzed biomolecular (gene and protein) expression associated with the above three pathways by the scaffold infiltrating cells. The results showed a gradual increase in gene and protein expression of markers related to the activation of VIC-like cells and the myofibroblast phenotypes over 6 months of scaffold implantation. Conversely, there was a gradual increase in macrophage activity for the first three months after scaffold implantation. However, a decrease in macrophage activity from three to six months of scaffold tissue engineering suggested that immunological signal factors were not the primary cause of myofibroblast phenotype. Similarly, the gene and protein expression of factors associated with the TGF-β1-SMAD2 pathway in the cells increased in the first three months but declined in the next three months. Contrastingly, the gene and protein expression of factors associated with the WNT/β-catenin pathway increased significantly over the six-month study. Thus, the WNT/β-catenin pathway could be the predominant mechanism in activating VIC-like cells and subsequent myofibroblast phenotype.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO 65211, USA
| | - FA Tony Mann
- Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO 65211-0001
| | - John Middleton
- Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO 65211-0001
| | - Takashi Murashita
- Department of Surgery, School of Medicine, University of Missouri, One Hospital Drive, Columbia, MO 65212
| | - John Carney
- Experimental Surgical Services, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455
| | - Richard W. Bianco
- Experimental Surgical Services, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Santibanez JF, Echeverria C, Millan C, Simon F. Transforming growth factor-beta superfamily regulates mesenchymal stem cell osteogenic differentiation: A microRNA linking. Acta Histochem 2023; 125:152096. [PMID: 37813068 DOI: 10.1016/j.acthis.2023.152096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
The ability to differentiate into cells of different lineages, such as bone cells, is the principal value of adult mesenchymal stem cells (MSCs), which can be used with the final aim of regenerating damaged tissue. Due to its potential use and importance in regenerative medicine and tissue engineering, several questions have been raised regarding the molecular mechanisms of MSC differentiation. As one of the crucial mediators in organism development, the transforming growth factor-beta (TGF-β) superfamily directs MSCs' commitment to selecting differentiation pathways. This review aims to give an overview of the current knowledge on the mechanisms of the TGF-β superfamily in MSCs bone differentiation, with additional insight into the mutual regulation of microRNAs and TGF-β in osteogenesis.
Collapse
Affiliation(s)
- Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, 11129 Belgrade, Serbia; Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, General Gana 1780, Santiago 8370854, Chile.
| | - Cesar Echeverria
- Laboratory of Molecular Biology, Nanomedicine, and Genomic, Faculty of Medicine, University of Atacama, Copiapó 1532502, Chile
| | - Carola Millan
- Department of Sciences, Faculty of Liberal Arts, Adolfo Ibáñez University, Viña del Mar, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Liu C, Zhang Y, Guo J, Sun W, Ji Y, Wang Y, Liu J, Kong X. Overexpression of microRNA-93-5p and microRNA-374a-5p Suppresses the Osteogenic Differentiation and Mineralization of Human Aortic Valvular Interstitial Cells Through the BMP2/Smad1/5/RUNX2 Signaling Pathway. J Cardiovasc Pharmacol 2023; 82:138-147. [PMID: 37232560 DOI: 10.1097/fjc.0000000000001440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
ABSTRACT Aortic valve calcification commonly occurs in patients with chronic kidney disease (CKD). However, the regulatory functions of microRNAs (miRNAs/miRs) in the osteogenic differentiation of human aortic valvular interstitial cells (hAVICs) in patients with CKD remain largely unknown. This study aimed to explore the functional role and underlying mechanisms of miR-93-5p and miR-374a-5p in the osteogenic differentiation of hAVICs. For this purpose, hAVICs calcification was induced with high-calcium/high-phosphate medium and the expression levels of miR-93-5p and miR-374a-5p were determined using bioinformatics assay. Alizarin red staining, intracellular calcium content, and alkaline phosphatase activity were used to evaluate calcification. The expression levels of bone morphogenetic protein-2 (BMP2), runt-related transcription factor 2 (Runx2), and phosphorylated (p)-Smad1/5 were detected by luciferase reporter assay, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blot analysis. The results revealed that the expression levels of miR-93-5p and miR-374a-5p were significantly decreased in hAVICs in response to high-calcium/high-phosphate medium. The overexpression of miR-93-5p and miR-374a-5p effectively suppressed the high-calcium/high-phosphate-induced calcification and osteogenic differentiation makers. Mechanistically, the overexpression of miR-93-5p and miR-374a-5p inhibits osteogenic differentiation by regulating the BMP2/Smad1/5/Runx2 signaling pathway. Taken together, this study indicates that miR-93-5p and miR-374a-5p suppress the osteogenic differentiation of hAVICs associated with calcium-phosphate metabolic dyshomeostasis through the inhibition of the BMP2/Smad1/5/Runx2 signaling pathway.
Collapse
Affiliation(s)
- Cuiying Liu
- Department of Cardiovascular Medicine, Medical School of Southeast University, Nanjing, China
| | - Yajie Zhang
- Central Laboratory, Nanjing Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Jing Guo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
| | - Yue Ji
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
| | - Yaqing Wang
- Department of Cardiology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
| | - Xiangqing Kong
- Department of Cardiovascular Medicine, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
8
|
Fang M, Li B, Li X, Wang Y, Zhuang Y. MicroRNA-29b regulates pyroptosis involving calcific aortic valve disease through the STAT3/SOCS1 pathway. Int J Cardiol 2023; 371:319-328. [PMID: 36064035 DOI: 10.1016/j.ijcard.2022.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND CAVD (calcific aortic valve disease) involves an inflammatory response similar to pyroptosis; therefore, we speculated that the progression of pyroptosis might be involved in the pathogenesis of CAVD. METHODS We first investigated the expression of pyroptosis related genes in human CAVD, non-CAVD control and AS (calcific aortic stenosis) tissues. We further confirmed these genes by using CAVD cell and mouse models. Finally, we explored the functional molecular mechanism in the cell model. RESULTS Our recent studies found that miR-29b plays an important role in CAVD, and we wanted to further address whether miR-29b is a key factor in the progression of pyroptosis related to CAVD. In this study, we found NLRP3 was highly expressed in CAVD patients and models. In contrast, SOCS1, a suppressor of NLRP3, showed reduced expression in CAVD. Furthermore, we found that ASC, Caspase-1, IL-1β, Cleaved IL-18 and p-JAK2 were all upregulated in the tissues of CAVD patients, suggesting the likelihood of activation of the inflammasome. Then, we found that miR-29b participated in the NLRP3-regulated CAVD pathway through its target gene STAT3 (signal transducer and activator of transcription 3). Finally, we found that a miR-29b inhibitor could mitigate the increases in osteogenic differentiation and pyroptosis and that SOCS1 showed negative regulation of osteogenic differentiation and pyroptosis in CAVD. CONCLUSION These findings suggested NLRP3 inflammasome-related genes are highly expressed in CAVD, and miR-29b reverses osteoblastic differentiation of aortic valve interstitial cells by regulating pyroptosis and inhibiting inflammation via the STAT3/SOCS1 pathway.
