1
|
Liang WZ, Hsieh KW, Yang ZD, Sun GC. Induction of Ca 2+ signaling and cytotoxic responses of human lung fibroblasts upon an antihistamine drug oxatomide treatment and evaluating the protective effects of Ca 2+ chelating. Fundam Clin Pharmacol 2025; 39:e13040. [PMID: 39431647 DOI: 10.1111/fcp.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Oxatomide, an antihistamine drug of the diphenylmethylpiperazine family, has anti-inflammatory effects in airway disease. Because oxatomide was shown to cause diverse physiological responses in several cell models, the impact of oxatomide on Ca2+ signaling and its related physiological effects has not been explored in IMR-90 human fetal lung fibroblasts. OBJECTIVES This study assessed the effect of oxatomide on cell viability and intracellular free Ca2+ concentrations ([Ca2+]i) and examined whether oxatomide-induced cytotoxicity through Ca2+ signaling in IMR-90 cells. METHODS Cell viability was measured by the cell proliferation reagent (WST-1). [Ca2+]i was measured by the Ca2+-sensitive fluorescent dye fura-2. RESULTS Oxatomide (10-40 μM) concentration dependently reduced cell viability and induced [Ca2+]i rises in IMR-90 cells. This cytotoxic effect was reversed by chelation of cytosolic Ca2+ with BAPTA-AM. In terms of Ca2+ signaling, oxatomide-caused Ca2+ entry was inhibited by modulators of store-operated Ca2+ channels (2-APB and SKF96365) and protein kinase C (PKC) inhibitor (GF109203X). Furthermore, oxatomide-induced Ca2+ influx was confirmed by Mn2+-induced quench of fura-2 fluorescence. In a Ca2+-free medium, preincubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin inhibited oxatomide-evoked [Ca2+]i rises. Conversely, treatment with oxatomide abolished thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 also inhibited oxatomide-caused [Ca2+]i rises. CONCLUSION In IMR-90 cells, oxatomide-induced cytotoxicity by preceding [Ca2+]i rises involving PKC-sensitive store-operated Ca2+ entry and PLC-dependent Ca2+ release from the endoplasmic reticulum. BAPTA-AM, with its Ca2+ chelating effects, may be a potential compound for preventing oxatomide-induced cytotoxicity.
Collapse
Affiliation(s)
- Wei-Zhe Liang
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Yanpu Township, Pingtung County, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kai-Wei Hsieh
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Zong-Da Yang
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Gwo-Ching Sun
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Han X, Song Y, Piao Y, Wang Z, Li Y, Cui Q, Piao H, Yan G. Mechanism of miR-130b-3p in relieving airway inflammation in asthma through HMGB1-TLR4-DRP1 axis. Cell Mol Life Sci 2024; 82:9. [PMID: 39704848 DOI: 10.1007/s00018-024-05529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
Asthma is a chronic inflammatory respiratory disease characterized by recurrent breathing difficulties caused by airway obstruction and hypersensitivity. Although there is diversity in their specific mechanisms, microRNAs (miRNAs) have a significant impact on the development of asthma. Currently, the contribution of miR-130b-3p to asthma remains elusive. The goal of this study was to examine whether miR-130b-3p attenuates house dust mite (HDM)-induced asthma through High-mobility group box protein 1 (HMGB1)/Toll-like receptor 4 (TLR4)/mitochondrial fission protein (DRP1) signaling pathway. We elucidate that miR-130b-3p can bind to the HMGB1 3'UTR, attenuating HMGB1 mRNA and protein levels, and nucleo-cytoplasmic translocation of HMGB1. We observed that miR-130b-3p agomir or HMGB1 CKO attenuated HDM-induced airway inflammation and hyperresponsiveness, and decreased Th2-type cytokines in bronchoalveolar lavage fluid (BALF) and mediastinal lymph nodes. Further, HMGB1 CKO contributes to alleviating Th2 inflammation in AT-II cells (CD45.2-/CD31-/Epcam-+/proSP-C+/MHC-II+) from lung single cell suspensions of asthmatic mice by flow cytometry. Our findings identified miR-130b-3p as a potent regulator in asthma that exerts its anti-inflammatory effects by targeting HMGB1 and the subsequent HMGB1/TLR4/DRP1axis, presenting a prospective novel therapeutic avenue for asthma management.
Collapse
Affiliation(s)
- Xue Han
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, No. 977, Gongyuan Road, Yanji, 133002, People's Republic of China
| | - Yihua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China
- Department of Emergency, Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China
| | - Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China
| | - Yan Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China
| | - Qingsong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China
- Department of Emergency, Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China.
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, 133000, People's Republic of China.
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China.
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, No. 977, Gongyuan Road, Yanji, 133002, People's Republic of China.
| |
Collapse
|
3
|
Chen X, Zhang L, Yu C, Duan A, Jiao B, Chen Y, Dai Y, Li B. The role of HMGB1 on SiC NPs-induced inflammation response in lung epithelial-macrophage co-culture system. Food Chem Toxicol 2024; 190:114762. [PMID: 38871110 DOI: 10.1016/j.fct.2024.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
In recent years, carbonized silicon nanoparticles (SiC NPs) have found widespread scientific and engineering applications, raising concerns about potential human health risks. SiC NPs may induce pulmonary damage through sustained inflammatory responses and oxidative stress, with unclear toxicity mechanisms. This study uses an in vitro co-culture model of alveolar macrophages (NR8383) and alveolar epithelial cells (RLE-6TN) to simulate the interaction between airway epithelial cells and immune cells, providing initial insights into SiC NP-triggered inflammatory responses. The research reveals that increasing SiC NP exposure prompts NR8383 cells to release high mobility group box 1 protein (HMGB1), which migrates into RLE-6TN cells and activates the receptor for advanced glycation end-products (RAGE) and Toll-like receptor 4 (TLR4). RAGE and TLR4 synergistically activate the MyD88/NF-κB inflammatory pathway, ultimately inducing inflammatory responses and oxidative stress in RLE-6TN cells, characterized by excessive ROS generation and altered cytokine levels. Pretreatment with RAGE and TLR4 inhibitors attenuates SiC-induced HMGB1 expression and downstream pathway proteins, reducing inflammatory responses and oxidative damage. This highlights the pivotal role of RAGE-TLR4 crosstalk in SiC NP-induced pulmonary inflammation, providing insights into SiC NP cytotoxicity and nanomaterial safety guidelines.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Linyuan Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Changyan Yu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Airu Duan
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Bo Jiao
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yuanyuan Chen
- Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yufei Dai
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China; Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Bin Li
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
4
|
He Q, Li P, Han L, Yang C, Jiang M, Wang Y, Han X, Cao Y, Liu X, Wu W. Revisiting airway epithelial dysfunction and mechanisms in chronic obstructive pulmonary disease: the role of mitochondrial damage. Am J Physiol Lung Cell Mol Physiol 2024; 326:L754-L769. [PMID: 38625125 DOI: 10.1152/ajplung.00362.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.
