1
|
Ljubić A, Dinić M, Švraka D, Vujović S. Dual-Double Stem Cell Ovarian Therapy: A Comprehensive Approach in Regenerative Medicine. Int J Mol Sci 2024; 26:69. [PMID: 39795929 PMCID: PMC11719681 DOI: 10.3390/ijms26010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 01/13/2025] Open
Abstract
Dual-double stem cell therapy, which integrates mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), represents a cutting-edge approach in regenerative medicine, particularly for conditions such as ovarian decline, premature ovarian insufficiency (POI), and induced ovarian failure. This therapy leverages the unique properties of MSCs and HSCs, enhancing tissue repair, immune modulation, and overall regenerative outcomes. MSCs, known for their ability to differentiate into various cell types, provide a supportive microenvironment and secrete bioactive molecules that promote angiogenesis and reduce inflammation. HSCs, crucial for hematopoiesis and immune function, further enhance this environment by supporting hematopoietic processes and immune regulation. Clinical evidence increasingly supports the effectiveness of stem cell therapy in ovarian regeneration. Studies have demonstrated improved folliculogenesis, normalization of hormone profiles, and successful pregnancies in patients with POI. Furthermore, recent clinical trials in various medical fields underline the superior potential of dual-double therapy compared to monotherapies involving MSCs or HSCs alone, enhancing tissue repair and functional outcomes. However, despite these benefits, the therapy presents risks that require careful consideration. For autologous MSC therapy involving expanded cell populations, risks include tumorigenic potential, with evidence of sarcoma formation in certain cases of cultured MSCs. In contrast, autologous non-expanded MSC and HSC therapies may be limited by low cell yields, potentially compromising therapeutic efficacy. Additionally, non-expanded HSC therapy poses risks of insufficient cell numbers for successful engraftment and delayed immune reconstitution. These considerations underscore the importance of quality control and rigorous screening to optimize safety and efficacy. This article explores the mechanisms of action, clinical applications, and potential complications of dual-double stem cell therapy, underscoring the need for continued research and optimized protocols to enhance safety and outcomes in ovarian insufficiency and related conditions, offering new hope for affected women.
Collapse
Affiliation(s)
- Aleksandar Ljubić
- Pronatal Hospital, 11000 Belgrade, Serbia;
- Academy of Sciences and Arts of Bosnia and Herzegovina, 71000 Sarajevo, Bosnia and Herzegovina
- Medigroup Health System, Dubrovnik International University, 20000 Dubrovnik, Croatia
| | - Marija Dinić
- Department of Therapeutic Apheresis, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | | | - Svetlana Vujović
- Clinic of Endocrinology, Diabetes and Diseases of National Center for Infertility and Endocrinology of Gender, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Xu C, Xie Y, Wang B. Genetically modified mesenchymal stromal cells: a cell-based therapy offering more efficient repair after myocardial infarction. Stem Cell Res Ther 2024; 15:323. [PMID: 39334266 PMCID: PMC11438184 DOI: 10.1186/s13287-024-03942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Myocardial infarction (MI) is a serious complication of coronary artery disease. This condition is common worldwide and has a profound impact on patients' lives and quality of life. Despite significant advances in the treatment of heart disease in modern medicine, the efficient treatment of MI still faces a number of challenges. Problems such as scar formation and loss of myocardial function after a heart attack still limit patients' recovery. Therefore, the search for a new therapeutic tool that can promote repair and regeneration of myocardial tissue has become crucial. In this context, mesenchymal stromal cells (MSCs) have attracted much attention as a potential therapeutic tool. MSCs are a class of adult stem cells with multidirectional differentiation potential, derived from bone marrow, fat, placenta and other tissues, and possessing properties such as self-renewal and immunomodulation. The application of MSCs may provide a new direction for the treatment of MI. These stem cells have the potential to differentiate into cardiomyocytes and vascular endothelial cells in damaged tissue and to repair and protect myocardial tissue through anti-inflammatory, anti-fibrotic and pro-neovascularization mechanisms. However, the clinical results of MSCs transplantation for the treatment of MI are less satisfactory due to the limitations of the native function of MSCs. Genetic modification has overcome problems such as the low survival rate of transplanted MSCs in vivo and enhanced their functions of promoting neovascularization and differentiation into cardiomyocytes, paving the way for them to become an effective tool for repair therapy after MI. In previous studies, MSCs have shown some therapeutic potential in experimental animals and preliminary clinical trials. This review aims to provide readers with a comprehensive and in-depth understanding to promote the wider application of engineering MSCs in the field of MI therapy, offering new hope for recovery and improved survival of cardiac patients.
Collapse
Affiliation(s)
- Congwang Xu
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese, Medicine321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese, Medicine321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, People's Republic of China.
| |
Collapse
|
3
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
4
|
Tran T, Cruz C, Chan A, Awad S, Rajasingh J, Deth R, Gurusamy N. Mesenchymal Stem Cell-Derived Long Noncoding RNAs in Cardiac Injury and Repair. Cells 2023; 12:2268. [PMID: 37759491 PMCID: PMC10527806 DOI: 10.3390/cells12182268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Cardiac injury, such as myocardial infarction and heart failure, remains a significant global health burden. The limited regenerative capacity of the adult heart poses a challenge for restoring its function after injury. Mesenchymal stem cells (MSCs) have emerged as promising candidates for cardiac regeneration due to their ability to differentiate into various cell types and secrete bioactive molecules. In recent years, attention has been given to noncoding RNAs derived from MSCs, particularly long noncoding RNAs (lncRNAs), and their potential role in cardiac injury and repair. LncRNAs are RNA molecules that do not encode proteins but play critical roles in gene regulation and cellular responses including cardiac repair and regeneration. This review focused on MSC-derived lncRNAs and their implications in cardiac regeneration, including their effects on cardiac function, myocardial remodeling, cardiomyocyte injury, and angiogenesis. Understanding the molecular mechanisms of MSC-derived lncRNAs in cardiac injury and repair may contribute to the development of novel therapeutic strategies for treating cardiovascular diseases. However, further research is needed to fully elucidate the potential of MSC-derived lncRNAs and address the challenges in this field.