Collapse
Affiliation(s)
- Ming Fang
- Department of Cardiology, Hainan General Hospital, Haikou, Hainan 570311, China; Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Bin Li
- Department of Cardiology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Xinming Li
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yudai Wang
- Department of Cardiology, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Yu Zhuang
- Department of Cardiovascular surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
9
|
Ground M, Park YE, Waqanivavalagi S, Callon K, Walker R, Milsom P, Cornish J. Generating robust human valvular interstitial cell cultures: Protocol and considerations. J Mol Cell Cardiol 2022; 173:118-126. [PMID: 36327771 DOI: 10.1016/j.yjmcc.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Research in heart valve biology is a growing field that has yet to elucidate the fundamentals of valve disease. Human valvular interstitial cells (hVICs) are the best option for studying the cellular mechanisms behind valvular pathologies. However, there is a wide range of isolation procedures for these cells published in the literature. To what extent various isolation methods, patient pathologies, and seeding densities influence the behaviour of hVICs remains unclear. Here, we present an optimised method of hVIC isolation from diseased human valves donated at the time of surgery. We show that two rounds of 1000 U/mL collagenase digestion for not >2 h results in a phenotypically stable cell culture with a near complete absence of endothelial cell contamination. We also suggest that cells should be seeded at 10,000 cells/cm2 for experimentation. We found that patient pathology does not affect the success of the isolation procedure, and that instead, successful cultures are predicted by ensuring >500 mg valve tissue as starting material.
Collapse
Affiliation(s)
- Marcus Ground
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Young Eun Park
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Steve Waqanivavalagi
- Green Lane Cardiothoracic Surgery Unit, Auckland City Hospital, Auckland District Health Board, Grafton, New Zealand; Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Karen Callon
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| | - Robert Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Paget Milsom
- Green Lane Cardiothoracic Surgery Unit, Auckland City Hospital, Auckland District Health Board, Grafton, New Zealand
| | - Jillian Cornish
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Grafton, New Zealand
| |
Collapse
|
10
|
Yao J, Cai L, Chen Y, Zhang J, Zhuang W, Liang J, Li H. Exosomes: mediators regulating the phenotypic transition of vascular smooth muscle cells in atherosclerosis. Cell Commun Signal 2022; 20:153. [PMID: 36221105 PMCID: PMC9555104 DOI: 10.1186/s12964-022-00949-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of human mortality worldwide, mainly due to atherosclerosis (AS), and the phenotypic transition of vascular smooth muscle cells (VSMCs) is a key event in the development of AS. Exosomes contain a variety of specific nucleic acids and proteins that mediate intercellular communication. The role of exosomes in AS has attracted attention. This review uses the VSMC phenotypic transition in AS as the entry point, introduces the effect of exosomes on AS from different perspectives, and discusses the status quo, deficiencies, and potential future directions in this field to provide new ideas for clinical research and treatment of AS. Video Abstract.
Collapse
Affiliation(s)
- Jiali Yao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Linqian Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yingrui Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jie Zhang
- Department of Neurology, Afliated Hospital of Yangzhou University, Yangzhou, 225001, China
| | - Wenwen Zhuang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Experimental and Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
11
|
Upregulation of miR-664a-3p Ameliorates Calcific Aortic Valve Disease by Inhibiting the BMP2 Signaling Pathway. DISEASE MARKERS 2022; 2022:2074356. [PMID: 36246570 PMCID: PMC9568341 DOI: 10.1155/2022/2074356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
The development of calcific aortic valve disease (CAVD) is a complex process of ectopic calcification involving various factors that lead to aortic valve stenosis, hemodynamic changes, and, in severe cases, even sudden death. Currently, aortic valve replacement is the only effective method. The osteogenic differentiation of aortic valve interstitial cells (AVICs) is one of the key factors of valve calcification. Emerging evidence suggests that bone morphogenetic protein 2 (BMP2) can induce the proosteogenic activation of AVICs. However, the regulatory mechanism underlying this activation in AVICs is unclear. In the present study, we elucidated through high-throughput RNA sequencing and RT-qPCR that miR-664a-3p was evidently downregulated in the calcific aortic valve. We also proved that miR-664a-3p was involved in regulating osteogenic differentiation in AVICs. Target prediction analysis and dual-luciferase reporter gene assay confirmed that miR-664a-3p is preferentially bound to BMP2. Furthermore, the effect of the miR-664a-3p/BMP2 axis on osteogenic differentiation in AVICs was examined using the gain- and loss-of-function approach. Finally, we constructed a mouse CAVD model and verified the effect of the miR-664a-3p/BMP2 axis on the aortic valve calcification leaflets in vivo. In conclusion, miR-664a-3p regulates osteogenic differentiation in AVICs through negative regulation of BMP2, highlighting that miR-664a-3p may be a potential therapeutic target for CAVD.
Collapse
|
12
|
CXCR6 Mediates Pressure Overload-Induced Aortic Stiffness by Increasing Macrophage Recruitment and Reducing Exosome-miRNA29b. J Cardiovasc Transl Res 2022; 16:271-286. [PMID: 36018423 DOI: 10.1007/s12265-022-10304-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Aortic stiffness is an independent risk factor for aortic diseases such as aortic dissection which commonly occurred with aging and hypertension. Chemokine receptor CXCR6 is critically involved in vascular inflammation and remodeling. Here, we investigated whether and how CXCR6 plays a role in aortic stiffness caused by pressure overload. CXCR6-/- and WT mice underwent transverse aortic constriction (TAC) surgery for 8 weeks. CXCR6 deficiency significantly improved TAC-induced aortic remodeling and endothelial dysfunction by decreasing CD11c+ macrophage infiltration, suppressing VCAM-1 and ICAM-1, reducing collagen deposition, and downregulating MMP12 and osteopontin in the aorta. Consistently, blocking the CXCL16/CXCR6 axis also reduced aortic accumulation of CD11c+ macrophages and vascular stiffness but without affecting the release of TNF-α and IL-6 from the aorta. Furthermore, pressure overload inhibited aortic release of exosomes, which could be reversed by suppressing CXCR6 or CXCL16. Inhibition of exosome release by GW4869 significantly aggravated TAC-induced aortic calcification and stiffness. By exosomal microRNA microarray analysis, we found that microRNA-29b was significantly reduced in aortic endothelial cells (AECs) receiving TAC. Intriguingly, blocking the CXCL16/CXCR6 axis restored the expression of miR-29b in AECs. Finally, overexpression of miR-29b significantly increased eNOS and reduced MMPs and collagen in AECs. By contrast, antagonizing miR-29b in vivo further enhanced TAC-induced expressions of MMP12 and osteopontin, aggravated aortic fibrosis, calcification, and stiffness. Our study demonstrated a key role of the CXCL16/CXCR6 axis in macrophage recruitment and macrophage-mediated aortic stiffness under pressure overload through an exosome-miRNAs-dependent manner.