Collapse
Affiliation(s)
- Qinglan He
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chen Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Meiling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuanyuan Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Zhou Y, Sun C, Ma Y, Huang Y, Wu K, Huang S, Lin Q, Zhu J, Ning Z, Liu N, Tu T, Liu Q. Identification and validation of aging-related genes in atrial fibrillation. PLoS One 2023; 18:e0294282. [PMID: 37956134 PMCID: PMC10642816 DOI: 10.1371/journal.pone.0294282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in the clinic. Aging plays an essential role in the occurrence and development of AF. Herein, we aimed to identify the aging-related genes associated with AF using bioinformatics analysis. Transcriptome profiles of AF were obtained from the GEO database. Differential expression analysis was performed to identify AF-specific aging-related genes. GO and KEGG enrichment analyses were performed. Subsequently, the LASSO, SVM-RFE, and MCC algorithms were applied to screen aging-related genes. The mRNA expression of the screened genes was validated in the left atrial samples of aged rapid atrial pacing-induced AF canine models and their counterparts. The ROC curves of them were drawn to evaluate their diagnostic potential. Moreover, CIBERSORT was used to estimate immune infiltration. A correlation analysis between screened aging-related genes and infiltrating immune cells was performed. A total of 24 aging-related genes were identified, which were found to be mainly involved in the FoxO signaling pathway, PI3K-Akt signaling pathway, longevity regulating pathway, and peroxisome according to functional enrichment analysis. LASSO, SVM-RFE, and MCC algorithms identified three genes (HSPA9, SOD2, TXN). Furthermore, the expression levels of HSPA9 and SOD2 were validated in aged rapid atrial pacing-induced AF canine models. HSPA9 and SOD2 could be potential diagnostic biomarkers for AF, as evidenced by the ROC curves. Immune infiltration and correlation analysis revealed that HSPA9 and SOD2 were related to immune cell infiltrates. Collectively, these findings provide novel insights into the potential aging-related genes associated with AF. HSPA9 and SOD2 may play a significant role in the occurrence and development of AF.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Chao Sun
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yingxu Ma
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yunyin Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Keke Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Shengyuan Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Qiuzhen Lin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Jiayi Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Zuodong Ning
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Ningyuan Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Tao Tu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
6
|
Hu J, Ding R, Liu S, Wang J, Li J, Shang Y. Hypermethylation of RNF125 promotes autophagy-induced oxidative stress in asthma by increasing HMGB1 stability. iScience 2023; 26:107503. [PMID: 37599832 PMCID: PMC10432822 DOI: 10.1016/j.isci.2023.107503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Asthma is a global chronic airway disease. The expression and role of RNF125, an E3 ubiquitin ligase, in asthma remain uncertain. In this study, we revealed that RNF125 was downregulated in the bronchial epithelium of mice and patients with asthma. Rnf125 hypermethylation was responsible for the low expression of RNF125 in primary airway epithelial cells of mice treated with OVA. Moreover, we demonstrated that RNF125 could attenuate autophagy, oxidative stress, and protect epithelial barrier in vivo and in vitro. Additionally, we identified HMGB1 as a substrate of RNF125, which interacted with the HMG B-box domain of HMGB1 and induced degradation via the ubiquitin proteasome system, reducing autophagy and oxidative stress. Overall, our findings elucidated that hypermethylation of Rnf125 reduced its expression, which promoted autophagy-induced oxidative stress in asthma by increasing HMGB1 stability. These findings offer a theoretical and experimental basis for the pathogenesis of asthma.
Collapse
Affiliation(s)
- Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ruiwei Ding
- Pediatric Department, Qingdao Women and Children’s Hospital, Qingdao 266000, China
| | - Shaozhuang Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jia Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianjun Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
7
|
de Ridder I, Kerkhofs M, Lemos FO, Loncke J, Bultynck G, Parys JB. The ER-mitochondria interface, where Ca 2+ and cell death meet. Cell Calcium 2023; 112:102743. [PMID: 37126911 DOI: 10.1016/j.ceca.2023.102743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria contact sites are crucial to allow Ca2+ flux between them and a plethora of proteins participate in tethering both organelles together. Inositol 1,4,5-trisphosphate receptors (IP3Rs) play a pivotal role at such contact sites, participating in both ER-mitochondria tethering and as Ca2+-transport system that delivers Ca2+ from the ER towards mitochondria. At the ER-mitochondria contact sites, the IP3Rs function as a multi-protein complex linked to the voltage-dependent anion channel 1 (VDAC1) in the outer mitochondrial membrane, via the chaperone glucose-regulated protein 75 (GRP75). This IP3R-GRP75-VDAC1 complex supports the efficient transfer of Ca2+ from the ER into the mitochondrial intermembrane space, from which the Ca2+ ions can reach the mitochondrial matrix through the mitochondrial calcium uniporter. Under physiological conditions, basal Ca2+ oscillations deliver Ca2+ to the mitochondrial matrix, thereby stimulating mitochondrial oxidative metabolism. However, when mitochondrial Ca2+ overload occurs, the increase in [Ca2+] will induce the opening of the mitochondrial permeability transition pore, thereby provoking cell death. The IP3R-GRP75-VDAC1 complex forms a hub for several other proteins that stabilize the complex and/or regulate the complex's ability to channel Ca2+ into the mitochondria. These proteins and their mechanisms of action are discussed in the present review with special attention for their role in pathological conditions and potential implication for therapeutic strategies.