Collapse
Affiliation(s)
- Talan Tran
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Claudia Cruz
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Anthony Chan
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Salma Awad
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, TN 38163, USA
| | - Richard Deth
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
5
|
Liu Y, Wang M, Yu Y, Li C, Zhang C. Advances in the study of exosomes derived from mesenchymal stem cells and cardiac cells for the treatment of myocardial infarction. Cell Commun Signal 2023; 21:202. [PMID: 37580705 PMCID: PMC10424417 DOI: 10.1186/s12964-023-01227-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/12/2023] [Indexed: 08/16/2023] Open
Abstract
Acute myocardial infarction has long been the leading cause of death in coronary heart disease, which is characterized by irreversible cardiomyocyte death and restricted blood supply. Conventional reperfusion therapy can further aggravate myocardial injury. Stem cell therapy, especially with mesenchymal stem cells (MSCs), has emerged as a promising approach to promote cardiac repair and improve cardiac function. MSCs may induce these effects by secreting exosomes containing therapeutically active RNA, proteins and lipids. Notably, normal cardiac function depends on intracardiac paracrine signaling via exosomes, and exosomes secreted by cardiac cells can partially reflect changes in the heart during disease, so analyzing these vesicles may provide valuable insights into the pathology of myocardial infarction as well as guide the development of new treatments. The present review examines how exosomes produced by MSCs and cardiac cells may influence injury after myocardial infarction and serve as therapies against such injury. Video Abstract.
Collapse
Affiliation(s)
- Yuchang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Minrui Wang
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yang Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Nucleic Acids in Medicine for National High-Level Talents, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Gowdak LHW, Schettert IT, Rochitte CE, de Carvalho LP, Vieira MLC, Dallan LAO, de Oliveira SA, César LAM, Brito JOR, Guarita-Souza LC, de Carvalho ACC, Krieger JE. Additional improvement in regional myocardial ischemia after intracardiac injection of bone marrow cells during CABG surgery. Front Cardiovasc Med 2023; 10:1040188. [PMID: 36824456 PMCID: PMC9941147 DOI: 10.3389/fcvm.2023.1040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Background Post-procedure residual ischemia is associated with worse prognosis in patients with coronary artery diasease (CAD). Objective We evaluated whether autologous bone marrow-derived cells (BMC) contribute to additional reduction in regional stress-induced myocardial ischemia (SIMI) in patients undergoing incomplete coronary artery bypass graft surgery (CABG). Methods In a double-blind, randomized, placebo-controlled trial, we enrolled 143 patients (82% men, 58 ± 11 years) with stable CAD and not candidates for complete CABG. They received 100 million BMC (n = 77) or placebo (n = 66) injected into ischemic non-revascularized segments during CABG. The primary outcome was improvement on SIMI quantified as the area at risk in injected segments assessed by cardiovascular magnetic resonance (CMR) 1, 6, and 12 months after CABG. Results The reduction in global SIMI after CABG was comparable (p = 0.491) in both groups indicating sustained beneficial effects of the surgical procedure over 12 month period. In contrast, we observed additional improvement in regional SIMI in BMC treated group (p = 0.047). Baseline regional SIMI values were comparable [18.5 (16.2-21.0) vs. 18.5 (16.5-20.7)] and reached the lowest values at 1 month [9.74 (8.25; 11.49) vs. 12.69 (10.84; 14.85)] for BMC and placebo groups, respectively. The ischemia's improvement from baseline represented a 50% difference in regional SIMI in favor of the BMC transplanted group at 30 days. We found no differences in clinical and LVEF% between groups during the 12 month follow-up period. The 1 month rate of major adverse cerebral and cardiovascular events (MACCE) (p = 0.34) and all-cause mortality (p = 0.08) did not differ between groups 1 month post intervention. Conclusion We provided evidence that BMC leads to additional reduction in regional SIMI in chronic ischemic patients when injected in segments not subjected to direct surgical revascularization. This adjuvant therapy deserves further assessment in patients with advanced CAD especially in those with microcirculation dysfunction. Clinical trial registration https://clinicaltrials.gov/, identifier NCT01727063.