Collapse
|
13
|
Li Y, Xi Z, Yu Z, Yang C, Tan C. LincRNA‑EPS increases TGF‑β expression to inhibit the Wnt/β‑catenin pathway, VSMC osteoblastic differentiation and vascular calcification in diabetic mice. Exp Ther Med 2022; 23:425. [PMID: 35607373 PMCID: PMC9121197 DOI: 10.3892/etm.2022.11352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/27/2021] [Indexed: 11/15/2022] Open
Abstract
In patients with diabetes, the Wnt/β-catenin pathway in vascular smooth muscle cells (VSMCs) is continuously activated by low-intensity inflammation, which leads to the osteoblastic differentiation of these cells and the deposition of calcium and phosphorus in blood vessels. The aim of the present study was to determine whether long intergenic non-coding RNA-erythroid pro-survival (lincRNA-EPS) was able to ameliorate vascular calcification (VC) associated with diabetes. VSMCs isolated from C57BL/6 mice were transfected with lincRNA-EPS overexpression vector in vitro and their osteoblastic differentiation was evaluated under high-glucose conditions. In addition, a mouse model of diabetes was established, which included a lincRNA-EPS knockout group and a lincRNA-EPS high expression group. Blood vessel samples from the mice were examined to determine the degree of calcification. The levels of inflammatory factors in serum were also detected. The VSMCs transfected with lincRNA-EPS overexpression vector exhibited less osteoblastic differentiation and migration and significantly lower levels of Wnt pathway-associated proteins than those transfected with empty control. Furthermore, the in vivo experiments revealed that the overexpression of lincRNA-EPS significantly reduced VC in diabetic mice. Therefore, on the basis of these findings, it is suggested that lincRNA-EPS overexpression may provide a novel and effective method for the treatment of VC in patients with diabetes.
Collapse
Affiliation(s)
- Yibo Li
- Department of Orthopedics, General Hospital of Central Theater Command (Hankou District), Wuhan, Hubei 430000, P.R. China
| | - Ziwei Xi
- School of Medical Sciences, Army Medical University, Chongqing 400038, P.R. China
| | - Zheng Yu
- Department of Hematoendocrinology, 32295 Army Hospital, Liaoyang, Liaoning 111000, P.R. China
| | - Chaoyue Yang
- School of Medical Sciences, Army Medical University, Chongqing 400038, P.R. China
| | - Chunhua Tan
- Department of Orthopedics, General Hospital of Central Theater Command (Hankou District), Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
14
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
15
|
Yan F, Huo Q, Zhang W, Wu T, Dilimulati D, Shi L. MiR-138-5p targets RUNX2 to inhibit osteogenic differentiation of aortic valve interstitial cells via Wnt/β-catenin signaling pathway. BMC Cardiovasc Disord 2022; 22:24. [PMID: 35109802 PMCID: PMC8811996 DOI: 10.1186/s12872-022-02471-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background Human aortic valve interstitial cells (hAVICs) are a key factor in the pathogenesis of calcific aortic valve disease (CAVD). This research examines the role and mechanism of microRNA miR-138-5p in osteogenic differentiation of hAVICs. Methods RT-qPCR analysis was applied for detecting miR-138-5p and RUNX2 expression in valve tissues of CAVD patients and controls. On completion of induction of osteogenic differentiation of hAVICs, and after overexpression or interference of miR-138-5p expression, the condition of osteogenic differentiation and calcification of hAVICs was confirmed using alkaline phosphatase staining and alizarin red staining. Subsequently, western blot was utilized to detect the expression of osteogenesis-related proteins OPN and ALP, and Wnt/β-catenin signaling pathway-related proteins. Finally, the relationship between miR-138-5p and RUNX2 was validated by dual-luciferase reporter assay and Pearson’s correlation test. Results Down-regulation of miR-138-5p was found in CAVD patients and during osteogenic differentiation of hAVICs. Overexpression of miR-138-5p contribute to the inhibition of osteoblast differentiation and calcium deposition in hAVICs, and of ALP and OPN protein expression. RUNX2 was a target gene of miR-138-5p, and it was negatively correlated with miR-138-5p in CAVD. Additionally, overexpression of RUNX2 could reverse the inhibitory effect of miR-138-5p on osteogenic differentiation of hAVICs. Conclusion miR-138-5p can act as a positive regulator of osteogenic differentiation in CAVD patients to involve in inhibiting valve calcification, which is achieved through RUNX2 and Wnt/β-catenin signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02471-6.
Collapse
Affiliation(s)
- Fei Yan
- Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Xinshi District, Urumqi, 830054, Xinjiang, China.
| | - Qiang Huo
- Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Weimin Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Tingting Wu
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Daniyaer Dilimulati
- Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Xinshi District, Urumqi, 830054, Xinjiang, China
| | - Lin Shi
- Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Xinshi District, Urumqi, 830054, Xinjiang, China
| |
Collapse
|
16
|
Ferrari S, Pesce M. The Complex Interplay of Inflammation, Metabolism, Epigenetics, and Sex in Calcific Disease of the Aortic Valve. Front Cardiovasc Med 2022; 8:791646. [PMID: 35071359 PMCID: PMC8770423 DOI: 10.3389/fcvm.2021.791646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Calcification of the aortic valve is one of the most rapidly increasing pathologies in the aging population worldwide. Traditionally associated to cardiovascular risk conditions, this pathology is still relatively unaddressed on a molecular/cellular standpoint and there are no available treatments to retard its progression unless valve substitution. In this review, we will describe some of the most involved inflammatory players, the metabolic changes that may be responsible of epigenetic modifications and the gender-related differences in the onset of the disease. A better understanding of these aspects and their integration into a unique pathophysiology context is relevant to improve current therapies and patients management.