Collapse
Affiliation(s)
- Ian de Ridder
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Martijn Kerkhofs
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Fernanda O Lemos
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Jens Loncke
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium.
| | - Jan B Parys
- KU Leuven, Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, Leuven BE-3000, Belgium.
| |
Collapse
|
8
|
Shin J, Kim YH, Lee B, Chang JH, Choi HY, Lee H, Song KC, Kwak MS, Choi JE, Shin JS. USP13 regulates HMGB1 stability and secretion through its deubiquitinase activity. Mol Med 2022; 28:164. [PMID: 36585612 PMCID: PMC9801610 DOI: 10.1186/s10020-022-00596-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that plays a central role in innate immunity. HMGB1 acts as a late mediator of inflammation when actively secreted in response to inflammatory stimuli. Several post-translational modifications (PTMs), including acetylation, phosphorylation, and oxidation, are involved in HMGB1 secretion. However, the E3 ligases of HMGB1 and the mechanism by which DUBs regulate HMGB1 deubiquitination are not well known. METHODS LC-MS/MS, proximity ligation assay, immunoprecipitation were used to identify ubiquitin-specific protease 13 (USP13) as a binding partner of HMGB1 and to investigate ubiquitination of HMGB1. USP13 domain mutant was constructed for domain study and Spautin-1 was treated for inhibition of USP13. Confocal microscopy image showed localization of HMGB1 by USP13 overexpression. The data were analyzed using one-way analysis of variance with Tukey's honestly significant difference post-hoc test for multiple comparisons or a two-tailed Student's t-test. RESULTS We identified ubiquitin-specific protease 13 (USP13) as a novel binding partner of HMGB1 and demonstrated that USP13 plays a role in stabilizing HMGB1 from ubiquitin-mediated degradation. USP13 overexpression increased nucleocytoplasmic translocation of HMGB1 and promoted its secretion, which was inhibited by treatment with Spautin-1, a selective inhibitor of USP13. CONCLUSION Taken together, we suggest that USP13 is a novel deubiquitinase of HMGB1 that regulates the stability and secretion of HMGB1.
Collapse
Affiliation(s)
- Jaemin Shin
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Young Hun Kim
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Bin Lee
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Jae Ho Chang
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea
| | - Hee Youn Choi
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Hoojung Lee
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Ki Chan Song
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea
| | - Man Sup Kwak
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Ji Eun Choi
- grid.31501.360000 0004 0470 5905Department of Pediatrics, Seoul National University College of Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Boramaero 5 Gil 20, Dongjakgu, Seoul, 07061 South Korea
| | - Jeon-Soo Shin
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722 South Korea
| |
Collapse
|
9
|
Wen B, Zhou K, Hu C, Chen J, Xu K, Liang T, He B, Chen L, Chen J. Salidroside Ameliorates Ischemia-Induced Neuronal Injury through AMPK Dependent and Independent Pathways to Maintain Mitochondrial Quality Control. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1133-1153. [PMID: 35543160 DOI: 10.1142/s0192415x2250046x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salidroside, an active ingredient in Rhodiola rosea, has potent protective activity against cerebral ischemia. However, the mechanisms underlying its pharmacological actions are poorly understood. In this study, we employed a mouse middle cerebral artery occlusion (MCAO) and cellular oxygen and glucose deprivation (OGD) models to test the hypothesis that salidroside may restore mitochondrial quality control in neurons by modulating the relevant signaling. The results indicated that salidroside mitigated almost 40% the ischemia-induced brain infarct volumes in mice and the OGD-decreased viability of neurons to ameliorate the mitochondrial functions. Furthermore, salidroside treatment alleviated the OGD- or ischemia-induced imbalance of mitochondrial fission and fusion, mitophagy and promoted mitochondrial biogenesis in neurons by attenuating the AMPK activity. Moreover, salidroside alleviated 50% the OGD-promoted mitochondrial calcium fluorescence intensity and 5% mitochondria-associated membrane (MAM) area by down-regulating GRP75 expression independent of the AMPK signaling. Finally, similar findings were achieved in primary mouse neurons. Collectively, these data indicate that salidroside effectively restores the mitochondria dynamics, facilitates mitochondrial biogenesis by attenuating the AMPK signaling, and maintains calcium homeostasis in neurons independent of the AMPK activity.