Collapse
Affiliation(s)
- Luís Henrique Wolff Gowdak
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor-HCFMUSP), University of São Paulo Medical School, São Paulo, Brazil
| | - Isolmar Tadeu Schettert
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor-HCFMUSP), University of São Paulo Medical School, São Paulo, Brazil
| | - Carlos Eduardo Rochitte
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor-HCFMUSP), University of São Paulo Medical School, São Paulo, Brazil
| | - Leonardo P. de Carvalho
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor-HCFMUSP), University of São Paulo Medical School, São Paulo, Brazil
| | - Marcelo Luiz Campos Vieira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor-HCFMUSP), University of São Paulo Medical School, São Paulo, Brazil
| | - Luís Alberto Oliveira Dallan
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor-HCFMUSP), University of São Paulo Medical School, São Paulo, Brazil
| | - Sérgio Almeida de Oliveira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor-HCFMUSP), University of São Paulo Medical School, São Paulo, Brazil
| | - Luiz Antonio Machado César
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor-HCFMUSP), University of São Paulo Medical School, São Paulo, Brazil
| | - José Oscar Reis Brito
- Department of Cardiovascular Surgery, National Institute of Cardiology, Rio de Janeiro, Brazil
| | - Luiz César Guarita-Souza
- Department of Cardiovascular Surgery, Pontifical Catholic University of Paraná, Curitiba, Brazil
| | - Antonio Carlos Campos de Carvalho
- Cell Technology Center, National Institute of Cardiology, Rio de Janeiro, Brazil,Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor-HCFMUSP), University of São Paulo Medical School, São Paulo, Brazil,*Correspondence: Jose Eduardo Krieger,
| |
Collapse
|
7
|
Mu L, Dong R, Guo B. Biomaterials-Based Cell Therapy for Myocardial Tissue Regeneration. Adv Healthc Mater 2022; 12:e2202699. [PMID: 36572412 DOI: 10.1002/adhm.202202699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/11/2022] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) have been the leading cause of death worldwide during the past several decades. Cell loss is the main problem that results in cardiac dysfunction and further mortality. Cell therapy aiming to replenish the lost cells is proposed to treat CVDs especially ischemic heart diseases which lead to a big portion of cell loss. Due to the direct injection's low cell retention and survival ratio, cell therapy using biomaterials as cell carriers has attracted more and more attention because of their promotion of cell delivery and maintenance at the aiming sites. In this review, the three main factors involved in cell therapy for myocardial tissue regeneration: cell sources (somatic cells, stem cells, and engineered cells), chemical components of cell carriers (natural materials, synthetic materials, and electroactive materials), and categories of cell delivery materials (patches, microspheres, injectable hydrogels, nanofiber and microneedles, etc.) are systematically summarized. An introduction of the methods including magnetic resonance/radionuclide/photoacoustic and fluorescence imaging for tracking the behavior of transplanted cells in vivo is also included. Current challenges of biomaterials-based cell therapy and their future directions are provided to give both beginners and professionals a clear view of the development and future trends in this area.
Collapse
Affiliation(s)
- Lei Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruonan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China.,State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
8
|
Wang Y, Xue Y, Guo HD. Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction. Front Pharmacol 2022; 13:1013740. [PMID: 36330092 PMCID: PMC9622800 DOI: 10.3389/fphar.2022.1013740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are the leading cause of global mortality, in which myocardial infarction accounts for 46% of total deaths. Although good progress has been achieved in medication and interventional techniques, a proven method to repair the damaged myocardium has not yet been determined. Stem cell therapy for damaged myocardial repair has evolved into a promising treatment for ischemic heart disease. However, low retention and poor survival of the injected stem cells are the major obstacles to achieving the intended therapeutic effects. Chinese botanical and other natural drug substances are a rich source of effective treatment for various diseases. As such, numerous studies have revealed the role of Chinese medicine in stem cell therapy for myocardial infarction treatment, including promoting proliferation, survival, migration, angiogenesis, and differentiation of stem cells. Here, we discuss the potential and limitations of stem cell therapy, as well as the regulatory mechanism of Chinese medicines underlying stem cell therapy. We focus on the evidence from pre-clinical trials and clinical practices, and based on traditional Chinese medicine theories, we further summarize the mechanisms of Chinese medicine treatment in stem cell therapy by the commonly used prescriptions. Despite the pre-clinical evidence showing that traditional Chinese medicine is helpful in stem cell therapy, there are still some limitations of traditional Chinese medicine therapy. We also systematically assess the detailed experimental design and reliability of included pharmacological research in our review. Strictly controlled animal models with multi-perspective pharmacokinetic profiles and high-grade clinical evidence with multi-disciplinary efforts are highly demanded in the future.
Collapse
Affiliation(s)
- Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuezhen Xue
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hai-dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Ma J, Lei P, Chen H, Wang L, Fang Y, Yan X, Yang Q, Peng B, Jin L, Sun D. Advances in lncRNAs from stem cell-derived exosome for the treatment of cardiovascular diseases. Front Pharmacol 2022; 13:986683. [PMID: 36147326 PMCID: PMC9486024 DOI: 10.3389/fphar.2022.986683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality globally. Benefiting from the advantages of early diagnosis and precision medicine, stem cell-based therapies have emerged as promising treatment options for CVDs. However, autologous or allogeneic stem cell transplantation imposes a potential risk of immunological rejection, infusion toxicity, and oncogenesis. Fortunately, exosome can override these limitations. Increasing evidence has demonstrated that long non-coding RNAs (lncRNAs) in exosome from stem cell paracrine factors play critical roles in stem cell therapy and participate in numerous regulatory processes, including transcriptional silencing, transcriptional activation, chromosome modification, and intranuclear transport. Accordingly, lncRNAs can treat CVDs by directly acting on specific signaling pathways. This mini review systematically summarizes the key regulatory actions of lncRNAs from different stem cells on myocardial aging and apoptosis, ischemia-reperfusion injury, retinopathy, atherosclerosis, and hypertension. In addition, the current challenges and future prospects of lncRNAs treatment for CVDs are discussed.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Xiaoqing Yan
- Department of Pharmacy, Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
- *Correspondence: Da Sun, ; Libo Jin,
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
- *Correspondence: Da Sun, ; Libo Jin,
| |
Collapse
|
10
|
Fang CN, Tan HQ, Song AB, Jiang N, Liu QR, Song T. NGF/TrkA promotes the vitality, migration and adhesion of bone marrow stromal cells in hypoxia by regulating the Nrf2 pathway. Metab Brain Dis 2022; 37:2017-2026. [PMID: 35579787 DOI: 10.1007/s11011-022-00974-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Bone marrow stromal cells (BMSCs) transplantation is a treatment strategy for ischemic stroke (IS) with great potential. However, the vitality, migration and adhesion of BMSCs are greatly impaired due to the harsh environment of the ischemic area, which affects the therapeutic effects. Herein, we aimed to investigate the roles of nerve growth factor (NGF) in regulating cell behaviors of BMSCs in IS. METHODS The mRNA and protein expressions were assessed using qRT-PCR and western blot, respectively. To simulate ischemic-like conditions in vitro, Brain microvascular (bEnd.3) cells were exposed to oxygen and glucose deprivation (OGD). Cell viability and cell proliferation were evaluated by MTT assay and BrdU assay, respectively. Transwell migration and cell adhesion assays were carried out to determine cell migration and adhesion of BMSCs, respectively, coupled with flow cytometry to evaluate cell apoptosis of bEnd.3 cells. Finally, angiogenesis assay was performed to assess the angiogenesis ability of bEnd.3 cells. RESULTS NGF overexpression resulted in increased cell vitality, adhesion and migration of BMSCs, while NGF knockdown presented the opposite effects. We subsequently discovered that TrkA was a receptor for NGF, and TrkA knockdown significantly inhibited the cell viability, migration and adhesion of BMSCs. Besides, Nrf2 was confirmed as the downstream target of NGF/TrkA to promote the viability, adhesion and migration of BMSC cells. Finally, NGF-silenced BMSCs could not effectively restore the OGD-induced brain microvascular cell damage. CONCLUSIONS NGF/TrkA promoted the viability, migration and adhesion of BMSCs in IS via activating Nrf2 pathway.