Collapse
Affiliation(s)
- Silvia Ferrari
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| |
Collapse
|
17
|
Exploring potential genes and pathways related to calcific aortic valve disease. Gene 2022; 808:145987. [PMID: 34600049 DOI: 10.1016/j.gene.2021.145987] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Calcific aortic valve disease (CAVD) is currently the most prevalent valvular disease. However, the pathological mechanism of CAVD has not yet been fully elucidated, and no drugs can delay or halt the progression of CAVD. This study aimed to screen for potential biomarkers and pathways of CAVD through bioinformatics analysis. The identification of differentially expressed genes (DEGs) between calcific aortic valves and the control group was performed based on four microarray datasets: GSE12644, GSE51472, GSE77287 and GSE83453. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted. Furthermore, the protein-protein interaction network, and microRNA-target interaction was performed, and hub genes were obtained by using twelve cytoHubba algorithms. As a result, 327 DEGs were identified, including 206 up-regulated and 121 down-regulated genes. KEGG analysis showed that these DEGs were mainly enriched in the PI3K-AKT signaling pathway, ECM-receptor interaction, cytokine-cytokine receptor interaction, and chemokine signaling pathway etc. Moreover, we identified 19 hub genes: CXCL8, CXCL12, CSF1R, HCK, PLEK, CCL5, TLR8, VCAM1, CCR1, CCR7, FPR1, TYROBP, CX3CR1, KIT, PPBP, SPP1, SYK, TLR7, and VWF. And multiple potential miRNAs, including miR-141, miR-34a, miR-155, and miR-486, were identified. And western blot was performed to validate the expression level of hub genes. In conclusion, this study identified several promising biomarkers and pathways for CAVD, which may provide novel molecular markers for diagnosis and targeted therapy.
Collapse
|
18
|
Zhang C, Liu M, Wang X, Chen S, Fu X, Li G, Dong N, Shang X. Mechanism of CircANKRD36 regulating cell heterogeneity and endothelial mesenchymal transition in aortic valve stromal cells by regulating miR-599 and TGF-β signaling pathway. Int J Cardiol 2022; 352:104-114. [DOI: 10.1016/j.ijcard.2022.01.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 02/08/2023]
|
19
|
Walker CJ, Schroeder ME, Aguado BA, Anseth KS, Leinwand LA. Matters of the heart: Cellular sex differences. J Mol Cell Cardiol 2021; 160:42-55. [PMID: 34166708 PMCID: PMC8571046 DOI: 10.1016/j.yjmcc.2021.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Nearly all cardiovascular diseases show sexual dimorphisms in prevalence, presentation, and outcomes. Until recently, most clinical trials were carried out in males, and many animal studies either failed to identify the sex of the animals or combined data obtained from males and females. Cellular sex in the heart is relatively understudied and many studies fail to report the sex of the cells used for in vitro experiments. Moreover, in the small number of studies in which sex is reported, most of those studies use male cells. The observation that cells from males and females are inherently different is becoming increasingly clear - either due to acquired differences from hormones and other factors or due to intrinsic differences in genotype (XX or XY). Because of the likely contribution of cellular sex differences in cardiac health and disease, here, we explore differences in mammalian male and female cells in the heart, including the less-studied non-myocyte cell populations. We discuss how the heart's microenvironment impacts male and female cellular phenotypes and vice versa, including how secretory profiles are dependent on cellular sex, and how hormones contribute to sexually dimorphic phenotypes and cellular functions. Intracellular mechanisms that contribute to sex differences, including gene expression and epigenetic remodeling, are also described. Recent single-cell sequencing studies have revealed unexpected sex differences in the composition of cell types in the heart which we discuss. Finally, future recommendations for considering cellular sex differences in the design of bioengineered in vitro disease models of the heart are provided.
Collapse
Affiliation(s)
- Cierra J Walker
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80303, United States of America; Interdisciplinary Quantitative Biology, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Megan E Schroeder
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Brian A Aguado
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Kristi S Anseth
- Chemical and Biological Engineering Department, University of Colorado, Boulder, CO 80303, United States of America; BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303, United States of America; Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, United States of America.
| |
Collapse
|
20
|
Zhang J, Zhang Y, Gao J, Wang M, Li X, Cui Z, Fu G. Long Noncoding RNA Tug1 Promotes Angiotensin II-Induced Renal Fibrosis by Binding to Mineralocorticoid Receptor and Negatively Regulating MicroR-29b-3p. Hypertension 2021; 78:693-705. [PMID: 34333990 DOI: 10.1161/hypertensionaha.120.16395] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Juhong Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Yuqing Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China (Y.Z.)
| | - Jing Gao
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Meihui Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Xiaoting Li
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| | - Zhaoqiang Cui
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China (Z.C.)
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China (J.Z., J.G., M.W., X.L., G.F.)
| |
Collapse
|
21
|
Yang R, Tang Y, Chen X, Yang Y. Telocytes-derived extracellular vesicles alleviate aortic valve calcification by carrying miR-30b. ESC Heart Fail 2021; 8:3935-3946. [PMID: 34165260 PMCID: PMC8497371 DOI: 10.1002/ehf2.13460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS Calcific aortic valve disease (CAVD) is frequent in the elderly. Telocytes (TCs) are implicated in intercellular communication by releasing extracellular vesicles (EVs). This study investigated the role of TC-EVs in aortic valve calcification. METHODS AND RESULTS TCs were obtained and identified using enzymolysis method and flow cytometry. EVs were isolated from TCs using differential high-speed centrifugation method and identified using transmission electron microscope, western blot, and qNano analysis. The mouse model of CAVD was established. The changes of aortic valve activity-related indicators were analysed by ultrasound, and the expressions of TC markers CD34 and vimentin in mouse valve tissues were detected using RT-qPCR and western blot. The model mice were injected with TC-derived EVs. The expressions of Runx2, osteocalcin, and caspase-3 were detected using RT-qPCR and western blot. The calcification model of valvular interstitial cells (VICs) was established. TC-EVs were co-cultured with calcified VICs, and calcium deposition was detected using alizarin red S staining. miR-30b expression in calcified valvular tissues and cells was detected after EV treatment. miR-30b expression in TCs was knocked down and then EVs were extracted and co-cultured with calcified VICs. The target of miR-30b was predicted through bioinformatics website and verified using dual-luciferase assay. The levels of Wnt/β-catenin pathway-related proteins were detected. ApoE-/- mice fed with a high-fat diet showed decreased aortic valve orifice area, increased aortic transvalvular pressure difference and velocity, reduced left ventricular ejection fraction, decreased CD34 and vimentin, and increased caspase-3, Runx2, and osteocalcin. The levels of apoptosis- and osteogenesis- related proteins were inhibited after EV treatment. TC-EVs reduced calcium deposition and osteogenic proteins in calcified VICs. EVs could be absorbed by VICs. miR-30b expression was promoted in calcified valvular tissues and cells after EV treatment. Knockdown of miR-30b weakened the inhibitory effects of TC-EVs on calcium deposition and osteogenic proteins. miR-30b targeted Runx2. EV treatment inhibited the Wnt/β-catenin pathway, and knockdown of miR-30b in TCs attenuated the inhibitory effect of TC-EVs on the Wnt/β-catenin pathway. CONCLUSION TC-EVs played a protective role in aortic valve calcification via the miR-30b/Runx2/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Rong Yang