Collapse
Affiliation(s)
- Bin Wen
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Keru Zhou
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China
| | - Caiyin Hu
- Department of Cardiology, Wuhan Red Cross Hospital, Wuhan 430015, P. R. China
| | - Jiehui Chen
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China
| | - Kai Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan 445400, Hubei, P. R. China
| | - Ling Chen
- Department of Neonatology, TongJi Hospital, Tongji Medical College, P. R. China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| |
Collapse
|
10
|
Yuan M, Gong M, He J, Xie B, Zhang Z, Meng L, Tse G, Zhao Y, Bao Q, Zhang Y, Yuan M, Liu X, Luo C, Wang F, Li G, Liu T. IP3R1/GRP75/VDAC1 complex mediates endoplasmic reticulum stress-mitochondrial oxidative stress in diabetic atrial remodeling. Redox Biol 2022; 52:102289. [PMID: 35344886 PMCID: PMC8961221 DOI: 10.1016/j.redox.2022.102289] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/06/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are important mechanisms of atrial remodeling, predisposing to the development of atrial fibrillation (AF) in type 2 diabetes mellitus (T2DM). However, the molecular mechanisms underlying these processes especially their interactions have not been fully elucidated. OBJECTIVE To explore the potential role of ER stress-mitochondrial oxidative stress in atrial remodeling and AF induction in diabetes. METHODS AND RESULTS Mouse atrial cardiomyocytes (HL-1 cells) and rats with T2DM were used as study models. Significant ER stress was observed in the diabetic rat atria. After treatment with tunicamycin (TM), an ER stress agonist, mass spectrometry (MS) identified several known ER stress and calmodulin proteins, including heat shock protein family A (HSP70) member [HSPA] 5 [GRP78]) and HSPA9 (GRP75, glucose-regulated protein 75). In situ proximity ligation assay indicated that TM led to increased protein expression of the IP3R1-GRP75-VDAC1 (inositol 1,4,5-trisphosphate receptor 1-glucose-regulated protein 75-voltage-dependent anion channel 1) complex in HL-1 cells. Small interfering RNA silencing of GRP75 in HL-1 cells and GRP75 conditional knockout in a mouse model led to impaired calcium transport from the ER to the mitochondria and alleviated mitochondrial oxidative stress and calcium overload. Moreover, GRP75 deficiency attenuated atrial remodeling and AF progression in Myh6-Cre+/Hspa9flox/flox + TM mice. CONCLUSIONS The IP3R1-GRP75-VDAC1 complex mediates ER stress-mitochondrial oxidative stress and plays an important role in diabetic atrial remodeling.
Collapse
Affiliation(s)
- Ming Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China; Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China; Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinli He
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Lei Meng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health & Exercise Science, Tianjin University of Sport, Tianjin, 300381, PR China
| | - Qiankun Bao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Meng Yuan
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Xing Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Cunjin Luo
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China.
| |
Collapse
|
11
|
Zhao Q, Luo T, Gao F, Fu Y, Li B, Shao X, Chen H, Zhou Z, Guo S, Shen L, Jin L, Cen D, Zhou H, Lyu J, Fang H. GRP75 Regulates Mitochondrial-Supercomplex Turnover to Modulate Insulin Sensitivity. Diabetes 2022; 71:233-248. [PMID: 34810178 DOI: 10.2337/db21-0173] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022]
Abstract
GRP75 (75-kDA glucose-regulated protein), defined as a major component of both the mitochondrial quality control system and mitochondria-associated membrane, plays a key role in mitochondrial homeostasis. In this study, we assessed the roles of GRP75, other than as a component, in insulin action in both in vitro and in vivo models with insulin resistance. We found that GRP75 was downregulated in mice fed a high-fat diet (HFD) and that induction of Grp75 in mice could prevent HFD-induced obesity and insulin resistance. Mechanistically, GRP75 influenced insulin sensitivity by regulating mitochondrial function through its modulation of mitochondrial-supercomplex turnover rather than mitochondria-associated membrane communication: GRP75 was negatively associated with respiratory chain complex activity and was essential for mitochondrial-supercomplex assembly and stabilization. Moreover, mitochondrial dysfunction in Grp75-knockdown cells might further increase mitochondrial fragmentation, thus triggering cytosolic mtDNA release and activating the cGAS/STING-dependent proinflammatory response. Therefore, GRP75 can serve as a potential therapeutic target of insulin resistant-related diabetes or other metabolic diseases.
Collapse
Affiliation(s)
- Qiongya Zhao
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ting Luo
- Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Feng Gao
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yinxu Fu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoli Shao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haifeng Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuohua Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sihan Guo
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqin Jin
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dong Cen
- Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianxin Lyu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
Erustes AG, Guarache GC, Guedes EDC, Leão AHFF, Pereira GJDS, Smaili SS. α-Synuclein Interactions in Mitochondria-ER Contacts: A Possible Role in Parkinson's Disease. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:25152564221119347. [PMID: 37366506 PMCID: PMC10243560 DOI: 10.1177/25152564221119347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Endoplasmic reticulum-mitochondria contact sites regulate various biological processes, such as mitochondrial dynamics, calcium homeostasis, autophagy and lipid metabolism. Notably, dysfunctions in these contact sites are closely related to neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and amyotrophic lateral sclerosis. However, details about the role of endoplasmic reticulum-mitochondria contact sites in neurodegenerative diseases remain unknown. In Parkinson's disease, interactions between α-synuclein in the contact sites and components of tether complexes that connect organelles can lead to various dysfunctions, especially with regards to calcium homeostasis. This review will summarize the main tether complexes present in endoplasmic reticulum-mitochondria contact sites, and their roles in calcium homeostasis and trafficking. We will discuss the impact of α-synuclein accumulation, its interaction with tethering complex components and the implications in Parkinson's disease pathology.
Collapse
Affiliation(s)
- Adolfo Garcia Erustes
- Department of Pharmacology, Escola Paulista
de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriel Cicolin Guarache
- Department of Pharmacology, Escola Paulista
de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Erika da Cruz Guedes
- Department of Pharmacology, Escola Paulista
de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Soraya Soubhi Smaili
- Department of Pharmacology, Escola Paulista
de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Tiwary S, Nandwani A, Khan R, Datta M. GRP75 mediates endoplasmic reticulum-mitochondria coupling during palmitate-induced pancreatic β-cell apoptosis. J Biol Chem 2021; 297:101368. [PMID: 34756890 PMCID: PMC8637649 DOI: 10.1016/j.jbc.2021.101368] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 10/27/2022] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria are structurally connected with each other at specific sites termed mitochondria-associated membranes (MAMs). These physical links are composed of several tethering proteins and are important during varied cellular processes, such as calcium homeostasis, lipid metabolism and transport, membrane biogenesis, and organelle remodeling. However, the attributes of specific tethering proteins in these cellular functions remain debatable. Here, we present data to show that one such tether protein, glucose regulated protein 75 (GRP75), is essential in increasing ER-mitochondria contact during palmitate-induced apoptosis in pancreatic insulinoma cells. We demonstrate that palmitate increased GRP75 levels in mouse and rat pancreatic insulinoma cells as well as in mouse primary islet cells. This was associated with increased mitochondrial Ca2+ transfer, impaired mitochondrial membrane potential, increased ROS production, and enhanced physical coupling between the ER and mitochondria. Interestingly, GRP75 inhibition prevented these palmitate-induced cellular aberrations. Additionally, GRP75 overexpression alone was sufficient to impair mitochondrial membrane potential, increase mitochondrial Ca2+ levels and ROS generation, augment ER-mitochondria contact, and induce apoptosis in these cells. In vivo injection of palmitate induced hyperglycemia and hypertriglyceridemia, as well as impaired glucose and insulin tolerance in mice. These animals also exhibited elevated GRP75 levels accompanied by enhanced apoptosis within the pancreatic islets. Our findings suggest that GRP75 is critical in mediating palmitate-induced ER-mitochondrial interaction leading to apoptosis in pancreatic islet cells.
