1
|
Ferris WF. The Role and Interactions of Programmed Cell Death 4 and its Regulation by microRNA in Transformed Cells of the Gastrointestinal Tract. Front Oncol 2022; 12:903374. [PMID: 35847932 PMCID: PMC9277020 DOI: 10.3389/fonc.2022.903374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Abstract
Data from GLOBOCAN 2020 estimates that there were 19.3 million new cases of cancer and 10.0 million cancer-related deaths in 2020 and that this is predicted to increase by 47% in 2040. The combined burden of cancers of the gastrointestinal (GI) tract, including oesophageal-, gastric- and colorectal cancers, resulted in 22.6% of the cancer-related deaths in 2020 and 18.7% of new diagnosed cases. Understanding the aetiology of GI tract cancers should have a major impact on future therapies and lessen this substantial burden of disease. Many cancers of the GI tract have suppression of the tumour suppressor Programmed Cell Death 4 (PDCD4) and this has been linked to the expression of microRNAs which bind to the untranslated region of PDCD4 mRNA and either inhibit translation or target the mRNA for degradation. This review highlights the properties of PDCD4 and documents the evidence for the regulation of PDCD4 expression by microRNAs in cancers of the GI tract.
Collapse
|
2
|
Shiina M, Hashimoto Y, Kulkarni P, Dasgupta P, Shahryari V, Yamamura S, Tanaka Y, Dahiya R. Role of miR-182/PDCD4 axis in aggressive behavior of prostate cancer in the African Americans. BMC Cancer 2021; 21:1028. [PMID: 34525952 PMCID: PMC8444584 DOI: 10.1186/s12885-021-08723-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Prostate cancer is one of the most commonly diagnosed cancers among men. African Americans (AA) are at an increased risk of developing prostate cancer compared to European Americans (EA). miRNAs play a critical role in these tumors, leading to tumor progression. In this study, we investigated the role of miR-182 in racial disparity in prostate cancer. Results We found significantly increased levels of miR-182 in prostate cancer tissues compared to BPH. Also, miR-182 shows increased expression in AA prostate cancer cell line and tissue samples compared to EA. We performed biochemical recurrence (BCR) - free survival time in AA and EA patients and found that high miR-182 expression had significantly shorter BCR-free survival than patients with low miR-182 expression (P = 0.031). To elucidate the role of miR-182, we knocked down miR-182 in EA (DU-145 and LNCaP) and AA (MDA-PCa-2b) cell lines and found an increase in apoptosis, arrest of the cell cycle, and inhibition of colony formation in the AA cell line to a greater extent than EA cell lines. Conclusions Our results showed that PDCD4 is a direct miR-182 target and its inhibition is associated with aggressiveness and high Gleason grade in prostate cancer among AA. These findings show that miR-182 is highly expressed in AA patients and miR-182 may be a target for effective therapy in AA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08723-6.
Collapse
Affiliation(s)
- Marisa Shiina
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA.
| | - Yutaka Hashimoto
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Priyanka Kulkarni
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Pritha Dasgupta
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Varahram Shahryari
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Soichiro Yamamura
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Yuichiro Tanaka
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Rajvir Dahiya
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| |
Collapse
|
3
|
Zhang Y, Xie Y, Hao Z, Zhou P, Wang P, Fang S, Li L, Xu S, Xia Y. Umbilical Mesenchymal Stem Cell-Derived Exosome-Encapsulated Hydrogels Accelerate Bone Repair by Enhancing Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18472-18487. [PMID: 33856781 DOI: 10.1021/acsami.0c22671] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Repair of large bone defects represents a major challenge for orthopedic surgeons. The newly formed microvessels inside grafts play a crucial role in successful bone tissue engineering. Previously, an active role for mesenchymal stem cell (MSC)-derived exosomes in blood vessel development and progression was suggested in the repair of multiple tissues. However, the reports on the application of MSC-derived exosomes in the repair of large bone defects are sparse. In this study, we encapsulated umbilical MSC-derived exosomes (uMSCEXOs) in hyaluronic acid hydrogel (HA-Gel) and combined them with customized nanohydroxyapatite/poly-ε-caprolactone (nHP) scaffolds to repair cranial defects in rats. Imaging and histological evaluation indicated that the uMSCEXOs/Gel/nHP composites markedly enhanced bone regeneration in vivo, and the uMSCEXOs might play a key role in this process. Moreover, the in vitro results demonstrated that uMSCEXOs promoted the proliferation, migration, and angiogenic differentiation of endothelial progenitor cells (EPCs) but did not significantly affect the osteogenic differentiation of BMSCs. Importantly, mechanistic studies revealed that exosomal miR-21 was the potential intercellular messenger that promoted angiogenesis by upregulating the NOTCH1/DLL4 pathway. In conclusion, our findings exhibit a promising exosome-based strategy in repairing large bone defects through enhanced angiogenesis, which potentially regulated by the miR-21/NOTCH1/DLL4 signaling axis.