- Department of Rheumatology, The Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Yihu Tang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xiaowen Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Wang G, Wen Y, Chen S, Zhang G, Li M, Zhang S, Qi S, Feng W. Use of a panel of four microRNAs in CSF as a predicted biomarker for postoperative neoangiogenesis in moyamoya disease. CNS Neurosci Ther 2021; 27:908-918. [PMID: 33942536 PMCID: PMC8265944 DOI: 10.1111/cns.13646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION AND AIMS At present, the treatment for moyamoya disease (MMD) primarily consists of combined direct and indirect bypass surgery. Nevertheless, more than half of indirect bypass surgeries fail to develop good collaterals from the dura and temporal muscle. This study aimed to investigate whether microRNAs (miRNAs) in cerebrospinal fluid (CSF) could serve as biomarkers for the prediction of postoperative collateral formation. METHODS Moyamoya disease patients with indirect bypass surgery were divided into angiogenesis and non-angiogenesis groups, CSF was obtained, and miRNA sequencing was performed using the CSF. Candidate miRNAs were filtered and subsequently verified through qRT-PCR. The diagnostic utility of these differential miRNAs was investigated by using receiver operating characteristic (ROC) curve analysis. Finally, the potential biological processes and signaling pathways associated with candidate miRNAs were analyzed using R software. RESULTS The expression levels of four miRNAs (miR-92a-3p, miR-486-3p, miR-25-3p, and miR-155-5p) were significantly increased in the angiogenesis group. By combining these four miRNAs (area under the curve [AUC] =0.970), we established an accurate predictive model of collateral circulation after indirect bypass surgery in MMD patients. GO and KEGG analyses demonstrated a high correlation with biological processes and signaling pathways related to angiogenesis. CONCLUSION The 4-miRNA signature is a good model to predict angiogenesis after indirect bypass surgery and help the surgeon to select a appreciate bypass strategy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunyu Wen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Siyuan Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guozhong Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingzhou Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shichao Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenfeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Zhou Y, Chen X, Zhu Z, Bi D, Ma S. MiR-133a delivery to osteoblasts ameliorates mechanical unloading-triggered osteopenia progression in vitro and in vivo. Int Immunopharmacol 2021; 97:107613. [PMID: 33962226 DOI: 10.1016/j.intimp.2021.107613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 01/19/2023]
Abstract
Mechanical unloading-induced bone loss is a clinical challenge, and deep understanding for this disease is necessary for developing novel and effective therapies. MicroRNAs (miRNAs) are small non-coding RNAs, and involved in bone remodeling. In the study, we attempted to explore the potential of miR-133a in regulating osteoblast activation and its anti-osteopenia function both in vitro and in vivo. Our in vitro studies at first showed that miR-133a could significantly promote the expression of osteocalcin (OCN), Collagen I, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and osterix (Osx), promoting the activation and mineralization of osteoblasts. Then, hindlimb unloading (HU)-challenged mice were established with or without intravenous injection of agomir-miR-133a using an osteoblast-targeting delivery system. We found that miR-133a in osteoblasts significantly alleviated the bone loss, microstructural, and biomechanical property in mice with mechanical unloading, contributing to osteopenia alleviation. Furthermore, both in vitro and in vivo experiments showed that miR-133a could restrain osteoclastogenesis via tartrate-resistant acid phosphatase (TRAP) staining. In conclusion, our results suggested that miR-133a may be a promising factor in mediating the occurrence and progression of osteopenia caused by mechanical unloading, and thus targeting miR-133a could be considered as an effective therapeutic strategy for the suppression of pathological osteopenia.
Collapse
Affiliation(s)
- Youlong Zhou
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China.
| | - Xing Chen
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China
| | - Zemin Zhu
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China
| | - Daochi Bi
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China
| | - Shuyun Ma
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China
| |
Collapse
|
24
|
Yu C, Wu D, Zhao C, Wu C. CircRNA TGFBR2/MiR-25-3p/TWIST1 axis regulates osteoblast differentiation of human aortic valve interstitial cells. J Bone Miner Metab 2021; 39:360-371. [PMID: 33070258 DOI: 10.1007/s00774-020-01164-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Calcified aortic valve disease (CAVD) is characterized by valve thickening and calcification. Osteoblast differentiation is one of the key steps of valve calcification. CircRNAs is involved in osteogenic differentiation of multiple mesenchymal cells. However, the function of circRNA TGFBR2 (TGFBR2) in CAVD remained unclear. We explored the effect and mechanism of TGFBR2 in modulating CAVD. MATERIALS AND METHODS Human aortic valve interstitial cells (VICs) were subjected to osteogenic induction, and transfected with TGFBR2, miR-25-3p mimic and siTWIST1. The relationship between miR-25-3p and GFBR2 was predicted by starBase and confirmed by luciferase reporter and Person's correlation test. The relationship between miR-25-3p and TWIST1 was predicted by TargetScan and confirmed by luciferase reporter assay. The expressions of TGFBR2, miR-25-3p, TWIST1, osteoblast markers (RUNX2 and OPN) were detected by Western blot or/and qRT-PCR. Alkaline phosphatase (ALP) activity and calcium nodule was determined by colorimetric method and Alizarin Red S staining. RESULTS The expression of TGFBR2 was down-regulated and that of miR-25-3p was up-regulated in calcific valves and osteogenic VICs. TGFBR2 was inversely correlated with miR-25-3p expression in calcific valves. TGFBR2 sponged miR-25-3p to regulate TWIST1 expression in osteogenic VICs. During osteogenic differentiation, ALP activity, calcium nodule, the levels of osteoblast markers were increased in VICs. MiR-25-3p overexpression or TWIST1 knockdown reversed the inhibitory effect of TGFBR2 overexpression on ALP activity, calcium nodule, the expressions of RUNX2 and OPN in osteogenic VICs. CONCLUSION The findings indicated that TGFBR2/miR-25-3p/TWIST1 axis regulates osteoblast differentiation in VICs, supporting the fact that TGFBR2 is a miRNA sponge in CAVD.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Cardiac Surgery, Hainan General Hospital, No. 19, Xiuhua Road, Xiuying, Haikou, 570311, Hainan, China.