Collapse
Affiliation(s)
- Cui-Ni Fang
- Department of Rehabilitation, Hunan Provincial People's Hospital (the first-affiliated Hospital of Hunan normal University), No.89, Guhan Road, Furong District, 410000, Changsha, Hunan Province, P.R. China
| | - Hai-Qun Tan
- Department of Rehabilitation, Hunan Provincial People's Hospital (the first-affiliated Hospital of Hunan normal University), No.89, Guhan Road, Furong District, 410000, Changsha, Hunan Province, P.R. China
| | - Ao-Bo Song
- Department of Rehabilitation, Hunan Provincial People's Hospital (the first-affiliated Hospital of Hunan normal University), No.89, Guhan Road, Furong District, 410000, Changsha, Hunan Province, P.R. China
| | - Ni Jiang
- Department of Rehabilitation, Hunan Provincial People's Hospital (the first-affiliated Hospital of Hunan normal University), No.89, Guhan Road, Furong District, 410000, Changsha, Hunan Province, P.R. China
| | - Qian-Rong Liu
- Department of Rehabilitation, Hunan Provincial People's Hospital (the first-affiliated Hospital of Hunan normal University), No.89, Guhan Road, Furong District, 410000, Changsha, Hunan Province, P.R. China
| | - Tao Song
- Department of Rehabilitation, Hunan Provincial People's Hospital (the first-affiliated Hospital of Hunan normal University), No.89, Guhan Road, Furong District, 410000, Changsha, Hunan Province, P.R. China.
| |
Collapse
|
11
|
Gong M, Wang M, Xu J, Yu B, Wang YG, Liu M, Ashraf M, Xu M. Nano-Sized Extracellular Vesicles Secreted from GATA-4 Modified Mesenchymal Stem Cells Promote Angiogenesis by Delivering Let-7 miRNAs. Cells 2022; 11:1573. [PMID: 35563879 PMCID: PMC9104414 DOI: 10.3390/cells11091573] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/15/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
We demonstrated previously that extracellular vesicles (EVs) released from mesenchymal stem cells (MSCs) play a critical role in angiogenesis. Here, we examine whether this pro-angiogenic efficacy is enhanced in EVs derived from MSCs overexpressing GATA-4 (MSCGATA-4). Methods and Results. EVs were isolated from MSCGATA-4 (EVGATA-4) and control MSCs transduced with an empty vector (EVnull). EVs from both cell types were of the same size and displayed similar molecular markers. Compared with EVnull, EVGATA-4 increased both a tube-like structure formation and spheroid-based sprouting of human umbilical vein endothelial cells (HUVECs). The EVGATA-4 increased the numbers of CD31-positive cells and hemoglobin content inside Matrigel plugs subcutaneously transplanted into mice for 2 weeks. Moreover, EVGATA-4 encapsulated higher levels of let-7 family miRs compared to EVnull. The transfer of exosomal let-7 miRs into HUVECs was recorded with an accompanied down-regulation of thrombospondin-1 (THBS1) expression, a major endogenous angiogenesis inhibitor. The loss-and-gain of function studies of let-7 miRs showed that let-7f knockdown significantly decreased EVGATA-4-mediated vascularization inside Matrigel plugs. In contrast, let-7f overexpression promoted HUVEC migration and tube formation. Conclusion. Our results indicate that EVs derived from genetically modified MSCs with GATA-4 overexpression had increased pro-angiogenic capacity due to the delivery of let-7 miRs that targeted THBS1 in endothelial cells.
Collapse
Affiliation(s)
- Min Gong
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (M.G.); (M.W.); (J.X.); (B.Y.); (Y.-G.W.); (M.L.)
- Department of Neonatology, Children’s Hospital of Soochow University, No. 92 Zhongnan Street, Suzhou 215025, China
| | - Min Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (M.G.); (M.W.); (J.X.); (B.Y.); (Y.-G.W.); (M.L.)
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (M.G.); (M.W.); (J.X.); (B.Y.); (Y.-G.W.); (M.L.)
| | - Bin Yu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (M.G.); (M.W.); (J.X.); (B.Y.); (Y.-G.W.); (M.L.)
| | - Yi-Gang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (M.G.); (M.W.); (J.X.); (B.Y.); (Y.-G.W.); (M.L.)