Collapse
Affiliation(s)
- Shweta Tiwary
- Integrative and Functional Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Arun Nandwani
- Integrative and Functional Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rukshar Khan
- Integrative and Functional Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India; Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Malabika Datta
- Integrative and Functional Biology Group, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
14
|
Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, Mumby S, Bhavsar PK, Chung KF. Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med 2021; 85:101026. [PMID: 34625291 DOI: 10.1016/j.mam.2021.101026] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
The lungs are exposed to reactive oxygen species oxygen (ROS) produced as a result of inhalation of oxygen, as well as smoke and other air pollutants. Cell metabolism and the NADPH oxidases (Nox) generate low levels of intracellular ROS that act as signal transduction mediators by inducing oxidative modifications of histones, enzymes and transcription factors. Redox signalling is also regulated by localised production and sensing of ROS in mitochondria, the endoplasmic reticulum (ER) and inside the nucleus. Intracellular ROS are maintained at low levels through the action of a battery of enzymatic and non-enzymatic antioxidants. Asthma is a heterogeneous airway inflammatory disease with different immune endotypes; these include atopic or non-atopic Th2 type immune response associated with eosinophilia, or a non-Th2 response associated with neutrophilia. Airway remodelling and hyperresponsiveness accompany the inflammatory response in asthma. Over-production of ROS resulting from infiltrating immune cells, particularly eosinophils and neutrophils, and a concomitant impairment of antioxidant responses lead to development of oxidative stress in asthma. Oxidative stress is augmented in severe asthma and during exacerbations, as well as by air pollution and obesity, and causes oxidative damage of tissues promoting airway inflammation and hyperresponsiveness. Furthermore, deregulated Nox activity, mitochondrial dysfunction, ER stress and/or oxidative DNA damage, resulting from exposure to irritants, inflammatory mediators or obesity, may lead to redox-dependent changes in cell signalling. ROS play a central role in airway epithelium-mediated sensing, development of innate and adaptive immune responses, and airway remodelling and hyperresponsiveness. Nonetheless, antioxidant compounds have proven clinically ineffective as therapeutic agents for asthma, partly due to issues with stability and in vivo metabolism of these compounds. The compartmentalised nature of ROS production and sensing, and the role of ROS in homeostatic responses and in the action of corticosteroids and β2-adrenergic receptor agonists, adds another layer of complexity to antioxidant therapy development. Nox inhibitors and mitochondrial-targeted antioxidants are in clinical development for a number of diseases but they have not yet been investigated in asthma. A better understanding of the complex role of ROS in the pathogenesis of asthma will highlight new opportunities for more targeted and effective redox therapies.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom.
| | - Hisham Abubakar-Waziri
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Ramzi Lakhdar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Katie Raby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Piers Dixey
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Pankaj K Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom; Royal Brompton & Harefield NHS Trust, London, UK
| |
Collapse
|
15
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
16
|
Fafián-Labora JA, Morente-López M, de Toro FJ, Arufe MC. High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome. Int J Mol Sci 2021; 22:7327. [PMID: 34298947 PMCID: PMC8305791 DOI: 10.3390/ijms22147327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a deadly childhood disorder, which is considered a very rare disease. It is caused by an autosomal dominant mutation on the LMNA gene, and it is characterized by accelerated aging. Human cell lines from HGPS patients and healthy parental controls were studied in parallel using next-generation sequencing (NGS) to unravel new non-previously altered molecular pathways. Nine hundred and eleven transcripts were differentially expressed when comparing healthy versus HGPS cell lines from a total of 21,872 transcripts; ITPR1, ITPR3, CACNA2D1, and CAMK2N1 stood out among them due to their links with calcium signaling, and these were validated by Western blot analysis. It was observed that the basal concentration of intracellular Ca2+ was statistically higher in HGPS cell lines compared to healthy ones. The relationship between genes involved in Ca2+ signaling and mitochondria-associated membranes (MAM) was demonstrated through cytosolic calcium handling by means of an automated fluorescent plate reading system (FlexStation 3, Molecular Devices), and apoptosis and mitochondrial ROS production were examined by means of flow cytometry analysis. Altogether, our data suggest that the Ca2+ signaling pathway is altered in HGPS at least in part due to the overproduction of reactive oxygen species (ROS). Our results unravel a new therapeutic window for the treatment of this rare disease and open new strategies to study pathologies involving both accelerated and healthy aging.