Collapse
Affiliation(s)
- Yuntong Zhang
- Department of Emergency and Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Orthopaedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yang Xie
- Department of Orthopaedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zichen Hao
- Department of Orthopaedics, Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China
| | - Panyu Zhou
- Department of Emergency and Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Orthopaedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Panfeng Wang
- Department of Emergency and Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Orthopaedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shuo Fang
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Lu Li
- Department of Plastic Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shuogui Xu
- Department of Emergency and Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Orthopaedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Xia
- Department of Emergency and Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Orthopaedics, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
4
|
Sadoughi F, Maleki Dana P, Asemi Z, Yousefi B. Targeting microRNAs by curcumin: implication for cancer therapy. Crit Rev Food Sci Nutr 2021; 62:7718-7729. [PMID: 33905266 DOI: 10.1080/10408398.2021.1916876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In spite of all the investigations in the past 20 years that established a great body of knowledge in cancer therapy, utilizing some elderly methods such as plant compound administration might still be useful. Curcumin is a bioactive polyphenol, which has many anticancer properties but its capability in modulating miRNA expression has opened new doors in the field of cancer-targeted therapy. MiRNAs are a class of small noncoding RNAs that are able to regulate gene expression and signaling. In addition, some other effects of these RNAs such as modulating cell differentiation and regulation of cell cycle have made miRNAs great candidates for personalized cancer treatment. In this review, we try to find some answers to the questions on how curcumin exerts its impacts on cancer hallmarks through miRNAs and whether chemotherapy can be replaced by this beneficial plant compound.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Zhou SN. Role of non-coding RNAs in esophageal carcinoma. Shijie Huaren Xiaohua Zazhi 2020; 28:453-459. [DOI: 10.11569/wcjd.v28.i12.453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, the research on the role of non-coding RNAs (ncRNAs) in tumors has received more and more attention. Although research on the role of ncRNAs in the early diagnosis, disease monitoring, treatment guidance, and prognosis prediction of esophageal carcinoma has been gradually carried out, there are still many problems that need to be addressed. In the current paper, I review the progress in the research of ncRNAs in esophageal carcinoma, with an aim to help provide new strategies for the prevention and treatment of esophageal carcinoma.