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (M.G.); (M.W.); (J.X.); (B.Y.); (Y.-G.W.); (M.L.)
| | - Muhammad Ashraf
- Department of Medicine, Cardiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (M.G.); (M.W.); (J.X.); (B.Y.); (Y.-G.W.); (M.L.)
| |
Collapse
|
12
|
Jiao W, Hao J, Xie Y, Meng M, Gao W. EZH2 mitigates the cardioprotective effects of mesenchymal stem cell-secreted exosomes against infarction via HMGA2-mediated PI3K/AKT signaling. BMC Cardiovasc Disord 2022; 22:95. [PMID: 35264108 PMCID: PMC8908676 DOI: 10.1186/s12872-022-02533-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell-derived exosomes (MSC-EXO) have emerged as novel therapeutic strategies for myocardial infarction (MI). However, many questions remain untouched and unanswered regarding their roles in myocardial fibrosis. This study aimed to probe the therapeutic effects of MSC-EXO on myocardial fibrosis after MI and possible mechanisms. METHODS Myocardial tissues were obtained from MI rats, and myocardial cell viability, fibrosis, apoptosis, and epithelial-mesenchymal transition (EMT) were detected by immunohistochemistry, Masson's staining, TUNEL, and western blot. Bone marrow-derived MSCs and corresponding EXO were identified, and cardiac function were detected after treatment of MSC-EXO. Bioinformatics analysis and ChIP assay were conducted to detect the downstream genes of EZH2. EZH2 was upregulated alone or with HMGA2 overexpression in myocardial tissues of MI rats upon MSC-EXO treatment, and PI3K/AKT pathway activity in myocardial tissues was detected using western blot. RESULTS The proliferative activity in myocardial tissues of MI rats was significantly decreased, along with accentuated fibrosis, increased collagen volume and EMT. MSC-EXO treatment resulted in partial restoration of cardiac function and reduced EZH2 expression in the myocardium of rats. EZH2 inhibited HMGA2 expression by increasing the H3K27me3 modification. PI3K/AKT pathway was altered under the influence of the EZH2/HMGA2 axis. EZH2 inhibited the effect of MSC-EXO on the recovery of cardiac function and accelerated fibrosis, while HMGA2 reversed the effect of EZH2 to reduce fibrosis and enhance cardiac function. CONCLUSION MSC-EXO alleviated fibrosis in MI rats via inhibition of EZH2, whereas EZH2 inhibited HMGA2 expression and impaired the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Wei Jiao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Jie Hao
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Yanan Xie
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Mingjie Meng
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Weinian Gao
- Department of Cardiac Macrovascular Surgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
13
|
Zaghary WA, Elansary MM, Shouman DN, Abdelrahim AA, Abu-Zied KM, Sakr TM. Can nanotechnology overcome challenges facing stem cell therapy? A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Vilahur G, Nguyen PH, Badimon L. Impact of Diabetes Mellitus on the Potential of Autologous Stem Cells and Stem Cell-Derived Microvesicles to Repair the Ischemic Heart. Cardiovasc Drugs Ther 2021; 36:933-949. [PMID: 34251593 DOI: 10.1007/s10557-021-07208-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 10/20/2022]
Abstract
Ischemic heart disease remains the leading cause of morbidity and mortality worldwide. Despite the advances in medical management and catheter-based therapy, mortality remains high, as does the risk of developing heart failure. Regenerative therapies have been widely used as an alternative option to repair the damaged heart mainly because of their paracrine-related beneficial effects. Although cell-based therapy has been demonstrated as feasible and safe, randomized controlled trials and meta-analyses show little consistent benefit from treatments with adult-derived stem cells. Mounting evidence from our group and others supports that cardiovascular risk factors and comorbidities impair stem cell potential thus hampering their autologous use. This review aims to better understand the influence of diabetes on stem cell potential. For this purpose, we will first discuss the most recent advances in the mechanistic understanding of the effects of diabetes on stem cell phenotype, function, and molecular fingerprint to further elaborate on diabetes-induced alterations in stem cell extracellular vesicle profile. Although we acknowledge that multiple sources of stem or progenitor cells are used for regenerative purposes, we will focus on bone marrow hematopoietic stem/progenitor cells, mesenchymal stem cells residing in the bone marrow, and adipose tissue and briefly discuss endothelial colony-forming cells.
Collapse
Affiliation(s)
- Gemma Vilahur
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain.,Ciber CV - ISCIII, Madrid, Spain
| | - Phuong Hue Nguyen
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program ICCC, IR-Hospital Santa Creu I Sant Pau, IIB Sant Pau, C/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain. .,Ciber CV - ISCIII, Madrid, Spain. .,Cardiovascular Research Chair UAB, Barcelona, Spain.
| |
Collapse
|
15
|
Increased Myocardial Retention of Mesenchymal Stem Cells Post-MI by Pre-Conditioning Exercise Training. Stem Cell Rev Rep 2021; 16:730-741. [PMID: 32306279 DOI: 10.1007/s12015-020-09970-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Stem cell (SC) therapy is a promising approach to improve post-myocardial infarction (MI) cardiac remodeling, but the proinflammatory microenvironment may lead to SC loss and, therefore, may have a negative impact on therapy. It appears that exercise training (ET) improves myocardial microenvironment for SC transplantation. Therefore, we tested the effect of ET on post-infarction retention of adipose-derived SCs (ADSCs) and its combined effects on the inflammatory microenvironment. Fischer-344 female rats were randomized to one of the following groups: Sham; sedentary coronary occlusion who did not receive ADSCs (sMI); sedentary coronary occlusion who received ADSCs; exercise coronary occlusion who received ADSCs. Rats were trained nine weeks prior to MI, followed by ADSCs transplantation. The MI led to left ventricle (LV) dilation and dysfunction, myocardial hypertrophy and fibrosis, and increased proinflammatory profile compared to Sham rats. Conversely, ADSCs transplanted rats exhibited, better morphological and functional LV parameters; inhibition of myocardial hypertrophy and fibrosis; and attenuation of proinflammatory cytokines (interleukins 1β and 10, tumor necrosis factor α, and transforming growth factor β) in the myocardium compared to sMI rats. Interestingly, ET enhanced the effect of ADSCs on interleukin 10 expression. There was a correlation between cytokine expression and myocardial ADSCs retention. The. ET enhanced the beneficial effects of ADSCs in infarcted myocardium, which was associated with higher ADSCs retention. These findings highlight the importance of ET in myocardial retention of ADSCs and attenuation of cardiac remodeling post-infarction. Cytokine analysis suggests improvement in ET-linked myocardial microenvironment based on its anti-inflammatory action.