Collapse
Affiliation(s)
| | | | | | - María C. Arufe
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Ciencias Biomédicas y Medicina, Universdidade da Coruña, Agrupación Estratégica INIBIC-CICA, 15006 A Coruña, Spain; (J.A.F.-L.); (M.M.-L.); (F.J.d.T.)
| |
Collapse
|
17
|
Jiao B, Guo S, Yang X, Sun L, Sai L, Yu G, Bo C, Zhang Y, Peng C, Jia Q, Dai Y. The role of HMGB1 on TDI-induced NLPR3 inflammasome activation via ROS/NF-κB pathway in HBE cells. Int Immunopharmacol 2021; 98:107859. [PMID: 34153664 DOI: 10.1016/j.intimp.2021.107859] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 01/03/2023]
Abstract
To explore the potential role of HMGB1 on TDI-induced NLRP3 inflammasome activation, HBE cells were treated with TDI-HSA conjugate to observe the changes of HMGB1, TLR4, NF-κB, Nrf2 and NLRP3 inflammasome related proteins expressions, ROS release and MMP. NAC, TPCA-1 and Resatorvid pre-treatments were applied to explore the effects of ROS, NF-κB and TLR4 on TDI-induced NLRP3 inflammasome activation. The CRISPR/Cas9 system was used to construct HMGB1 gene knockout HBE cell line and then to explore the role of HMGB1 on TDI-HSA induced NLRP3 inflammasome activation. GL pre-treatment was applied to further confirm the role of HMGB1. Results showed that TDI increased HMGB1, TLR4, P-p65, Nrf2 proteins expressions and ROS release, decreased MMP level and activated NLRP3 inflammasome in HBE cells in a dose dependent manner. NAC, TPCA-1 and Resatorvid pre-treatments decreased the expression of P-p65 and inhibited NLRP3 inflammasome activation. Inhibition of HMGB1 decreased Nrf2 expression and ROS release, improved MMP level and reduced NLRP3 inflammasome activation. GL ameliorated NLRP3 inflammasome activation via inhibiting HMGB1 regulated ROS/NF-κB pathway. These results indicated that HMGB1 was involved in TDI-induced NLRP3 inflammasome activation as a positive regulatory mechanism. The study provided a potential target for early prevention and treatment of TDI-OA.
Collapse
Affiliation(s)
- Bo Jiao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Sumei Guo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Xiaohan Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Lei Sun
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Yu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Cheng Peng
- Queensland Alliance for Environmental Health Sciences (QAEHS), University of Queensland, Brisbane, Queensland 4029, Australia
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China.
| | - Yufei Dai
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention (CDC), Beijing 100050, China.
| |
Collapse
|
18
|
Chen L, Chen G, Kong X. Serum level of high mobility group box protein-1 and prognosis of patients with end-stage renal disease on hemodialysis and peritoneal dialysis. Medicine (Baltimore) 2021; 100:e24275. [PMID: 33592871 PMCID: PMC7870203 DOI: 10.1097/md.0000000000024275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/10/2020] [Indexed: 01/05/2023] Open
Abstract
To investigate serum level of high mobility group box protein-1 (HMGB1) and prognosis of patients with end-stage renal disease (ESRD) on hemodialysis (HD) and peritoneal dialysis (PD).This prospective cohort observational study included a total of 253 ESRD patients who came to our hospital for HD or PD from February 2013 to February 2015. Enzyme linked immunosorbent assay (ELISA) method was used to detect the serum level of HMGB1, interleukin (IL-6), IL-8, and tumor necrosis factor-alpha (TNF-α). The kidney disease quality of life short form (KDQOL-SF) and kidney disease targeted area (KDTA) was applied for evaluating the quality of life. Kaplan-Meier (K-M) curve was performed for survival time.Serum level of HMGB1 in patients on HD was higher than PD. HMGB1 levels were gradually decreased with the treatment of HD or PD. Furthermore, HMGB1 was positively correlated with IL-6 and TNF-α. Moreover, patients with higher HMGB1 had more complications than patients with lower HMGB1, but there was no difference for the survival rate. In addition, the quality of life was associated with different dialysis methods.The serum level of HMGB1 and prognosis of ESRD patients was associated with different dialysis methods.
Collapse
Affiliation(s)
| | - Gaoping Chen
- Department of Surgical Oncology, The First People's Hospital of Fuyang Hangzhou, Hangzhou City, Zhejiang, China
| | | |
Collapse
|
19
|
Sun YD, Zhang H, Chen YQ, Wu CX, Zhang JB, Xu HR, Liu JZ, Han JJ. HMGB1, the Next Predictor of Transcatheter Arterial Chemoembolization for Liver Metastasis of Colorectal Cancer? Front Oncol 2020; 10:572418. [PMID: 33473353 PMCID: PMC7812918 DOI: 10.3389/fonc.2020.572418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
HMGB1 is an important mediator of inflammation during ischemia-reperfusion injury on organs. The serum expression of HMGB1 was increased significantly on the 1st day after TACE and decreased significantly which was lower on the 30th day after TACE. Tumor markers of post-DEB-TACE decreased significantly. The correlational analysis showed that patients with low HMGB1 expression had lower risks of fever and liver injury compared those with the higher expression, while the ORR is relatively worse. Patients with lower expression of HMGB1 had longer PFS, better efficacy, and higher quality of life. With the high post-expression, the low expression had lower incidence of fever and liver injury too. There was no statistical difference in the one-year survival among the different groups. The quality of life of all patients was improved significantly. The over-expression of HMGB1 in LMCRC is an adverse prognostic feature and a positive predictor of response to TACE.