| | - Dannan Wu
- Department of Pharmacy, Hainan General Hospital, Haikou, 570311, Hainan, China
| | - Chong Zhao
- Department of English, School of Foreign Languages, Qiongtai Normal University, Haikou, 571127, Hainan, China
| | - Chaoguang Wu
- Department of Cardiac Surgery, Hainan General Hospital, No. 19, Xiuhua Road, Xiuying, Haikou, 570311, Hainan, China
| |
Collapse
|
25
|
Garcia J, Delany AM. MicroRNAs regulating TGFβ and BMP signaling in the osteoblast lineage. Bone 2021; 143:115791. [PMID: 33285257 PMCID: PMC7787082 DOI: 10.1016/j.bone.2020.115791] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
This review showcases miRNAs contributing to the regulation of bone forming osteoblasts through their effects on the TGFβ and BMP pathways, with a focus on ligands, receptors and SMAD-mediated signaling. The goal of this work is to provide a basis for broadly understanding the contribution of miRNAs to the modulation of TGFβ and BMP signaling in the osteoblast lineage, which may provide a rationale for potential therapeutic strategies. Therefore, the search strategy for this review was restricted to validated miRNA-target interactions within the canonical TGFβ and BMP signaling pathways; miRNA-target interactions based only bioinformatics are not presented. Specifically, this review discusses miRNAs targeting each of the TGFβ isoforms, as well as BMP2 and BMP7. Further, miRNAs targeting the signaling receptors TGFβR1 and TGFβR2, and those targeting the type 1 BMP receptors and BMPR2 are described. Lastly, miRNAs targeting the receptor SMADs, the common SMAD4 and the inhibitory SMAD7 are considered. Of these miRNAs, the miR-140 family plays a prominent role in inhibiting TGFβ signaling, targeting both ligand and receptor. Similarly, the miR-106 isoforms target both BMP2 and SMAD5 to inhibit osteoblastic differentiation. Many of the miRNAs targeting TGFβ and BMP signaling components are induced during fracture, mechanical unloading or estrogen deprivation. Localized delivery of miRNA-based therapeutics that modulate the BMP signaling pathway could promote bone formation.
Collapse
Affiliation(s)
- John Garcia
- Center for Molecular Oncology, UConn Health, Farmington, CT, 06030, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, CT, 06030, USA.
| |
Collapse
|
26
|
Abstract
Familial hypercholesterolemia (FH) is a rare autosomal gene deficiency disease with increased low-density lipoprotein cholesterol, xanthoma, and premature coronary heart disease. Calcified aortic valve disease (CAVD) is prevalent in FH patients, resulting in adverse events and heavy health care burden. Aortic valve calcification is currently considered an active biological process, which shares several common risk factors with atherosclerosis, including aging, hypertension, dyslipidemia, and so on. Unfortunately, the pathogenesis and therapy of CAVD in FH are still controversial. There is no pharmacological intervention recommended to delay the development of CAVD in FH, and the only effective treatment for severe CAVD is aortic valve replacement. In this review, we summarize the detailed description of the pathophysiology, molecular mechanism, risk factors, and treatment of CAVD in FH patients.
Collapse
|
27
|
Khan K, Yu B, Kiwan C, Shalal Y, Filimon S, Cipro M, Shum-Tim D, Cecere R, Schwertani A. The Role of Wnt/β-Catenin Pathway Mediators in Aortic Valve Stenosis. Front Cell Dev Biol 2020; 8:862. [PMID: 33015048 PMCID: PMC7513845 DOI: 10.3389/fcell.2020.00862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Aortic valve stenosis (AVS) is a prevailing and life-threatening cardiovascular disease in adults over 75 years of age. However, the molecular mechanisms governing the pathogenesis of AVS are yet to be fully unraveled. With accumulating evidence that Wnt signaling plays a key role in the development of AVS, the involvement of Wnt molecules has become an integral study target in AVS pathogenesis. Thus, we hypothesized that the Wnt/β-catenin pathway mediators, SFRP2, DVL2, GSK3β and β-catenin are dysregulated in patients with AVS. Using immunohistochemistry, Real-Time qPCR and Western blotting, we investigated the presence of SFRP2, GSK-3β, DVL2, and β-catenin in normal and stenotic human aortic valves. Markedly higher mRNA and protein expression of GSK-3β, DVL2, β-catenin and SFRP2 were found in stenotic aortic valves. This was further corroborated by observation of their abundant immunostaining, which displayed strong immunoreactivity in diseased aortic valves. Proteomic analyses of selective GSK3b inhibition in calcifying human aortic valve interstitial cells (HAVICs) revealed enrichment of proteins involved organophosphate metabolism, while reducing the activation of pathogenic biomolecular processes. Lastly, use of the potent calcification inhibitor, Fetuin A, in calcifying HAVICs significantly reduced the expression of Wnt signaling genes Wnt3a, Wnt5a, Wnt5b, and Wnt11. The current findings of altered expression of canonical Wnt signaling in AVS suggest a possible role for regulatory Wnts in AVS. Hence, future studies focused on targeting these molecules are warranted to underline their role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Kashif Khan
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Bin Yu
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Chrystina Kiwan
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Yousif Shalal
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Sabin Filimon
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Megan Cipro
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Dominique Shum-Tim
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Renzo Cecere
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Adel Schwertani
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
28
|
Fang M, Liu K, Li X, Wang Y, Li W, Li B. AntagomiR-29b inhibits vascular and valvular calcification and improves heart function in rats. J Cell Mol Med 2020; 24:11546-11557. [PMID: 32845082 PMCID: PMC7576293 DOI: 10.1111/jcmm.15770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023] Open
Abstract
We aimed to investigate the role of the miR‐29b and its effect on TGF‐β3 pathway in vascular and valvular calcification in a rat model of calcific aortic valve diseases (CAVD). A rat model of CAVD was established by administration of warfarin plus vitamin K. The expression levels of miR‐29b, osteogenic markers and other genes were determined by qRT‐PCR, Western blot and/or immunofluorescence and immunohistochemistry. The calcium content and alkaline phosphatase (ALP) activity were measured. The calcium content, ALP activity and osteogenic markers levels in calcified aorta and aortic valve were augmented compared to controls. The expression of miR‐29b, p‐Smad3, and Wnt3 and β‐catenin was significantly up‐regulated, whereas TGF‐β3 was markedly down‐regulated. However, compared with the CAVD model group, the calcium content and ALP activity in rats treated with antagomiR‐29b were significantly decreased, and antagomiR‐29b administration reversed the effects of CAVD model on the expression of miR‐29b and osteogenic markers. Inhibition of miR‐29b in CAVD rats prevented from vascular and valvular calcification and induced TGF‐β3 expression, suggesting that the miR‐29b/TGF‐β3 axis may play a regulatory role in the pathogenesis of vascular and valvular calcification and could play a significant role in the treatment of CAVD and other cardiovascular diseases.