Collapse
|
16
|
Zhu D, Cheng K. Cardiac Cell Therapy for Heart Repair: Should the Cells Be Left Out? Cells 2021; 10:641. [PMID: 33805763 PMCID: PMC7999733 DOI: 10.3390/cells10030641] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is still the leading cause of death worldwide. Coronary artery occlusion, or myocardial infarction (MI) causes massive loss of cardiomyocytes. The ischemia area is eventually replaced by a fibrotic scar. From the mechanical dysfunctions of the scar in electronic transduction, contraction and compliance, pathological cardiac dilation and heart failure develops. Once end-stage heart failure occurs, the only option is to perform heart transplantation. The sequential changes are termed cardiac remodeling, and are due to the lack of endogenous regenerative actions in the adult human heart. Regenerative medicine and biomedical engineering strategies have been pursued to repair the damaged heart and to restore normal cardiac function. Such strategies include both cellular and acellular products, in combination with biomaterials. In addition, substantial progress has been made to elucidate the molecular and cellular mechanisms underlying heart repair and regeneration. In this review, we summarize and discuss current therapeutic approaches for cardiac repair and provide a perspective on novel strategies that holding potential opportunities for future research and clinical translation.
Collapse
Affiliation(s)
- Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
17
|
Haddad K, Potter BJ, Matteau A, Reeves F, Leclerc G, Rivard A, Gobeil F, Roy DC, Noiseux N, Mansour S. Analysis of the COMPARE-AMI trial: First report of long-term safety of CD133+ cells. Int J Cardiol 2020; 319:32-35. [PMID: 32553596 DOI: 10.1016/j.ijcard.2020.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Data related to long-term safety of intracoronary (IC) injection of CD133+ bone marrow stem cells (BMSC) following an acute myocardial infarction (MI) are still lacking. METHODS COMPARE-AMI is a double-blind, placebo-controlled phase II clinical trial evaluating the safety and efficacy of IC injection of CD133+ enriched hematopoietic BMSC in patients with ST-elevation myocardial infarction (STEMI) and persistent left ventricular (LV) dysfunction following successful primary percutaneous coronary intervention (PCI). Herein, we report outcomes up to ten years of follow-up. RESULTS Between November 2007 and July 2012, we enrolled 38 patients in our study. Males were 89% and the median age was 50.5 years. Baseline left ventricular ejection fraction (LVEF) was 40.0%, and 90% of lesions were located in the left anterior descending (LAD) artery. The median follow-up time was 8.5 years IQR [7.9, 10.0]. Using Kaplan-Meier methods, MACE-free survival up to 10 years was 77.3% overall. IC injection of CD133+ BMSC was associated with a similar event-free survival rate compared to placebo (87.8% vs. 66.3%, p = .37). Two cancer cases in each group were recorded. No malignant arrhythmias were observed. CONCLUSIONS IC injection of CD133+ BMSC is safe up to 10 years of follow-up. The long-term efficacy needs to be confirmed by a larger randomized trial.
Collapse
Affiliation(s)
- Kevin Haddad
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, Québec, Canada
| | - Brian James Potter
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, Québec, Canada
| | - Alexis Matteau
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, Québec, Canada
| | - François Reeves
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, Québec, Canada
| | - Guy Leclerc
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, Québec, Canada
| | - Alain Rivard
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, Québec, Canada
| | - François Gobeil
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, Québec, Canada
| | - Denis-Claude Roy
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
| | - Nicolas Noiseux
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, Québec, Canada
| | - Samer Mansour
- Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, Québec, Canada.
| |
Collapse
|
18
|
Sun J, Shen H, Shao L, Teng X, Chen Y, Liu X, Yang Z, Shen Z. HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res Ther 2020; 11:373. [PMID: 32859268 PMCID: PMC7455909 DOI: 10.1186/s13287-020-01881-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/26/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background Myocardial infarction (MI) is a severe disease that often associated with dysfunction of angiogenesis. Cell-based therapies for MI using mesenchymal stem cell (MSC)-derived exosomes have been well studied due to their strong proangiogenic effect. Genetic modification is one of the most common methods to enhance exosome therapy. This study investigated the proangiogenic and cardioprotective effect of exosomes derived from hypoxia-inducible factor 1-alpha (HIF-1α)-modified MSCs. Methods Lentivirus containing HIF-1α overexpressing vector was packaged and used to infect MSCs. Exosomes were isolated from MSC-conditioned medium by ultracentrifugation. Human umbilical vein endothelial cells (HUVECs) were treated under hypoxia condition for 48 h co-cultured with PBS, control exosomes, or HIF-1α-overexpressed exosomes, respectively. Then the preconditioned HUVECs were subjected to tube formation assay, Transwell assay, and EdU assay to evaluate the protective effect of exosomes. Meanwhile, mRNA and secretion levels of proangiogenic factors were measured by RT-qPCR and ELISA assays. In vivo assays were conducted using the rat myocardial infarction model. PBS, control exosomes, or HIF-1α-overexpressed exosomes were injected through tail vein after MI surgery. Heart function was assessed by echocardiography at days 3, 14, and 28. At day 7, mRNA and protein expression levels of proangiogenic factors in the peri-infarction area and circulation were evaluated, respectively. At day 28, hearts were collected and subjected to H&E staining, Masson’s trichrome staining, and immunofluorescent staining. Results HIF-1α-overexpressed exosomes rescued the impaired angiogenic ability, migratory function, and proliferation of hypoxia-injured HUVECs. Simultaneously, HIF-1α-overexpressed exosomes preserved heart function by promoting neovessel formation and inhibiting fibrosis in the rat MI model. In addition, both in vitro and in vivo proangiogenic factors mRNA and protein expression levels were elevated after HIF-1α-overexpressed exosome application. Conclusion HIF-1α-overexpressed exosomes could rescue the impaired angiogenic ability, migration, and proliferation of hypoxia-pretreated HUVECs in vitro and mediate cardioprotection by upregulating proangiogenic factors and enhancing neovessel formation.