Collapse
Affiliation(s)
- Yuan-dong Sun
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Hao Zhang
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Ye-qiang Chen
- Maternal and Child Health Care Hospital of Shandong Province, Ji’nan, China
| | - Chun-xue Wu
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
- School of Medicine and Life Sciences, University of Ji’nan-Shandong Academy of Medical Sciences, Ji’nan, China
| | - Jian-bo Zhang
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Hui-rong Xu
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Jing-zhou Liu
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Jian-jun Han
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| |
Collapse
|
20
|
Cai XJ, Huang LH, Zhu YK, Huang YJ. LncRNA OIP5‑AS1 aggravates house dust mite‑induced inflammatory responses in human bronchial epithelial cells via the miR‑143‑3p/HMGB1 axis. Mol Med Rep 2020; 22:4509-4518. [PMID: 33174035 PMCID: PMC7646745 DOI: 10.3892/mmr.2020.11536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Bronchial asthma poses a serious threat to human health. Previous studies have documented the role of long non‑coding RNAs (lncRNAs) in asthma. However, the molecular mechanism underlying bronchial asthma remains unclear. The aim of the present study was to evaluate the role of the lncRNA Opa‑interacting protein 5 antisense RNA1 (OIP5‑AS1) in the house dust mite‑induced inflammatory response in human bronchial epithelial cells. BEAS‑2B cells were treated with Dermatophagoides pteronyssinus peptidase 1 (Der p1) to establish an in vitro model of asthma. OIP5‑AS1 expression levels increased in BEAS‑2B cells following Der p1 treatment, while microRNA (miR)‑143‑3p was downregulated. Additionally, the levels of the pro‑inflammatory factors tumor necrosis factor‑α, interleukin (IL)‑6 and IL‑8 were measured, and apoptosis was evaluated following OIP5 silencing. OIP5‑AS1 knockdown reduced the inflammatory response and apoptosis in BEAS‑2B cells. Furthermore, using dual luciferase reporter assays and co‑transfection experiments, it was demonstrated that the function of OIP5‑AS1 was mediated by miR‑143‑3p. miR‑143‑3p overexpression attenuated the Der p1‑induced inflammatory response and apoptosis of BEAS‑2B cells by targeting high mobility group box 1 (HMGB1). In summary, OIP5‑AS1 exacerbated Der p1‑induced inflammation and apoptosis in BEAS‑2B cells by targeting miR‑143‑3p via HMGB1.
Collapse
Affiliation(s)
- Xing-Jun Cai
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Lin-Hui Huang
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Yi-Ke Zhu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Yi-Jiang Huang
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
21
|
Liao Y, Yang Y, Wang X, Wei M, Guo Q, Zhao L. Oroxyloside ameliorates acetaminophen-induced hepatotoxicity by inhibiting JNK related apoptosis and necroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112917. [PMID: 32360799 DOI: 10.1016/j.jep.2020.112917] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oroxyloside is a natural flavonoid isolated from Scutellaria baicalensis Georgi (Lamiaceae) which is a Chinese herb widely used for liver diseases. However, its mechanisms on protecting against drug induced liver injury has not been investigated yet. AIM OF THE STUDY To investigate the protecting effects and the primary mechanisms of oroxyloside on acetaminophen (APAP)-induced liver injury. MATERIALS AND METHODS After a 12 h fasting period with free access to water, C57BL/6 mice were injected with APAP (300 mg/kg) intragastrically (i.g.) and 1 h later with oroxyloside (100 mg/kg, i.g.). When mice sacrificed, blood samples were collected from fundus venous plexus and liver tissues were collected. In addition, cells were incubated with 10 mM APAP alone and 10 mM APAP combined with 100 μM oroxyloside for 24 h. ELISA, TUNEL assay, qRT-PCR et al. were used to assess the effect of oroxyloside on ameliorating APAP-induced hepatotoxicity in vitro and in vivo. Western bolt and immunohistochemistry were used in the signaling pathway analysis. RESULTS Oroxyloside administration significantly decreased the accumulations of CYP2E1, CYP1A2, IL-6, IL-1β, ALT and AST induced by APAP in vivo. In addition, oroxyloside inhibited the APAP-induced JNK related apoptosis by enhancing the antioxidant defenses, reversing ER-stress and keeping the mito-balance of liver cells in vivo and in vitro. Furthermore, oroxyloside protected the liver cells from necroptosis by affecting JNK pathway. CONCLUSION Oroxyloside acted as a protective agent against APAP-induced liver injury through inhibiting JNK-related apoptosis and necroptosis.
Collapse
Affiliation(s)
- Yan Liao
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China
| | - Yue Yang
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China
| | - Xiaoping Wang
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China
| | - Mian Wei
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China
| | - Qinglong Guo
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China
| | - Li Zhao
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, 211100, China.
| |
Collapse
|
22
|
Kianian F, Kadkhodaee M, Sadeghipour HR, Karimian SM, Seifi B. An overview of high-mobility group box 1, a potent pro-inflammatory cytokine in asthma. J Basic Clin Physiol Pharmacol 2020; 31:jbcpp-2019-0363. [PMID: 32651983 DOI: 10.1515/jbcpp-2019-0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
High-mobility group box 1 (HMGB1), also called amphoterin, HMG1 and p30, is a highly conserved protein between different species that has various functions in nucleus such as stabilization of nucleosome formation, facilitation of deoxyribonucleic acid (DNA) bending and increasing the DNA transcription, replication and repair. It has also been indicated that HMGB1 acts as a potent pro-inflammatory cytokine with increasing concentrations in acute and chronic inflammatory diseases. Asthma is a common chronic respiratory disease associated with high morbidity and mortality rates. One central characteristic in its pathogenesis is airway inflammation. Considering the inflammatory role of HMGB1 and importance of inflammation in asthma pathogenesis, a better understanding of this protein is vital. This review describes the structure, cell surface receptors, signaling pathways and intracellular and extracellular functions of HMGB1, but also focuses on its inflammatory role in asthma. Moreover, this manuscript reviews experimental and clinical studies that investigated the pathologic role of HMGB1.