Collapse
Affiliation(s)
- Ming Fang
- Department of Cardiology, Hainan General Hospital, Haikou, China.,Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Kangyong Liu
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xinming Li
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yudai Wang
- Department of Cardiology, Hainan General Hospital, Haikou, China
| | - Wei Li
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Bin Li
- Department of Cardiology, Hainan General Hospital, Haikou, China
| |
Collapse
|
29
|
Alushi B, Curini L, Christopher MR, Grubitzch H, Landmesser U, Amedei A, Lauten A. Calcific Aortic Valve Disease-Natural History and Future Therapeutic Strategies. Front Pharmacol 2020; 11:685. [PMID: 32477143 PMCID: PMC7237871 DOI: 10.3389/fphar.2020.00685] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the most frequent heart valve disorder. It is characterized by an active remodeling process accompanied with valve mineralization, that results in a progressive aortic valve narrowing, significant restriction of the valvular area, and impairment of blood flow.The pathophysiology of CAVD is a multifaceted process, involving genetic factors, chronic inflammation, lipid deposition, and valve mineralization. Mineralization is strictly related to the inflammatory process in which both, innate, and adaptive immunity are involved. The underlying pathophysiological pathways that go from inflammation to calcification and, finally lead to severe stenosis, remain, however, incompletely understood. Histopathological studies are limited to patients with severe CAVD and no samples are available for longitudinal studies of disease progression. Therefore, alternative routes should be explored to investigate the pathogenesis and progression of CAVD.Recently, increasing evidence suggests that epigenetic markers such as non-coding RNAs are implicated in the landscape of phenotypical changes occurring in CAVD. Furthermore, the microbiome, an essential player in several diseases, including the cardiovascular ones, has recently been linked to the inflammation process occurring in CAVD. In the present review, we analyze and discuss the CAVD pathophysiology and future therapeutic strategies, focusing on the real and putative role of inflammation, calcification, and microbiome.
Collapse
Affiliation(s)
- Brunilda Alushi
- Department of Cardiology, Charite´ Universitätsmedizin Berlin and German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of General and Interventional Cardiology, Helios Klinikum Erfurt, Erfurt, Germany
| | - Lavinia Curini
- Department of Cardiology, Charite´ Universitätsmedizin Berlin and German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Mary Roxana Christopher
- Department of Cardiology, Charite´ Universitätsmedizin Berlin and German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Herko Grubitzch
- Berlin Institute of Health, Berlin, Germany
- Department of Cardiology, German Heart Centre Berlin (DHZB), Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charite´ Universitätsmedizin Berlin and German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Firenze, Italy
- Sod of Interdisciplinary Internal Medicine, Azienda Ospedaliera Universitaria Careggi (AOUC), Florence, Italy
| | - Alexander Lauten
- Department of Cardiology, Charite´ Universitätsmedizin Berlin and German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of General and Interventional Cardiology, Helios Klinikum Erfurt, Erfurt, Germany
| |
Collapse
|
30
|
Gupta SK, Kumari S, Singh S, Barthwal MK, Singh SK, Thum T. Non-coding RNAs: Regulators of valvular calcification. J Mol Cell Cardiol 2020; 142:14-23. [PMID: 32247640 DOI: 10.1016/j.yjmcc.2020.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
There is currently a growing global burden of valvular heart diseases due to aging populations and changing lifestyles. Valvular heart diseases mainly include the malfunctioning of aortic and mitral valves and are characterized by extensive tissue remodeling, which includes calcification, endothelial dysfunction, and endothelial-mesenchymal transition. These valvular remodeling processes are known to be regulated by protein-coding genes as well as non-coding genes. Here, we have summarized studies highlighting the non-coding RNA mediated regulation of valvular tissue remodeling and their potential therapeutic benefits. Additionally, studies investigating the diagnostic capability of circulating non-coding RNA molecules in valvular diseases are also summarized. Overall, of the various candidates, several studies have highlighted miR-214 and miR-204 as central regulators of valvular calcification.
Collapse
Affiliation(s)
- Shashi Kumar Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| | - Sunaina Kumari
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sandhya Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Sushil Kumar Singh
- Department of Cardiovascular & Thoracic Surgery, King George Medical University, Lucknow, India
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| |
Collapse
|
31
|
Jiao W, Zhang D, Wang D, Xu R, Tang L, Zhao M, Xu R. MicroRNA-638 inhibits human aortic valve interstitial cell calcification by targeting Sp7. J Cell Mol Med 2019; 23:5292-5302. [PMID: 31140727 PMCID: PMC6653209 DOI: 10.1111/jcmm.14405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a complex heart valve disease involving a wide range of pathological changes. Emerging evidence indicates that osteogenic differentiation of human aortic valve interstitial cells (hAVICs) plays a key role in valve calcification. In this study, we aimed to investigate the function of miR-638 in hAVICs osteogenesis. Both miRNA microarray assay and qRT-PCR results demonstrating miR-638 was obviously up-regulated in calcific aortic valves compared with non-calcific valves. We also proved that miR-638 was significantly up-regulated during hAVICs osteogenic differentiation. Overexpression of miR-638 suppressed osteogenic differentiation of hAVICs in vitro, whereas down-regulation of miR-638 enhance the process. Target prediction analysis and dual-luciferase reporter assay confirmed that Sp7 transcription factor (Sp7) was a direct target of miR-638. Furthermore, knockdown of Sp7 inhibited osteogenic differentiation of hAVICs, which is similar to the results observed in up-regulation miR-638. Our data indicated that miR-638 plays an inhibitory role in hAVICs osteogenic differentiation, which may act by targeting Sp7. MiR-638 may be a potential therapeutic target for CAVD.
Collapse
Affiliation(s)
- Wenjie Jiao
- Department of Thoracic SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Dongyang Zhang
- Department of Thoracic SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Dong Wang
- Department of Thoracic SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Rongwei Xu
- Department of Vascular SurgeryShandong Provincial Qianfoshan Hospital, Shandong UniversityJinanChina
| | - Linna Tang
- Department of Hospital Infection ControlShandong Provincial Qianfoshan Hospital, Shandong UniversityJinanChina
| | - Min Zhao
- Center of Laboratory MedicineQilu Hospital of Shandong University (Qingdao)QingdaoChina
| | - Rongjian Xu
- Department of Thoracic SurgeryThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
32
|
Zheng D, Zang Y, Xu H, Wang Y, Cao X, Wang T, Pan M, Shi J, Li X. MicroRNA-214 promotes the calcification of human aortic valve interstitial cells through the acceleration of inflammatory reactions with activated MyD88/NF-κB signaling. Clin Res Cardiol 2018; 108:691-702. [PMID: 30519780 DOI: 10.1007/s00392-018-1398-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
Calcific aortic valve disease (CAVD) is a complex active process involving in endothelial injury, lipid infiltration, chronic inflammation, matrix remodeling, cell differentiation, progressive bone formation, and new angiogenesis. The excess inflammatory responses induced by aortic valve interstitial cells (AVICs) are one of the common pathogeneses of this disease. Although many microRNAs (miRs) have been identified to play crucial roles in the calcification process of the aortic valve, numerous miRs are still waiting to be explored. In this study, we explored the functional role of miR-214 in the inflammatory reaction and calcification of human AVICs and its underlying molecular mechanism. Alizarin red staining was used to determine the number of calcified nodules. The protein levels of ICAM-1, IL-6, IL-8, and MCP-1 detected by enzyme-linked immunosorbent assay (ELISA) were used to assess the inflammatory reaction of AVICs; expression levels of RUNX2, Msx2, and BMP2 were used to evaluate AVICs osteoblast differentiation. Results showed that the expression levels of TLR4, MyD88, NF-κB, and miR-214 were up-regulated in the blood and aortic valve tissue samples of patients with CAVD when compared with normal individuals. Knockdown of miR-214 in AVICs inhibited the secretion of IL-6, IL-8, ICAM-1, and MCP-1, while this effect was repressed when lipopolysaccharide (LPS) was added to AVICs. LPS also enhanced the effects of miR-214 in promoting the secretion of pro-inflammatory factors. Besides, up-regulation of miR-214 promoted the protein expression of MyD88 and NF-κB but had no influence on TLR4, and miR-214 could directly combine with MyD88 protein. Up-regulation of MyD88 facilitated the secretion of pro-inflammatory factors and increased calcified nodules number and accelerated the expression of RUNX2, Msx2, and BMP2. Moreover, promotion of the expressions of pro-inflammatory factors and "osteoblast-like" cell markers induced by miR-214 overexpression was abolished when MyD88 was down-regulated in AVICs. In conclusion, this study revealed that miR-214 promoted calcification by facilitating inflammatory reaction through MyD88/NF-κB signaling pathway in AVICs.