Collapse
Affiliation(s)
- Jiacheng Sun
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Han Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Xiaomei Teng
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Xuan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, No.899, Pinghai Road, Suzhou, 215006, China.
| |
Collapse
|
19
|
Lin M, Liu X, Zheng H, Huang X, Wu Y, Huang A, Zhu H, Hu Y, Mai W, Huang Y. IGF-1 enhances BMSC viability, migration, and anti-apoptosis in myocardial infarction via secreted frizzled-related protein 2 pathway. Stem Cell Res Ther 2020; 11:22. [PMID: 31918758 PMCID: PMC6953226 DOI: 10.1186/s13287-019-1544-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/16/2019] [Accepted: 12/29/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cell (BMSC) transplantation represents a promising therapeutic strategy for ischemic heart disease. However, its effects are hampered by the poor viability of transplanted cells and the hostile microenvironment of the ischemic region. Insulin-like growth factor-1 (IGF-1) is an important paracrine growth factor of BMSC and plays an important role in the properties of BMSC. Here, we investigated whether overexpressing IGF-1 could enhance the BMSC viability, migration, anti-apoptosis, and protective effects of cardiomyocytes, and explore the underlying mechanisms' focus on the role of the AKT/secreted frizzled-related protein 2 (SFRP2)/β-catenin pathway. METHODS We constructed BMSCs overexpressing insulin-like growth factor-1 (BMSCs-IGF-1) or empty vector (BMSCs-NC) using lentivirus, and evaluated cell survival, proliferation, and migration under normoxic and hypoxic conditions. Co-culture of rat cardiomyoblasts with BMSCs was performed to explore the paracrine effect of BMSCs-IGF-1 for rescuing cardiomyoblasts under hypoxia. Transplantation of BMSCs in acute myocardial infarction rats was used to explore the effect of BMSCs-IGF-1 therapy. RESULTS BMSCs-IGF-1 exhibited a higher cell proliferation rate, migration capacity, and stemness, and were more resistant to apoptosis under hypoxia. Overexpression of IGF-1 upregulated the expression of total and nuclear β-catenin via the AKT-secreted frizzled-related protein 2 (SFRP2) pathway, which enhanced cell survival. Inhibition of AKT or SFRP2 knockdown by siRNA significantly antagonized the effect of IGF-1 and decreased the expression of β-catenin. The expression of β-catenin target genes, including cyclin D1 and c-Myc, were accordingly decreased. Moreover, BMSCs-IGF-1 could rescue cardiomyoblasts from hypoxia-induced apoptosis and preserve cell viability under hypoxia. Transplantation of BMSCs-IGF-1 into myocardial infarction rats greatly reduced infarct volume than BMSCs-NC, with significantly greater expression of SFRP2 and β-catenin. CONCLUSIONS These results suggest that in BMSCs overexpressing IGF-1, SFRP2 is an important mediator for the enhancement of stem cell viability via activating, rather than antagonizing, the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Mingzhuo Lin
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Xinyue Liu
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Haoxiao Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Yu Wu
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Anqing Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Hailan Zhu
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China
| | - Weiyi Mai
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University (the first people's hospital of Shunde), Jiazhi Road, Lunjiao Town, Shunde District, Foshan, 528300, People's Republic of China.
- The George Institute for Global Health, Sydney, Australia.
| |
Collapse
|
20
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
21
|
Combining ECM Hydrogels of Cardiac Bioactivity with Stem Cells of High Cardiomyogenic Potential for Myocardial Repair. Stem Cells Int 2019; 2019:6708435. [PMID: 31772589 PMCID: PMC6854924 DOI: 10.1155/2019/6708435] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering exploring the combination of scaffolds and seeding cells was proposed as a promising strategy for myocardial repair. However, the therapeutic outcomes varied greatly due to different selection of scaffolds and seeding cells. Herein, the potential of combining bioactive extracellular matrix (ECM) hydrogels and high cardiomyogenic seeding cells was explored for myocardial repair in vitro and in vivo. Temperature-sensitive ECM hydrogels were prepared from decellularized rat hearts, and cardiomyogenic seeding cells were isolated from brown adipose (brown adipose-derived stem cells (BADSCs)). The in vitro studies demonstrated that ECM hydrogel significantly supported the proliferation and cardiomyogenic differentiation of BADSCs. Importantly, the function and maturation of BADSC-derived cardiomyocytes were also promoted as evidenced by Ca2+ transient's measurement and protein marker expression. After myocardial transplantation, the combination of BADSCs and ECM hydrogels significantly preserved cardiac function and chamber geometry compared with BADSCs or ECM hydrogels alone. Meanwhile, the ECM hydrogel also enhanced BADSC engraftment and myocardial regeneration in vivo. These results indicated that heart-derived ECM hydrogels exerted significant influence on the fate of cardiomyogenic cells toward benefiting myocardial repair, which may explain the enhanced stem cell therapy by the scaffold. Collectively, it indicated that the combination of ECM hydrogel and the cardiomyogenic cells may represent a promising strategy for cardiac tissue engineering.