Collapse
Affiliation(s)
- Su-Na Zhou
- Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| |
Collapse
|
6
|
Shen WB, Wang YF, Gao HM, Zhu SC, Li YM, Li SG, Su JW, Li J, Liu ZK. Dosimetric Predictors of Radiation Gastritis Due to Postoperative Intensity Modulated Irradiation Therapy in Patients with Esophageal Squamous Cell Carcinoma After Radical Esophagectomy. Cancer Biother Radiopharm 2019; 34:419-426. [PMID: 31149837 DOI: 10.1089/cbr.2018.2743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective: To explore the association between the incidence of acute radiation gastritis attributed to postoperative intensity modulated irradiation therapy (IMRT) and the dose volume of intrathoracic stomach of patients with esophageal squamous cell carcinoma (ESCC) after radical esophagectomy. Methods: The authors retrospectively collected the data of 49 ESCC patients who participated in postoperative IMRT treatment after radical esophagectomy, and analyzed the incidence of acute radiation gastritis during the treatment. Results: Among all the 49 patients, acute grade ≥2 radiation gastritis was observed in 19 patients (39%). Receiver operating characteristic (ROC) curve analysis showed that the physical variables, such as stomach Dmax, Dmean, length of the whole stomach received 5-40 Gy (LSTT5-LSTT40), and V10-V50, were associated with acute radiation gastritis. Patients were grouped according to cutoff values in physical indicators obtained from the ROC curve. Other than V5, the incidence of acute grade ≥2 radiation gastritis was significantly higher in the group with indicators above cutoff values than that below cutoff values, and the between-group difference was statistically significant in terms of physical indicators. Multivariate analysis suggested that LSTT5 and V40 could be acted as indicators to predict the incidence of acute grade ≥2 radiation gastritis. Conclusions: In the postoperative IMRT treatment for ESCC patients, protection of intrathoracic stomach is strongly recommended. Dose-volume histogram is a preferable predictive indicator for the occurrence of acute radiation gastritis, especially for the stomach LSTT5 and V40. Nevertheless, a larger sample size is needed to provide insight into the relevant study.
Collapse
Affiliation(s)
- Wen-Bin Shen
- Department of Radiation Oncology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yu-Fang Wang
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, China
| | - Hong-Mei Gao
- Department of Radiation, the First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Shu-Chai Zhu
- Department of Radiation Oncology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - You-Mei Li
- Department of Radiation Oncology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shu-Guang Li
- Department of Radiation Oncology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin-Wei Su
- Department of Radiation Oncology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Juan Li
- Department of Radiation Oncology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhi-Kun Liu
- Department of Radiation Oncology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Prognostic Value of MicroRNAs in Esophageal Carcinoma: A Meta-Analysis. Clin Transl Gastroenterol 2018; 9:203. [PMID: 30420592 PMCID: PMC6232177 DOI: 10.1038/s41424-018-0070-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
Background Numerous articles have reported that abnormal expression levels of microRNAs (miRNAs) are related to the survival times of esophageal carcinoma (EC) patients, which contains esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). Nevertheless, there has not been a comprehensive meta-analysis to assess the accurate prognostic value of miRNAs in EC. Methods Studies published in English up to April 12, 2018 that evaluated the correlation of the expression levels of miRNAs with overall survival (OS) in EC were identified by online searches in PubMed, EMBASE, Web of Science, and the Cochrane Database of Systematic Reviews performed by two independent authors. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were used to estimate the correlation between OS and miRNA expression. HR ≥ 2 was considered cutoff for considering the miRNA as prognostic candidate. Results Forty-four pertinent articles with 22 miRNAs and 4310 EC patients were ultimately included. EC patients with tissue expression levels of high miR-21 or low miR-133a (HR = 2.48, 95% CI = 1.50–4.12), miR-133b (HR = 2.15, 95% CI = 1.27–3.62), miR-138 (HR = 2.27, 95% CI = 1.68–3.08), miR-203 (HR = 2.83, 95% CI = 1.35–5.95), miR-375 and miR-655 (HR = 2.66, 95% CI = 1.16–6.12) had significantly poorer OS (P < 0.05). In addition, EC patients with blood expression levels of high miR-21 (HR = 2.19, 95% CI = 1.31–3.68) and miR-223 had significantly shorter OS (P < 0.05). Conclusions In conclusion, tissue expression levels of miR-21, miR-133a, miR-133b, miR-138, miR-203, miR-375, and miR-655 and blood expression levels of miR-21 and miR-223 demonstrate significant prognostic value. Among them, the expression levels of miR-133a, miR-133b, miR-138, miR-203, and miR-655 in tissue and the expression level of miR-21 in blood are potential prognostic candidates for predicting OS in EC.
Collapse
|