Collapse
Affiliation(s)
- Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Sadeghipour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Li Z, Liu Y, Zhang H, Pu Z, Wu X, Li P. Effect of fosinopril on the renal cortex protein expression profile of Otsuka Long-Evans Tokushima Fatty rats. Exp Ther Med 2019; 19:172-182. [PMID: 31853288 PMCID: PMC6909786 DOI: 10.3892/etm.2019.8188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Angiotensin-converting enzyme inhibitors (ACEIs) can reduce urinary protein excretion and postpone the deterioration of renal function. However, the mechanisms of renal protection are not yet fully understood. To investigate the mechanisms of ACEIs in the treatment of diabetic nephropathy (DN), the present study determined the effects of the ACEI fosinopril (FP) on the profiling of renal cortex protein expression in Otsuka Long-Evans Tokushima Fatty (OLETF) rats using Long-Evans Tokushima Otsuka (LETO) rats as controls. Urinary protein levels at 24 h were examined using the Broadford method. PAS staining was performed to observe renal histopathological changes. The kidney cortices of OLETF, FP-treated OLETF and LETO rats were examined using soluble and insoluble high-resolution subproteomic analysis methodology at age of 36 and 56 weeks. Differentiated proteins were further confirmed using western blotting analysis. The results demonstrated that FP significantly decreased the glomerulosclerosis index and reduced the 24 h urinary protein excretion of OLETF rats. Additionally, 17 proteins significantly changed following FP-treatment. Amongst these proteins, the abundances of the stress-response protein heat shock protein family A member 9 and the antioxidant glutathione peroxidase 3 were particularly increased. These results indicated that FP ameliorated diabetic renal injuries by inhibiting oxidative stress. In conclusion, the differentially expressed proteins may improve our understanding of the mechanism of ACEIs in the OLETF rats.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yeqiang Liu
- Department of Endocrinology, Kailuan General Hospital, Tangshan, Hebei 063000, P.R. China
| | - Haojun Zhang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zhijie Pu
- Graduate School, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Xuejing Wu
- Graduate School, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
24
|
Wang Y, Chen Q, Shi C, Jiao F, Gong Z. Mechanism of glycyrrhizin on ferroptosis during acute liver failure by inhibiting oxidative stress. Mol Med Rep 2019; 20:4081-4090. [PMID: 31545489 PMCID: PMC6797988 DOI: 10.3892/mmr.2019.10660] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the anti‑ferroptosis effects of the HMGB1 inhibitor glycyrrhizin (GLY). The present study used a cell and animal model of acute liver failure (ALF), induced using tumor necrosis factor‑α, lipopolysaccharide and D‑galactosamine, to investigate the effects of GLY. The expression of glutathione peroxidase 4 (GPX4) and high mobility group protein B1 (HMGB1), heme oxygenase‑1 (HO‑1) and nuclear factor erythroid 2‑related factor 2 (Nrf2) were detected were detected by western blotting in L02 hepatocytes and mouse liver. The expression of GPX4 and HMGB1 in L02 hepatocytes and mouse liver was detected by immunofluorescence. The pathological changes to liver tissues were determined by hematoxylin and eosin staining. The levels of lactate dehydrogenase (LDH), Fe2+, reactive oxygen species (ROS) and glutathione (GSH) were tested using kits. Compared with the normal group, the degree of liver damage and liver function in the model animal group was severe. The protein levels of HMGB1 in L02 cells and liver tissues were significantly increased. The expression of NRF2, HO‑1 and GPX4 was significantly decreased. The levels of LDH, Fe2+, malondialdehyde (MDA) and ROS were increased, whereas the level of GSH was decreased. Treatment with GLY reduced the degree of liver damage, the expression of HMGB1 was decreased, and the levels of Nrf2, HO‑1 and GPX4 were increased. The levels of LDH, Fe2+, MDA, ROS were decreased, while the level of GSH was increased by GLY treatment. The results of the present study indicated that HMGB1 is involved in the process of ferroptosis. The HMGB1 inhibitor GLY significantly reduced the degree of ferroptosis during ALF by inhibiting oxidative stress.
Collapse
Affiliation(s)
- Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fangzhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
25
|
Qiao J, Chen L, Huang X, Guo F. Effects of nebulized
N
‐acetylcystein on the expression of HMGB1 and RAGE in rats with hyperoxia‐induced lung injury. J Cell Physiol 2018; 234:10547-10553. [PMID: 30480814 DOI: 10.1002/jcp.27724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Junying Qiao
- Department of Pediatrics Third Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Lixia Chen
- Department of Pediatrics Third Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Xianjie Huang
- Department of Pediatrics Third Affiliated Hospital of Zhengzhou University Zhengzhou China
| | - Feifei Guo
- Department of Pediatrics Third Affiliated Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
26
|
Fu S, Liu H, Chen X, Qiu Y, Ye C, Liu Y, Wu Z, Guo L, Hou Y, Hu CAA. Baicalin Inhibits Haemophilus Parasuis-Induced High-Mobility Group Box 1 Release during Inflammation. Int J Mol Sci 2018; 19:ijms19051307. [PMID: 29702580 PMCID: PMC5983759 DOI: 10.3390/ijms19051307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023] Open
Abstract
Haemophilus parasuis (H. parasuis) can cause Glässer’s disease in pigs. However, the molecular mechanism of the inflammation response induced by H. parasuis remains unclear. The high-mobility group box 1 (HMGB1) protein is related to the pathogenesis of various infectious pathogens, but little is known about whether H. parasuis can induce the release of HMGB1 in piglet peripheral blood monocytes. Baicalin displays important anti-inflammatory and anti-microbial activities. In the present study, we investigated whether H. parasuis can trigger the secretion of HMGB1 in piglet peripheral blood monocytes and the anti-inflammatory effect of baicalin on the production of HMGB1 in peripheral blood monocytes induced by H. parasuis during the inflammation response. In addition, host cell responses stimulated by H. parasuis were determined with RNA-Seq. The RNA-Seq results showed that H. parasuis infection provokes the expression of cytokines and the activation of numerous pathways. In addition, baicalin significantly reduced the release of HMGB1 in peripheral blood monocytes induced by H. parasuis. Taken together, our study showed that H. parasuis can induce the release of HMGB1 and baicalin can inhibit HMGB1 secretion in an H. parasuis-induced peripheral blood monocytes model, which may provide a new strategy for preventing the inflammatory disorders induced by H. parasuis.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Huashan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Xiao Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China.
| | - Chien-An Andy Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
- Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|