Collapse
|
22
|
Exosomes in ischemic heart disease: novel carriers for bioinformation. Biomed Pharmacother 2019; 120:109451. [PMID: 31586900 DOI: 10.1016/j.biopha.2019.109451] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/25/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022] Open
Abstract
The occurrence of ischemic heart disease(IHD) is a multi-step chain process from potential risk factors to overt clinical diseases. Vascular cells, blood cells, cardiomyocytes and stem cells are all involved in the pathophysiological links via continual and polynary crosstalk. Exosomes,as powerful vectors for intercellular communication,have been a hotspot for basic and clinical research. Plenty of evidence has shown that exosomes largely participate in the evolution of IHD, including endothelial dysfunction, lipid deposition, atheromatous plaque formation and rupture, myocardial ischemia-reperfusion(I/R) injury,and heart failure (HF), while the rules for detailed communication in the different stages of this continuous disease are still poorly understood. This review will systematically describe characteristics of exosomal crosstalk between different cells in the diverse periods, and also cast light on the potential and challenges for exosome application as therapeutic targets, hoping to offer supporting background for the following research.
Collapse
|
23
|
Islam R, Lai C. A Brief Overview of lncRNAs in Endothelial Dysfunction-Associated Diseases: From Discovery to Characterization. EPIGENOMES 2019; 3:epigenomes3030020. [PMID: 34968230 PMCID: PMC8594677 DOI: 10.3390/epigenomes3030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a novel class of regulatory RNA molecules and they are involved in many biological processes and disease developments. Several unique features of lncRNAs have been identified, such as tissue-and/or cell-specific expression pattern, which suggest that they could be potential candidates for therapeutic and diagnostic applications. More recently, the scope of lncRNA studies has been extended to endothelial biology research. Many of lncRNAs were found to be critically involved in the regulation of endothelial function and its associated disease progression. An improved understanding of endothelial biology can thus facilitate the discovery of novel biomarkers and therapeutic targets for endothelial dysfunction-associated diseases, such as abnormal angiogenesis, hypertension, diabetes, and atherosclerosis. Nevertheless, the underlying mechanism of lncRNA remains undefined in previous published studies. Therefore, in this review, we aimed to discuss the current methodologies for discovering and investigating the functions of lncRNAs and, in particular, to address the functions of selected lncRNAs in endothelial dysfunction-associated diseases.
Collapse
Affiliation(s)
- Rashidul Islam
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, China;
| | - Christopher Lai
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
- Correspondence: ; Tel.: +65-6592-1045
| |
Collapse
|
24
|
Kido T, Miyagawa S, Goto T, Tamai K, Ueno T, Toda K, Kuratani T, Sawa Y. The administration of high-mobility group box 1 fragment prevents deterioration of cardiac performance by enhancement of bone marrow mesenchymal stem cell homing in the delta-sarcoglycan-deficient hamster. PLoS One 2018; 13:e0202838. [PMID: 30517097 PMCID: PMC6281303 DOI: 10.1371/journal.pone.0202838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022] Open
Abstract
Objectives We hypothesized that systemic administration of high-mobility group box 1 fragment attenuates the progression of myocardial fibrosis and cardiac dysfunction in a hamster model of dilated cardiomyopathy by recruiting bone marrow mesenchymal stem cells thus causing enhancement of a self-regeneration system. Methods Twenty-week-old J2N-k hamsters, which are δ-sarcoglycan-deficient, were treated with systemic injection of high-mobility group box 1 fragment (HMGB1, n = 15) or phosphate buffered saline (control, n = 11). Echocardiography for left ventricular function, cardiac histology, and molecular biology were analyzed. The life-prolonging effect was assessed separately using the HMGB1 and control groups, in addition to a monthly HMGB1 group which received monthly systemic injections of high-mobility group box 1 fragment, 3 times (HMGB1, n = 11, control, n = 9, monthly HMGB1, n = 9). Results The HMGB1 group showed improved left ventricular ejection fraction, reduced myocardial fibrosis, and increased capillary density. The number of platelet-derived growth factor receptor-alpha and CD106 positive mesenchymal stem cells detected in the myocardium was significantly increased, and intra-myocardial expression of tumor necrosis factor α stimulating gene 6, hepatic growth factor, and vascular endothelial growth factor were significantly upregulated after high-mobility group box 1 fragment administration. Improved survival was observed in the monthly HMGB1 group compared with the control group. Conclusions Systemic high-mobility group box 1 fragment administration attenuates the progression of left ventricular remodeling in a hamster model of dilated cardiomyopathy by enhanced homing of bone marrow mesenchymal stem cells into damaged myocardium, suggesting that high-mobility group box 1 fragment could be a new treatment for dilated cardiomyopathy.
Collapse
Affiliation(s)
- Takashi Kido
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takasumi Goto
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Kuratani
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- * E-mail:
| |
Collapse
|
25
|
Xu ZM, Huang F, Huang WQ. Angiogenic lncRNAs: A potential therapeutic target for ischaemic heart disease. Life Sci 2018; 211:157-171. [PMID: 30219334 DOI: 10.1016/j.lfs.2018.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/31/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (LncRNAs) are involved in biological processes and the pathology of diseases and represent an important biomarker or therapeutic target for disease. Emerging evidence has suggested that lncRNAs modulate angiogenesis by regulating the angiogenic cell process-including vascular endothelial cells (VECs); stem cells, particularly bone marrow-derived stem cells, endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs); and vascular smooth muscle cells (VSMCs)-and participating in ischaemic heart disease (IHD). Therapeutic angiogenesis as an alternative therapy to promote coronary collateral circulation has been demonstrated to significantly improve the prognosis and quality of life of patients with IHD in past decades. Therefore, lncRNAs are likely to represent a novel therapeutic target for IHD through regulation of the angiogenesis process. This review summarizes the classification and functions of lncRNAs and their roles in regulating angiogenesis and in IHD, in the context of an overview of therapeutic angiogenesis in clinical trials.
Collapse
Affiliation(s)
- Zhi-Meng Xu
- Department of Geriatric Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Feng Huang
- Institute of Cardiovascular Diseases & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Wei-Qiang Huang
- Department of Geriatric Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China.
| |
Collapse
|