Collapse
Affiliation(s)
- Dongdong Zheng
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Yue Zang
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Haixia Xu
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Yan Wang
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Xiang Cao
- Department of Cardio-Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Teng Wang
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Min Pan
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Jiahai Shi
- Department of Cardio-Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiaofei Li
- Department of Cardiology, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
33
|
Gilham D, Tsujikawa LM, Sarsons CD, Halliday C, Wasiak S, Stotz SC, Jahagirdar R, Sweeney M, Johansson JO, Wong NCW, Kalantar-Zadeh K, Kulikowski E. Apabetalone downregulates factors and pathways associated with vascular calcification. Atherosclerosis 2018; 280:75-84. [PMID: 30476723 DOI: 10.1016/j.atherosclerosis.2018.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Apabetalone is an inhibitor of bromodomain and extraterminal (BET) proteins. In clinical trials, apabetalone reduced the incidence of major adverse cardiac events (MACE) in patients with cardiovascular disease and reduced circulating factors that promote vascular calcification (VC). Because VC contributes to MACE, effects of apabetalone on pro-calcific processes were examined. METHODS AND RESULTS Apabetalone inhibited extracellular calcium deposition and opposed induction of transdifferentiation markers in human coronary artery vascular smooth muscle cells (VSMCs) under osteogenic culture conditions. Tissue-nonspecific alkaline phosphatase (TNAP) is a key contributor to VC, and apabetalone suppressed osteogenic induction of the mRNA, protein and enzyme activity. The liver is a major source of circulating TNAP, and apabetalone also downregulated TNAP expression in primary human hepatocytes. BRD4, a transcriptional regulator and target of apabetalone, has been linked to calcification. Osteogenic transdifferentiation of VSMCs resulted in disassembly of 100 BRD4-rich enhancers, with concomitant enlargement of remaining enhancers. Apabetalone reduced the size of BRD4-rich enhancers, consistent with disrupting BRD4 association with chromatin. 38 genes were uniquely associated with BRD4-rich enhancers in osteogenic conditions; 11 were previously associated with calcification. Apabetalone reduced levels of BRD4 on many of these enhancers, which correlated with decreased expression of the associated gene. Bioinformatics revealed BRD4 may cooperate with 7 specific transcription factors to promote transdifferentiation and calcification. CONCLUSIONS Apabetalone counters transdifferentiation and calcification of VSMCs via an epigenetic mechanism involving specific transcription factors. The mechanistic findings, combined with evidence from clinical trials, support further development of apabetalone as a therapeutic for VC.
Collapse
|
34
|
Fang M, Wang C, Zheng C, Luo J, Hou S, Liu K, Li X. Mir-29b promotes human aortic valve interstitial cell calcification via inhibiting TGF-β3 through activation of wnt3/β-catenin/Smad3 signaling. J Cell Biochem 2018; 119:5175-5185. [PMID: 29227539 PMCID: PMC6001435 DOI: 10.1002/jcb.26545] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/30/2017] [Indexed: 01/08/2023]
Abstract
Herein, we hypothesized that pro-osteogenic MicroRNAs (miRs) could play functional roles in the calcification of the aortic valve and aimed to explore the functional role of miR-29b in the osteoblastic differentiation of human aortic valve interstitial cells (hAVICs) and the underlying molecular mechanism. Osteoblastic differentiation of hAVICs isolated from human calcific aortic valve leaflets obtained intraoperatively was induced with an osteogenic medium. Alizarin red S staining was used to evaluate calcium deposition. The protein levels of osteogenic markers and other proteins were evaluated using western blotting and/or immunofluorescence while qRT-PCR was applied for miR and mRNA determination. Bioinformatics and luciferase reporter assay were used to identify the possible interaction between miR-29b and TGF-β3. Calcium deposition and the number of calcification nodules were pointedly and progressively increased in hAVICs during osteogenic differentiation. The levels of osteogenic and calcification markers were equally increased, thus confirming the mineralization of hAVICs. The expression of miR-29b was significantly increased during osteoblastic differentiation. Furthermore, the osteoblastic differentiation of hAVICs was significantly inhibited by the miR-29b inhibition. TGF-β3 was markedly downregulated while Smad3, Runx2, wnt3, and β-catenin were significantly upregulated during osteogenic induction at both the mRNA and protein levels. These effects were systematically induced by miR-29b overexpression while the inhibition of miR-29b showed the inverse trends. Moreover, TGF-β3 was a direct target of miR-29b. Inhibition of miR-29b hinders valvular calcification through the upregulation of the TGF-β3 via inhibition of wnt/β-catenin and RUNX2/Smad3 signaling pathways.
Collapse
Affiliation(s)
- Ming Fang
- Department of CardiologyHainan General HospitalHaikouHainanP.R. China
- Department of CardiologyShanghai Zhoupu HospitalShanghaiP.R. China
| | - Cheng‐Guang Wang
- Laboratory of System BiologyShanghai Advanced Research InstituteChinese Academy of SciencesShanghaiP.R. China
| | - Changzhu Zheng
- Department of CardiologyShanghai Zhoupu HospitalShanghaiP.R. China
| | - Jun Luo
- Department of CardiologyShanghai Zhoupu HospitalShanghaiP.R. China
| | - Shiqiang Hou
- Department of CardiologyShanghai Zhoupu HospitalShanghaiP.R. China
| | - Kangyong Liu
- Department of NeurologyShanghai Zhoupu HospitalShanghaiP.R. China
| | - Xinming Li
- Department of CardiologyShanghai Zhoupu HospitalShanghaiP.R. China
| |
Collapse
|